
Methodol Comput Appl Probab (2010) 12:51–62
DOI 10.1007/s11009-008-9088-0

Ascending Runs in Dependent Uniformly Distributed
Random Variables: Application to Wireless Networks

Nathalie Mitton · Katy Paroux · Bruno Sericola ·
Sébastien Tixeuil

Received: 19 February 2008 / Revised: 3 June 2008 /
Accepted: 6 June 2008 / Published online: 8 July 2008
© Springer Science + Business Media, LLC 2008

Abstract We analyze in this paper the longest increasing contiguous sequence or
maximal ascending run of random variables with common uniform distribution but
not independent. Their dependence is characterized by the fact that two successive
random variables cannot take the same value. Using a Markov chain approach, we
study the distribution of the maximal ascending run and we develop an algorithm to
compute it. This problem comes from the analysis of several self-organizing protocols
designed for large-scale wireless sensor networks, and we show how our results apply
to this domain.

N. Mitton
Laboratoire d’Informatique fondamentale, UMR CNRS 8022, INRIA Lille, Nord Europe,
Université de Lille 1, 59650 Villeneuve d’Asq cedex, France
e-mail: nathalie.mitton@inria.fr

K. Paroux (B)
Laboratoire de Mathématiques, UMR CNRS 6623,
Université de Franche-Comté, 25030 Besançon cedex, France
e-mail: katy.paroux@univ-fcomte.fr

B. Sericola
INRIA Rennes—Bretagne Atlantique,
35042 Campus de Beaulieu, Rennes cedex, France
e-mail: bruno.sericola@inria.fr

S. Tixeuil
Laboratoire d’Informatique de Paris VI, UMR CNRS 7606,
INRIA Saclay, Ile de France, Université Paris VI, 75005 Paris, France
e-mail: sebastien.tixeuil@lri.fr

Present Address:
K. Paroux
INRIA Rennes—Bretagne Atlantique,
35042 Campus de Beaulieu, Rennes cedex, France
e-mail: katy.paroux@inria.fr

52 Methodol Comput Appl Probab (2010) 12:51–62

Keywords Markov chains · Maximal ascending run · Self-stabilization ·
Convergence time

PACS G.3 · G.2 · C.2

Mathematics Subject Classifications (2000) 60J10 · 60J20 · 68R05

1 Introduction

Let X = (Xn)n�1 be a sequence of identically distributed random variables on the set
S = {1, . . . , m}. As in Louchard (2002), we define an ascending run as a contiguous
and increasing subsequence in the process X. For instance, with m = 5, among the
20 first following values of X: 23124342313451234341, there are 8 ascending runs and
the length of maximal ascending run is 4. More formally, an ascending run of length
� � 1, starting at position k � 1, is a subsequence (Xk, Xk+1, . . . , Xk+�−1) such that

Xk−1 > Xk < Xk+1 < · · · < Xk+�−1 > Xk+�,

where we set X0 = ∞ in order to avoid special cases at the boundary. Under the
assumption that the distribution is discrete and the random variables are indepen-
dent, several authors have studied the behaviour of the maximal ascending run, as
well as the longest non-decreasing contiguous subsequence. The main results concern
the asymptotic behaviour of these quantities when the number of random variables
tends to infinity, see for example Frolov and Martikainen (1999) and Eryilmaz (2006)
and the references therein. Note that these two notions coincide when the common
distribution is continuous. In this case, the asymptotic behaviour is known and does
not depend on the distribution, as shown in Frolov and Martikainen (1999).

We denote by Mn the length of the maximal ascending run among the first n
random variables. The asymptotic behaviour of Mn hardly depends on the common
distribution of the random variables Xk, k � 1. Some results have been established
for the geometric distribution in Louchard and Prodinger (2003) where an equivalent
of the law of Mn is provided and previously in Csaki and Foldes (1996) where the
almost-sure convergence is studied, as well as for Poisson distribution.

In Louchard (2005), the case of the uniform distribution on the set {1, . . . , s}
is investigated. The author considers the problem of the longest non-decreasing
contiguous subsequence and gives an equivalent of its law when n is large and s is
fixed. The asymptotic equivalent of �(Mn) is also conjectured.

