
Analysis of the Propagation Time of a Rumour in
Large-scale Distributed Systems

Yves Mocquard
Université de Rennes 1/IRISA,

yves.mocquard@irisa.fr

Bruno Sericola
INRIA Rennes - Bretagne Atlantique,

bruno.sericola@inria.fr

Samantha Robert
Université de Nantes/IRISA,
samantha.robert@hotmail.fr

Emmanuelle Anceaume
CNRS/IRISA,

emmanuelle.anceaume@irisa.fr

Abstract—The context of this work is the well studied dis-
semination of information in large scale distributed networks
through pairwise interactions. This problem, originally called
rumor mongering, and then rumor spreading has mainly been
investigated in the synchronous model. This model relies on the
assumption that all the nodes of the network act in synchrony,
that is, at each round of the protocol, each node is allowed to
contact a random neighbor. In this paper, we drop this assumption
under the argument that it is not realistic in large scale systems.
We thus consider the asynchronous variant, where at time unit,
a single node interacts with a randomly chosen neighbor. We
perform a thorough study of Tn the total number of interactions
needed for all the n nodes of the network to discover the rumor.
While most of the existing results involve huge constants that do
not allow for comparing different protocols, we prove that in a
complete graph of size n ≥ 2, the probability that Tn > k for all
k ≥ 1 is less than

(
1 + 2k(n−2)2

n

) (
1− 2

n

)(k−1)
. We also study

the behavior of the complementary distribution of Tn at point
cE(Tn) when n tends to infinity for c 6= 1. We end our analysis
by conjecturing that when n tends to infinity, Tn > E(Tn) with
probability close to 0.4484.

Keywords—rumor spreading, pairwise interactions, Markov
chain, analytical performance evaluation.

This paper should be considered for the best student paper
award. Yves Mocquard is PhD student at the University of
Rennes 1. E-mail: yves.mocquard@irisa.fr

I. INTRODUCTION

Randomized rumor spreading is an important mechanism
that allows the dissemination of information in large and com-
plex networks through pairwise interactions. This mechanism
initially proposed by Deemers et al [12] for the update of a
database replicated at different sites, has then been adopted in
many applications ranging from resource discovery [19], data-
aggregation [22], complex distributed applications [8], or virus
propagation in computer networks [6], to mention just a few.

A lot of attention has been devoted to the design and study
of randomized rumor spreading algorithms. Initially, some
rumor is placed on one of the vertices of a given network,

This work was partially funded by the French ANR project SocioPlug
(ANR-13-INFR-0003), and by the DeSceNt project granted by the Labex
CominLabs excellence laboratory (ANR-10-LABX-07-01).

and this rumor is propagated to all the vertices of the network
through pairwise interactions between vertices. One of the
important questions of these protocols is the spreading time,
that is time it needs for the rumor to be known by all the
vertices of the network.

Several models have been considered to answer this ques-
tion. The most studied one is the synchronous push/pull
model, also called the synchronous random phone call model.
This model assumes that all the vertices of the network act
in synchrony, which allows the algorithms designed in this
model to divide time in synchronized rounds. During each
synchronized round, each vertex i of the network selects at
random one of its neighbor j and either sends to j the rumor if
i knows it (push operation) or gets the rumor from j if j knows
the rumor (pull operation). In the synchronous model, the
spread time of a rumor is defined as the number of synchronous
rounds necessary for all the nodes to know the rumor. In one of
the first papers dealing with the push operation only, Frieze and
Grimmet [16] proved that if the underlying graph is complete,
then asymptotically almost surely the number of rounds is
log2(n) + log(n) + o(log n) where n is the number of nodes
of the graph. Further results have been established (see for
example [21], [7] and the references herein), the most recent
ones resulting from the observation that the rumor spreading
time is closely related to the conductance of the graph of
the network [17], [18]. Investigations have also been done in
different topologies of the network [9], [11], [14], [25], in the
presence of link or vertices failures (see [13]), and dynamic
graphs [10].

All the above studies assume that all vertices of the network
act synchronously. In distributed networks, and in particular in
large scale distributed systems, such a strict synchronization is
unrealistic. Several authors have recently dropped this assump-
tion by considering an asynchronous model. Boyd et al [28]
consider that each node has a clock that goes off at the time
of a rate 1 Poisson process. Each time the ring of a node goes
off, the push or pull operations are triggered according to the
knowledge of the node. Acan et al. [1] go a step further by
studying rumor spreading time for any graph topology. They
show that both the average and guaranteed spreading time
are Ω(n), where n is the number of nodes in the network.
Further investigations have been made for different network
topologies [26], [15].



a) Our contributions : In this paper we consider the
population protocol model, which turns out to resemble to the
discrete-time version of the asynchronous spreading model.
This model provides minimalist assumptions on the compu-
tational power of the nodes: nodes are finite-state automata,
identically programmed, they have no identity, they do not
know how numerous they are, and they progress in their com-
putation through random pairwise interactions. Their objective
is to ultimately converge to a state from which the sought
property can be derived from any node [5]. In this model,
the spreading time is defined as the number of interactions
needed for all the nodes of the network to learn the rumor.
Angluin et al [3] analyze the spreading time of a rumor by
only considering the push operation (which they call the one-
way epidemic operation), and show that with high probability,
a rumor injected at some node requires O(n log n) interactions
to be spread to all the nodes of the network.

