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Abstract—This paper focuses on pairwise interaction-based
protocols, and proposes an universal mechanism that allows each
agent to locally detect that the system has converged to the sought
configuration with high probability. To illustrate our mechanism,
we use it to detect the instant at which the proportion problem
is solved. Specifically, let nA (resp. nB) be the number of agents
that initially started in state A (resp. B) and γA = nA/n, where
n is the total number of agents. Our protocol guarantees, with
a given precision ε > 0 and any high probability 1 − δ, that
after O(n ln(n/δ)) interactions, any queried agent that has set
the detection flag will output the correct value of the proportion
γA of agents which started in state A, by maintaining no more
than O(ln(n)/ε) integers. We are not aware of any such results.
Simulation results illustrate our theoretical analysis.

Index Terms—Population protocols; Detection of convergence;
Large scale systems; Anonymous agents; Probabilistic analysis.

I. INTRODUCTION

The main line of research in the population protocol model
has so far been the design of pairwise interaction-based pro-
tocols that converge to a given configuration of the system as
fast as possible while minimizing the number of states needed
to converge to that sought configuration. Actually, since the
seminal work of Aspnes [4], a considerable amount of work
has been done so far to determine which properties can emerge
from pairwise interactions between finite-state nodes, together
with the derivation of lower bounds on the time and space
needed to reach such properties (e.g., [1], [2], [3], [5], [6],
[7], [8], [9], [11]).

In this paper we go a step further by proposing a mechanism
that allows each agent to locally detect that the system has
converged to the sought configuration with high probability. As
an application, we propose to use this mechanism to detect the
instant at which the proportion problem is solved. Specifically,
let nA (resp. nB) be the number of agents that initially started
in state A (resp. B) and γA = nA/n be the majority, where n
is the total number of agents. Our protocol guarantees, with a
given precision ε > 0 and any high probability 1−δ, that after
O(n ln(n/δ)) interactions, any queried agent that has set the
detection flag will output the correct value of the proportion
γA of agents which started in state A, by maintaining no more
than O(ln(n)/ε) states.

To allow each node to locally detect that its computation of
the proportion has converged, we combine three algorithms,
each one being run at each node of the system. The first one
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is dedicated to the computation of the sought property, that is
the computation of the proportion γA. The second algorithm,
run in parallel with the proportion one, aims at constructing
the global clock of the system to detect the instant at which
convergence is reached at all the nodes. Briefly, when the local
clock of at least two nodes have reached a given threshold
Tmax, this means that the number of global interactions in the
system is large enough so that all the nodes of the system are
able to compute the proportion value with high precision. Thus
both nodes can start the propagation of a signal to inform each
other node i of the system that i can derive from its local state
a good approximation of the proportion γA. This dissemination
is implemented by a randomized propagation algorithm.

We provide in Section V, a new theoretical analysis of the
performance of all these three pairwise interaction-based pro-
tocols that improve upon existing ones. As will also be proven
in Section V, this detection mechanism is universal in the sense
that any pairwise interaction-based population protocol can be
augmented with this mechanism to safely detect convergence
with high probability. The only requirement that must satisfied
is that an upper bound on the convergence time of that protocol
must be explicitly known.

The remaining of the paper is organized as follows. Sec-
tion II formalizes the addressed problem. The model of the
system together with the different notations adopted in the
paper are presented in Section III. The orchestration of the
different ingredients of our detection mechanism are presented
in Section IV. A deep theoretical analysis of the performance
of our detection mechanism is presented in Section V, and
a summary of the simulation results is given in Section VI.
Finally, Section VII concludes the paper.

II. THE ADDRESSED PROBLEM

We consider a set of n agents, interconnected by a complete
graph, that asynchronously start their execution in one of two
distinct states A and B. Let nA (resp. nB) be the number of
agents whose initial state is A (resp. B), and let γA = nA/n
be the proportion of the system, with n the total number of
agents. We formalize the addressed problem as follows.