Others related problems such as waiting time distributions for fixed simple and
compound patterns have been studied in Fu and Chang (2002) and Fu and Lou (2003)
using probability generating functions.

In this paper, we consider a sequence X = (Xn)n�1 of integer random variables on
the set S = {1, . . . , m}, with m � 2. The random variable X1 is uniformly distributed
on S and, for n � 2, Xn is uniformly distributed on S with the constraint Xn �= Xn−1.
This process may be seen as the drawing of balls, numbered from 1 to m in an urn
where at each step the last ball drawn is kept outside the urn. Thus we have, for every
i, j ∈ S and n � 1,

P(X1 = i) = 1

m
and P(Xn = j|Xn−1 = i) = 1{i �= j}

m − 1
.

Methodol Comput Appl Probab (2010) 12:51–62 53

By induction over n and unconditioning, we get, for every n � 1 and i ∈ S,

P(Xn = i) = 1

m
.

Hence the random variables Xn are uniformly distributed on S but are not indepen-
dent. Using a Markov chain approach different from that of Fu and Chang (2002),
we study the distribution of the maximal ascending run and we develop an algorithm
to compute it. This problem comes from the analysis of self-organizing protocols
designed for large-scale wireless sensor networks, and we show how our results apply
to this domain.

The remainder of the paper is organized as follows. In the next section, we use
a Markov chain approach to study the behavior of the sequence of ascending runs
in the process X. In Section 3, we analyze the hitting times of an ascending run of
fixed length and we obtain the distribution of the maximal ascending Mn over the n
first random variables X1, . . . , Xn using a Markov renewal argument. An algorithm
to compute this distribution is developed in Section 4 and Section 5 is devoted to the
practical implications of this work in large-scale wireless sensor networks.

2 Associated Markov Chain

The process X is obviously a Markov chain on S. As observed in Louchard and
Prodinger (2003), we can see the ascending runs as a discrete-time process having
two components: the value taken by the first element of the ascending run and its
length. We denote this process by Y = (Vk, Lk)k�1, where Vk is the value of the first
element of the kth ascending run and Lk is its length. Going over the example used
in the Introduction, we obtain

(V1, L1) = (2, 2), (V2, L2) = (1, 3), (V3, L3) = (3, 2), (V4, L4) = (2, 2), . . .

The state space of Y is a subset S2 we shall precise now.
Only the first ascending run can start with the value m. Indeed, as soon as k � 2,

the random variable Vk takes its values in {1, . . . , m − 1}. Moreover V1 = X1 = m
implies that L1 = 1. Thus, for any � � 2, (m, �) is not a state of Y whereas (m, 1) is
only an initial state that Y will never visit again.

We observe also that if Vk = 1 then necessarily Lk � 2, which implies that (1, 1)

is not a state of Y. Moreover Vk = i implies that Lk � m − i + 1.
According to this behaviour, we have

Y1 ∈ E ∪ {(m, 1)} and for k � 2, Yk ∈ E,

where

E = {(i, �) | 1 � i � m − 1 and 1 � � � m − i + 1} \ {(1, 1)}.
We define the following useful quantities for any i, j, � ∈ S and k � 1 :

��(i, j) = P(Vk+1 = j, Lk = �|Vk = i), (1)

ϕ�(i) = P(Lk = �|Vk = i), (2)

ψ�(i) = P(Lk � �|Vk = i). (3)

54 Methodol Comput Appl Probab (2010) 12:51–62

Theorem 1 The process Y is a homogeneous Markov chain with transition probability
matrix P, which entries are given for any (i, �)∈ E∪{(m, 1)} and (j, λ)∈ E∪{(m, 1)} by

P(i,�),(j,λ) = ��(i, j)ϕλ(j)
ϕ�(i)

.

Proof We exploit the Markov property of X, rewriting events for Y as events for X.
For every (j, λ) ∈ E and taking k � 1 then for any (vk, �k), . . . , (v1, �1) ∈ E ∪ {(m, 1)},
we denote by Ak the event :

Ak = {Yk = (vk, �k), . . . , Y1 = (v1, �1)}.
We have to check that

P(Yk+1 = (j, λ)|Ak) = P(Y2 = (j, λ)|Y1 = (vk, �k)).