In the present paper we go a step further by considering
a more general problem namely, that is all the nodes of the
network initially receive an input value, and the objective for
each node is to learn the maximal value initially received
by any node. Note that the rumor spreading problem is a
particular instance of this problem when two input values 1
and 0 are considered respectively representing the knowledge
and the absence of knowledge of the rumor. We present a
thorough analysis of the number of interactions needed for all
the nodes to converge to the correct response. Specifically, we
study the expectation, variance and an exact formulation of the
distribution of the number of interactions needed to propagate
a rumor.

This formulation being hardly usable in practice once n
becomes too large, a tight bound is derived. This bound is
all the more interesting as usual probabilistic inequalities fail
to provide relevant results in this case. Finally, we study the
asymptotic behavior of the spreading time when the size of
the network tends to infinity.

b) Road map: The remainder of this paper is organized
as follows. Section II presents the population protocol model.
Section III specifies the problem addressed in this work.
Analysis of the spreading time is proposed in Section IV,
while we study in Section V its asymptotic behavior. We have
simulated our protocol to illustrate our theoretical analysis.
Finally, Section VI concludes.

II. POPULATION PROTOCOLS MODEL

In this section, we present the population protocol model,
introduced by Angluin et al. [2]. This model describes the
behavior of a collection of nodes that interact pairwise. The
following definition is from Angluin et al [4]. A population
protocol is characterized by a 6-tuple (Q,Σ, Y, ι, ω, f), over
a complete interaction graph linking the set of n nodes,
where Q is a finite set of states, Σ is a finite set of input
symbols, Y is a finite set of output symbols, ι : Σ → Q
is the input function that determines the initial state of a
node, ω : Q → Y is the output function that determines
the output symbol of a node, and f : Q × Q → Q × Q is
the transition function that describes how two nodes interact
and update theirs states. Initially all the nodes start with a
initial symbol from Σ, and upon interactions with nodes update

their state according to the transition function f . Interactions
between nodes are orchestrated by a random scheduler: at each
discrete time, any two nodes are randomly chosen to interact
with a given distribution. Note that its is assumed that the
random scheduler is fair, which means that the interactions
distribution is such that any possible interaction cannot be
avoided forever. The notion of time in population protocols
refers to as the successive steps at which interactions occur,
while the parallel time refers to as the successive number
of steps each node executes [5]. Nodes do not maintain nor
use identifiers (nodes are anonymous and cannot determine
whether any two interactions have occurred with the same
agents or not). However, for ease of presentation the nodes
are numbered 1, 2, . . . , n. We denote by C

(i)
t the state of

node i at time t. The stochastic process C = {Ct, t ≥ 0},
where Ct = (C

(1)
t , . . . , C

(n)
t ), represents the evolution of the

population protocol. The state space of C is thus Qn and a
state of this process is also called a protocol configuration.

III. SPREADING THE MAXIMUM

We consider in this section the following problem. Each
site has initially an integer value. At each discrete instant
of time, two distinct nodes are successively chosen and they
change their value with the maximum value of each node.
More precisely, for all nodes a and b, with a 6= b, we consider
the function f given by

f(a, b) = (max{a, b},max{a, b}) .

We want to evaluate the time needed so that all the nodes get
the same value.

Let C = {Ct, t ≥ 0} be a discrete-time stochastic process
with state space S = N

n. For every t ≥ 0, the state at time
t of the process is denoted by Ct = (C

(1)
t , . . . , C

(n)
t ), where

C
(i)
t is the integer value of node i at time t. At each instant t,

two distinct indexes i and j are successively chosen among
the set of nodes 1, . . . , n randomly. We denote by Xt the
random variable representing this choice and we suppose that
this choice is uniform, i.e we suppose that

P{Xt = (i, j)} =
1

n(n− 1)
1{i 6=j}.

Once the couple (i, j) is chosen at time t, the process reaches
state Ct+1, at time t+ 1, given by

C
(i)
t+1 = C

(j)
t+1 = max{C(i)

t , C
(j)
t }

and C(m)
t+1 = C

(m)
t for i 6= j.

We denote by M the maximum initial value among all the
nodes, i.e. M = max{C(1)

0 , . . . , C
(n)
0 }. It is easily checked

that for all t ≥ 0, we have M = max{C(1)
t , . . . , C

(n)
t }.