Definition 1 (Proportion with Convergence Detection): A
population protocol ran by all the nodes of the system solves
the proportion with convergence detection problem if with
probability at least 1 − δ, for any δ ∈ (0, 1), any node of
the system is capable of computing the proportion γA and
detecting the instant at which the computed proportion is
an ε-approximation of γA. The number of interactions and



the number of states needed to guarantee the convergence
detection must respectively be O(ln(n)) and O(ln(n)/ε),
where ε is the precision of the computed proportion, and n is
the number of nodes.

III. MODEL AND NOTATIONS

In this work we assume that the collection of nodes com-
municate through pairwise and asynchronous interactions in
a failure-free environment. Initially, each node starts with an
initial symbol A or B represented by ι. The input function
of each node initializes its local state according to its initial
symbol, and then at each interaction its state is updated
using a transition function denoted by f . Interactions between
nodes are random: at each discrete time, any two agents are
randomly selected to interact. The notion of time in population
protocols refers to as the successive steps at which interactions
occur, while the parallel time refers to as the total number of
interactions averaged by n, see Aspnes et al. [4]. Note that
nodes do not maintain nor use identifiers, however for ease of
presentation, they are numbered 1, 2, . . . , n.

We will denote by (C
(i)
t , T

(i)
t , S

(i)
t ) the state of node i at

time t, where C
(i)
t is used by node i to evaluate the current

value of the proportion, T
(i)
t is used by node i to evaluate

the global clock of the system, and S
(i)
t is a Boolean variable

used by node i to indicate whether proportion convergence has
been globally reached or not. Let m and Tmax be two systems
parameters, respectively used to define the initial configuration
of the nodes and to determine the global number of interactions
after which convergence is reached for all the nodes. Values
of both parameters are analyzed in Section V. At any time
t, C

(i)
t belongs to QC with QC = J−m,mK, and we have

|QC | = 2m+1; T (i)
t belongs to QT with QT = J0, Tmax−1K,

and we have |QT | = Tmax; finally S
(i)
t belongs to QS with

QS = {0, 1}, and we have |QS | = 2. Thus the size of the
state set of any node is equal to |QC | × |QT | × |QS |.

The configuration of the system at time t is the state of
each node at time t and is denoted by (Ct, Tt, St) where
Ct = (C

(1)
t , . . . , C

(n)
t ), Tt = (T

(1)
t , . . . , T

(n)
t ), and St =

(S
(1)
t , . . . , S

(n)
t ).

Interactions between nodes are orchestrated by a random
scheduler: at each discrete time t ≥ 0, two indices i and
j are randomly chosen to interact with probability pi,j(t).
The successive choices of the interacting pair of nodes are
supposed to be independent and uniformly distributed, which
means that we have

Pi,j(t) =
1{i ̸=j}

n(n− 1)
.

IV. ALGORITHM RUN AT EACH NODE

Each node i maintains, as its current state, a vector made
of three components (C(i), T (i), S(i)), initialized according to
Algorithm 1.

Pairs of nodes interact randomly (see Algorithm 2) and dur-
ing their interaction update their state by computing the aver-
age of their C values and by incrementing their clock values T

1 Function Init(i):
2 if ι(i) = A then C(i) := m;
3 if ι(i) = B then C(i) := −m;
4 T (i) := 0;
5 S(i) := 0;

Algorithm 1: Initialization of node i’s state (input function)

as respectively described in Algorithms 3 and 4. The transition
function f is given by f(x, y) = (⌊(x+ y)/2⌋), ⌈(x+ y)/2⌉).
When two interacting nodes have both their clock equal to
Tmax − 1 (i.e. the number of global interactions in the system
is large enough to allow all the nodes of the system to locally
compute the proportion value with high precision), they both
set their signal value to 1, which indicates the starting point
of the spreading (see Algorithm 5). If during an interaction, a
node updates its signal value, i.e. S = 1, then it stops updating
both its C and T values, and at any subsequent interactions,
this node will only ”propagate” signal S.

