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Abstract—We consider a large system populated by n anony-
mous nodes that communicate through asynchronous and pair-
wise interactions. The aim of these interactions is for each node
to converge toward a global property of the system, that depends
on the initial state of each node. In this paper we focus on
both the counting and proportion problems. We show that for
any δ ∈ (0, 1), the number of interactions needed per node to
converge is O(ln(n/δ)) with probability at least 1 − δ. We also
prove that each node can determine, with any high probability,
the proportion of nodes that initially started in a given state
without knowing the number of nodes in the system. This work
provides a precise analysis of the convergence bounds, and shows
that using the 4-norm is very effective to derive useful bounds.

Keywords Large scale anonymous and asynchronous system;
Counting problem; Proportion problem; Markov chain; Prob-
abilistic analysis.

I. INTRODUCTION

This paper focuses on the analysis of counting problems
in a model in which nodes are identically programmed, with
no identity, and they progress in their computation through
random pairwise interactions. As motivated by Aspnes [3],
the objective of this model is to analyze the conditions under
which nodes can converge to a state from which some global
property of the system can be locally computed. A consider-
able amount of work has been done so far to determine which
properties can emerge from pairwise interactions between
finite-state nodes, together with the derivation of lower bounds
on the time and space needed to reach such properties (e.g., [1],
[2], [4], [6], [10]). In this work, we are primarily interested
in counting problems. Briefly, each node starts independently
of each other in one of two input states, say A and B, and
the objective for each node is to eventually reach a state
from which it can derive with any high probability the exact
difference between the number of nodes that started their
execution with A, denoted by nA in the following, and the
number of nodes that started their execution with B, denoted
by nB .

The main contribution of this work is an analysis of the
time for all the nodes of the system to converge to nA − nB

with any probability fixed in advance. This analysis improves
upon the one obtained by Mocquard et al. [7] thanks to the
tools used to derive this convergence time. In [7], the 2-norm of
the difference between the vector of states of the nodes and the
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limiting distribution of these states is analyzed. In the present
paper, we use the 4-norm, and we precisely characterize the
conditions under which the 4-norm gives tighter bounds with
respect to the the 2-norm. To the best of our knowledge, such
an analysis has never been achieved before.

In the remaining of the paper we define in Section II both
the counting problem and the proportion one, and examine
in Section IV the different works that have tackled those
problems. In Section III we formally present the model in
which this work has been done. We present in Section V the
protocols run by the nodes to solve both problems. After the
statement of preliminary results in Section VI, we then study in
Section VII the moments and the distribution of the difference
between the random vector of all agents’ values and the
limiting distribution of these values. In Section VIII we analyze
their bounds and asymptotic behavior when the number n of
nodes goes to infinity. The accuracy of our analytic study
has been illustrated through numerous simulations whose main
results are presented in Section IX.

II. THE ADDRESSED PROBLEMS

We consider a set of n agents, interconnected by a complete
graph, that asynchronously start their execution in one of two
distinct states A and B. Let nA (resp. nB) be the number of
agents whose initial state is A (resp. B), and let κ = nA −
nB . This paper addresses two related problems, the counting
problem and the proportion one, both defined as follows.

a) Counting problem.: A population protocol ran by all
the nodes of the system solves the counting problem in τ steps
with probability at least 1 − δ, for any δ ∈ (0, 1), if for any
t ≥ τ , it holds that for any node i of the system, i is capable
of computing κ with probability at least 1− δ.

b) Proportion problem.: A population protocol ran by
all the nodes of the system solves the proportion problem in
τ steps with probability at least 1 − δ, for any δ ∈ (0, 1), if
for any t ≥ τ , it holds that for any node i of the system, i
is capable of computing nA/n with probability at least 1− δ,
without having access to the population size n.

III. MODEL AND NOTATIONS

In this work we assume that a collection of nodes are
connected by a complete graph and communicate through
pairwise and asynchronous interactions. Initially, all the nodes
start with an initial state represented by the symbol A or B,
and upon interactions, update their local state according to the
transaction function f . Interactions between nodes are random:



at each discrete time, any two agents are randomly selected
to interact. The notion of time in population protocols refers
to as the successive steps at which interactions occur, while
the parallel time refers to as the total number of interactions
averaged by n, see Aspnes et al. [3]. Note that nodes do not
maintain nor use identifiers, however for ease of presentation,
they are numbered 1, 2, . . . , n.

We will denote by C
(i)
t the state of node i at time t. The

configuration of the system at time t is the state of each node
at time t and is denoted by Ct = (C

(1)
t , . . . , C

(n)
t ). We denote

by Xt the random pair of distinct nodes chosen at time t to
interact, and for every i, j = 1, . . . , n, with i ̸= j, we define
pi,j(t) = P{Xt = (i, j)}.

