
IS
S

N
 0

24
9-

63
99

appor t
de r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Performability Analysis of Two Approaches to Fault
Tolerance

Philippe Joubert, Gerardo Rubino and Bruno Sericola

N ˚ 3009

Juillet 1996

THÈME 1

Performability Analysis of Two Approaches to Fault

Tolerance

Philippe Joubert, Gerardo Rubino and Bruno Sericola

Th�eme 1 | R�eseaux et syst�emes
Projet Model et Solidor

Rapport de recherche n�3009 | Juillet 1996 | 19 pages

Abstract: We present a quantitative comparison of two popular approaches for recov-
ering from CPU errors: Quadruple Modular Redundancy and Backward Error Recovery.
Both are used in existing fault-tolerant systems o�ering basically the same main features
and, in particular, the same fault-tolerance services (transparent recovery for hardware
faults). We show that the use of performability measures is richer than classical depend-
ability analysis. Given that they take into account not only reliability aspects but also
performance metrics, they allow a deeper insight into the behaviour of the considered
systems. For instance, they allow the user to identify di�erent mission lengths leading to
better adaptation of each type of architecture.

Key-words: Backward error recovery, dependability measures, fault-tolerant comput-
ing systems, performability, quadruple modular redundancy, repairable systems.

(R�esum�e : tsvp)

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : (33) 99 84 71 00 – T´elécopie : (33) 99 84 71 71

Analyse de performabilit�e de deux approches de la

tol�erance aux fautes

R�esum�e : On pr�esente une comparaison quantitative de deux approches bien connues
pour le recouvrement d'erreurs CPU: la redondance modulaire quadruple et le recouvre-
ment arri�ere d'erreur. Ces deux approches sont utilis�ees dans des syst�emes existants en
o�rant les mêmes caract�eristiques de base et, en particulier, les mêmes services de tol�e-
rance aux fautes (recouvrement transparent pour les fautes mat�erielles). On montre que
l'utilisation de mesures de performabilit�e est plus riche que l'analyse classique de sûret�e
de fonctionnement. Etant donn�e qu'elles prennent en compte non seulement les aspects
de �abilit�e mais aussi les mesures de performance, elles permettent une analyse plus �ne
du comportement des syst�emes consid�er�es. Par exemple, ceci peut aider l'utilisateur �a
trouver une meilleure ad�equation entre la dur�ee de la mission et le type d'architecture.

Mots-cl�e : Recouvrement arri�ere d'erreur, mesures de sûret�e de fonctionnement, sys-
t�eme informatique tol�erant les pannes, performabilit�e, redondance modulaire quadruple,
syst�emes r�eparables

Performability Analysis of Two Approaches to Fault Tolerance 3

1 Introduction

Fault tolerance is classically divided into four parts: error detection, fault isolation, error
recovery and fault treatment [1]. The techniques for detecting and isolating faults are well
understood and widely used (replication and comparison, error detecting codes . . .). On
the contrary, it appears that there is no clear consensus on the error recovery techniques.
While all fault tolerant computers use the same techniques for error detection nearly
almost each system has its own approach to error recovery. This is true even in the �eld
of commercial fault-tolerant systems [2].
It is clear that there is no best solution to error recovery and that each error recovery

approach has its own advantages and limitations. It may then be di�cult for a potential
customer or system designer to decide which error recovery approach is best suited to
his dependability requirements. Depending on the missions assigned to the system, an
approach may be well suited to a given mission type and behave poorly for another.
In this area, dependability and performability modeling greatly helps the evaluation of
competing design solutions in terms of implementation and performance costs. This is
especially true if mission type has to be taken into account for the evaluation.
This paper presents a quantitative comparison of two di�erent and basic approaches