1 Function UpdateState(i, j):
2 if Spreading (i, j) = 0 then
3 if Clock (i, j) = 0 then
4 Average (i, j);
5 end
6 end
Algorithm 2: Update of the state of two nodes during their
interaction

1 Function Average(i,j):
2 (C(i), C(j)) :=

(⌊
C(i)+C(j)

2

⌋
,
⌈
C(i)+C(j)

2

⌉)
;

Algorithm 3: Update of C values of two interacting nodes

1 Function Clock(i, j):
2 if T (i) = T (j) = (Tmax − 1) then
3 S(i) := S(j) := 1;
4 return 1;
5 end
6 if T (i) ≤ T (j) then T (i) := T (i) + 1 ;
7 else T (j) := T (j) + 1 ;
8 return 0;

Algorithm 4: Update of S values of two interacting nodes

Upon query, a node i returns its estimation ωA of the
proportion of initial A according to its current value of C(i).
We have

ωA(C
(i)) = (m+ C(i))/(2m)

Note that in addition to the proportion, node i also returns its
signal S(i) (see Algorithm 6). As demonstrated in Section V,
the proportion computed by i is an ε-approximation of γA with
any high probability 1 − δ if S(i) = 1. Note that if S(i) = 0
then i does not know how far its computation is from γA.
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1 Function Spreading(i, j):
2 if S

(i)
t = S

(j)
t = 0 then return 0 ;

3 S(i) := S(j) := 1;
4 return 1;

Algorithm 5: Update of T values of two interacting nodes

1 Function ωA(i):
2 return

(
m+C(i)

2m , S(i)
)

;

Algorithm 6: Output function of the Algorithm

V. ANALYSIS

This section is devoted to the analysis of our solution. We
split the analysis into five parts, the first one devoted to the
analysis of the rumor spreading function (see Section V-A),
the second one to the analysis of the average function (see
Section V-B) and the third one to the global clock function (see
Section V-C). The analysis presented in the fourth part consists
in evaluating the global behavior of our protocol by combining
the previous evaluations (see Section V-D). We end this section
by showing under which hypothesis our convergence detection
mechanism can be applied to any pairwise interaction-based
protocol (see Section V-E).

A. Analysis of the rumor spreading function

The spreading starts at the first instant t at which two
interacting nodes, say i and j, have both their spreading values,
S
(i)
t and S

(j)
t , equal to 1. This instant occurs when both nodes

have their clock equal to Tmax − 1. In order to analyze this
spreading time, we first prove a lemma derived from Theorem
4 of [9]. let Yt the number of informed nodes at time t and
Θn the first instant at which all nodes know the rumor. We
have

Θn = inf{t ≥ 0 | Yt = n}.

Note that in our case we have Y0 = 2. This lemma gives a
maximal value of spreading time with a probability less than
or equal to any fixed probability δ ∈ (0, 1) when the system
initially starts with 2 nodes knowing the rumor.

Lemma 2: For all δ, we have

P{Θn ≥ ⌈n (ln(n)− ln(δ)/2)⌉ | Y0 = 2} ≤ δ.

Proof. Applying Theorem 4 of [9] with i = 2 leads, for every
k ≥ 0, to

P{Θn ≥ k | Y0 = 2} ≤ (n− 2)2
(
1− 2

n

)k

.

Setting k = ⌈n (ln(n)− ln(δ)/2)⌉, we obtain(
1− 2

n

)⌈n(ln(n)−ln(δ)/2)⌉

≤
(
1− 2

n

)n(ln(n)−ln(δ)/2)

= en(ln(n)−ln(δ)/2) ln(1−2/n).

Using the fact that ln(1− x) ≤ −x, for all x ∈ [0, 1), we get(
1− 2

n

)⌈n(ln(n)−ln(δ)/2)⌉

≤ e−2 ln(n)+ln(δ) =
δ

n2

and thus

P{Θn ≥ ⌈n (ln(n)− ln(δ)/2)⌉ | Y0 = 2} ≤ (n− 2)2δ

n2
≤ δ,

which completes the proof.

Note that the proof of this lemma does not make use of the
Markov inequality. The approximations have all been made
with equivalents, which means that the result of this lemma
is quite close to the reality. This will be illustrated in section
VI-A.