We suppose that the sequence {Xt, t ≥ 0} is a se-
quence of independent and identically distributed random
variables. Since Ct is entirely determined by the values of
C0, X0, X1, . . . , Xt−1, this means in particular that the random
variables Xt and Ct are independent and that the stochastic
process C = {Ct, t ≥ 0} is a discrete-time homogeneous
Markov chain. Note that this Markov chain is very hard to
analyze using classical Markov chains methods because its
state space is quite complex. Nevertheless, as we will see,
the simplicity of the transition function f allows us to get
interesting results.

IV. RELATED WORK

The closest problems to the one we address are the com-
putation of the majority (see [4], [6], [2], [10], [1]). In this
problem, all the agents start in one of two distinct states and
they eventually converge to 1 if κ > 0 (i.e. nA > nB), and to 0
if κ ≤ 0 (i.e. nA ≤ nB). Draief and Vojnovic [4] and Mertzios
et al. [6] propose a four-state protocol that solves the majority
problem with a convergence parallel time logarithmic in n but
only in expectation. Moreover, the expected convergence time
is infinite when nA and nB are close to each other (that is κ
approaches 0). Angluin et al.[2] and Perron et al. [10] propose
a three-state protocol that converges with high probability after
a convergence parallel time logarithmic in n but only if κ
is large enough, i.e when |nA − nB | ≥

√
n log n. Alistarh

et al. [1] present a nice protocol based on an average-and-
conquer method to solve the majority problem. The first type
of interaction is close to the one used in this paper while the
second one is used to diffuse the result of the computation
to the agents that have not decided yet. Actually, to show
their convergence time, they need to assume a large number
of intermediate states because they need to prove that all the
agents with maximum positive values and minimal negative
values will have sufficiently enough time to halve their values.
Note that in practice, their algorithm does not require more
than n state to converge to the majority. Note that the protocol
proposed by Jelasity et al. [5] computes the average of the
initial values of the nodes, as done in the present paper,
however, in their protocol nodes act synchronously. Finally
in a previous work [7] we have presented a solution to the
majority counting problem, whose originality was a proof of
convergence based on tracking the euclidean distance between
the vector of all agents’ states and the limiting distribution of
these states. In a more recent work [9], we have provided an
analysis which shows that when nodes can only manipulate
integers, then our solution to both the counting problem and

the proportion one are optimal both in time and space. In
the present paper, we tackle the case where nodes manipulate
dyadic rational numbers, and we provide tighter bounds on the
time needed for each node to converge to the sought result.

V. THE COUNTING AND PROPORTION PROTOCOLS

Initially, all the nodes i, 1 ≤ i ≤ n start with a symbol
A or B that provides their initial state C

(i)
0 . Let m be any

positive integer. We set

C
(i)
0 =

{
m if the initial local state is A
−m if the initial local state is B.

Interactions between nodes are orchestrated by a random
scheduler: at each discrete time t ≥ 0, any two indices i and
j are randomly chosen to interact with probability pi,j(t).
Note that the random scheduler is fair, meaning that any
possible interaction cannot be avoided forever. Once chosen,
the pair of nodes (i, j) interacts and both nodes update their
respective state C

(i)
t and C

(j)
t by applying the following

transition function f , leading to state Ct+1, given by(
C

(i)
t+1, C

(j)
t+1

)
= f

(
C

(i)
t , C

(j)
t

)
=

(
C

(i)
t + C

(j)
t

2
,
C

(i)
t + C

(j)
t

2

)
(1)

and C
(h)
t+1 = C

(h)
t for h ̸= i, j.

At any time t, and upon request from the application, any node
i of the system can provide its estimation of κ = nA −nB by
returning wi, defined as

wi =

⌊
C

(i)
t n

m
+

1

2

⌋
.

We show in the following (see Corollary 7) that with any
high probability, wi = κ for any node i in the system. Note
that the values taken by the variables C

(i)
t belong to the set

of dyadic numbers (the rational numbers whose denominator
is a power of 2) of the interval [−m,m].

The proportion protocol uses the interaction function f
defined in Relation (1), and the estimation of the proportion
nA/n is defined as

w′
i =

C
(i)
t +m

2m
.

Note that node i does not need to know the size n of the
population to compute the proportion of nodes that started with
symbol A. We show with Corollary 8 (shown in Section VII)
that with any high probability and with any high precision,
w′

i ≈ nA/n for any node i in the system.

VI. PRELIMINARY RESULTS

The following Lemma states that the sum of the entries of
vector Ct is constant.

Lemma 1 ([7]): For all t ≥ 0,
∑n

i=1 C
(i)
t =

∑n
i=1 C

(i)
0 .



