
IS
S

N
 0

24
9-

63
99

appor t
de r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Performability Analysis of Fault-Tolerant Computer
Systems

Hédi Nabli, Bruno Sericola

N˚ 2254
May 1994

PROGRAMME 1

Architectures parallèles,

bases de données,

réseaux et systèmes distribués

Performability Analysis of Fault-Tolerant Computer

Systems

H�edi Nabli �, Bruno Sericola �

Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux et syst�emes distribu�es
Projet Model

Rapport de recherche n�2254 | May 1994 | 36 pages

Abstract: Performability is a composite measure for the performance and reliability, which
may be interpreted as the cumulative performance over a �nite mission time. The computation
of its distribution allows the user to ensure that the system will achieve a given performance
level. The system is assumed to be modeled as a Markov process with �nite state space and a
reward rate (performance measure) is associated with each state. We propose, in this paper, a
new algorithm to compute the performability distribution of fault-tolerant computer systems.
The main advantage of this new algorithm is its low polynomial computational complexity.
Moreover it deals only with non negative numbers bounded by one. This important property
allows us to determine truncation steps and so to improve the execution time of the algorithm.

Key-words: Fault tolerance, repairable systems, Markov processes, performability, perfor-
mance, reliability, uniformization

(R�esum�e : tsvp)

This work has been partly supported by the FASST Esprit project

�fH�edi.Nablig fBruno.Sericolag@irisa.fr

Unité de recherche INRIA Rennes

IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : (33) 99 84 71 00 – Télécopie : (33) 99 84 71 71

Analyse de la performabilit�e des syst�emes

informatiques tol�erant les pannes

R�esum�e : La performabilit�e est une mesure compos�ee pour la performance et la �abilit�e, qui
peut être interpr�et�ee comme la performance cumul�ee sur un temps de mission �ni. Le calcul
de cette distribution permet �a l'utilisateur de s'assurer que son syst�eme atteindra un certain
niveau de performance. Le syst�eme est mod�elis�e par un processus de Markov �a espace d'�etat �ni
et un taux de r�ecompense (mesure de performance) est associ�e �a chaque �etat. Nous proposons,
dans cet article, un nouvel algorithme pour calculer la distribution de la performabilit�e des
syst�emes informatiques tol�erant les pannes. L'avantage principal de ce nouvel algorithme est sa
complexit�e de calcul polynômiale faible. De plus, il ne traite que des nombres positifs born�es
par 1. Cette propri�et�e importante nous permet de d�eterminer des seuils de troncature et donc
d'am�eliorer le temps d'ex�ecution de l'algorithme

Mots-cl�e : Tol�erance aux pannes, syst�emes r�eparables, processus de Markov, performabilit�e,
performance, �abilit�e, uniformisation

Performability Analysis of Fault-Tolerant Computer Systems 3

1 Introduction

As recognized in a large number of studies, the quantitative evaluation of fault-tolerant com-
puter systems requires to deal simultaneously with aspects of both performance and reliability.
For this purpose, Meyer [1] developed the concept of performability, which may be interpreted
as the cumulative performance over a �nite mission time. The increasing need in evaluating
cumulative measures comes from the fact that in highly available systems, steady state mea-
sures can be very poor, even if the mission time is not small. The use of expectations also
su�ers from similar drawbacks. Considering, for instance, critical applications, it is crucial for
the user to ensure that the probability that its system will achieve a given performance level is
high enough.

Formally, the system fault-repair behavior is assumed to be modeled by a homogeneous
Markov process. Its state space is divided into disjoint subsets, which represents the di�erent
con�gurations of the system. A performance level (reward rate) is associated with each of
these con�gurations. This reward rate quanti�es the ability of the system to perform in the
corresponding con�guration. Performability is then the accumulated reward over the mission
time.

The distribution of this random variable has been studied in previous papers. Some of these
papers [2], [3], [4], [5], [6], [7] are restricted to the case of acyclic Markov processes which are
used to model non repairable systems.

To model the repair of faulty components in repairable systems, cyclic Markov processes
are needed. For absorbing Markov processes, Beaudry [8] gave an algorithm to compute the
distribution of accumulated reward until system failure when the reward rates are strictly
positive and Ciardo et al. [9] extended this method to semi-Markov processes for non-negative
reward rates.

For �nite mission time and when the reward rates are either 0 or 1, the accumulated reward
over the mission time is the interval availability. The distribution of interval availability has
been studied in [10] using the uniformization technique. The computational complexity of this
method has been improved in [11].

The distribution of accumulated reward over a �nite mission (with general reward rates) is
more complex to obtain. In [12], Iyer et al. proposed an algorithm to compute recursively the
moments of the accumulated reward over the mission time, with a polynomial computational
complexity in the number of states. In [13], the distribution of this random variable has been
derived using Laplace transform and numerical inversion procedures to get the result in the
time domain. De Souza e Silva and Gail [14] proposed a method based on the uniformization

RR n�2254

4 H�edi Nabli, Bruno Sericola

technique, however their method exibits a exponential computational complexity in the number
of reward rates. Using the same technique, Donatiello and Grassi [15] obtained an algorithm
with a polynomial computational complexity. However this algorithm seems to be numerically
unstable since the coe�cient computed in their recursion can have positive and negative signs
and are unbounded which can lead to severe numerical errors and overow problems. More
recently, De Souza e Silva and Gail [16] obtained also an algorithm with a polynomial compu-
tational complexity which is linear in a parameter that is smaller than the number of rewards,
but their algorithm seems to have the same unstability problem due the use of both positive
and negative coe�cients. Pattipati et al. [17] obtained the distribution of the accumulated
reward for non-homogeneous Markov processes as the solution of a system of linear hyperbolic
partial di�erential equations which is numerically solved by using a discretization approach.

In this paper we develop a new algorithm to compute the distribution of accumulated over
a �nite mission time. As in [15] or [16], this method used is based on the uniformization
technique. The main contribution of this paper is that our algorithm is numerically stable by
the fact it deals only with non negative numbers bounded by 1. Moreover the computational
complexity is improved by the use of truncation steps and the precision of the result can be
given in advance.

The remainder of the paper is organized as follows. In the next section, we introduce
the mathematical model and the notation. The third section gives the proposed solution and
describes the algorithm and its computational complexity. In the fourth section, a model of
a fault-tolerant computer system is presented and solved for a given performability measure.
The last section is devoted to some conclusions.

2 Mathematical model

We consider systems that can be modeled by a homogeneous Markov process with a �nite state
space. A performance level or reward rate is associated with each state of the process. These
reward rates are assumed to be time independent as usual, and the random variable of interest
is the accumulated reward over a �nite mission time.