to CPU error recovery: Quadruple Modular Redundancy (QMR) and Backward Error
Recovery (BER). Both methods are widely used in fault tolerant shared memory multi-
processors. The quantitative analysis is based upon performability measures. We propose
a methodological point of view and not de�nitive numerical values. Our aim is to show
that performability measures can be very useful in understanding the di�erent behaviour
of the two architectural choices.
The remainder of this paper is organized as follows. Section 2 describes the two error

recovery techniques chosen for comparison and points out the aspects to be taken into
account in the analysis. Section 3 deals with performance �gures which are necessary to
develop the performability analysis. Section 4 presents the models of the two architectures.
We use Markov models assuming constant failure and repair rates. Section 5 proposes the
dependability and performability analysis and the comparison results. The last section is
devoted to some conclusions.

RR n�3009

4 Philippe Joubert, Gerardo Rubino and Bruno Sericola

2 The QMR and BER architectures

Our concern is to compare two di�erent alternatives for tolerating CPU faults in a fault-
tolerant shared memory multiprocessor. To ease the comparison we consider two fault
tolerant architectures that only di�er in the way they recover from CPU errors. Apart
from that, both systems are assumed to be built with the same basic units (same hardware
components) and to o�er the same fault-tolerance services (redundant busses, memories
and IO devices).
In order to detect CPU failures, the CPU boards contain two CPUs operating in lock-

step mode. The outputs of both CPUs are compared at each bus cycle. If the CPUs
disagree on their outputs the board disconnects itself from the bus (fail-stop behavior).
This error detection and fault isolation method is common place in fault-tolerant systems
and is used for instance in the Stratus and Sequoia systems.

2.1 The QMR architecture

A �rst technique for recovering from CPU errors is to run the computation simultaneously
on two CPU boards operating in lock-step. If one of the boards fails the other one simply
continues its computation and no processing power is lost. This technique is known as
Quadruple Modular Redundancy (4 CPUs are running the same computation, two on each
CPU board) and is used for instance in the Stratus systems [3].

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 5

CPU CPU

=

CPU CPU

=

CPU CPU CPU CPU

= =

� � �

� � �

The QMR architecture

CPU board CPU board

CPU boardCPU board

� � �

� � �

1 PE � 2 CPU boards 1 PE � 2 CPU boards

More speci�cally, consider the fact that one of two paired CPU boards fails. Two cases
are possible:

� When the remaining board is operational, it will try to put the failed one back in
operation (recall that they run exactly the same computation). In case of success,
the pair of CPU boards restarts to work together, and the involved fault was a
transient one. If not, the fault was permanent .

RR n�3009

6 Philippe Joubert, Gerardo Rubino and Bruno Sericola

� If the failure of a CPU board arises when the paired one is no more operational,
then the whole pair is down. Since a QMR system has no error recovery mechanism
should a pair of CPU boards fail, the data that were in the caches of the paired CPU
boards is lost, and the whole system is down.

2.2 The BER architecture

Another alternative is to use Backward Error Recovery (BER). The basic principle of
backward error recovery is to periodically record recovery data in order to recover the state
of the system to a prior state which is assumed to be error free, should an error occur.
In a shared memory multiprocessor, shared memory is a natural location for storing the
recovery data. One requirement is that the update of the recovery data (i.e. checkpointing)
needs to be atomic (i.e. all or nothing property) with respect to CPU failures. This can be
achieved by keeping the data modi�ed since the last checkpoint within the cache associated
with each CPU. When a checkpoint is required, the cache is ushed to the shared memory
along with the CPU registers. To enforce the atomicity of cache ushes, the cache is
actually ushed to two distinct memory boards.

CPU CPU

=

CPU CPU

=

� � �

� � �

� � �

The BER architecture

1 PE � 1 CPU board 1 PE � 1 CPU board

When a CPU board fails, all the processing done since the last checkpoint is lost.
The shared memory contains the state of the system at the time of the last checkpoint.