We denote by ℓ the mean value of the sum of the entries
of Ct and by L the row vector of Rn with all its entries equal
to ℓ, that is

ℓ =
1

n

n∑
i=1

C
(i)
t and L = (ℓ, . . . , ℓ).

For every d ∈ N \ {0} and x = (x1, . . . , xn) ∈ Rn, we will
use the d-norm and ∞-norm of x denoted by ∥x∥d and ∥x∥∞,
defined by

∥x∥d =

(
n∑

i=1

|xi|d
)1/d

and ∥x∥∞ = max
i=1,...,n

|xi|.

It is well-known that these norms satisfy

∥x∥∞ ≤ ∥x∥d ≤ n1/d∥x∥∞.

This shows in particular that

lim
d−→∞

∥x∥d = ∥x∥∞. (2)

For the sake of simplicity we introduce the following notations

y
(i)
t = C

(i)
t − ℓ and Yt = (y

(1)
t , . . . , y

(n)
t ),

that is Yt = Ct − L.

The next theorem states that, for every d, the d-norm of
vector Yt is decreasing with t.

Theorem 2: For all d ∈ {1, 2, . . . ,∞}, the sequence
(∥Yt∥d)t≥0 is decreasing.

Proof: Suppose first that d is finite with d ≥ 1. From
Relation (1), we have, for every t ≥ 0,

∥Yt+1∥dd = ∥Yt∥dd−
n∑

i,j=1

∣∣∣y(i)t

∣∣∣d + ∣∣∣y(j)t

∣∣∣d − 2

∣∣∣∣∣y(i)t + y
(j)
t

2

∣∣∣∣∣
d
 1{Xt=(i,j)}. (3)

The real function g defined by g(x) = xd is a convex function
on [0,∞), so for every a, b ≥ 0, we have

ad + bd ≥ 2

(
a+ b

2

)d

.

Taking a =
∣∣∣y(i)t

∣∣∣, b = ∣∣∣y(j)t

∣∣∣ and using the fact that |a|+ |b| ≥
|a+ b|, we get

∣∣∣y(i)t

∣∣∣d + ∣∣∣y(j)t

∣∣∣d ≥ 2


∣∣∣y(i)t

∣∣∣+ ∣∣∣y(j)t

∣∣∣
2

d

≥ 2

∣∣∣∣∣y(i)t + y
(j)
t

2

∣∣∣∣∣
d

,

which means that the double sum in (3) is non negative. This
proves that ∥Yt+1∥dd ≤ ∥Yt∥dd i.e. that ∥Yt+1∥d ≤ ∥Yt∥d. If
d = ∞, by taking the limit in this inequality, we obtain using
(2), ∥Yt+1∥∞ ≤ ∥Yt∥∞, which completes the proof.

From now on, we suppose as usual in such studies that Xt

is uniformly distributed, i.e. that is

pi,j(t) =
1

n(n− 1)
.

VII. MOMENTS OF ∥Yt∥2 AND ∥Yt∥4

We study in this section the moments of ∥Yt∥2 and ∥Yt∥4
which will be used to analyze their distributions. To avoid
triviality we suppose that n ≥ 3.

Theorem 3: For all t ≥ 0, we have

E
(
∥Yt+1∥44

)
=

(
1− 7

4(n− 1)

)
E
(
∥Yt∥44

)
+

3

4n(n− 1)
E
(
∥Yt∥42

)
. (4)

Proof: By taking the expectations in Relation (3) and
using the fact that Xt and Yt are independent, we obtain for
d = 4,

E
(
∥Yt+1∥44

)
= E

(
∥Yt∥44

)
−

n∑
i,j=1

E

(y(i)t

)4
+
(
y
(j)
t

)4
− 2

(
y
(i)
t + y

(j)
t

2

)4
 pi,j(t)

= E
(
∥Yt∥44

)
− 1

n(n− 1)

×
n∑

i,j=1

E

(y(i)t

)4
+
(
y
(j)
t

)4
− 2

(
y
(i)
t + y

(j)
t

2

)4
 . (5)

The double sum in (5) can also be also written as

n∑
i,j=1

(y(i)t

)4
+
(
y
(j)
t

)4
− 2

(
y
(i)
t + y

(j)
t

2

)4


=
7

8

n∑
i,j=1

((
y
(i)
t

)4
+
(
y
(j)
t

)4)

− 1

2

n∑
i,j=1

(
y
(i)
t

(
y
(j)
t

)3
+
(
y
(i)
t

)3
y
(j)
t

)

− 3

4

n∑
i,j=1

(
y
(i)
t

)2 (
y
(j)
t

)2
.

Consider theses 3 terms separately. For the first one, we have

7

8

n∑
i,j=1

((
y
(i)
t

)4
+
(
y
(j)
t

)4)
=

7n

4

n∑
i=1

(
y
(i)
t

)4
=

7n

4
∥Yt∥44.