First, we observe that

A1 = {Y1 = (v1, �1)} = {X1 = v1 < · · · < X�1 > X�1+1},
and

A2 = {Y2 = (v2, �2), Y1 = (v1, �1)}
= {X1 = v1 < · · · < X�1 > X�1+1 = v2 < · · · < X�1+�2 > X�1+�2+1}
= A1 ∩ {X�1+1 = v2 < · · · < X�1+�2 > X�1+�2+1}.

By induction, we obtain

Ak = Ak−1 ∩ {X�(k−1)+1 = vk < · · · < X�(k) > X�(k)+1},
where �(k) = �1 + . . . + �k. Using this remark and the fact that X is a homogeneous
Markov chain, we get

P(Yk+1 = (j, λ)|Ak) = P(Vk+1 = j, Lk+1 = λ|Ak)

= P(X�(k)+1 = j < · · · < X�(k)+λ > X�(k)+λ+1 |
X�(k−1)+1 = vk < · · · < X�(k) > X�(k)+1, Ak−1)

= P(X�(k)+1 = j < · · · < X�(k)+λ > X�(k)+λ+1 |
X�(k−1)+1 = vk < · · · < X�(k) > X�(k)+1)

= P(X�k+1 = j < · · · < X�k+λ > X�k+λ+1 |
X1 = vk < · · · < X�k > X�k+1)

= P(V2 = j, L2 = λ|V1 = vk, L1 = �k)

= P(Y2 = (j, λ)|Y1 = (vk, �k)).

We now have to show that

P(Yk+1 = (j, λ)|Yk = (vk, �k)) = P(Y2 = (j, λ)|Y1 = (vk, �k)).

Methodol Comput Appl Probab (2010) 12:51–62 55

Using the previous result, we have

P(Yk+1 = (j, λ) | Yk = (vk, �k)) = P(Yk+1 = (j, λ), Yk = (vk, �k))

P(Yk = (vk, �k))

=

∑

(vi,�i)∈E
i=1,2,...,k−1

P(Yk+1 = (j, λ), Yk = (vk, �k), Ak−1)

∑

(vi,�i)∈E
i=1,2,...,k−1

P(Yk = (vk, �k), Ak−1)

=

∑

(vi,�i)∈E
i=1,2,...,k−1

P(Yk+1 = (j, λ)|Ak)P(Ak)

∑

(vi,�i)∈E
i=1,2,...,k−1

P(Ak)

= P(Y2 = (j, λ)|Y1 = (vk, �k)).

We have shown that Y is a homogeneous Markov chain over its state space. The
entries of matrix P are then given, for every (j, λ) ∈ E and (i, �) ∈ E ∪ {(m, 1)} by

P(i,�),(j,λ) = P(Vk+1 = j, Lk+1 = λ|Vk = i, Lk = �)

= P(Vk+1 = j|Vk = i, Lk = �)P(Lk+1 = λ|Vk+1 = j, Vk = i, Lk = �)

= P(Vk+1 = j|Vk = i, Lk = �)P(Lk+1 = λ|Vk+1 = j)

= P(Vk+1 = j, Lk = �|Vk = i)
P(Lk = �|Vk = i)

ϕλ(j)

= ��(i, j)ϕλ(j)
ϕ�(i)

,

where the third equality follows from the Markov property. ��

We give the expressions of ϕλ(j) and ��(i, j) for every i, j, � ∈ S in the following
lemma.

Lemma 1 For every i, j, � ∈ S, we have

��(i, j) =

(
m − i
� − 1

)

(m − 1)�
1{m−i��−1} −

(
j − i
� − 1

)

(m − 1)�
1{ j−i��−1},

ψ�(i) =

(
m − i
� − 1

)

(m − 1)�−1
1{m−i��−1},

ϕ�(i) =

(
m − i
� − 1

)

(m − 1)�−1
1{m−i��−1} −

(
m − i

�

)

(m − 1)�
1{m−i��}.