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 7

If the fault was deemed to be transient, the computation simply restarts from the last
checkpoint. If the fault is permanent then that CPU board can not be used further, and
its computation is restarted on another board.
The above BER technique is similar to that used by Sequoia [4]. Other proposals for

fault tolerant shared memorymultiprocessors exist in the literature [5]. They mainly focus
on reducing the performance overhead of checkpointing by using di�erent cache ushing
and memory update schemes. They also di�er in the algorithms used to enforce checkpoint
consistency when multiple CPUs share memory.

2.3 Comments

The main advantage of QMR is that it masks the �rst CPU permanent fault appearing in
a paired sets of boards. Moreover, its implementation is much more simpler than in the
case of a BER. On the other hand, half of the potentially available processing power of
the system is unused.
The advantages and drawbacks of BER are nearly the opposite: all the CPU boards in

the system are e�ectively used but at the expense of some processing power (checkpoin-
ting operations and recovery procedures). Moreover, the processing power of the system
diminishes as CPU boards fail since the load of the failed boards has to be shared between
the remaining ones. Another interesting feature of backward error recovery is its ability
to tolerate some transient software faults. If a software fault is activated, for instance,
by a marginal synchronization condition and the backward error recovery procedure is
triggered, the computation is rolled back. The execution environment may then have suf-
�ciently changed so that the fault is not activated anymore. This feature of backward
error recovery has proved its e�ciency in commercial fault-tolerant systems [6].
A third alternative for error recovery is to use Triple Modular Redundancy (TMR),

that is, triplicated CPUs voting on their outputs as in the Tandem Integrity [7]. This
interesting alternative is not discussed in our paper.

2.4 Processing Element (PE) concept

To avoid confusion we will focus in the following on Processing Elements (PEs) rather
than on CPUs or CPU boards. A PE is, by de�nition, the atomic unit of processing in
both architectures. It is equivalent to one CPU board in the BER architecture and to
two (paired) CPU boards in the QMR one. Two multiprocessor systems having N PEs

RR n�3009

8 Philippe Joubert, Gerardo Rubino and Bruno Sericola

(alive), the �rst using QMR, the second using BER, o�er the same logical power to the
user. Resuming, we have

QMR case. The N PEs are built using N paired CPU boards, that is, 2N CPU
boards (i.e., a total of 4N CPUs). Either all the PEs are alive (possibly with only
one active CPU board), or the whole system is down.

BER case. The N PEs are built using N CPU boards (i.e., a total of 2N CPUs).
The system can degrade gracefully from N to only one operational PE.

3 Performance evaluation

Consider two architectures, both with N initial PEs, one using QMR, the second using
BER. As in multiprocessor systems, there is an overhead which means that the power

(given in \equivalent PEs per unit of time"), when there are N initially working PEs, is
less than N . Let us denote the respective powers by pQMRN and pBERN . In the latter case,
if initially the system had N PEs and at some point in time there are n operational PEs,
the power is pBERn .
The computation of the power measure is a complex task. The overhead due to the

multiprocessing involves bus contention, memory access delays, cache coherence protocol
costs, etc. In the BER case, we have supplementary di�culties since the protocol itself
adds overheads that depend on several correlated factors:

� The checkpointing rate which is determined by the behavior of the application run-
ning on the system (external IO rate, cache behavior, bounded rollback time).

� The amount of data that needs to be ushed from the PE's cache when a check-
point occurs. This is determined by the checkpointing rate and the behavior of the
application (ie. how frequently the application modi�es distinct memory locations).

� The current load of the shared bus. Cache ushes use bus bandwidth that is not
available to other PEs for performing useful work. This may saturate the bus and
severely degrade performance.