Concerning the second term, since by definition of ℓ, we have

n∑
i=1

y
(i)
t =

n∑
i=1

C
(i)
t − nℓ = 0 (6)

we obtain

1

2

n∑
i,j=1

(
y
(i)
t

(
y
(j)
t

)3
+
(
y
(i)
t

)3
y
(j)
t

)

=

n∑
j=1

(
y
(j)
t

)3 n∑
i=1

(
y
(i)
t

)
= 0.



Concerning the third term, we have

3

4

n∑
i,j=1

(
y
(i)
t

)2 (
y
(j)
t

)2
=

3

4

n∑
i=1

(
y
(i)
t

)2 n∑
j=1

(
y
(j)
t

)2
=

3

4
∥Yt∥42.

We then obtain

n∑
i,j=1

(y(i)t

)4
+
(
y
(j)
t

)4
− 2

(
y
(i)
t + y

(j)
t

2

)4


=
7n

4
∥Yt∥44 −

3

4
∥Yt∥42.

Relation (5) becomes

E
(
∥Yt+1∥44

)
= E

(
∥Yt∥44

)
− 7

4(n− 1)
E
(
∥Yt∥44

)
+

3

4n(n− 1)
E
(
∥Yt∥42

)
,

that is

E
(
∥Yt+1∥44

)
=

(
1− 7

4(n− 1)

)
E
(
∥Yt∥44

)
+

3

4n(n− 1)
E
(
∥Yt∥42

)
,

which completes the proof.

In order for this result to be really interesting, we need to
evaluate fourth moment of the 2-norm of Yt. This is the goal
of the next theorem.

Theorem 4: For all t ≥ 0, we have

E
(
∥Yt+1∥42

)
=

(
1− 4n− 3

2n(n− 1)

)
E
(
∥Yt∥42

)
+

1

2(n− 1)
E
(
∥Yt∥44

)
. (7)

Proof: Applying Relation (3) with d = 2 leads to

∥Yt+1∥22 = ∥Yt∥22−
n∑

i,j=1

(y(i)t

)2
+
(
y
(j)
t

)2
− 2

(
y
(i)
t + y

(j)
t

2

)2
 1{Xt=(i,j)}

= ∥Yt∥22 −
1

2

n∑
i,j=1

(
y
(i)
t − y

(j)
t

)2
1{Xt=(i,j)}.

By taking the conditional expectations with respect to Xt and
using the fact that Xt and Yt are independent, we obtain

E
(
∥Yt+1∥42 | Xt = (i, j)

)
= E

((
∥Yt+1∥22

)2 | Xt = (i, j)
)

= E

([
∥Yt∥22 −

1

2

(
y
(i)
t − y

(j)
t

)2]2)

= E
(
∥Yt∥42

)
−E

((
y
(i)
t − y

(j)
t

)2
∥Yt∥22 −

1

4

(
y
(i)
t − y

(j)
t

)4)
.

Unconditioning, we obtain

E
(
∥Yt+1∥42

)
= E

(
∥Yt∥42

)
− 1

n(n− 1)

×E

∥Yt∥22
n∑

i,j=1

(
y
(i)
t − y

(j)
t

)2
− 1

4

n∑
i,j=1

(
y
(i)
t − y

(j)
t

)4 .

The first double sum can be written, using (6), as

n∑
i,j=1

(
y
(i)
t − y

(j)
t

)2
= 2n∥Yt∥22.

In the same way, using (6), the second double sum writes

n∑
i,j=1

(
y
(i)
t − y

(j)
t

)4
=

n∑
i,j=1

[(
y
(i)
t

)4
+
(
y
(j)
t

)4
− 4

(
y
(i)
t

)3 (
y
(j)
t

)
− 4

(
y
(i)
t

)(
y
(j)
t

)3
+ 6

(
y
(i)
t

)2 (
y
(j)
t

)2]
= 2n∥Yt∥44 + 6∥Yt∥42.

Putting together these two results gives

E
(
∥Yt+1∥42

)
= E

(
∥Yt∥42

)
− 1

n(n− 1)
E

[
2n∥Yt∥42 −

n

2
∥Yt∥44 −

3

2
∥Yt∥42

]
,

that is

E
(
∥Yt+1∥42

)
=

(
1− 4n− 3

2n(n− 1)

)
E
(
∥Yt∥42

)
+

1

2(n− 1)
E
(
∥Yt∥44

)
,

which completes the proof.

We are now able, using Theorems 3 and 4, to obtain explicit
expressions for the moments of ∥Yt∥2 and ∥Yt∥4 in function
of those of ∥Y0∥2 and ∥Y0∥4.