We consider the random variable Tn defined by

Tn = inf{t ≥ 0 | C(i)
t = M, for every 1, . . . , n}.

The random variable Tn represents the number of interactions
needed for all the nodes in the network to know the maximal
value M .

2



We introduce the discrete-time stochastic process Y =
{Yt, t ≥ 0} with state space {1, . . . , n} defined, for all t ≥ 0,
by

Yt =
∣∣∣{i | C(i)

t = M
}∣∣∣ .

The random variable Yt represents the number of nodes
knowing the maximum value M at time t. The stochastic
process Y is then a homogeneous Markov chain with transition
probability matrix A. The non zero transition probabilities are
given, for i, j = 1, . . . , n, by

Ai,i = 1− 2i(n− i)
n(n− 1)

,

Ai,i+1 =
2i(n− i)
n(n− 1)

, for i 6= n.

Indeed, when Yt = i, in order to get Yt+1 = i+ 1, either the
first node must be chosen among the ones with the maximum
value (probability i/n) and the second agent must be chosen
among the ones with the non maximum value (probability (n−
i)/(n− 1)) or the first node must be chosen among the ones
with the non maximum value (probability (n− i)/n) and the
second node must be chosen among the ones with the non
maximum value (probability i/(n− 1)).

The states 1, . . . , n − 1 of Y are transient and state n is
absorbing. The random variable Tn can then be written as

Tn = inf{t ≥ 0 | Yt = n}.

It is well-known, see for instance [27], that the distribution of
Tn is given, for every k ≥ 0, by

P{Tn > k} = αQk
1, (1)

where α is the row vector containing the initial probabilities
of states 1, . . . , n− 1, that is αi = P{Y0 = i}, Q is the sub-
matrix obtained from A by deleting the row and the column
corresponding to absorbing state n and 1 is the column vector
of dimension n− 1 with all its entries equal to 1.

For i = 0, . . . , n, we introduce the notation

pi =
2i(n− i)
n(n− 1)

and we denote by Hk the harmonic series defined by H0 = 0
and Hk =

∑k
`=1 1/`, for k ≥ 1. Note that, for every i =

0, . . . , n, we have pi = pn−i.

If we denote by Si, for i = 1, . . . , n − 1, the total time
spent by the Markov chain Y in state i, then conditionally
on the event Y0 = i, S` has a geometric distribution with
parameter p`, for ` = i, . . . , n − 1 and in this case, we have
Tn = Si + · · ·+ Sn−1. It follows that

P{Tn > k | Y0 = i} = P{Si + · · ·+ Sn−1 > k},

which means that P{Tn > k | Y0 = i} is decreasing with i
and in particular that

P{Tn > k | Y0 = i} ≤ P{Tn > k | Y0 = 1}. (2)

IV. ANALYSIS OF THE SPREADING TIME

In the following we study the expectation and the variance
of Tn, the number of interactions needed for all the nodes in
the network to know the maximal value M . We then provide
an explicit expression of the distribution of Tn, and then a
bound and an equivalent for the explicit distribution of Tn.

A. Expectation and variance of Tn

The mean time E(Tn) needed so that all the nodes get the
same value is then given by

E(Tn) = α(I −Q)−11, (3)

where I is the identity matrix. This expectation can also be
written as

E(Tn) =

n−1∑
i=1

αiE(Tn | Y0 = i).

This conditional expectations are given by the following the-
orem.

Theorem 1: For every n ≥ 1 and i = 1, . . . , n, we have

E(Tn | Y0 = i) =
(n− 1)(Hn−1 +Hn−i −Hi−1)

2
.

Proof: If Y0 = n, which means that all the nodes start with
same values, then we have Tn = 0 and soE(Tn | Y0 = n) = 0.
For i = 1, . . . , n− 1 we have

E(Tn | Y0 = i) =

n−1∑
`=i

E(S`)

=

n−1∑
`=i

1

p`

=
n(n− 1)

2

n−1∑
`=i

1

`(n− `)

=
n− 1

2

n−1∑
`=i

(
1

`
+

1

n− `

)
=

(n− 1)(Hn−1 +Hn−i −Hi−1)

2
,

which completes the proof.

In particular, when the maximum value is initially unique,
i.e. when Y0 = 1 with probability 1, we have α1 = 1 and thus

E(Tn) = E(Tn | Y0 = 1) = (n− 1)Hn−1 ∼
n−→∞

n ln(n).

More generally, from Relation (2), we have

E(Tn) ≤ E(Tn | Y0 = 1) = (n− 1)Hn−1 ∼
n−→∞

n ln(n).

The variance of Tn is obtained similarly.