For these reasons the values of the power that we used in the numerical tests are averages
extracted from previous simulation experiments that were conducted in order to estimate

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 9

the performance of alternative checkpointing schemes for fault tolerant shared memory
multiprocessors [8]. Not surprisingly, the simulations show that the overhead increases
with the number of PEs, and that it is obviously more important in the BER case. The
values were obtained by averaging the simulation results obtained for a set of scienti�c
parallel applications. Of course, they may not be completely representative of the behavior
of the application running on the system but they allow to perform some trend analysis.
To illustrate the paper, we use the following data sets, compacted as power values. In

the case of a QMR, we have

j 1 2 3 4 5 6 7 8

p
QMR
j 0.90 1.25 2.55 3.35 4.07 4.72 5.37 5.92

For a BER under the same conditions, we have

j 1 2 3 4 5 6 7 8

pBERj 0.86 1.19 2.40 3.02 3.62 4.05 4.55 4.97

These results show the performance overhead of the BER architecture.

4 Models for dependability and performability ana-

lysis

We assume that each CPU board fails with a constant failure rate denoted by �. This
means that the failure rate of a PE in the QMR architecture is 2� while its value is � in
the BER case. We assume that the probability that any given fault is a transient one is
constant and we denote it by d. In the analysis, we will denote the common number of
PEs initially working in both architectures by N .
The life-time of the system is de�ned here as the interval separating the starting instant

from the point in time where no more self-reparing procedure is possible and an external
action is necessary to put the system back to operation. In the QMR case, this happens
when the �rst PE fails. Such an architecture cannot recover when a PE is completely
down. In the BER architecture the system is down when there is no more operational PE
or when the recovery protocol fails. The success of the protocol is assumed to occur with
a �xed probability denoted by c, the coverage factor .

RR n�3009

10 Philippe Joubert, Gerardo Rubino and Bruno Sericola

4.1 The QMR model

Recall that, in order to make the comparison between the two architectures easier to
understand, we assume that everything but the processing units (PEs) is identical in both
systems and that all these components are fail-free. This is of course false in reality but
our purpose is to concentrate our analysis on the CPU error recovery procedures. The
study of the e�ects of the rest of the components (busses, IO devices, etc.) on the behavior
of the two systems, even if these components are identical, is a topic of interest in itself
and not developed here.
We use a model having 2N + 2 states denoted by u0, u1, . . . , uN (which are the ope-

rational states), h1, . . . , hN and an absorbing state 0. State un means that the system is
up and that there are n \complete" PEs, that is, n PEs having their two paired boards
operational. Thus, in state un there are N � n PEs working with only one CPU board
(N � n \incomplete" PEs). When the system is in the absorbing state 0, it is assumed to
be down and no internal action can put it back to operation. When the model is in state
un, the failure of any CPU board of the N � n incomplete PEs puts it in the absorbing
state 0. This happens with rate (N �n)�. Always when the model is in state un, if one of
the boards in the n complete PEs fails, the model goes to state hn, with rate 2n�. State
hn represents the system trying to put the failed board back into operation. From state
hn, two transitions are possible, depending on the type of the concerned fault, transient
(probability d) or permanent (probability 1� d): denoting by �0 the rate of the recovering
action, with rate �0d the model goes back to un and with rate �0(1 � d), that is, in the
case of a permanent fault, there is one less complete PE and the new state is un�1.
With these assumptions, we obtain the Markov process depicted in Figure 1 where to

simplify the picture, we show the case of N = 3 PEs. In the scheme, the arrows without
destination go to the absorbing state 0.

4.2 The BER model

The model of a system based on BER has 2N + 1 states where N are operational, again
denoted by u1, . . . , uN . State un means that there are n operational PEs (and, thus, that
N � n PEs have failed). When in state un, after a failure the model goes to state hn
(associated transition rate n�) representing the fact that the BER protocol is in progress.
From state hn, in case of a transient fault and of a success of the recovery protocol, the
model jumps back to state un. The corresponding transition rate is �cd where � is the
rate of execution of the protocol. If the fault is permanent and the recovery procedure

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 11

u2

u1

u3 h3

h2

6�

4�

�0d

�0d

2�

�0d
h1

�0(1� d)