More formally, let X = fXu; u � 0g be a homogeneous Markov process over a �nite state
space denoted by E = f1; . . . ;Mg. A reward rate �(i) is associated with each state i of E.
Since two di�erent states may have the same reward rate, we denote by rm > rm�1 > . . . > r0
the m+1 di�erent reward rates (m < M). The state space E can be then divided into disjoint
subsets Bm; Bm�1; . . . ; B0 where Bi, 0 � i � m is composed by the states of E having as reward

Inria

Performability Analysis of Fault-Tolerant Computer Systems 5

rate ri, that is
Bi = fj 2 E=�(j) = rig:

The number of states in subset Bi is denoted by Mi, for i = 0; . . . ;m. The process X is given
by its in�nitesimal generator, denoted by A, in which the ith diagonal entry A(i; i) veri�es
A(i; i) = �

P
j 6=iA(i; j) and by its initial probability distribution � whose ith entry is denoted

by �i. Moreover, for any subset S of E, we denote by 1S (resp. 0S) the column vector of size
the number of states in S, with all elements equal to 1 (resp. 0).

Let us denote by Z the uniformized Markov chain [18] over the state space E with respect
to the uniformization rate � and by P its transition probability matrix whose (i; j) entry is
denoted by P (i; j). The uniformization rate � veri�es � � sup(�A(i; i); i 2 E) and P is
related to A by P = I + A=�, where I denotes the identity matrix. If N = fNu; u � 0g is a
Poisson process with parameter �, independent of the process Z, then it is well-known that the
two processes X and fZNu ; u � 0g have the same probabilistic behavior if they have the same
initial distribution. In the following, to simplify notation, we will consider X as the uniformized
process. We decompose P and the initial probability vector � with respect to the partition
fBm; Bm�1; . . . ; B0g of E as follows:

P =

0
BB@

PBmBm � � � PBmB0

...
...

PB0Bm � � � PB0B0

1
CCA ; � = (�Bm; . . . ; �B0

);

where the submatrix PBiBj
, 0 � i; j � m, contains the transition probabilities from states of Bi

to states of Bj and subvector �Bi
, 0 � i � m, contains the initial probabilities corresponding

to states of Bi.
The random variable of interest which is denoted by Yt and represents the accumulated

reward over the interval of time [0; t] is de�ned by

Yt =
Z t

0
�(Xu)du:

Using the decomposition of E with respect to the partition fBm; Bm�1; . . . ; B0g, this random
variable can also be written as

Yt =
mX
i=0

ri

Z t

0
1fXu2Bigdu;

RR n�2254

6 H�edi Nabli, Bruno Sericola

where

1fcg =

(
1 if condition c is true
0 otherwise.

The random variable Yt takes its values in the interval [r0t; rmt] and we wish to calculate
IPfYt > sg. The reward rates ri are arbitrary real numbers, but we can assume without loss of
generality that r0 = 0. This can be done by replacing ri by ri � r0 and s by s� r0t. So, in the
sequel, we set r0 = 0.

For a �xed value s 2 [0; rmt[and i 2 E, we de�ne for any integer n � 0,

Fi(s; t; n) = IPfYt > s;Nt = n j X0 = ig:

We denote by FBl
(s; t; n) the column vector of dimension Ml and whose ith entry is equal to

Fi(s; t; n) for i 2 Bl. Consequently, with this notation we have

IPfYt > sg =
MX
i=1

�i
1X
n=0

Fi(s; t; n) =
mX
l=0

�Bl

1X
n=0

FBl
(s; t; n):

The following theorem gives the forward renewal equation, satis�ed by the column vectors
FBi

(s; t; n), that will be used in the next section to get the distribution of Yt.

Theorem 2.1 For every l 2 f0; 1; . . . ;mg and for every n � 1, we have

FBl
(s; t; n) =

mX
k=0

Z s
rl

0
PBlBk

FBk
(s� rlu; t� u; n� 1)�e��udu1fs<rltg

+
mX
k=0

Z rmt�s
rm�rl

0
PBlBk

FBk
(s� rlu; t� u; n� 1)�e��udu1fs�rltg

+ e��t
�n

n!
(t�

s

rl
)n1Bl

1fs<rltg

where the �rst and the third terms are equal to 0 when l = 0 and the second term is equal to 0
when l = m.

Proof. The function Fi(s; t; n) de�ned previously as

Fi(s; t; n) = IPfYt > s;Nt = n j X0 = ig

Inria

Performability Analysis of Fault-Tolerant Computer Systems 7

satis�es the classical forward renewal equation, for n � 1, that is

Fi(s; t; n) =
X
j2E

P (i; j)
Z t

0
Fj(s� riu; t� u; n� 1)�e��udu: (1)

When s � riu < 0, we have

Fj(s� riu; t� u; n� 1) = IPfNt�u = n� 1 j X0 = jg = e��(t�u)
(�(t� u))n�1

(n� 1)!

and when s� riu � rm(t� u), we have Fj(s� riu; t� u; n� 1) = 0.
It follows that when s < rit, we get

Fi(s; t; n) =
X
j2E

P (i; j)
Z s

ri

0
Fj(s� riu; t� u; n� 1)�e��udu

+
X
j2E

P (i; j)
Z t

s
ri

e��(t�u)
(�(t� u))n�1

(n� 1)!
�e��udu

=
X
j2E

P (i; j)
Z s

ri

0
Fj(s� riu; t� u; n� 1)�e��udu

+e��t
�n

n!
(t�

s

ri
)n;

and when s � rit, we get

Fi(s; t; n) =
X
j2E

P (i; j)
Z rmt�s

rm�ri

0
Fj(s� riu; t� u; n� 1)�e��udu

since in this case, we have
rmt� s

rm � ri
� t:

Putting now together the two cases, we get

Fi(s; t; n) =
X
j2E

P (i; j)
Z s

ri

0
Fj(s� riu; t� u; n� 1)�e��udu1fs<ritg

+
X
j2E

P (i; j)
Z rmt�s

rm�ri

0
Fj(s� riu; t� u; n� 1)�e��udu1fs�ritg

+e��t
�n

n!
(t�

s

ri
)n1fs<ritg:

RR n�2254

8 H�edi Nabli, Bruno Sericola

The theorem follows by rewriting this last relation in vector notation.
2

3 Model solution and algorithmical aspects

In this section, we �rst give the main result of this paper, which is the distribution of the
accumulated reward over the �nite mission time [0; t], Yt. Next, an algorithm to compute this
distribution is proposed and analyzed through its computational complexity.