Theorem 2: For every n ≥ 1 and i = 1, . . . , n, we have

Var(Tn | Y0 = i) =
(n− 1)2

4

(
n−1∑
`=i

1

`2
+

n−i∑
`=1

1

`2

)

− E(Tn | Y0 = i)

n
.

3



Proof: If Y0 = n, which means that all the nodes start with
the same values, then we have Tn = 0 and thus Var(Tn | Y0 =
n) = 0. For i = 1, . . . , n−1 we have, using the independence
of the S`,

Var(Tn | Y0 = i) =

n−1∑
`=i

Var(S`) =

n−1∑
`=i

1− p`
p2`

=

n−1∑
`=i

1

p2`
−

n−1∑
`=i

1

p`

=
n2(n− 1)2

4

n−1∑
`=i

1

`2(n− `)2
− n(n− 1)

2

n−1∑
`=i

1

`(n− `)

=
(n− 1)2

4

n−1∑
`=i

(
1

`
+

1

n− `

)2

− n(n− 1)

2

n−1∑
`=i

1

`(n− `)

=
(n− 1)2

4

n−1∑
`=i

(
1

`2
+

1

(n− `)2

)
− n− 1

2

n−1∑
`=i

1

`(n− `)

=
(n− 1)2

4

n−1∑
`=i

(
1

`2
+

1

(n− `)2

)
− E(Tn | Y0 = i)

n

=
(n− 1)2

4

(
n−1∑
`=i

1

`2
+

n−i∑
`=1

1

`2

)
− E(Tn | Y0 = i)

n
,

which completes the proof.

In particular, when the maximum value is initially unique,
i.e. when Y0 = 1 with probability 1, we have α1 = 1 and thus

Var(Tn) = Var(Tn | Y0 = 1)

=
(n− 1)2

2

n−1∑
`=1

1

`2
− n− 1

n
Hn−1 ∼

n−→∞

π2n2

12
.

More generally, from Theorem 2, we have

Var(Tn | Y0 = i) ≤ (n− 1)2

4

(
n−1∑
`=i

1

`2
+

n−i∑
`=1

1

`2

)

≤ (n− 1)2

2

n−1∑
`=1

1

`2
≤ π2n2

12
.

It follows that

Var(Tn) =

n−1∑
i=1

αiVar(Tn | Y0 = i) ≤ π2n2

12
.

B. Explicit expression of the distribution of Tn

The distribution of Tn, for n ≥ 2, which is given
by Relation (1) can be easily computed as follows. Let
V (k) = (V1(k), . . . , Vn−1(k)) be the column vector defined
by Vi(k) = P{Tn > k | Y0 = i}. According to Rela-
tion (1), we have V (k) = Qk

1. Since V (0) = 1, writing
V (k) = QV (k − 1) for k ≥ 1, we get for i = 1, . . . , n− 2,{

Vi(k) = (1− pi)Vi(k − 1) + piVi+1(k − 1),

Vn−1(k) = (1− pn−1)Vn−1(k − 1).
(4)

Recall that we have pi = 2i(n− i)/(n(n−1)). This recursion
can be easily computed since we have, for k ≥ 0,

Vn−1(k) = (1− pn−1)
k

=

(
1− 2

n

)k

. (5)

In the next theorem, we derive from recursion (4) an
explicit expression of the distribution of Tn.

Theorem 3: For every n ≥ 1, k ≥ 0 and i = 1, . . . , n−1,
we have

P{Tn > k |Y0 = n− i}

=

bn/2c∑
j=1

(ci,j(1− pj) + kdi,j) (1− pj)k−1,

where the coefficients ci,j and di,j , which do not depend on
k, are given, for j = 1, . . . , n− 1, by

c1,j = 1{j=1} and d1,j = 0

and for i ∈ {2, . . . , n− 1} by

ci,j =
pici−1,j
pi − pj

− pidi−1,j
(pi − pj)2

for i 6= j, n− j,

di,j =
pidi−1,j
pi − pj

for i 6= j, n− j,

ci,i = 1−
n/2∑

j=1,j 6=i

ci,j for i ≤ n/2,

ci,n−i = 1−
n/2∑

j=1,j 6=n−i

ci,j for i > n/2,

di,i = pici−1,i for i ≤ n/2,
di,n−i = pici−1,n−i for i > n/2.

Proof: See [24]

C. Bounds of the distribution of Tn

The exact expression of the distribution of Tn presented
earlier is hardly usable in practice, and computation using
formula (4) may take a long time for large values of n. To
overcome this problem, we propose in this section a bound and
an equivalent for the quantity P{Tn > k | Y0 = i} derived
from the recursive formula (4).

Theorem 4: For all n ≥ 2 and k ≥ 1 we have

P{Tn > k | Y0 = 1} ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

,

P{Tn > k | Y0 = 1} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

and for i = 2, . . . , n− 1 and k ≥ 0,

P{Tn > k | Y0 = i} ≤ (n− i)(n− 2)

i− 1

(
1− 2

n

)k

,

P{Tn > k | Y0 = i} ∼
k−→∞

(n− i)(n− 2)

i− 1

(
1− 2

n

)k

.