�0(1� d)

�0(1� d)

u0

�

2�

3�

Figure 1: QMR model illustrated for 3 PEs

succeeds, the model goes to state un�1 since the faulty PE is no more available. In all
cases (transient or permanent fault), if the recovery protocol can not put the system back
to operation, the model jumps to the only absorbing state 0 (rate �(1 � c)).
With these assumptions, we obtain the Markov process depicted in Figure 2, again for

3 PEs, where the arrows without destination go to the absorbing state 0.

RR n�3009

12 Philippe Joubert, Gerardo Rubino and Bruno Sericola

3�

2�

�

�cd

�cd
u2

u1

u3 h3

h2

�(1 � c)

�(1 � c)

�c(1� d)

�c(1� d)

Figure 2: BER model illustrated for 3 PEs

5 Dependability and performability mean value ana-

lysis

The two architectures are compared via two expected measures. The �rst one is the
classical Mean Time To Failure (MTTF). The second one, which depends on the mission
time (0; t) during which the system is supposed to be used, is the mean processing power
over the interval (0; t).
More formally, let X = fXu; u � 0g be the Markov process modeling one of the two

architectures. The mean time to failure is then de�ned as IE(T), where T is the life-time
of X, that is, T = inffujXu = 0g.
It is shown in the Appendix that for the QMR architecture with N PEs, the MTTF is

equal to xN which is recursively given, for j � 1, by

xj =
1

N � (2d � 1)j

"
1

�
+
2j

�0
+ 2j(1� d)xj�1

#
; x0 =

1

N�
:

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 13

It is also shown in the Appendix that for the BER architecture with N PEs, the MTTF
is equal to yN which is recursively given, for j � 2, by

yj =
1

1� cd

"
1

j�
+

1

�
+ c(1� d)yj�1

#
; y1 =

1

�
:

With each state x in the models, we associate a reward rx given by run = pn, rhn = 0 and
r0 = 0. We have pn = pQMRn for the QMR model and pn = pBERn for the BER model. The
mean processing power over the interval (0; t) is IE(Yt), where Yt is the random variable
de�ned by

Yt =
1

t

Z t

0
rXs

ds:

It follows that, for N PEs, IE(Yt) is given by

IE(Yt) =
1

t

X
un2U

pn

Z t

0
IP(Xs = un)ds:

where U denotes the set of operational states.
The random variable Yt has been studied in numerous papers in order to compute its

distribution (also called performability) or its moments. Even its expectation is di�cult to
obtain in closed form and thus numerical algorithms must be used to compute it [9, 10, 11].
We use here an algorithm that has been developed especially for sti� models [12].
In our numerical evaluations, we have chosen the following data values. The CPU board

failure rate is � = 10�6 in failures per second. The probability that a failure is transient
is d = 0:9.
Let us analyze �rst the MTTF of the two systems as a function of the number N of PEs

varying from 2 to 16. In the case of the QMR architecture, the \repair" rate is �0 = 103 in
actions per second. The number 1=�0 can be seen as the mean time needed to determine
the nature of the fault (transient or permanent) a�ecting a CPU board. In the BER case,
we have a repair rate of � = 1 action per sec; 1=� represents the mean execution time of
the recovery protocol [4]. Last, we consider a coverage factor of c = 0:99.
The evolution of the MTTFs when the number of PEs varies is shown in Figure 3.
This �gure shows that in the case of the QMR architecture, the MTTF is a decreasing

function of the number of PEs while for BER, there is a maximal MTTF value for a 8 PE
con�guration. The fact that the MTTF decreases with N is a consequence of the fact that
as PEs are added to the system, the total failure rate increases, while on the other side