Theorem 3.1

IPfYt > sg =
1X
n=0

e��t
(�t)n

n!

nX
k=0

mX
j=1

� n
k

�
skj (1 � sj)

n�kb(j)(n; k)1frj�1t�s<rj tg

where sj =
s� rj�1t

(rj � rj�1)t
and coe�cients b(j)(n; k) are given by

b(j)(n; k) =
mX
l=0

�Bl
b
(j)
Bl
(n; k)

and column vectors b
(j)
Bl
(n; k) are given by the following recursive expressions

for j � l � m and 1 � k � n

b
(j)
Bl
(n; 0) =

(
1Bl

for j = 1

b
(j�1)
Bl

(n; n) for j > 1

b
(j)
Bl
(n; k) =

rl � rj
rl � rj�1

b
(j)
Bl
(n; k � 1) +

rj � rj�1
rl � rj�1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k � 1)

for 0 � l � j � 1 and 0 � k � n� 1

b
(j)
Bl
(n; k) =

rj�1 � rl
rj � rl

b
(j)
Bl
(n; k + 1) +

rj � rj�1
rj � rl

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

b
(j)
Bl
(n; n) =

(
b
(j+1)
Bl

(n; 0) for j < m
0Bl

for j = m

Inria

Performability Analysis of Fault-Tolerant Computer Systems 9

Proof. (See Appendix A).
2

An important observation here is that for j � l � m we have

0 �
rl � rj
rl � rj�1

= 1�
rj � rj�1
rl � rj�1

� 1;

for 0 � l � j � 1 we have

0 �
rj�1 � rl
rj � rl

= 1�
rj � rj�1
rj � rl

� 1;

and for 0 � l � m we have
mX
i=0

PBlBi
1Bi

= 1Bl
:

For every n � 0, the initial value b(1)Bl
(n; 0) is equal to 1Bl

if l � 1 and the �nal value b(m)
Bl

(n; n)
is equal to 0Bl

if l � m� 1. We then easily obtain by recurrence that

0Bl
� b

(j)
Bl
(n; k) � 1Bl

:

Moreover, for every j = 1; . . . ;m, we have 0 � sj < 1. These remarks are essential from a
computational point of view since the manipulation of non-negative quantities and bounded by
1 allows us to avoid the unstability problems which may appear in the algorithms described in
[15] and [16].

Let us now de�ne for every j = 1; . . . ;m, a partition of the state space E as

Uj = Bm [� � � [Bj and Dj = Bj�1 [� � � [B0:

For every j = 1; . . . ;m, we also de�ne the following column vectors

bUj
(n; k) =

�
b
(j)
Bm

(n; k)T; . . . ; b(j)Bj
(n; k)T

�T
and bDj

(n; k) =
�
b
(j)
Bj�1

(n; k)T; . . . ; b
(j)
B0
(n; k)T

�T
where T denotes the transpose operator.

With this notation, Fig. 1 and Fig. 2 illustrate the sequence of computations (drawn only

for n = 0; 1; 2; 3) that have to be done in order to evaluate the b
(j)
Bl
(n; k)'s. Note that the upper

RR n�2254

10 H�edi Nabli, Bruno Sericola

part of the diagonal of each triangle of cells is reported in the upper part of the �rst column
of the next one and the lower part of the �rst column each triangle of cells is reported in the
lower part of the diagonal of the previous triangle of cells.

The study of the recurrence described in Theorem 3.1 leads to the following remarks.
In the case where j = m, illustrated in Fig. 2, the triangle of cells can be calculated either

in a diagonal by diagonal manner provided that the �rst cell of a diagonal is known or in a line
by line manner.

In the case where j = 1, the triangle of cells is computed in a line by line manner but it
can be also calculated in a column by column manner provided that the �rst cell of a column
is known.

This is not possible for the other triangles of cells (that is for j = 2; . . . ;m� 1). These cells
can be calculated only in a line by line manner.

Note that m = 1, the performability distribution described above is the same as the one
given in [11], where the interval availability distribution is computed. It follows that the method
presented here is the natural extension of the method in [11].

The way in which the computation of each cell (n; k) is performed is shown in Fig. 3.
We now show that the computation of the last triangle of cells, which corresponds to j = m,

in a diagonal by diagonal manner is very useful to reduce the complexity in the case where the
value of s is near from the value of rmt.

Given a tolerance error " speci�ed by the user, we de�ne integer N as

N = min

8<
:n 2 IN

������
nX
j=0

e��t
(�t)j

j!
� 1 �

"

2

9=
; : (2)

The distribution of Yt given in Theorem 3.1 can then be written as

IPfYt > sg =
NX
n=0

e��t
(�t)n

n!

nX
k=0

mX
j=1

� n
k

�
skj (1� sj)

n�kb(j)(n; k)1frj�1t�s<rj tg + e(N)

where e(N) veri�es

e(N) =
+1X

n=N+1

e��t
(�t)n

n!

nX
k=0

mX
j=1

� n
k

�
skj (1 � sj)

n�kb(j)(n; k)1frj�1t�s<rj tg

�
+1X

n=N+1

e��t
(�t)n

n!

Inria

Performability Analysis of Fault-Tolerant Computer Systems 11

0

1

2

3

0 1 2 3k

n

0 1 2 3

()
()
()

()
() ()

()

()
()
() ()

()

()
()

()
() ()

()
()
() ()

()

()
() ()

() ()
()

() ()
() ()

1U1

0D1

1U2

0D2

j = 1 j = 2

()

1U1

1U1

1U1

Figure 1: In cell (n; k) the vectors bUj
(n; k) and bDj

(n; k).

= 1 �
NX
n=0

e��t
(�t)n

n!

� "=2

Another truncation can be performed when the value of s is such that rm�1t < s < rmt. In this
case, we have

IPfYt > sg =
NX
n=0

e��t
(�t)n

n!

nX
k=0

� n
k

�
skm(1 � sm)

n�kb(m)(n; k) + e(N)

=
NX
n=0

e��t
(�t)n

n!

nX
k=0

� n
k

�
sn�km (1 � sm)

kb(m)(n; n� k) + e(N)

RR n�2254

12 H�edi Nabli, Bruno Sericola

0

1

2

3

0 1 2 3k

n

0 1 2 3

()
() ()

()
()
() ()

()

()
() ()

() ()
()

() ()
() ()

()
() ()

()
()
()

()
() ()

()
()

()
() ()

j = m� 1 j = m

0Dm�1

1Um�1
1Um

0Dm

()

0Dm

0Dm

0Dm

Figure 2: In cell (n; k) the vectors bUj
(n; k) and bDj

(n; k).

=
NX
k=0

NX
n=k

e��t
(�t)n

n!

� n
k

�
sn�km (1� sm)

kb(m)(n; n� k) + e(N)

=
CX
k=0

NX
n=k

e��t
(�t)n

n!

� n
k

�
sn�km (1� sm)

kb(m)(n; n� k) + e1(N;C) + e(N)

where e1(N;C) veri�es

e1(N;C) =
NX

k=C+1

NX
n=k

e��t
(�t)n

n!

� n
k

�
sn�km (1 � sm)

kb(m)(n; n� k)

�
NX

k=C+1

NX
n=k

e��t
(�t)n

n!

� n
k

�
sn�km (1 � sm)

k

Inria

Performability Analysis of Fault-Tolerant Computer Systems 13

() () ()
()()()

()
() ()

() ()
()

n� 1

n

k � 1 k k + 1

Figure 3: Computation of cell (n; k).

=
NX

k=C+1

NX
n=k

e��tsm
(�tsm)

n�k

(n� k)!
e��t(1�sm) (�t(1� sm))

k

k!

=
NX

k=C+1

e��t(1�sm) (�t(1� sm))
k

k!

NX
n=k

e��tsm
(�tsm)

n�k

(n� k)!

�
NX

k=C+1

e��t(1�sm) (�t(1� sm))
k

k!