4



Moreover, we have

P{Tn > k} ≤ P{Tn > k | Y0 = 1}.

Proof: The result is trivial for n = 2 since in this case
we have T2 = 1. We thus suppose that n ≥ 3. Note that by
definition of pi we have pi = pn−i. Consider the sequence bi
defined for i = 1, . . . , n− 2, by

b1 = 1 and bi =
pibi−1
pi − p1

, for i = 2, . . . , n− 2.

Observing that

bi =
i(n− i)bi−1

(i− 1)(n− i− 1)
,

it is easily checked by recurrence that for i = 1, . . . , n − 2,
we have

bi =
i(n− 2)

n− i− 1
.

We show now by recurrence that for all i = 1, . . . , n− 2, we
have

Vn−i(k) ≤ bi (1− p1)
k
, for all k ≥ 0

and Vn−i(k) ∼
k−→∞

bi (1− p1)
k
.

Both results are true for i = 1 since Vn−1(k) = (1−pn−1)k =
(1− p1)k. Suppose now that these results are true for a fixed
integer i with 1 ≤ i ≤ n− 3. From Relations (4), we have

Vn−i−1(k)

= (1− pn−i−1)Vn−i−1(k − 1) + pn−i−1Vn−i(k − 1)

= (1− pi+1)Vn−i−1(k − 1) + pi+1Vn−i(k − 1).

Using the recurrence hypothesis, we obtain, for what concerns
the inequality,

Vn−i−1(k) ≤ (1− pi+1)Vn−i−1(k− 1) + pi+1bi (1− p1)
k−1

.

Expanding this inequality and using the fact that Vn−i−1(0) =
1, this leads to

Vn−i−1(k)

≤ (1− pi+1)k + pi+1bi

k−1∑
j=0

(1− pi+1)j(1− p1)k−1−j

= (1− pi+1)k + pi+1bi
(1− p1)k − (1− pi+1)k

pi+1 − p1
= (1− pi+1)k + bi+1

(
(1− p1)k − (1− pi+1)k

)
= (1− bi+1) (1− pi+1)k + bi+1(1− p1)k.

Since bi+1 ≥ 1, we get

Vn−i−1(k) ≤ bi+1(1− p1)k

In the same way, using a similar calculus, we obtain

Vn−i−1(k) ∼
k−→∞

(1− bi+1) (1− pi+1)k + bi+1(1− p1)k.

Since pi+1 > p1, we also get

Vn−i−1(k) ∼
k−→∞

bi+1(1− p1)k.

We thus have shown that for all i = 1, . . . , n− 2, we have

Vn−i(k) ≤ bi (1− p1)
k
, for all k ≥ 0

and Vn−i(k) ∼
k−→∞

bi (1− p1)
k
.

In particular, for i = n− 2 we obtain

V2(k) ≤ bn−2 (1− p1)
k
, for all k ≥ 0

and V2(k) ∼
k−→∞

bn−2 (1− p1)
k
.

Consider now the term V1(k). From Relations (4) and using
the previous inequality, we have

V1(k) = (1− p1)V1(k − 1) + p1V2(k − 1)

≤ (1− p1)V1(k − 1) + p1bn−2 (1− p1)
k−1

.

Expanding this inequality and using the fact that V1(0) = 1,
this leads to

V1(k) ≤ (1− p1)k + p1bn−2

k−1∑
j=0

(1− p1)j(1− p1)k−1−j

= (1− p1)k + p1bn−2k(1− p1)k−1

= (1− p1 + kp1bn−2) (1− p1)k−1

≤ (1 + kp1bn−2) (1− p1)k−1,

which gives

V1(k) ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

.

In the same way, using a similar calculus, we obtain

V1(k) ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Finally, since P{Tn > k | Y0 = i} is decreasing with i, we
have

P{Tn > k} =

n−1∑
i=1

P{Tn > k | Y0 = i}P{Y0 = i}

≤ P{Tn > k | Y0 = 1},

which completes the proof.

The bound established in Theorem 4 is all the more
interesting as usual probabilistic inequalities fail to provide
relevant results in this particular case. For example, Markov
inequality leads for all real number c ≥ 1 to

P{Tn ≥ cE(Tn)} ≤ 1

c
,

and Bienaym-Tchebychev inequality leads for all real number
x > 0 to

P{|Tn −E(Tn)| ≥ x} ≤ π2n2

12x2
.

The author of [20] provides a bound, based on Chernoff
inequality, for the tail probabilities of the sum of independent,
but not necessarily identically distributed, geometric random
variables. In the particular case of our protocol computing the
maximum, this leads to the following result.