B. Analysis of the average function

The average function is modelled by vector Ct. This tran-
sition function is given, for interacting nodes i and j, by(

C
(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
(1)

and C
(r)
t+1 = C

(r)
t for r ̸= i, j.

The following lemma, which states that the sum of the
entries of vector Ct is constant, is straightforward.

Lemma 3: For every t ≥ 0, we have
n∑

i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .

Proof. The proof is immediate since the transformation from
Ct to Ct+1 described in Relation (1) does not change the
sum of the entries of Ct+1. Indeed, from Relation (1), we
have C

(i)
t+1 +C

(j)
t+1 = C

(i)
t +C

(j)
t and the other entries do not

change their values.

We denote by ℓ the mean value of the sum of the entries of
Ct and by L the row vector of Rn with all its entries equal
to ℓ, that is

ℓ =
1

n

n∑
i=1

C
(i)
t and L = (ℓ, . . . , ℓ).

Clearly, from Lemma 3, the value of ℓ is independent of
the time t. The following theorem shows that, after a given
amount of time, the distance between all the C

(i)
t and ℓ

is less than 3/2 with any high probability. Recall that the
infinite norm is defined for any n-dimensional vector v by
∥v∥∞ = maxi=1,...,n vi.

Theorem 4: For all δ ∈ (0, 1), if there exists a con-
stant K such that ∥C0 − L∥ ≤ K then, for every t ≥
n (2 ln(K) + 1.78 ln(n)− 7.60 ln(δ) + 2.70), we have

P {∥Ct − L∥∞ < 3/2} ≥ 1− δ.

Proof. See [10]

We now apply these results to compute the proportion γA
of agents whose initial input was A, which is given by γA =
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nA/(nA + nB) = nA/n. Recall that the output function ωA

is given, for all x ∈ QC , by

ωA(x) = (m+ x)/(2m).

The following theorem shows that, after a given amount of
time, the value of all the ωA(C

(i)
t ) is an ε-approximation of

the proportion γA with any probability.
Theorem 5: For all ε, δ ∈ (0, 1), setting m = ⌈3/(4ε)⌉, we

have, for all t ≥ n (2.78 ln(n)− 2 ln(ε)− 7.60 ln(δ) + 2.70),

P{|ωA(C
(i)
t )− γA| < ε for all i = 1, . . . , n} ≥ 1− δ.

Proof. We have ∥C0−L∥ ≤ m
√
n. Applying Theorem 4, with

K =
√
n/ε ≥ ⌈3/(4ε)⌉

√
n = m

√
n, we obtain for all δ ∈

(0, 1) and t ≥ n (2.78 ln(n)− 2 ln(ε)− 7.60 ln(δ) + 2.70),

P{∥Ct − L∥∞ ≥ 3/2} ≤ δ

or equivalently

P{|C(i)
t − (γA−γB)m| < 3/2, for all i = 1, . . . , n} ≥ 1−δ.

Since γA + γB = 1 we have

|C(i)
t − (γA − γB)m| = |C(i)

t − (2γA − 1)m|
= |m+ C

(i)
t − 2mγA|

= 2m|ωA(C
(i)
t )− γA|.

Then

P{|ωA(C
(i)
t )− γA| < 3/(4m), for all i = 1, . . . , n} ≥ 1− δ.

So

P{|ωA(C
(i)
t )− γA| < ε, for all i = 1, . . . , n} ≥ 1− δ,

which completes the proof.

C. Analysis of the clock function

The clock function is modelled by vector Tt, and for any
two interacting nodes i and j, we have

(
T

(i)
t+1, T

(j)
t+1

)
=


(
T

(i)
t + 1, T

(j)
t

)
if T (i)

t ≤ T
(j)
t

(
T

(i)
t , T

(j)
t + 1

)
if T (i)

t > T
(j)
t .

and T
(r)
t+1 = T

(r)
t for r ̸= i, j.

The maximal difference between any two clocks at time t is
also called the gap at time t. It is denoted by Gap(t) and is
defined by

Gap(t) = max
1≤i≤n

(
T

(i)
t

)
− min

1≤i≤n

(
T

(i)
t

)
.