� 1�
CX
k=0

e��t(1�sm) (�t(1 � sm))
k

k!

so, the truncation step C is chosen such that

C = min

(
c 2 IN

�����
cX

h=0

e��t(1�sm) ((�t(1� sm))
h

h!
� 1�

"

2

)
: (3)

In practise the value of s must be very close to rmt since the requirement is generally that the
random variable Yt is close to its maximum value rmt with a probability close to 1. Since we
have

1� sm =
rmt� s

(rm � rm�1)t
;

the value of C will be small with respect to the value of N , when s is near from rmt. The global
computational scheme using the truncation step C is shown in Fig. 4, where only the gray part
has to be computed.

RR n�2254

14 H�edi Nabli, Bruno Sericola

j = m� 1 j = mj = 1

0

C

N

� � �

Figure 4: In gray, the computed area.

In order to compute the distribution of Yt, the main e�ort is in the computation of the
vectors bUj

(n; k) and bDj
(n; k). If d denotes the connectivity degree of matrix P , that is the

maximum number of nonzero entries in each row, the computation of the two vectors bUj
(n; k)

and bDj
(n; k), that is of one cell of a triangle, is O(dM). The number of cells that have to be

computed (see Fig. 4) is equal to

m
(C + 1)(C + 2)

2
+ (N � C)(C + 1);

where we set C = N when the value of s is such that s � rm�1t. The total computational e�ort
required is then O(dM [C(N � C) +mC2=2]). Concerning the storage requirements, it is easy
to see from Fig. 1, Fig. 2 and Fig. 4 that the storage complexity is O([(m� 1)C +N]M).

The total computational e�ort required by the use of the method in [15] is O(dMmN2=2)
and the storage requirements is O(mMN) (which is the same as our algorithm when C = N).

The total computational e�ort required by the use of the method in [16] is stated to be
O(dM�N2), where � is an integer smaller than m=2 and equal or near to 1 in most cases. The
storage requirements is O(MN).

Thus the algorithm proposed in this paper compares favorably with the methods of [15]
and [16] when we wish to evaluate the upper tail of the distribution of Yt, which is the case
for many performability models. Another improvement in our algorithm leads in its numerical
stability since it deals only with positive number bounded by 1. Moreover, if we evaluate the
lower tail of the distribution of Yt (that is IPfYt > sg, for small values of s), the truncation step

Inria

Performability Analysis of Fault-Tolerant Computer Systems 15

C can be replaced by another truncation step C 0 as shown in Appendix B; the corresponding
complexity is simply obtained by replacing C by C 0.

Some values of the truncation steps N and C are given in the next section.

4 Application to a fault-tolerant computer system

In order to illustrate the paper, this section presents a model of an architecture of a fault
tolerant shared memory multiprocessor which has been proposed in [19].

It consists of n CPU, a bus, and of a Recoverable Shared Memory (RSM). Each CPU is
composed with two processors in active redundancy and their outputs are compared in order
to detect failures. Each processor accesses the shared memory through a private cache which
contains the data the most recently used by the processor. This architecture has been designed
to require specialized hardware only for the RSM, so standard processors, caches and cache
coherence protocols can be used. The backward recovery protocol used in this architecture to
tolerate some processor failures is implemented by the RSM. The basic mechanism in the RSM
to provide backward recovery is to maintain two copies for each memory location: a current
copy accessed by the CPU's and a recovery copy corresponding to the previous recovery point.
When a recovery point is established, the current copy is ushed on the recovery copy, so that
they both contain the same data. Subsequent updates to a location are made to only one of
the two copies. The other copy keeps the data that was in the location at the last recovery
point instant.

We assume here that the bus and the RSM are perfectly reliable. When a fault occurs in
a processor, it can be identi�ed as a transient or a permanent fault, for example by running
diagnostic checks on the faulty CPU. In the case of a transient fault, the faulty CPU will be
still used in the system but in the case of a permanent fault, the faulty CPU will not be used
further. The failure rate of each CPU is denoted by �, and a fault is assumed to be transient
with probability d and permanent with probability 1 � d. After each occurence of a fault,
the backward recovery protocol is executed and its duration is assumed to be exponentially
distributed with rate �. Moreover, it is assumed that with probability c the backward recovery
protocol recon�gures the system correctly, and that it fails with probability 1� c. This factor
c is usually called the coverage factor of the system.

The Markov process so generated is shown in Fig. 5, when the number of CPU is n = 3.
The state i, 1 � i � n, corresponds to the state of the system in which i CPU are op-

erationnal. In this state, the rate at which a fault occurs is i�. The state di, 1 � i � n,
corresponds to the state of the system in which the backward recovery protocol try to recon-

RR n�2254

16 H�edi Nabli, Bruno Sericola

3

1

d3

d2

d1

0
�(1 � c)

�dc

�dc

�dc

�(1 � c)

�(1� c)

�(1 � d)c

�(1 � d)c

2

3�

2�

�

Figure 5: The Markov process for 3 CPU.

�gure the system with i CPU if the fault was transient and with i� 1 CPU, when i > 1, if the
fault was permanent. State 0 denotes the down state of the system.

The cost of the fault tolerance in this architecture is mainly due to the establishment of
recovery points. This cost has been evaluated to 30% of the power of the system, in the worst
case. If we assume that a standard architecture with n operational processors, which does not
tolerate any fault, has a power equal to n, the reward rate associated to state i, 1 � i � n,
in our model is chosen to be ri = 0:7i. The reward rates associated to the other states are
equal to 0. With this reward structure associated to our model the performability distribution
IPfYt=t > rg represents the probability that the power of the architecture during [0; t] averaged
over time is greater than r; the value of r being in the interval [0; rn[.

The values of the parameters are c = 0:95, d = 0:9 and � = 1 per second, that is, the mean
execution of the backward recovery protocol is equal to 1 second. With these numerical values,
Fig. 6 and Fig. 7 show the probability that the power of the system is greater than 99:99%
(� = 0:9999) of its maximum power for a one day mission time as a function of the number n
of CPU's and for di�erent values of the failure rate �.

Inria

Performability Analysis of Fault-Tolerant Computer Systems 17

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

IPfYt
t
> �rng

n

� = 10�5 33

3

3

3

3

3

3

� = 10�6 +

+ + + + + + +

Figure 6: A one day mission time

Note that when � = 10�5 the probability of achieving more than 99:99% of the maximum
power of the system is smaller than 0:8 for every n. To get such a probability greater than
0:95, the number of CPU's must be at most equal to 4 if � = 10�6.

For smaller values of the failure rate � (see Fig. 7, to achieve more than 99:99% of the
maximum power of the system with a probability greater than 0:997, the only possibility is to
have a system with 2 CPU's if � = 10�7 and the number of CPU's can be equal to 8 when
� = 10�8.

Finally, for all these computations the value of the truncation step N is N = 87701 and
the values of truncation step C increase from C = 38 (for n = 2) to C = 109 (for n = 8).
These small values of C with respect to N show the improvement in computational cost of our
algorithm with respect to the ones developed in [15] and [16].