Corollary 5: For every n ≥ 3 and t ≥ 0 we have,

E
(
∥Yt∥44

)
=

6αt + nβt

n+ 6
E
(
∥Y0∥44

)
+

3(βt − αt)

n+ 6
E
(
∥Y0∥42

)
,

E
(
∥Yt∥42

)
=

2n(βt − αt)

n+ 6
E
(
∥Y0∥44

)
+
nαt + 6βt

n+ 6
E
(
∥Y0∥42

)
,

where

α = 1− 2

n− 1
and β = 1− 7n− 6

4n(n− 1)
.

Proof: Introducing the column vector U(t) defined by

U(t) =

 E
(
∥Yt∥44

)
E
(
∥Yt∥42

)
 ,



the Relations (4) and (7) can be written, for t ≥ 1, as U(t) =
AU(t− 1), where A is the (2, 2) matrix given by

A =


1− 7

4(n− 1)

3

4n(n− 1)

1

2(n− 1)
1− 4n− 3

2n(n− 1)

 .

We easily obtain, for all t ≥ 0, U(t) = AtU(0). The
eigenvalues of A are

α = 1− 2

n− 1
and β = 1− 7n− 6

4n(n− 1)
.

Note that since n ≥ 3, we have 0 ≤ α < β. The eigenvectors
Vα and Vβ are

Vα =

(
1

−n/3

)
and Vβ =

(
1
−2

)
.

We then have

At =
1

n+ 6

 6αt + nβt 3(βt − αt)

2n(βt − αt) nαt + 6βt

 .

This leads to

E
(
∥Yt∥44

)
=

6αt + nβt

n+ 6
E
(
∥Y0∥44

)
+

3(βt − αt)

n+ 6
E
(
∥Y0∥42

)

E
(
∥Yt∥42

)
=

2n(βt − αt)

n+ 6
E
(
∥Y0∥44

)
+
nαt + 6βt

n+ 6
E
(
∥Y0∥42

)
,

which completes the proof.

It has been shown in [7] that

E
(
∥Yt∥22

)
=

(
1− 1

n− 1

)t

E
(
∥Y0∥22

)
. (8)

Using this result and the previous theorem, we get the follow-
ing expression of the variance of ∥Yt∥22 which is denoted by
V
(
∥Yt∥22

)
.

V
(
∥Yt∥22

)
= E

(
∥Yt∥42

)
−E

(
∥Yt∥22

)2
=

2n(βt − αt)

n+ 6
E
(
∥Y0∥44

)
+
nαt + 6βt

n+ 6
E
(
∥Y0∥42

)
−
(
1− 1

n− 1

)2t

E
(
∥Y0∥22

)2
.

By definition of C
(i)
0 , using the fact n = nA + nB and

introducing the notation pn,A = nA/n, we have

ℓ =
1

n

n∑
i=1

C
(i)
0 =

1

n
(nA − nB)m = (2pn,A − 1)m. (9)

This expression leads to

∥Y0∥22 =

n∑
i=1

(
y
(i)
0

)2
=

n∑
i=1

(
C

(i)
0

)2
− nℓ2 = nm2 − nℓ2

= 4nm2pn,A(1− pn,A). (10)

We then have

∥Y0∥42 = 16n2m4p2n,A(1− pn,A)
2 (11)

and in the same way, we obtain using the relation nA−nB =
nℓ/m

∥Y0∥44 =

n∑
i=1

(
y
(i)
0

)4
=

n∑
i=1

[(
C

(i)
0

)4
− 4

(
C

(i)
0

)4
ℓ+ 6

(
C

(i)
0

)2
ℓ2 − 4C

(i)
0 ℓ3 + ℓ4

]
= nm4 − 4nℓ2m2 + 6nℓ2m2 − 4nℓ4 + nℓ4

= n(m− ℓ)(m+ ℓ)(m2 + 3ℓ2).

Using Relation (9), we obtain

∥Y0∥44 = 16nm4pn,A(1− pn,A)(3p
2
n,A − 3pn,A + 1). (12)

Note that the maximum of function x(1−x) is reached at x =
1/2 and its value is equal to 1/4. The maximum of function
x(1− x)(3x2 − 3x+ 1) is reached at points x = (3±

√
3)/6

and its value is equal to 1/12. Thus

∥Y0∥22 ≤ nm2, ∥Y0∥42 ≤ n2m4 and ∥Y0∥44 ≤ 4nm4/3. (13)

The equality occurs when pn,A = 1/2 for ∥Y0∥22 and ∥Y0∥42
and when pn,A = (3±

√
3)/6 for ∥Y0∥44.

Theorem 6: For every n ≥ 3, for all ε > 0, δ ∈ (0, 1)
and t ≥ τ , we have P{∥Yt∥∞ ≥ ε} ≤ δ, where

τ =
4n(n− 1)

7n− 6
ln

(
13m4n

3ε4δ

)
.