The following theorem gives a maximal value of the gap with
any fixed probability. Note that this value is independent of
the global time t.

Theorem 6: For all δ ∈ (0, 1), we have

P {Gap(t) ≥ 10 ln(n)− 10 ln(δ) + 74} ≤ δ.

Proof. From Relation (1) and Figure 1 of [8] in which we
take a = 10 and b = 74, we obtain, for all σ > 0,

P {Gap(t) ≥ 10(1 + σ) ln(n) + 74} ≤ 1/nσ.

Let δ ∈ (0, 1). By taking σ = − ln(δ)/ ln(n), we get
σ ln(n) = − ln(δ) and 1/nσ = δ, that is

P {Gap(t) ≥ 10 ln(n)− 10 ln(δ) + 74} ≤ δ,

which completes the proof.

The following properties will also be used in the next
section. Since at each time only one node has its clock
incremented by one we have

n∑
i=1

Tt(i) = t.

It follows easily that at each instant t ≥ 0, we have

min
1≤i≤n

(
T

(i)
t

)
≤ t

n
≤ max

1≤i≤n

(
T

(i)
t

)
(2)

D. Analysis of the proportion protocol with convergence de-
tection

We now combine all the previous analyses to evaluate
the behavior of our proportion protocol with convergence
detection. For every n ≥ 2 and for all δ ∈ (0, 1), we introduce
the following constants:

• τ1 = ln(n)− 0.5 ln(δ) + 0.55.
• τ2 = 2.78 ln(n)− 2 ln(ε)− 7.60 ln(δ) + 11.05.
• τ3 = 10 ln(n)− 10 ln(δ) + 84.99.
Constant τ1 is the constant used in Lemma 2 with δ/3

instead of δ. It is the maximal parallel time for the spreading
protocol to converge with probability greater than 1− δ/3.

Constant τ2 is the constant used in Theorem 5 with δ/3
instead of δ. It is the maximal parallel time for the proportion
protocol to converge with probability greater than 1− δ/3.

Constant τ3 is the constant used in Theorem 6 with δ/3
instead of δ. It is the maximal gap obtained with probability
greater than 1− δ/3.

With these constants, we set Tmax = τ2+τ3. The following
theorem is the main result of the paper. It states that, after time
n(Tmax + τ1), all the nodes have an ε-approximation of γA
and that the spreading is terminated, with probability greater
then 1−δ. More practically, it also states that, if at any instant
t a node has its spreading value equal to 1, then all the nodes
have an ε-approximation of γA with probability greater than
1− δ.

Theorem 7: For every δ ∈ (0, 1) and t ≥ n(Tmax + τ1),
we have

P

{∣∣∣ωA(C
(i)
t )− γA

∣∣∣ ≤ ε, S
(i)
t = 1 ∀i ∈ J1, nK} ≥ 1− δ.

Moreover, for every δ ∈ (0, 1) and t ≥ 0, we have

P

{∣∣∣ωA(C
(i)
t )− γA

∣∣∣ ≤ ε ∀i ∈ J1, nK ∣∣∣∃j such that S(j)
t = 1

}
≥ 1− 2δ/3.
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Proof. The average protocol and the clock protocol both start
at time 0 and run independently of each other. We consider first
the clock protocol. Let Γ be the first time where two interacting
nodes both have their clock value equal to Tmax−1. Applying
Theorem 6 at instant Γ with δ/3 instead of δ, we get

P {Gap(Γ) < 10 ln(n)− 10 ln(δ/3) + 74} ≥ 1− δ/3,

that is, by definition of τ3, P {Gap(Γ) < τ3} ≥ 1 − δ/3. By
definition of the gap and since that at instant Γ, we have
max1≤i≤n

(
T

(i)
Γ

)
= Tmax − 1, we obtain

P

{
Tmax − 1− min

1≤i≤n

(
T

(i)
Γ

)
< τ3

}
≥ 1− δ/3,

that is, by definition of Tmax,

P

{
min

1≤i≤n

(
T

(i)
Γ

)
> τ2

}
≥ 1− δ/3.