5 Conclusions

The proposed method for evaluating the accumulated reward distribution for fault-tolerant
computer systems is based on the uniformization technique and leads to a new algorithm with

RR n�2254

18 H�edi Nabli, Bruno Sericola

0.99

0.992

0.994

0.996

0.998

1

2 3 4 5 6 7 8

IPfYt
t
> �rng

n

� = 10�7 33

3

3

3

3

3

3

� = 10�8 +

+ + + + + + +

Figure 7: A one day mission time

a low polynomial computational complexity. The number of operations is linear in the number
of states of the system and linear in the number of rewards. Its main advantage with respect to
existing algorithms, is that it is linear in the truncation step N and quadratic in the truncation
step C which is very small in comparison to N , when the upper tail performability distribution
is considered. Another advantage of this algorithm is that it deals only with positive numbers
bounded by 1, improving so its stability.

Appendix A

To prove Theorem 3.1, we �rst need two technical lemmas which can be easily proved by
recurrence. Let us de�ne for every l; j 2 f1; . . . ;mg the numbers

vl;j�1 =
s� rj�1t

rl � rj�1
and Vn;k(j) =

(vj;j�1)k(vj�1;j)n�k

k!(n� k)!
1frj�1t�s<rj tg;

and the functions

fl;j(u) =
rj(t� u)� (s� rlu)

rj � rj�1

Inria

Performability Analysis of Fault-Tolerant Computer Systems 19

=
rjt� s

rj � rj�1
+

rl � rj
rj � rj�1

u

= vj�1;j +
rl � rj
rj � rj�1

u;

and

gl;j(u) =
(s� rlu)� rj�1(t� u)

rj � rj�1

=
s� rj�1t

rj � rj�1
�

rl � rj�1
rj � rj�1

u

= vj;j�1 �
rl � rj�1
rj � rj�1

u;

where t � 0 and s 2 [0; rmt[. Note that gl;j(u) = t� u� fl;j(u) and vl;j�1 = t� vj�1;l:

Lemma 5.1 For every l; j 2 f1; 2; . . . ;mg, for every n � 1 and 0 � k � n� 1, we have

� if j � l

Z s
rl

0

[gl;j(u)]k[(fl;j(u)]n�1�k

k!(n� 1� k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs<rltg

=
rj � rj�1
rl � rj�1

nX
p=k+1

rl � rj
rl � rj�1

!p�k�1
Vn;p(j)

+
rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!n�1�k
(vj;l)n

n!
1frjt�s<rltg

� if j > l

Z s
rl

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1� k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs<rltg = 0

Proof. Let us �rst consider the indicator function in the integral. If j � l, we have

RR n�2254

20 H�edi Nabli, Bruno Sericola

1) when j = l, fl;j(u) =
rlt� s

rl � rl�1
and gl;j(u) =

s� rl�1t

rl � rl�1
� u = vl;l�1 � u. So,

1fgl;j(u)�0; fl;j(u)>0g = 1fs<rlt;u�vl;l�1g;

and since (u � 0 and u � vl;l�1) =) vl;l�1 � 0 =) s � rl�1t, we get

1fgl;j(u)�0; fl;j(u)>0g = 1f0�u�vl;l�1g1frl�1t�s<rltg:

2) when j < l, we get in the same way,

1fgl;j(u)�0; fl;j(u)>0g

= 1fvl;j<u�vl;j�1g

= 1fvl;j<u�vl;j�1g1fs<rltg , since vl;j < vl;j�1 () s < rlt:

Now (u � 0 and u � vl;j�1) =) vl;j�1 � 0 =) s � rj�1t. So, we get

1fgl;j(u)�0; fl;j(u)>0g

= 1fvl;j<u�vl;j�1g1frj�1t�s<rltg

= 1fvl;j<u�vl;j�1g1frj�1t�s<rltg
�
1fvl;j<0g + 1fvl;j�0g

�

= 1f0�u�vl;j�1g1frj�1t�s<rj tg + 1fvl;j<u�vl;j�1g1frjt�s<rltg:

These two cases (j = l and j < l) can be grouped in only one by choosing as a convention that
1fvl;j<u�vl;j�1g1frjt�s<rltg = 0 when j = l. Using this convention, we get

Z s
rl

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1� k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs<rltg

=
Z vl;j�1

0

[gl;j(u)]
k[fl;j(u)]

n�1�k

k!(n� 1 � k)!
du1frj�1t�s<rj tg

+
Z vl;j�1

vl;j

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
du1frjt�s<rltg:

Inria

Performability Analysis of Fault-Tolerant Computer Systems 21

Let Jn�1;k (resp. Ln�1;k) be the �rst term (resp. the second term) of the right hand side of
this relation. Integrating by parts, we easily get for k < n� 1

Jn�1;k =
rj � rj�1
rl � rj�1

Vn;k+1(j) +
rl � rj
rl � rj�1

Jn�1;k+1

and

Ln�1;k =
rl � rj
rl � rj�1

Ln�1;k+1:

The initial conditions of these terms are given by

Jn�1;n�1 =
rj � rj�1
rl � rj�1

Vn;n(j);

and

Ln�1;n�1 =
rj � rj�1
rl � rj�1

(vj;l)n

n!
1frjt�s<rltg:

It follows that

Jn�1;k =
rj � rj�1
rl � rj�1

nX
p=k+1

rl � rj
rl � rj�1

!p�k�1
Vn;p(j);

and

Ln�1;k =
rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!n�1�k
(vj;l)n

n!
1frjt�s<rltg;

which completes the proof in the case where j � l.
Let us now consider the case j > l.

3) when j = l + 1, fl;j(u) = vl;l+1 � u and gl;j(u) = vl+1;l. So,

1fgl;j(u)�0; fl;j(u)>0g = 1frlt�s;u<vl;l+1g;

and since (u � 0 and u < vl;l+1) =) vl;l+1 > 0 =) s < rl+1t, we get

1fgl;j(u)�0; fl;j(u)>0g = 1f0�u<vl;l+1g1frlt�s<rl+1 tg:

RR n�2254

22 H�edi Nabli, Bruno Sericola

4) when j > l + 1, we get in the same way,

1fgl;j(u)�0; fl;j(u)>0g

= 1fvl;j�1�u<vl;jg

= 1fvl;j�1�u<vl;jg1fs�rltg , since vl;j�1 � vl;j () s � rlt:

Now, since (u � 0 and u < vl;j) =) vl;j > 0 =) s < rjt, we get

1fgl;j(u)�0; fl;j(u)>0g

= 1fvl;j�1�u<vl;jg1frlt�s<rj tg

= 1fvl;j�1�u<vl;jg1frlt�s<rj tg
�
1fvl;j�1�0g + 1fvl;j�1>0g

�

= 1f0�u<vl;jg1frj�1t�s<rj tg + 1fvl;j�1�u<vl;j g1frlt�s<rj�1tg:

Now, since 1fs�rltg1fs<rltg = 0, we have 1fgl;j(u)�0; fl;j(u)>0g1fs<rltg = 0 and the second part of
the proof is completed.

2

Lemma 5.2 For every l; j 2 f1; 2; . . . ;mg, for every n � 1 and 0 � k � n� 1, we have

� if j > l Z vl;m

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs�rltg

=
rj � rj�1
rj � rl

kX
p=0

rj�1 � rl
rj � rl

!k�p
Vn;p(j)

+
rj � rj�1
rj�1 � rl

rj � rl
rj�1 � rl

!n�1�k
(vj;l)n

n!
1frlt�s<rj�1 tg

where the second term of the right hand side is equal to 0 when j = l+ 1.