Proof: Using the inequalities (13), we get

E
(
∥Yt∥44

)
≤ 4nm4(6αt + nβt)

3(n+ 6)
+

3n2m4(βt − αt)

n+ 6

=
1

n+ 6

[
13m4n2βt

3
− (3n− 8)m4nαt

]
≤ 13m4n2βt

3(n+ 6)
≤ 13m4nβt

3
.

From Theorem 2 and the Markov inequality, we have for all
ε > 0 and t ≥ τ

P{∥Yt∥∞ ≥ ε} = P{∥Yt∥4∞ ≥ ε4} ≤ P{∥Yt∥44 ≥ ε4}

≤ P{∥Yτ∥44 ≥ ε4} ≤
E
(
∥Yτ∥44

)
ε4

≤ 13m4nβτ

3ε4
.

For all x ∈ [0, 1), we have ln(1−x) ≤ −x which is equivalent
to (1− x)τ ≤ e−τx. By definition of τ , this leads to

βτ =

(
1− 7n− 6

4n(n− 1)

)τ

≤ e−τ(7n−6)/(4n(n−1)) =
3ε4δ

13m4n
.

We then obtain for t ≥ τ , P{∥Yt∥∞ ≥ ε} ≤ δ, which
completes the proof.

The following result shows that after τ pairwise inter-
actions, each node is able to provide the value of κ with
probability at least 1− δ, for all δ ∈ (0, 1).

Corollary 7: For every n ≥ 3, for all δ ∈ (0, 1), for every
t ≥ τ , we have

P

{⌊
C

(i)
t n

m
+

1

2

⌋
= κ, for all i = 1, . . . , n

}
≥ 1− δ,



where

τ =
4n(n− 1)

7n− 6
(5 ln(n) + ln(208/3)− ln(δ)) .

Proof: By taking ε = m/(2n) in Theorem 6, we get

τ =
4n(n− 1)

7n− 6
(5 ln(n) + ln(208/3)− ln(δ))

and thus for all t ≥ τ and δ ∈ (0, 1), we have
P {∥Yt∥∞ ≥ m/(2n)} ≤ δ. Recalling that Yt = Ct − L and
that ℓ = κm/n, we obtain

P {∥Ct − L∥∞ ≥ m/(2n)} ≤ δ

⇔ P {∥Ct − L∥∞ < m/(2n)} ≥ 1− δ

⇔ P

{∣∣∣C(i)
t − κm

n

∣∣∣ < m

2n
, ∀i = 1, . . . , n

}
≥ 1− δ

⇔ P

{∣∣∣∣∣C(i)
t n

m
− κ

∣∣∣∣∣ < 1

2
, ∀i = 1, . . . , n

}
≥ 1− δ

⇔ P

{
κ <

C
(i)
t n

m
+

1

2
< κ+ 1, ∀i = 1, . . . , n

}
≥ 1− δ.

This last inequality implies that

P

{⌊
C

(i)
t n

m
+

1

2

⌋
= κ, for all i = 1, . . . , n

}
≥ 1− δ,

which completes the proof.

Similarly, the following result shows that after τ pairwise
interactions, each node is able to provide the proportion pn,A =
nA/n of nodes having initially the symbol A, with probability
at least 1− δ, for all δ ∈ (0, 1).

Corollary 8: For all n ≥ 3, ε > 0, δ ∈ (0, 1) and t ≥ τ ,
we have

P

{∣∣∣∣∣C(i)
t +m

2m
− pn,A

∣∣∣∣∣ < ε, for all i = 1, . . . , n

}
≥ 1− δ,

where

τ =
4n(n− 1)

7n− 6
(ln(n)− ln(48/13)− 4 ln(ε)− ln(δ)) .

Proof: By replacing ε by 2mε in Theorem 6, we get

τ =
4n(n− 1)

7n− 6
(ln(n)− ln(48/13)− 4 ln(ε)− ln(δ))

and thus for all t ≥ τ , ε > 0 and δ ∈ (0, 1), we have
P {∥Yt∥∞ ≥ 2mε} ≤ δ. Recalling that Yt = Ct − L and that
ℓ = (2pn,A − 1)m, we obtain following the same lines used
in the proof of Corollary 7

P {∥Ct − L∥∞ ≥ 2mε} ≤ δ

⇔ P

{∣∣∣∣∣C(i)
t +m

2m
− pn,A

∣∣∣∣∣ < ε, ∀i = 1, . . . , n

}
≥ 1− δ,

which completes the proof.