RR n�3009

14 Philippe Joubert, Gerardo Rubino and Bruno Sericola

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12 14 16
Number of PEs

QMR 4

4

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

BER +

+

+

+

+
+

+ + + + + + + + + + +

Figure 3: MTTF of both architectures in hours

the repair \device" (the backward error recovery with its coverage factor) remains alone
against the failure \generator". The numerical values chosen for our experiences are such
that for small values of N the MTTF increases when we add new units. For other input
values (in particular, for smaller values of the coverage factor c), curves like the QMR one
are also obtained in the BER case.
Clearly, this criterion is not enough to choose between the two systems. Of course,

if the MTTF is the only quantitative parameter to be taken into account, the user will
look at the MTTFs against the cost of both systems. The comparison depends, with our
assumptions, basically on the fact that QMR needs twice the number of CPU boards while
the BER needs a more sophisticated recovery protocol. Since we are only concerned here
with the quantitative aspects of the considered architectures, the point is that it is not
enough to know how much time the system can live without external actions. It is also
important to know how much work it will be able to perform and for a givenmission time,
that is, over a given mission period (0; t).
In Figure 4 we plot the expectation of Yt against t which varies from 0 to 20 �106 secs,

for a 2{PEs con�guration. It is easy to show and to understand that limt!1IE(Yt) = 0 in
all cases.
This curve says that for two systems o�ering the same maximal power equivalent to 2

PEs, the BER one is better except for short mission lengths. In Figure 5 the same metrics
are shown for 8 PEs, and the same conclusion holds.

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

E(Yt)

t in seconds

BER

QMR

(�106)

Figure 4: IE(Yt) for 2 PEs, as a function of the mission time t

0

1

2

3

4

5

6

0 5 10 15 20

E(Yt)

t in seconds

BER

QMR

(�106)

Figure 5: IE(Yt) for 8 PEs, as a function of the mission time t

In the next �gure (Figure 6), we plot the value of the intersection point as a function
of the number of PEs. The resulting curve divides the plane in two areas. The area over
the curve gives the mission lengths for which BER is more e�cient. Under the curve we
have the points (number of PEs, mission length) where QMR is better. Our claim is that
this type of analysis can help the choice between these two systems.

RR n�3009

16 Philippe Joubert, Gerardo Rubino and Bruno Sericola

10

15

20

25

30

2 3 4 5 6 7 8

t

Number of PEs

BER

QMR

4

4

4
4 4 4

4

Figure 6: Choice between QMR and BER, t in days

6 Conclusions

In this paper, we develop a quantitative comparison of two important solutions to the
problem of fault tolerance in multiprocessor systems with common shared memory. A
�rst goal of the paper is to point out the interest in complementing classical reliability
analysis with more sophisticated transient measures taking into account the behavior of
the systems during previously speci�ed mission periods. A second result is the speci�c
comparison between the two architectures, QMR and BER, which allows to give numerical
support to some intuitive ideas. Basically, we show how the approach followed here can
identify (and quantitatively evaluate) the mission lengths where one of the two fault-
tolerant solutions is better than the other. The analysis presented here can be adapted to
other models, of course. It can also be complemented by the use of other measures based
on the same input data, as for instance the mean total work done by the systems up to
the external action necessary to restart them.

Appendix

We show in this section how the expressions for the mean time to failure (MTTF) are
obtained for both architectures.

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 17

MTTF for the QMR architecture

Consider the QMR model depicted in Figure 1 with N processing elements. Let (Xt)
denote the corresponding Markov process and T the life-time of the process. The mean
time to failure is then equal to IE(T=X0 = uN), since the initial state is state uN .
Let us de�ne xj by xj = IE(T=X0 = uj) and zj by zj = IE(T=X0 = hj). We then get,

by the use of the Markov property, the following recurrence relations satis�ed by the xj's
and the zj's, for j = 1; : : : ; N :

xj =
1

(N + j)�
+

2j

N + j
zj

zj =
1

�0
+ dxj + (1� d)xj�1

and x0 = 1=N�.
By replacing the expression of zj in the expression of xj, we get, for j > 0,