Inria

Performability Analysis of Fault-Tolerant Computer Systems 23

� if j � l

Z vl;m

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1� k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs�rltg = 0:

Proof. From the previous lemma (cases 1) and 2)), we have that when j � l,
1fgl;j(u)�0; fl;j(u)>0g1fs�rltg = 0, which proves the second part of this lemma.
When j > l (cases 3) and 4) of previous lemma), we have

Z vl;m

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs�rltg

=
Z vl;j

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
du1frj�1t�s<rj tg

+
Z vl;j

vl;j�1

[gl;j(u)]
k[fl;j(u)]

n�1�k

k!(n� 1 � k)!
du1frlt�s<rj�1 tg:

Let Jn�1;k (resp. Ln�1;k) be the �rst term (resp. the second term) of the right hand side of this
relation. Integrating by parts, we easily get

Jn�1;k =
rj � rj�1
rj � rl

Vn;k(j) +
rj�1 � rl
rj � rl

Jn�1;k�1 for k > 0;

and

Ln�1;k =
rj � rl
rj�1 � rl

Ln�1;k+1 for k < n� 1:

The initial conditions of these terms are given by

Jn�1;0 =
rj � rj�1
rj � rl

Vn;0(j);

and

Ln�1;n�1 =
rj � rj�1
rj�1 � rl

(vj;l)n

n!
1frlt�s<rj�1 tg:

It follows that

Jn�1;k =
rj � rj�1
rj � rl

kX
p=0

rj�1 � rl
rj � rl

!k�p
Vn;p(j);

RR n�2254

24 H�edi Nabli, Bruno Sericola

and

Ln�1;k =
rj � rj�1
rj�1 � rl

rj � rl
rj�1 � rl

!n�1�k
(vj;l)n

n!
1frlt�s<rj�1tg;

which completes the proof in the case where j > l.
2

In what follows, using the notation introduced, we show that the solution of the forward
renewal equation of Theorem 2.1 can be written as

FBl
(s; t; n) = �ne��t

nX
k=0

mX
j=1

b
(j)
Bl
(n; k)Vn;k(j); (4)

where the column vectors b
(j)
Bl
(n; k) are recursively given in Theorem 3.1.

By convention,

a sum
yX

i=x

(:::) will be equal to 0 if x > y: (5)

For n = 0, that is 0 transitions during [0; t], we must have by de�nition of Yt

FBl
(s; t; 0) = e��t1Bl

1fs<rltg

= e��t1Bl

lX
j=1

1frj�1t�s<rj tg:

So, by identi�cation, with relation (4), we have

b
(j)
Bl
(0; 0) =

(
1Bl

if 1 � j � l
0Bl

if l + 1 � j � m

Inria

Performability Analysis of Fault-Tolerant Computer Systems 25

Now, for n � 1, by replacing expression (4) in Theorem 2.1, we get using the notation introduced
above

FBl
(s; t; n)

= �ne��t
n�1X
k=0

mX
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n � 1; k)

Z s
rl

0

[gl;j(u)]
k[fl;j(u)]

n�1�k

k!(n� 1 � k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs<rltg

+�ne��t
n�1X
k=0

mX
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

Z vl;m

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1� k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs�rltg

+�ne��t
(t� s

rl
)n

(n)!
1Bl

1fs<rltg:

Let us denote respectively by 1, 2 and 3 the three terms of the right hand side of this relation,
so that

FBl
(s; t; n) = 1 + 2 + 3:

Expansion of term 1

Using lemma 5.1, we obtain

1

= �ne��t
n�1X
k=0

mX
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

Z s
rl

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs<rltg

= �ne��t
n�1X
k=0

lX
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

rj � rj�1
rl � rj�1

nX
p=k+1

rl � rj
rl � rj�1

!p�k�1
Vn;p(j)

+�ne��t
n�1X
k=0

l�1X
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!n�1�k
(vj;l)n

n!
1frjt�s<rltg:

RR n�2254

26 H�edi Nabli, Bruno Sericola

Interchanging in the �rst term the summation over index p and the summation over index k,
we obtain

1 = �ne��t
nX

p=1

lX
j=1

p�1X
k=0

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!p�k�1
Vn;p(j)

+�ne��t
n�1X
k=0

l�1X
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n � 1; k)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!n�1�k
(vj;l)n

n!
1frjt�s<rltg:

For a further identi�cation, it is more convenient to interchange indices p and k in both
terms of 1 and to replace index j by a new index q in the second term of the right hand side
of 1. We then get

1 = �ne��t
nX

k=1

lX
j=1

k�1X
p=0

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�p�1
Vn;k(j)

+�ne��t
n�1X
p=0

l�1X
q=1

mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)

rq � rq�1
rl � rq�1

rl � rq
rl � rq�1

!n�1�p
(vq;l)n

n!
1frqt�s<rltg:

With the convention (5), we can write
nX

k=1

k�1X
p=0

(. . .) =
nX

k=0

k�1X
p=0

(. . .). So,

1 = �ne��t
nX

k=0

lX
j=1

k�1X
p=0

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�p�1
Vn;k(j)

+�ne��t
n�1X
p=0

l�1X
q=1

mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)

rq � rq�1
rl � rq�1

rl � rq
rl � rq�1

!n�1�p
(vq;l)n

n!
1frqt�s<rltg:

In order to identify 1 with relation (4), we need to write product
(vq;l)n

n!
1frqt�s<rltg as a

function of Vn;k(j). This can be done as follows. For every j, vq;l can be written as

vq;l = zjvj;j�1 + zj�1vj�1;j;

Inria

Performability Analysis of Fault-Tolerant Computer Systems 27

where zj =
rl � rj
rl � rq

and we also have

1frqt�s<rltg =
lX

j=q+1

1frj�1t�s<rj tg:

We then have

(vq;l)n

n!
1frqt�s<rltg

=
lX

j=q+1

(zjvj;j�1 + zj�1vj�1;j)n

n!
1frj�1t�s<rj tg

=
nX

k=0

lX
j=q+1

zkj z
n�k
j�1

(vj;j�1)k(vj�1;j)n�k

k!(n� k)!
1frj�1t�s<rj tg

=
nX

k=0

lX
j=q+1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k
Vn;k(j):

Finally, the term 1 is equal to :

1 = �ne��t
nX

k=0

lX
j=1

k�1X
p=0

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�p�1
Vn;k(j)

+ �ne��t
n�1X
p=0

l�1X
q=1

mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)

rq � rq�1
rl � rq�1

rl � rq
rl � rq�1

!n�1�p

�
nX

k=0

lX
j=q+1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k
Vn;k(j)

= �ne��t
nX

k=0

lX
j=1

k�1X
p=0

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�p�1 mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

lX
j=2

j�1X
q=1

rq � rq�1
rl � rq�1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k

RR n�2254

28 H�edi Nabli, Bruno Sericola

�
n�1X
p=0

rl � rq
rl � rq�1

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j)

= �ne��t
nX

k=0

lX
j=1

k�1X
p=0

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�p�1 mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

lX
j=1

j�1X
q=1

rq � rq�1
rl � rq�1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k

�
n�1X
p=0

rl � rq
rl � rq�1

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j);

where the second equality is obtained by interchanging the summation over index q and the
summation over index j and the third equality is obtained by the use of convention (5).