VIII. THE STRENGTH OF THE 4-NORM OVER THE
2-NORM

In this section, we show how effective the 4-norm is to
derive useful bounds on the convergence speed of our solution.
More precisely, we compare the results obtained when using
the 4-norm with the ones previously got with the 2-norm. In
the following, we obtain bounds and the asymptotic behavior
of the moments and of the distribution of ∥Yt∥2 and ∥Yt∥4
when the time parameter t is equal to an ln(n), for a real
constant a > 0 and when n goes to infinity. This choice of
t is meaningful because it is of the same order as the lower
bound τ of the number of steps needed for any node i in
the system to converge either to pn,A = nA/n or to κ with
any high probability. Finally, without any loss of generality we
suppose that m = 1 (recall that m and −m are the initial value
respectively associated to symbols A and B, see Section V).

Recalling Relations (10) and (12), we introduce the nota-
tion

Dn,1 = 4pn,A(1− pn,A) =
∥Y0∥22
n

,

Dn,2 = 16pn,A(1− pn,A)(3p
2
n,A − 3pn,A + 1) =

∥Y0∥44
n

.

Using (13), we have Dn,1 ≤ 1 and Dn,2 ≤ 4/3, for all n ≥ 1.

Theorem 9: For all a ∈ (0,+∞) and n ≥ 3, we have

E
(
∥Y⌈an ln(n)⌉∥22

)
≤ n1−aDn,1 ≤ n1−a

and
E
(
∥Y⌈an ln(n)⌉∥22

)
∼

n−→∞
n1−aDn,1.

Proof: See [8].

Theorem 10: For all a ∈ (0,+∞) and n ≥ 3, we have

E
(
∥Y⌈an ln(n)⌉∥42

)
≤ D2

n,1n
2(1−a) + 2(Dn,2 + 3D2

n,1)n
(4−7a)/4

≤ n2(1−a) + (26/3)n(4−7a)/4

and

E
(
∥Y⌈an ln(n)⌉∥42

)
∼

n−→∞


D2

n,1n
2(1−a) if a ∈ (0, 4)

2(Dn,2 + 3D2
n,1)n

(4−7a)/4 if a ∈ (4,+∞)
(2Dn,2 + 7D2

n,1)n
−6 if a = 4.

Proof: See [8].

Theorem 11: For all a ∈ (0,+∞) and n ≥ 3, we have

E
(
∥Y⌈an ln(n)⌉∥44

)
∼

n−→∞
(Dn,2 + 3D2

n,1)n
(4−7a)/4,

E
(
∥Y⌈an ln(n)⌉∥44

)
≤ 48n−1−2a + (13/3)n(4−7a)/4.

Proof: See [8].

Using these results and the Markov inequality, we obtain
the following bounds on the ∞-norm of Y⌈an ln(n)⌉.



Theorem 12: For all a ∈ (0,+∞), n ≥ 3 and ε > 0, we
have

P{∥Y⌈an ln(n)⌉∥∞ ≥ ε} ≤ n1−a

ε2
(14)

P{∥Y⌈an ln(n)⌉∥∞ ≥ ε} ≤ n2(1−a) + (26/3)n(4−7a)/4

ε4
(15)

P{∥Y⌈an ln(n)⌉∥∞ ≥ ε} ≤ 48n−1−2a + (13/3)n(4−7a)/4

ε4
.

(16)

Proof: See [8].

Note that the bound of (14) has been obtained from the
results of [7] and both bounds of (15) and (16) have been
obtained from our new results on on the use of the 4-norm. It
is quite immediate to check that for all a ∈ (0,+∞), n ≥ 3
and ε > 0, bound of (16) is less than or equal to bound of (15).
In order to compare the bounds of (14) and (16), we suppose
that ε = n−b, with b > 0. With these values of ε, we denote
respectively by fn(a, b) and gn(a, b) the bounds of (14) and
(16), that is

fn(a, b) = n1−a+2b,

gn(a, b) = 48n−1−2a+4b +
13

3
n(4−7a+16b)/4.

The comparison between fn(a, b) and gn(a, b) consists in
determining the domains D2 and D4 defined by

D2 = {(a, b) | fn(a, b) ≤ gn(a, b) and lim
n−→∞

fn(a, b) = 0},

D4 = {(a, b) | gn(a, b) ≤ fn(a, b) and lim
n−→∞

gn(a, b) = 0}.

In order to be complete, we denote by D the domain in which
the bounds (14) and (16) are useless, i.e. the domain defined
by

D = {(a, b) | lim
n−→∞

fn(a, b) ̸= 0 and lim
n−→∞

gn(a, b) ̸= 0}.

Note that the condition limn−→∞ fn(a, b) ̸= 0 (resp.
limn−→∞ gn(a, b) ̸= 0) is equivalent to limn−→∞ fn(a, b) =
∞ (resp. limn−→∞ gn(a, b) = ∞).

Domain D4 (resp. D2) represents the region in which the
4-norm (resp. 2-norm) gives tighter bounds with respect to the
2-norm (resp. 4-norm).