5



Theorem 5: For all n ≥ 3 and for all real number c ≥ 1,
we have

P(Tn > cE(Tn)) ≤ 1

c

(
1− 2

n

)(c− 1− ln c)(n− 1)Hn−1
.

The right-hand side term is equal to 1 when c = 1.

Proof: We have already shown that

P(Tn > cE(Tn)) ≤ P(Tn > cE(Tn) | Y0 = 1}.

The upper bound is then an application of Theorem 2.3 of
[20], and it is clearly equal to 1 when c = 1.

Applying Theorem 4 at point k = bcE(Tn)c, we obtain

P(Tn > cE(Tn)) ≤
(

1 +
2bcE(Tn)c(n− 2)2

n

)
×
(

1− 2

n

)bcE(Tn)c−1

≤
(

1 +
2cE(Tn)(n− 2)2

n

)
×
(

1− 2

n

)cE(Tn)−2

.

From now on we denote this bound by f(c, n) and in the same
way, we denote by g(c, n) the bound of P(Tn > cE(Tn))
derived from Theorem 5. We then have, for n ≥ 3 and c ≥ 1,

f(c, n) =

(
1 +

2c(n− 1)Hn−1(n− 2)2

n

)
×
(

1− 2

n

)c(n−1)Hn−1−2

g(c, n) =
1

c

(
1− 2

n

)(c−1−ln(c))(n−1)Hn−1

.

We also introduce the notation

e(c, n) = P(Tn > cE(Tn)).

Theorem 6: For every n ≥ 3, there exists a unique c∗ ≥ 1
such that f(c∗, n) = g(c∗, n) and we have{

f(c, n) > g(c, n) for all 1 ≤ c < c∗

f(c, n) < g(c, n) for all c > c∗.
(6)

Furthermore,

lim
c−→∞

f(c, n)

g(c, n)
= 0.

Proof: See [24]

The graphs on Figures 1, 2 and 3 illustrate the behavior
of the bounds f(c, n) and g(c, n), depending on c and for
different values of n, compared to the real distribution of Tn at
point cE(Tn), i.e. to e(c, n) = P{Tn > E(Tn)}. The bound
f(c, n) that we provided in Theorem 4 clearly shows better
accuracy than the Chernoff bound g(c, n) provided in [20]
above the threshold c∗ introduced in Theorem 6. Furthermore,
this threshold seems to decrease to 1 as n tends to infinity, as
can be seen on Figure 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1  1.2  1.4  1.6  1.8  2

c

g(c,100)
f(c,100)
e(c,100)

Fig. 1. Bounds f(c, n) and g(c, n) beside the real value of P(Tn >
cE(Tn)) = e(c, n) for n = 100, as functions of c. In this case, we have
c∗ = 1.14641.

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1  1.2  1.4  1.6  1.8  2

c

g(c,1000)
f(c,1000)
e(c,1000)

Fig. 2. Bounds f(c, n) and g(c, n) beside the real value of P(Tn >
cE(Tn)) = e(c, n) for n = 1000, as functions of c. In this case, we have
c∗ = 1.12673.

V. ASYMPTOTIC ANALYSIS OF THE DISTRIBUTION OF Tn

We analyze in this section the behavior of the comple-
mentary distribution of Tn at point cE(Tn) when n tends to

 0

 0.2

 0.4

 0.6

 0.8

 1

c* 1  1.2  1.4  1.6  1.8  2

c

g(c,5000)
f(c,5000)
e(c,5000)

Fig. 3. Bounds f(c, n) and g(c, n) beside the real value of P(Tn >
cE(Tn)) = e(c, n) for n = 5000, as functions of c. In this case, we have
c∗ = 1.11385.

n 10 102 103 104 105 106 107

c∗ 1.09 1.15 1.13 1.11 1.10 1.09 1.08

Fig. 4. Approximate values of c∗ for different network sizes n.

6



infinity, depending on the value of c.

We prove in the following corollary that the bounds f(c, n)
and g(c, n), obtained from Theorem 4 and Theorem 5 respec-
tively with k = cE(Tn), both tend to 0 when n goes to infinity.

Corollary 7: For all real number c > 1, we have

lim
n−→∞

f(c, n) = 0 and lim
n−→∞

g(c, n) = 0.

Proof: For all x ∈ [0, 1), we have ln(1 − x) ≤ −x.
Applying this property to the bound f(c, n) leads to

f(c, n) ≤
(

1 +
2c(n− 1)Hn−1(n− 2)2

n

)
×e−2(c(n−1)Hn−1−2)/n

≤
(
1 + 2c(n− 2)2Hn−1

)
e−2(c(n−1)Hn−1−2)/n.