Expansion of term 2

Using lemma 5.2, we obtain

2

= �ne��t
n�1X
k=0

mX
j=1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

Z s
rl

0

[gl;j(u)]k[fl;j(u)]n�1�k

k!(n� 1 � k)!
1fgl;j(u)�0; fl;j(u)>0gdu1fs�rltg

= �ne��t
n�1X
k=0

mX
j=l+1

kX
p=0

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!k�p mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)Vn;p(j)

+�ne��t
n�1X
k=0

mX
j=l+2

rj � rj�1
rj�1 � rl

rj � rl
rj�1 � rl

!n�1�k mX
i=0

PBlBi
b
(j)
Bi
(n; k)

(vj;l)n

n!
1frlt�s<rj�1 tg

= �ne��t
n�1X
p=0

mX
j=l+1

n�1X
k=p

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!k�p mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)Vn;p(j)

+�ne��t
n�1X
k=0

mX
j=l+2

rj � rj�1
rj�1 � rl

rj � rl
rj�1 � rl

!n�1�p mX
i=0

PBlBi
b
(j)
Bi
(n; k)

(vj;l)n

n!
1frlt�s<rj�1tg:

Inria

Performability Analysis of Fault-Tolerant Computer Systems 29

Following the same approach used for the expansion of term 1, we get

2 = �ne��t
n�1X
k=0

mX
j=l+1

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
n�1X
p=0

mX
q=l+2

rq � rq�1
rq�1 � rl

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n; p)

(vq;l)n

n!
1frlt�s<rq�1tg:

As previously, the product
(vq;l)n

n!
1frlt�s<rq�1tg can be written as

(vq;l)n

n!
1frlt�s<rq�1tg

=
q�1X
j=l+1

(zjvj;j�1 + zj�1vj�1;j)n

n!
1frj�1t�s<rj tg

=
nX

k=0

q�1X
j=l+1

zkj z
n�k
j�1

(vj;j�1)k(vj�1;j)n�k

k!(n� k)!
1frj�1t�s<rj tg

=
nX

k=0

q�1X
j=l+1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k
Vn;k(j):

Finally, the term 2 is equal to :

2 = �ne��t
n�1X
k=0

mX
j=l+1

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
n�1X
p=0

mX
q=l+2

rq � rq�1
rq�1 � rl

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n; p)

�
nX

k=0

q�1X
j=l+1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k
Vn;k(j)

= �ne��t
n�1X
k=0

mX
j=l+1

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

RR n�2254

30 H�edi Nabli, Bruno Sericola

+ �ne��t
nX

k=0

m�1X
j=l+1

mX
q=j+1

rq � rq�1
rq�1 � rl

rj � rl
rq � rl

!k
rj�1 � rl
rq � rl

!n�k

�
n�1X
p=0

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j)

= �ne��t
n�1X
k=0

mX
j=l+1

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

mX
j=l+1

mX
q=j+1

rq � rq�1
rq�1 � rl

rj � rl
rq � rl

!k
rj�1 � rl
rq � rl

!n�k

�
n�1X
p=0

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j);

where the second equality is obtained by interchanging the summation over index q and the
summation over index j and the third equality is obtained by the use of convention (5).

Expansion of term 3

Note that as previously we can write, for every j

t�
s

rl
=

rl � rj
rl

vj;j�1 +
rl � rj�1

rl
vj�1;j;

and

1fs<rltg =
lX

j=1

1frj�1t�s<rj tg:

It follows that

3 = �ne��t1Bl

(t� s
rl
)n

n!
1fs<rltg

= �ne��t1Bl

lX
j=1

�
rl�rj
rl

vj;j�1) +
rl�rj�1

rl
vj�1;j

�n
n!

1frj�1t�s<rj tg

Inria

Performability Analysis of Fault-Tolerant Computer Systems 31

= �ne��t
nX

k=0

lX
j=1

�
rl � rj
rl

�k �rl � rj�1
rl

�n�k
1Bl

(vj;j�1)k(vj�1;j)n�k

k!(n� k)!
1frj�1t�s<rj tg

= �ne��t
nX

k=0

lX
j=1

�
rl � rj
rl

�k �rl � rj�1
rl

�n�k
1Bl

Vn;k(j):

Expression of FBl
(s; t; n) = 1 + 2 + 3

By adding up the three terms 1, 2, and 3, FBl
(s; t; n) becomes be equal to :

FBl
(s; t; n)

= �ne��t
nX

k=0

lX
j=1

k�1X
p=0

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�1�p mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

lX
j=1

j�1X
q=1

rq � rq�1
rl � rq�1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k

�
n�1X
p=0

rl � rq
rl � rq�1

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

lX
j=1

�
rl � rj
rl

�k �rl � rj�1
rl

�n�k
1Bl

Vn;k(j)

+ �ne��t
n�1X
k=0

mX
j=l+1

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)Vn;k(j)

+ �ne��t
nX

k=0

mX
j=l+1

mX
q=j+1

rq � rq�1
rq�1 � rl

rj � rl
rq � rl

!k
rj�1 � rl
rq � rl

!n�k

�
n�1X
p=0

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)Vn;k(j):

If we now identify this relation with relation (4), we get the following expression for the coe�-

cients b
(j)
Bi
(n; k) for every k 2 f0; 1; . . . ; ng :

RR n�2254

32 H�edi Nabli, Bruno Sericola

� for j = 1; . . . ; l

b
(j)
Bl
(n; k) =

k�1X
p=0

rj � rj�1
rl � rj�1

rl � rj
rl � rj�1

!k�1�p mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)

+
j�1X
q=1

rq � rq�1
rl � rq�1

rl � rj
rl � rq

!k
rl � rj�1
rl � rq

!n�k n�1X
p=0

rl � rq
rl � rq�1

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p)

+
�
rl � rj
rl

�k �rl � rj�1
rl

�n�k
1Bl

� for j = l + 1; . . . ;m

b
(j)
Bl
(n; k) =

n�1X
p=k

rj � rj�1
rj � rl

rj�1 � rl
rj � rl

!p�k mX
i=0

PBlBi
b
(j)
Bi
(n� 1; p)

+
mX

q=j+1

rq � rq�1
rq�1 � rl

rj � rl
rq � rl

!k
rj�1 � rl
rq � rl

!n�k n�1X
p=0

rq � rl
rq�1 � rl

!n�1�p mX
i=0

PBlBi
b
(q)
Bi
(n� 1; p):