56 Methodol Comput Appl Probab (2010) 12:51–62

Proof For every i, j, � ∈ S, it is easily checked that ��(i, j) = 0 if m < i + � − 1.
If m � i + � − 1, we have

��(i, j) = P(V2 = j, L1 = �|V1 = i)

= P(i < X2 < . . . < X� > X�+1 = j|X1 = i)

= P(i < X2 < . . . < X�, X�+1 = j|X1 = i)

−P(i < X2 < . . . < X� < X�+1 = j|X1 = i)1{ j>i+�−1}. (4)

We introduce the sets G1(i, j, �, m), G2(i, j, �, m), G(i, �, m) and H(�, m) defined by

G1(i, j, �, m) = {(x2, . . . , x�+1) ∈ {i + 1, . . . , m}� ; x2 < · · · < x� �= x�+1 = j },
G2(i, j, �, m) = {(x2, . . . , x�+1) ∈ {i + 1, . . . , m}� ; x2 < · · · < x� = x�+1 = j },

G(i, �, m) = {(x2, . . . , x�) ∈ {i + 1, . . . , m}�−1 ; x2 < · · · < x�},
H(�, m) = {(x2, . . . , x�+1) ∈ {1, . . . , m}� ; i �= x2 �= · · · �= x�+1}.

It is well-known, see for instance Foata and Fuchs (1996), that

|G(i, �, m)| =
(

m − i
� − 1

)
.

Since |G2(i, j, �, m)| = |G(i, � − 1, j − 1)|, the first term in Eq. 4 can be written as

P(i < X2 < . . . < X�, X�+1 = j|X1 = i) = |G1(i, j, �, m)|
|H(�, m)|

= |G(i, �, m)| − |G2(i, j, �, m)|
|H(�, m)|

= |G(i, �, m)| − |G(i, � − 1, j − 1)|
|H(�, m)|

=

(
m − i
� − 1

)
−

(
j − i − 1

� − 2

)
1{ j−i��−1}

(m − 1)�
.

The second term is given, for j > i + � − 1, by

P(i < X2 < . . . < X� < X�+1 = j|X1 = i) = |G(i, �, j − 1)|
|H(�, m)| =

(
j − i − 1

� − 1

)

(m − 1)�
.

Adding these two terms, we get

��(i, j) =

(
m − i
� − 1

)
1{m−i��−1}−

(
j − i − 1

� − 2

)
1{ j−i��−1}−

(
j − i − 1

� − 1

)
1{ j−i��}

(m − 1)�

=

(
m − i
� − 1

)
1{m−i��−1} −

(
j − i
� − 1

)
1{ j−i��−1}

(m − 1)�
,

which completes the proof of the first relation.

Methodol Comput Appl Probab (2010) 12:51–62 57

The second relation follows from expression (3) by writing

ψ�(i) = P(L1 � �|V1 = i)

= P(i < X2 < . . . < X�|X1 = i)1{m−i��−1}

= |G(i, �, m)|
|H(� − 1, m)|

=

(
m − i
� − 1

)

(m − 1)�−1
1{m−i��−1}.

The third relation follows from definition (2) by writing ϕ�(i) = ψ�(i) − ψ�+1(i). ��

Note that the matrix � defined by

� =
m∑

�=1

��

is obviously a stochastic matrix, which means that, for every i = 1, . . . , m, we have

m∑

�=1

ϕ�(i) = 1,

and
m∑

�=1

m∑

j=1

��(i, j) =
m∑

�=1

ϕ�(i) = 1.

3 Hitting Times and Maximal Ascending Run

For every r = 1, . . . , m, we denote by Tr the hitting time of an ascending run of length
at least equal to r. More formally, we have

Tr = inf{k � r ; Xk−r+1 < · · · < Xk}.
It is easy to check that we have T1 = 1 and Tr � r. The distribution of Tr is given by
the following theorem.

Theorem 2 For 2 � r � m, we have

P(Tr � n|V1 = i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 1 � n � r − 1

ψr(i) +
r−1∑

�=1

m∑

j=1

��(i, j)P(Tr � n − �|V1 = j) if n � r.
(5)

Proof Since Tr � r, we have, for 1 � n � r − 1,

P(Tr � n|V1 = i) = 0.