Since ln(n) ≤ Hn−1 ≤ 1 + ln(n− 1), we get

f(c, n) ≤
(
1 + 2c(n− 2)2(1 + ln(n− 1)

)
×e−2(c(n−1) ln(n)−2)/n

=
(
1 + 2c(n− 2)2(1 + ln(n− 1))

)
e−2c ln(n)

×e2(c ln(n)+2)/n.

For x ≥ 0, the function u(x) = e2(c ln(x)+2)/x satisfies u(x) ≤
exp

(
2c/e(c−2)/c

)
, so we obtain

f(c, n) ≤ 1 + 2c(n− 2)2(1 + ln(n− 1))

n2c
exp

(
2c/e(c−2)/c

)
.

The fact that c > 1 implies that this last term tends to 0 when
n −→∞. Concerning the bound g(c, n), we have

g(c, n) =
1

c

(
1− 2

n

)(c−1−ln(c))(n−1)Hn−1

=
1

c
e(c−1−ln(c))(n−1)Hn−1 ln(1−2/n)

≤ 1

c
e−2(c−1−ln(c))(n−1)Hn−1/n,

which tends to 0 when n tends to infinity, since c− 1− ln(c)
is positive for c > 1.

Theorem 8: For all real c ≥ 0, we have

lim
n→+∞

P{Tn > cE(Tn)} =

{
0 if c > 1

1 if c < 1.

Proof: From Corollary 7, both bounds f(c, n) and g(c, n)
of P{Tn > cE(Tn)} tend to 0 when n tends to infinity, so
using either f(c, n) or g(c, n) we deduce that

lim
n−→∞

P{Tn > cE(Tn)} = 0 for all c > 1.

In the case where c < 1, Theorem 3.1 of [20] leads to

P{Tn > cE(Tn)} ≥ 1− e−2(n−1)Hn−1(c−1−ln(c))/n

≥ 1− e−2(n−1) ln(n)(c−1−ln(c))/n.

Since c − 1 − ln(c) > 0 for all c ∈ [0, 1), the right-hand
side term of this inequality tends to 1 when n −→ ∞. Thus,
limn−→∞P{Tn > cE(Tn)} = 1 when c < 1.

 0.448

 0.4482

 0.4484

 0.4486

 0.4488

 0.449

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

n

P{Tn > E(Tn)}
(1-an)P{Tn > E(Tn)} + an P{Tn > E(Tn)+1}
P{Tn > E(Tn)+1}

Fig. 5. P{Tn > E(Tn)} as a function of n and its smoothing obtained
with an = E(Tn)− bE(Tn)c.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

Pr
op

or
tio

n 
of

 in
fo

rm
ed

 n
od

es

Parallel Time

n=103

n=104

n=105

n=106

Fig. 6. Simulation results for the proportion of informed nodes as a function
of parallel time

The results established previously don’t allow us to figure
out neither the existence of limn−→∞P{Tn > cE(Tn)} when
c = 1, nor its value. However, numerical results give us a
glimpse of its limiting behavior.

In Figure 5, we show the probability P{Tn > E(Tn)} for
different values of n. The oscillations of this probability with
n are due to the fact Tn is a discrete random variable and
E(Tn) is not an integer. That is why we propose in this figure
a smoothing of this probability using the sequence

sn = (1− an)P{Tn > E(Tn)}+ anP{Tn > E(Tn) + 1},

where an is the fractional part of E(Tn), that is an = E(Tn)−
bE(Tn)c. Since an ∈ [0, 1], we have

P{Tn > E(Tn) + 1} ≤ sn ≤ P{Tn > E(Tn)},

that is why we also show in this figure the probability
P{Tn > E(Tn) + 1}. We also checked that the sequence
(sn) is increasing until n = 20000. This figure suggests the
following result proposed as a conjecture.

Conjecture : lim
n−→∞

P{Tn > E(Tn)} exists and ≈ 0.4484.

Figure 6 shows the results obtained by simulation concern-
ing the proportion of nodes informed by rumor as a function of
the parallel time. Recall that the parallel time refers to as the
successive number of steps each node executes [5]. Initially, a

7



single node is informed of the rumor. This figure illustrates our
analysis. For instance, with probability almost 1 one thousand
nodes (resp. one million nodes) learn the rumor after no more
than 7 (resp 11) interactions for each of them. The complexity
in space (number of memory bits) is in O(1).

VI. CONCLUSION

In this paper we have provided a thorough analysis of
the rumor spreading time in the population protocol model.
Providing such a precise analysis is a step towards the design
of more complex functionality achieved by combining simple
population protocols [23], [3]. Indeed, an important feature
of population protocols is that they do not halt. Nodes can
never know whether their computation is completed and thus
nodes forever interact with their neighbors while their outputs
stabilize to the desired value (e.g. the maximal value of any
node of the network). By precisely characterizing, for each
protocol of interest, with any high probability, the number of
interactions each node must execute to converge to the desired
value, each node can on its own, decide the time from which
the current protocol has stabilized and start the parallel of
sequential executions of the next ones.