From Relation (2) we have min1≤i≤n

(
T

(i)
Γ

)
≤ Γ/n, which

leads to
P {Γ > nτ2} ≥ 1− δ/3. (3)

For what concerns the average protocol, to simplify the writing
we introduce the events Et defined by

Et =
{∣∣∣ωA(C

(i)
t )− γA

∣∣∣ < ε for all i ∈ J1, nK} .

Applying Theorem 5 with δ/3 instead of δ we get, by
definition of τ2, for all t ≥ nτ2,

P {Et} ≥ 1− δ/3.

The random variables C
(i)
t and Γ being independent, we have

for every t ≥ 0,

P {EΓ+t,Γ > nτ2} =

∞∑
s=nτ2+1

P {Es+t,Γ = s}

=

∞∑
s=nτ2+1

P {Es+t}P {Γ = s}

≥ (1− δ/3)

∞∑
s=nτ2+1

P {Γ = s}

= (1− δ/3)P {Γ > nτ2}
≥ (1− δ/3)2.

It follows that, for every t ≥ 0,

P {EΓ+t} ≥ P {EΓ+t,Γ > nτ2} ≥ (1− δ/3)2. (4)

The starting point of the spreading period is instant Γ + 1.
By definition of Γ, instant Γ + 1 is the first time at which
exactly two agents have their spreading values equal to 1.
More precisely, for every t ≥ 0, we introduce the random
variable Yt defined by

Yt =

n∑
i=1

S
(i)
t .

We have Yt = 0 for every t ≤ Γ and YΓ+1 = 2. The spreading
time Θn is thus the first instant at which the spreading values
of all the agents are equal to 1. It is then defined by

Θn = inf{t ≥ 0 | Yt = n} − (Γ + 1)

= inf{t ≥ Γ + 1 | Yt = n} − (Γ + 1).

From Lemma 2 in which we use δ/3 instead of δ, we have,
since YΓ+1 = 2,

P{Θn < ⌈nτ1⌉} ≥ 1− δ/3.

Again, to simplify the writing we introduce the events Ft

defined by

Ft =
{
S
(i)
t = 1 for all i ∈ J1, nK} .

By definition of the Boolean S
(i)
t and of the spreading time

Θn, we have, for all t ≥ 0,

P {FΓ+1+nτ1+t | EΓ+1+nτ1+t}
= P {Θn ≤ nτ1 + t | EΓ+1+nτ1+t}
≥ 1− δ/3,

where the last inequality follows from Lemma 2. Uncondi-
tioning and using Relation (4), we obtain

P {FΓ+1+nτ1+t, EΓ+1+nτ1+t}
= P {FΓ+1+nτ1+t | EΓ+1+nτ1+t}P {EΓ+1+nτ1+t}
≥ (1− δ/3)(1− δ/3)2 = (1− δ/3)3.

Recalling that Γ =
∑n

i=1 T
(i)
Γ and that T

(i)
t ≤ Tmax − 1,

for all t ≥ 0, we get Γ ≤ nTmax. Considering instant t =
s+ nTmax − Γ which is positive, finally leads, for all s ≥ 0,
to

P {FnTmax+nτ1+s+1, EnTmax+nτ1+s+1} ≥ (1− δ/3)3,

which is equivalent to say that, for all t ≥ n(Tmax + τ1), we
have

P {Ft, Et} ≥ (1− δ/3)3 ≥ 1− δ,

which completes the first part of the proof.
For the second part of the proof, note that

∃j such that S(j)
t = 1 ⇐⇒ Γ ≤ t.

We thus have applying Relation (4)

P

{
Et | ∃j such that S(j)

t = 1
}
= P {Et | Γ ≤ t}

= P {EΓ+t}
≥ (1− δ/3)2 ≥ 1− 2δ/3.

This completes the second part of the proof.

This theorem shows that the convergence is O(ln(n)) and
that then number of states needed is equal to |QT × QC ×
QS | = 2 (2⌈3/(4ε)⌉+ 1)Tmax = O (ln(n)/ε).
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E. Generalizing the convergence detection mechanism

We now show that our detection mechanism can be applied
to any pairwise interaction-based protocol P so that any
node of the system can safely detect the instant at which
convergence is reached by all the nodes of the system. The
only requirement for this mechanism to be applied is that the
convergence time of P must be precisely known.