58 Methodol Comput Appl Probab (2010) 12:51–62

Let us assume from now that n � r. Since L1 � r implies that Tr = r, we get

P(Tr � n, L1 � r|V1 = i) = P(L1 � r|V1 = i) = ψr(i). (6)

We introduce the random variable T(p)
r defined by hitting time of an ascending run

length at least equal to r when counting from position p. Thus we have

T(p)
r = inf{k � r ; Xp+k−r < · · · < Xp+k−1}.

We then have Tr = T(1)
r . Moreover, L1 = � < r implies that Tr = T(L1+1)

r + �, which
leads to

P(Tr � n, L1 < r|V1 = i) =
r−1∑

�=1

P(Tr � n, L1 = �|V1 = i)

=
r−1∑

�=1

P
(
T(L1+1)

r � n − �, L1 = �|V1 = i
)

=
r−1∑

�=1

m∑

j=1

P
(
T(L1+1)

r � n − �, V2 = j, L1 = �|V1 = i
)

=
r−1∑

�=1

m∑

j=1

��(i, j)P
(
T(L1+1)

r � n − �|V2 = j, L1 = �, V1 = i
)

=
r−1∑

�=1

m∑

j=1

��(i, j)P
(
T(L1+1)

r � n − �|V2 = j
)

=
r−1∑

�=1

m∑

j=1

��(i, j)P(Tr � n − �|V1 = j), (7)

where the fifth equality follows from the Markov property and the last one from the
homogeneity of Y. Putting together relations (6) and (7), we obtain

P(Tr � n|V1 = i) = ψr(i) +
r−1∑

�=1

m∑

j=1

��(i, j)P(Tr � n − �|V1 = j). ��

For every n � 1, we define Mn as the maximal ascending run length over the n first
values X1, . . . , Xn. We have 1 � Mn � m ∧ n and

Mn � r ⇐⇒ Tr � n, (8)

which implies

�(Mn) =
m∧n∑

r=1

P(Mn � r) =
m∧n∑

r=1

P(Tr � n) = 1

m

m∧n∑

r=1

m∑

i=1

P(Tr � n|V1 = i).

When m is fixed and n gets large, we deduce from Eq. 8 that Mn converges in
probability to m. Since Mn+1 � Mn, (Mn)n�1 is a non-decreasing sequence which
is also bounded by m, almost surely. Thus when m is fixed and n gets large, Mn

converges almost surely to m.

Methodol Comput Appl Probab (2010) 12:51–62 59

Table 1 Algorithm for the distribution and expectation computation of Mn

Algorithm

input: m, n
output: P(Mh � r) for h = 1, . . . , n and r = 1, . . . , m ∧ n.

�(Mh) for h = 1, . . . , n.
for � = 1 to m do Compute the matrix Φ� endfor
for r = 1 to m do Compute the column vectors ψr endfor
for h = 1 to n do Wh,1 = � endfor
for r = 2 to m ∧ n do

for h = 1 to r − 1 do Wh,r = 0 endfor

for h = r to n do Wh,r = ψr +
r−1∑

�=1

Φ�Wh−�,r endfor

endfor
for h = 1 to n do

for r = 1 to m ∧ h do P(Mh � r) = 1

m
�

tWh,r

endfor

for h = 1 to n do �(Mh) = 1

m

m∧h∑

r=1

�
tWh,r endfor

4 Algorithm

For r = 1, . . . , m, we denote by ψr the column vector of dimension m which ith entry
is ψr(i). For r = 1, . . . , m, n � 1 and h = 1, . . . , n, we denote by Wr,h the column
vector of dimension m which ith entry is defined by

Wh,r(i) = P(Tr � h|V1 = i) = P(Mh � r|V1 = i),

and we denote by � the column vector of dimension m with all entries equal to 1. An
algorithm for the computation of the distribution and the expectation of Mn is given
in Table 1.

The main effort required in this algorithm concerns the computation of the column
vectors Wh,r. Each vector Wh,r requires r − 1 matrix-vector products of dimension m
which gives a complexity of O(rm2) for each of them. Since r varies from 2 to m ∧ n
and h varies from 1 to n, the total computational effort required is O(m2n(m ∧ n)2).

Note that this algorithm avoids numerical problems since all the computed matrices
and vectors, i.e. ��, ψr and Wh,r, have their entries between 0 and 1. This leads to a
stable algorithm with very accurate results.