It's easy now to verify that this expression of coe�cients b(j)Bl
(n; k) leads to the recurrences

mentionned in the main theorem 3.1 which are :

for j � l � m and 1 � k � n

b
(j)
Bl
(n; k) =

rl � rj
rl � rj�1

b
(j)
Bl
(n; k � 1) +

rj � rj�1
rl � rj�1

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k � 1)

b
(j)
Bl
(n; 0) =

(
1Bl

for j = 1

b
(j�1)
Bl

(n; n) for j > 1

for 0 � l � j � 1 and 0 � k � n� 1

b
(j)
Bl
(n; k) =

rj�1 � rl
rj � rl

b
(j)
Bl
(n; k + 1) +

rj � rj�1
rj � rl

mX
i=0

PBlBi
b
(j)
Bi
(n� 1; k)

b
(j)
Bl
(n; n) =

(
b
(j+1)
Bl

(n; 0) for j < m
0Bl

for j = m

Inria

Performability Analysis of Fault-Tolerant Computer Systems 33

So the proof of the theorem 3.1 is completed.
2

Appendix B

Suppose that we wish to calculate the performability distribution, IPfYt > sg for small values
of s such that 0 < s < r1t. Note that in the �rst triangle of cells which corresponds to the case
j = 1, each column k can be computed provided that column k � 1 has been computed and
cell (k; k) has been also computed. This can be seen easily on the recurrence of Theorem 3.1.
It follows that a truncation step C 0 can be evaluated easily in the case where 0 < s < r1t.

From Theorem 3.1, we have in this case

IPfYt > sg =
1X
n=0

e��t
(�t)n

n!

nX
k=0

� n
k

�
sk1(1� s1)

n�kb(1)(n; k)

where s1 =
s

r1t
. For a given value of the error tolerance ", we have as done before

IPfYt > sg =
NX
n=0

e��t
(�t)n

n!

nX
k=0

� n
k

�
sk1(1 � s1)

n�kb(1)(n; k) + e(N)

where e(N) is given by (2). Now a truncation step C 0 can be as follows

IPfYt > sg =
NX
n=0

e��t
(�t)n

n!

nX
k=0

� n
k

�
sk1(1 � s1)

n�kb(1)(n; k) + e(N)

=
NX
k=0

NX
n=k

e��t
(�t)n

n!

� n
k

�
sk1(1� s1)

n�kb(1)(n; k) + e(N)

=
C0X
k=0

NX
n=k

e��t
(�t)n

n!

� n
k

�
sk1(1� s1)

n�kb(1)(n; k) + e1(N;C
0) + e(N)

where e1(N;C 0) veri�es

e1(N;C
0) =

NX
k=C0+1

NX
n=k

e��t
(�t)n

n!

� n
k

�
sk1(1� s1)

n�kb(1)(n; k)

RR n�2254

34 H�edi Nabli, Bruno Sericola

�
NX

k=C0+1

NX
n=k

e��t
(�t)n

n!

� n
k

�
sk1(1� s1)

n�k

=
NX

k=C0+1

NX
n=k

e��ts1
(�ts1)

k

k!
e��t(1�s1)

(�t(1� s1))
n�k

(n � k)!

=
NX

k=C0+1

e��ts1
(�ts1)

k

k!

NX
n=k

e��t(1�s1)
(�t(1� s1))

n�k

(n� k)!

�
NX

k=C0+1

e��ts1
(�ts1)

k

k!

� 1�
C0X
k=0

e��ts1
(�ts1)

k

k!

so, the truncation step C 0 is chosen such that

C 0 = min

(
c 2 IN

�����
cX

h=0

e��ts1
(�ts1)

h

h!
� 1 �

"

2

)
:

The cells that have to computed in this case are shown in Fig. 8.

0

N

� � �

j = 1 j = m� 1 j = m

C 0

C 0

Figure 8: In gray, the computed area.

Inria

Performability Analysis of Fault-Tolerant Computer Systems 35

References

[1] J. F. Meyer. On evaluating the performability of degradable computing systems. IEEE
Trans. Computers, C-29:720{731, August 1980.

[2] J. F. Meyer. Closed-form solutions for performability. IEEE Trans. Computers, C-31:648{
657, July 1982.

[3] D. Furchtgott and J. F. Meyer. A performability solution method for degradable nonre-
pairable systems. IEEE Trans. Computers, C-33:550{554, July 1984.

[4] A. Goyal and A. N. Tantawi. Evaluation of performability for degradable computer sys-
tems. IEEE Trans. Computers, C-36:738{744, June 1987.

[5] L. Donatiello and B. R. Iyer. Analysis of a composite performance measure for for fault-
tolerant systems. J. ACM, 34:179{189, January 1987.

[6] B. Ciciani and V. Grassi. Performability evaluation of fault-tolerant satellite systems.
IEEE Trans. Communications, COM-35:403{409, April 1987.

[7] V. Grassi, L. Donatiello, and G. Iazeolla. Performability evaluation of multi-component
fault-tolerant systems. IEEE Trans. Reliability, 37(2):216{222, June 1988.

[8] M. D. Beaudry. Performance-related reliability measures for computing systems. IEEE
Trans. Computers, C-27:540{547, June 1978.

[9] G. Ciardo, R. Marie, B. Sericola, and K. S. Trivedi. Performability analysis using semi-
Markov reward processes. IEEE Trans. Computers, C-39:1251{1264, October 1990.

[10] E. de Souza e Silva and H. R. Gail. Calculating cumulative operational time distributions
of repairable computer systems. IEEE Trans. Computers, C-35:322{332, April 1986.

[11] G. Rubino and B. Sericola. Interval availability distibution computation. Proceedings
IEEE 23-th Fault-Tolerant Computing Symposium, (Toulouse, France), 49{55, June 1993.

[12] B. R. Iyer, L. Donatiello, and P. Heidelberger. Analysis of performability for stochastic
models of fault-tolerant systems. IEEE Trans. Computers, C-35:902{907, October 1986.

[13] R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performability analysis: measures, an
algorithm, and a case study. IEEE Trans. Computers, C-37:406{417, April 1988.

RR n�2254

36 H�edi Nabli, Bruno Sericola

[14] E. de Souza e Silva and H. R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. J. ACM, 36:171{193, January 1989.

[15] L. Donatiello and V. Grassi. On evaluating the cumulative performance distribution of
fault-tolerant computer systems. IEEE Trans. Computers, 40:1301{1307, November 1991.

[16] E. de Souza e Silva and H. R. Gail. Calculating transient distributions of cumulative
reward. Technical Report CDS-930033, UCLA, University of California, Los Angles, USA,
September 1993.

[17] K. R. Pattipati, Y. Li, and H. A. P. Blom. A uni�ed framework for the preformability eval-
uation of fault-tolerant computer systems. IEEE Trans. Computers, 42:312{326, March
1993.

[18] S. M. Ross. Stochastic Processes. John Wiley and Sons, 1983.

[19] M. Banâtre, A .Ge�aut, P. Joubert, P. Lee, and C. Morin. An Architecture for Tolerating
Processor Failures in Shared - Memory Multiprocessors. Technical Report 1965, INRIA,
Campus de Beaulieu, 35042 Rennes Cedex, France, March 1993.

Inria

Unité de recherche INRIA Lorraine, Technôpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur

INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