Specifically, let us consider the transition function f of the
protocol P such that Relation (1) is replaced by(

C
(i)
t+1, C

(j)
t+1

)
= f

(
C

(i)
t , C

(j)
t

)
and C

(r)
t+1 = C

(r)
t for r ̸= i, j.

Line 2 of Algorithm 3 is thus replaced by(
C(i), C(j)

)
:= f

(
C(i), C(j)

)
.

The initial value C0 of vector Ct is given and the set of states
QC of C(i)

t is supposed to be finite. As convergence indicator,
we consider the general function ν from (QC)

n to {0, 1}. We
also suppose that we have a general version of Theorem 5
stating that for all δ ∈ (0, 1) and for all t ≥ τC(n, δ), we have

P {ν(Ct) = 1} ≥ 1− δ. (5)

Note that by taking τ2 = τC(n, δ) and

ν(Ct) = 1{|ωA(C
(i)
t )−γA|<ε for all i=1,...,n}

we arrive to the previous result of Theorem 5.
Under the previous assumptions, the generalization of The-

orem 7 is then the following. We set Tmax = τC(n, δ/3)+ τ3.
Theorem 8: For all δ ∈ (0, 1) and for all t ≥ n(Tmax+ τ1)

we have
P {ν(Ct) = 1} ≥ 1− δ.

Moreover, all δ ∈ (0, 1) and t ≥ 0, we have

P

{
ν(Ct) = 1

∣∣∣∃j such that S(j)
t = 1

}
≥ 1− 2δ/3.

Proof. By defining Et = {ν(Ct) = 1}, the proof follows
exactly the same lines of the proof of Theorem 7, in which τ2
is replaced by τC(n, δ/3).

The number of states is |QT ×QC ×QS | = 2Tmax|QC |.

VI. SIMULATIONS

In this section we first provide simulation results for the
spreading, the average, and the clock functions, and then
present simulation results for the full protocol.

A. Spreading rumor

This section shows how tight our bound given in Lemma 2
is to our simulation results.

For our purpose, a simulation consists in the following
steps: first, all the n nodes are initialized to 0 except for two
nodes which are initialized to 1. Then, at each step of the
simulation, two nodes are randomly chosen to interact and
update their state, by keeping the maximal value of both ones.
The simulation stops when all the nodes have their values

equal to 1. We have run N independent simulations and have
stored and ordered the N values of the spreading times denoted
by θ1 ≤ . . . ≤ θN . Recall that the spreading time θi is the total
number of interactions to propagate an information to all the
nodes of the system. The estimation of the instant τ such that
P(Θn < nτ} ≥ 1− δ is thus given by the value θ⌈N(1−δ)⌉.
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Figure 1. Parallel convergence time of Rumor Spreading as a function of n,
with N = 104.
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Figure 2. Parallel convergence time of Rumor Spreading as a function of δ,
with N = 106.

Recall that the convergence parallel time is equal to the
convergence time divided by n. Figures 1 and 2 depict the
convergence parallel times θ⌈N(1−δ)⌉/n and τ1 for different
values of δ for the first one, and for different values n for the
second one. Both figures shows that the theoretical results are
quite close to the simulation ones.

B. Average

For each value of ε, we take m = ⌈3/(4ε)⌉. Next we choose
nA = ⌈n/4m+n/2⌉ and nB = n−nA. A simulation consists
in the steps described in Algorithm 3 and in Section V-B. The
simulation stops when the difference between the minimal and
the maximal values of the entries of vector Ct is less than or
equal to 2. We ran N independent simulations and stored the

6



N values of the number of interactions performed which we
ordered as θ1 ≤ . . . ≤ θN . The estimation of the instant τ
such that, for t ≥ τ ,

P

{
|ωA(C

(i)
t )− γA| < ε for all i = 1, . . . , n

}
≥ 1− δ

is thus given by the value θ⌈N(1−δ)⌉.
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Figure 3. Parallel convergence time of Proportion Computation as a function
of n, with N = 104 and ε = 0.01.
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Figure 4. Parallel convergence time of Proportion Computation as a function
of δ, with N = 105 and ε = 0.01.