xj =
1

N � (2d � 1)j

"
1

�
+
2j

�0
+ 2j(1 � d)xj�1

#
:

MTTF for the BER architecture

In the same way, consider now the BER model depicted in Figure 2 with N processing
elements. Let (Xt) denote the corresponding Markov process and T its life-time. The
mean time to failure is then equal to IE(T=X0 = uN), since the initial state is state uN .
Let us de�ne yj by yj = IE(T=X0 = uj) and zj by zj = IE(T=X0 = hj). We then get,

by the use of the Markov property, the following recurrence relations satis�ed by the yj's
and the zj's, for j = 2; : : : ; N :

yj =
1

j�
+ zj;

zj =
1

�
+ cdyj + c(1 � d)yj�1;

and for j = 1, we get y1 = 1=�.
By replacing the expressions of zj in the expression of yj, we get, for j > 1,

yj =
1

1 � cd

"
1

j�
+

1

�
+ c(1 � d)yj�1

#
:

RR n�3009

18 Philippe Joubert, Gerardo Rubino and Bruno Sericola

References

[1] P.A. Lee and T. Anderson. Fault Tolerance: Principles and Practice, volume 3 of
Dependable Computing and Fault-Tolerant Systems. Springer Verlag, second revised
edition, 1990.

[2] J.J. Sti�er. Fault-tolerant architectures { past, present and (?) future. In M. Banâtre
and P. A. Lee, editors, Hardware and Software Architectures for Fault Tolerance.

Experiences and Perspectives, number 774 in LNCS, pages 117{121. Springer-Verlag,
1994.

[3] S. Weber and J. Beirne. The stratus architecture. In Proc. of 21st International

Symposium on Fault-Tolerant Computing Systems, pages 79{85, Montr�eal, Canada,
June 1991.

[4] Ph. A. Bernstein. Sequoia: A fault-tolerant tightly coupled multiprocessor for tran-
saction processing. IEEE Computer, 21(2):37{45, February 1988.

[5] K.L. Wu, W.K. Fuchs, and J.H. Patel. Error recovery in shared memory multipro-
cessors using private caches. IEEE Transactions on Parallel and Distributed Systems,
1(2):231{240, April 1990.

[6] I. Lee and R.K. Iyer. Faults, symptoms and software fault tolerance in the tandem
guardian90 operating system. In Proc. of 23rd International Symposium on Fault-

Tolerant Computing Systems, pages 20{29, Toulouse, June 1993.

[7] D. Jewett. Integrity s2: A fault-tolerant unix platform. In Proc. of 21st International

Symposium on Fault-Tolerant Computing Systems, pages 512{519, Montr�eal, Canada,
June 1991.

[8] M. Banâtre, A. Ge�aut, P. Joubert, P.A. Lee, and C. Morin. An architecture for
tolerating processor failures in shared-memory multiprocessors. Research report 485,
University of Newcastle upon Tyne, July 1994. To appear in IEEE Trans. Comp.

[9] H. Nabli and B. Sericola. Performability analysis: A new algorithm. IEEE Trans.

Comp., 45(4):491{494, April 1996.

[10] E. de Souza e Silva and H. R. Gail. Calculating transient distributions of cumulative
reward. Technical Report CDS-930033, UCLA, Los Angles, USA, September 1993.

INRIA

Performability Analysis of Two Approaches to Fault Tolerance 19

[11] A. Reibman, R. Smith, and K. Trivedi. Markov and Markov reward model transient
analysis: An overview of numerical approaches. European Journal of Operational

Research, 40:257{267, 1989.

[12] H. Abdallah, R. Marie, and B. Sericola. Computation of the expected interval availa-
bility for sti� Markov models. In 7th European Simulation Symposium, pages 393{396,
Erlangen - Nuremberg, October 1995. SCS.

RR n�3009

Unité de recherche INRIA Lorraine, Technopˆole de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhˆone-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