REFERENCES

[1] Huseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Wormald
Nick. On the push&pull protocol for rumour spreading. In Proceedings
of the ACM Symposium on Principles of Distributed Systems (PODC),
2015.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and
René Peralta. Computation in networks of passively mobile finite-state
sensors. Distributed Computing, 18(4):235–253, 2006.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by
population protocols with a leader. Distributed Computing, 21(2):183–
199, 2008.

[4] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Computing,
20(4):279–304, 2007.

[5] James Aspnes and Eric Ruppert. An introduction to population proto-
cols. Bulletin of the European Association for Theoretical Computer
Science, Distributed Computing Column, 93:98–117, 2007.

[6] Noam Berger, Christian Borgs, Jennifer T. Chayes, and Amin Saberi.
On the spread of viruses on the internet. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[7] Marin Bertier, Yann Busnel, and Anne-Marie Kermarrec. On gossip
and populations. In Proceedings of the International Colloquium on
Structural Information and Communication Complexity (SIROCCO),
2009.

[8] Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar
Maymounkov. Global computation in a poorly connected world: Fast
rumor spreading with no dependence on conductance. In Proceedings
of the Annual ACM Symposium on Theory of Computing (STOC), 2012.

[9] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Ru-
mor spreading in social networks. Theoretical Computer Science,
412(24):2602–2610, 2011.

[10] Andrea Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud,
Francesco Pasquale, and Riccardo Silvestri. Rumor spreading in random
evolving graphs. Random structures and Algorithms, 48(2):290–312,
2015.

[11] Sebastian Daum, Fabian Kuhn, and Yannic Maus. Rumor spreading
with bounded indegree. In Proceedings of the International Colloquium
on Structural Information and Communication Complexity (SIROCCO),
2016.

[12] Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dand Swinehart, and Doug
Terry. Epidemic algorithms for replicated datbase maintenance. In
Proceedings of the ACM Syposium on Principles of Distributed Systems
(PODC), 1987.

[13] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Ran-
domized broadcast in networks. Random Structures and Algorithms,
1(4):447–460, 1990.

[14] Nicolaos Fountoulakis and Konstantinos Panagiotou. Rumor spreading
on random regular graphs and expanders. Random Structures and
Algorithms, 43(2):201–220, 2013.

[15] Nicolaos Fountoulakis, Konstantinos Panagiotou, and Thomas Sauer-
wald. Ultra-fast rumor spreading in social networks. In Proceedings of
the Symposium on Discrete Algorithms (SODA), 2012.

[16] Alan Frieze and Geoffrey Grimmet. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics,
10(1):57–77, 85.

[17] George Giakkoupis. Tight bounds for rumor spreading in graphs of a
given conductance. In Proceedings of the International Symposium on
Theoretical Aspects of Computer Science (STACS), 2011.

[18] George Giakkoupis. Tight bounds for rumor spreading with vertex
expansion. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2014.

[19] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource
discovery in distributed networks. In Proceedings of the ACM Syposium
on Principles of Distributed Systems (PODC), 1999.

[20] Svante Janson. Tail bounds for sums of geomet-
ric and exponential variables. Technical report.
http://www2.math.uu.se/˜svante/papers/sjN14.pdf

[21] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized
rumor spreading. In Proceedings of the Annual Symposium on Foun-
dations of Computer Science (FOCS), 2000.

[22] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based
computation of aggregate information. In Proceedings of the Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2003.

[23] Othon Michail and Paul Spirakis. Terminating population protocols via
some minimal global knowledge assumptions. Journal of Parallel and
Distributed Computing, 81:1–10, 2015.

[24] Yves Mocquard, Bruno Sericola, Samantha Robert, and Emmanuelle
Anceaume. Analysis of the Propagation Time of a Rumour
in Large-scale Distributed Systems. Technical report, 2016.
https://hal.archives-ouvertes.fr/hal-01354815

[25] Konstantinos Panagiotou, Xavier Perez-Gimenez, Thomas Sauerwald,
and Hé Sun. Randomized rumor spreading: the effect of the network
topology. Combinatorics, Probability and Computing, 24(2):457–479,
2015.

[26] Konstantinos Panagiotou and Leo Speidel. Asynchronous rumor spread-
ing on random graphs. Algorithmica, 2016.

[27] Bruno Sericola. Markov Chains. Theory, Algorithms and Applications.
Applied stochastic methods series. WILEY, 2013.

[28] Boyd Stephen, Ghosh Arpita, Prabhakar Balaji, and Shah Devavrat.
Randomized gossip algorithms. IEEE/ACM Transactions on Network-
ing, 14:2508–2530, 2006.

8