Figures 3, 4 and 5 depict the convergence parallel time
θ⌈N(1−δ)⌉/n for different values of δ in the first one, for
different values of n for the second one, and for different
values of ε for the third one. Note that in both the first and
the second figure, we have ε = 0.01, that is m = 75. In
each figure the values of θ⌈N(1−δ)⌉/n are compared to an
intuited value τ ′2(n, δ, ε) close to the expression of τ2 whose
coefficients have been derived from the simulation results, and
given by

τ ′2(n, δ, ε) = ln(n)− 0.5 ln(δ)− 2 ln(ε)− 1.80. (6)

C. The clock
For the clock protocol a simulation consists in the steps

described in Algorithm 4 and in Section V-C. We start the
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Figure 5. Parallel convergence time of Proportion Computation as a function
of ε, with N = 103 and δ = 0.5.

evaluation of the gap after the first 50n interactions. We then
store the gap every 100 interactions. Wa ran x simulations and
for each simulation we stored the gap y times. This means
that the duration of a simulation is equal to 100y + 50n. The
number N of values of the gap obtained is thus N = xy. These
N values are stored and reordered as Gap1 ≤ . . . ≤ GapN .
The estimation of the instant τ such that

P {Gap(t) ≥ τ} ≤ δ

is thus given by the value Gap⌈N(1−δ)⌉.
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Figure 6. Gap of the clock as a function of n, with N = 106.

Figures 6 and 7 depict the gap Gap⌈N(1−δ)⌉ for different
values of δ for the first one and for different values of n for
the second one. In Figure 6 we chose x = 10 and y = 10000
and in Figure Figures 6 we chose x = 100 and y = 10000.
In each figure the values of Gap⌈N(1−δ)⌉/n are compared to
an intuited value τ ′3(n, δ) close to the expression of τ3 whose
coefficients have been derived from the simulation results, and
given by

τ ′3(n, δ) = 0.73 ln(n)− 0.73 ln(δ) + 1.5. (7)
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D. Optimized protocol derived from simulation
From Relations (6) and (7) we derive an intuited value T ′

max

close to the expression of Tmax for the proportion protocol
with convergence detection. It is given by

T ′
max = τ ′2(n, δ/3, ε) + τ ′3(n, δ/3)

= 1.73 ln(n)− 1.23 ln(δ)− 2 ln(ε) + 1.05.

For different values of n and ε, we ran N = 1000
independent simulations taking δ = 10−6, using the value
of T ′

max instead of Tmax. We stored the convergence times
θ1, . . . , θN defined, for i = 1, . . . , N , by

θi = inf
{
t ≥ 0 | S(j)

t = 1, for all j ∈ J1, nK} .
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Figure 8. Comparison of the parallel convergence time of proportion
computation with convergence detection and without convergence detection
as a function of n, with N = 103 and ε = 10−5.

Figure 8 compares the simulation results of the convergence
parallel time (i.e., the expected value (θ1 + · · · + θN )/N ,

the minimal value mini=1,...,N θi and the maximal value
maxi=1,...,N θi) when the convergence detection mechanism is
used and when it is not used. Clearly, the cost induced by the
detection mechanism is not predominant as the convergence
time is of the same order of magnitude in both cases.

VII. CONCLUSION

In this paper we have presented how we can augment, in the
population model, a proportion protocol with a convergence
detection mechanism to allow each node of the system to
locally detect the instant at which convergence to the sought
property is reached. A deep theoretical analysis of the perfor-
mance of each ingredient of our solution has been presented,
and simulation results show the impressively weak impact
of our detection mechanism on the convergence time of the
proportion protocol. We have also shown the applicability of
our convergence detection mechanism to many other pairwise
interaction-based protocols. For instance, our construction can
be applied to a leader election protocol provided that its
convergence time is known with high probability.
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