Theorem 13: For all a ∈ (0,+∞) and n ≥ 3, we have

D2 = {(a, b) | 2b+ 1 < a ≤ 8b/3},
D4 = {(a, b) | a > 8b/3 and a ≥ 16b/7 + 4/7},
D = {(a, b) | a ≤ 2b+ 1 and a ≤ 16b/7 + 4/7}.

Proof: See [8].

Figure 1 shows these different domains and thus the benefit
obtained by using either the 4-norm or the 2-norm.

It is easily checked in Figure 1 that the percentage of points
(a, b) belonging to domain D4, which corresponds to the use
of the 4-norm, is much more greater than the percentage of
points (a, b) belonging to domain D2, which corresponds to
the use of the 2-norm.

a

b

a = 2b+ 1
a = 16b/7 + 4/7

a = 8b/3
0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

D2

D4

D

Figure 1. Domains D2, D4 and D for a ∈ (0, 8] and b ∈ (0, 3].

In order to illustrate this figure with numerical values, we
have for a = 2 and b = 1/4,

fn(2, 1/4) =
1√
n

and gn(2, 1/4) =
13

3n
√
n
+

48

n4

and Figure 1 shows, since (2, 1/4) ∈ D4, that

P

{
∥Y⌈2n ln(n)⌉∥∞ ≥ 1

n1/4

}
≤ 13

3n
√
n
+

48

n4
≤ 1√

n
.

For a = 7.5 and b = 3, we have

fn(7.5, 3) =
1

n1/2
and gn(7.5, 3) =

13

3n1/8
+

48

n4

and Figure 1 shows, since (7.5, 3) ∈ D2, that

P

{
∥Y⌈7.5n ln(n)⌉∥∞ ≥ 1

n3

}
≤ 1

n1/2
≤ 13

3n1/8
+

48

n4
.

For a = 2 and b = 1, we have

fn(2, 1) = n and gn(2, 1) =
13n13/4

3
+

48

n

and Figure 1 shows, since (2, 1) ∈ D, that those values are
useless to bound the quantity P

{
∥Y⌈7.5n ln(n)⌉∥∞ ≥ 1/n3

}
.

IX. EXPERIMENTAL EVALUATION OF THE COUNTING
PROBLEMS

This section shows how tight our bounds are, by comparing
the relation of Corollary 7 to the results obtained via extensive
simulations in two cases, for the first κ = 0 and for the second
κ = n/2. We also compare these bounds to the ones obtained
by [7] in which the analysis is based on the 2-norm. The
counting problem is equivalent to the proportion problem with
ε = 1/(2n), per example the counting problem with n = 1000
(see Figure 3) is like the proportion problem with ε = 0.0005,
the advantage of this problem is that it could be compared
with the results obtained in [7].

A simulation consists in the following steps: first, all the n
nodes are initialized to m or −m (without loss of generality,
we set m = 1). In the following, two scenario are discussed:
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Figure 2. Parallel convergence time as a function of n when δ = 10−3 and
N = 105 for n < 20000, N = 104 for n > 20000.
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Figure 3. Parallel convergence time as a function of δ when n = 103 and
N = 106.

in the first one, 50% of the nodes are initialized to m and
the other ones are initialized to −m (thus κ = 0), and in the
second one, 75% of the nodes are initialized to m and the
other ones are initialized to −m (thus κ = n/2). Then, at
each step of the simulation, two nodes are randomly chosen to
interact and update their state. The simulation stops when all
the nodes output κ. We have run N independent simulations
and have logged the N number of performed interactions
τ1 ≤ . . . ≤ τN . The convergence time is then τ⌈N(1−δ)⌉, with
δ ∈ (0, 1). Figures 2 and 3 depict the convergence parallel
time τ⌈N(1−δ)⌉/n (recall that the convergence parallel time is
equal to the convergence time divided by n) for both scenario,
the bound τ ′ obtained from Relation (7), and the bound τ ′′

obtained from Theorem 4 of [7], i.e. τ ′′ = 4 ln 2+3 lnn−ln δ.
Figure 2 clearly shows that the bound τ ′ given by Corollary 7 is
very close to the parallel time obtained in the simulations, and
greatly improves upon our previous results, i.e. τ ′′. Figure 3
confirms the refinement of our theoretical evaluation. It shows
that our present analysis is tighter than our previous one
whatever the required precision of the computation.

X. CONCLUSION

In this paper we have presented a very precise analysis of
the time required for each node to solve both the counting and

the proportion problems. Our work relies on the use of the
4-norm, and a comparison of bounds derived with both the
4-norm and the 2-norm shows the conditions under which it
is beneficial to use the 4-norm or the 2-norm. We might sense
that the use of the d-norm, for d > 4, would give more refined
results but it would give rise to a much more intricate analysis.
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