5 Application to Wireless Networks: Fast Self-Organization

Our analysis has important implications in forecast large-scale wireless networks. In
those networks, the number of machines involved and the likeliness of fault occur-
rences prevents any centralized planification. Instead, distributed self-organization
must be designed to enable proper functioning of the network. A useful technique
to provide self-organization is self-stabilization (Dijkstra 1974; Dolev 2000). Self-
stabilization is a versatile technique that can make a wireless network withstand any
kind of fault and reconfiguration.

60 Methodol Comput Appl Probab (2010) 12:51–62

A common drawback with self-stabilizing protocols is that they were not designed
to handle properly large-scale networks, as the stabilizing time (the maximum
amount of time needed to recover from any possible disaster) could be related to the
actual size of the network. In many cases, this high complexity was due to the fact that
network-wide unique identifiers are used to arbitrate symmetric situations (Tixeuil
2007). However, there exists a number of problems appearing in wireless networks
that need only locally unique identifiers.

Modeling the network as a graph where nodes represent wireless entities and
where edges represent the ability to communicate between two entities (because
each is within the transmission range of the other), a local coloring of the nodes at
distance d (i.e. having two nodes at distance d or less assigned a distinct color) can be
enough to solve a wide range of problems. For example, local coloring at distance 3
can be used to assign TDMA time slots in an adaptive manner (Herman and Tixeuil
2004), and local coloring at distance 2 has successively been used to self-organize a
wireless network into more manageable clusters (Mitton et al. 2005).

In the performance analysis of both schemes, it appears that the overall stabi-
lization time is balanced by a tradeoff between the coloring time itself and the
stabilization time of the protocol using the coloring (denoted in the following as the
client protocol). In both cases (TDMA assignment and clustering), the stabilization
time of the client protocol is related to the height of the directed acyclic graph
induced by the colors. This DAG is obtained by orienting an edge from the node
with the highest color to the neighbor with the lowest color. As a result, the overall
height of this DAG is equal to the longest strictly ascending chain of colors across

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
al

 a
sc

en
di

ng
 r

un
 s

iz
e

Number of nodes n

m = 5
m = 10
m = 20
m = 30
m = 40
m = 50
m = 60
m = 70
m = 80
m = 90

m = 100
m = 110
m = 200

Fig. 1 Expected length of the maximal ascending run as a function of the number of nodes

Methodol Comput Appl Probab (2010) 12:51–62 61

neighboring nodes. Of course, a larger set of colors leads to a shorter stabilization
time for the coloring (due to the higher chance of picking a fresh color), but yields to
a potential higher DAG, that could delay the stabilization time of the client protocol.

In Mitton et al. (2006), the stabilization time of the coloring protocol was theoret-
ically analyzed while the stabilization time of a particular client protocol (the clus-
tering scheme of Mitton et al. (2005)) was only studied by simulation. The analysis
performed in this paper gives a theoretical upper bound on the stabilization time of
all client protocols that use a coloring scheme as an underlying basis. Together with
the results of Mitton et al. (2006), our study constitutes a comprehensive analysis of
the overall stabilization time of a class of self-stabilizing protocols used for the self-
organization of wireless sensor networks. In the remaining of the section, we provide
quantitative results regarding the relative importance of the number of used colors
with respect to other network parameters.

Figure 1 shows the expected length of the maximal ascending run over a n-node
chain for different values of the number m of colors.

Our numerical results point out several interesting behaviors. Indeed, self-
organization protocols relying on a coloring process achieve better stabilization time
when the expected length of maximal ascending run is short but a coloring process
stabilizes faster when the number of colors is high (Mitton et al. 2006).

Figure 1 clearly shows that even if the number of colors is high compared to n
(n << m), the expected length of maximal ascending run remains short, which is
a great advantage. Moreover, even if the number of nodes increases, the expected
length of the maximal ascending run remains short and increases very slowly. This

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

M
a
x
im

a
l
a
s
c
e
n
d
in

g
 r

u
n
 s

iz
e

Number of colors m

n = 5
n = 10
n = 50

n = 100

Fig. 2 Expected length of the maximal ascending run as a function of the number of colors

62 Methodol Comput Appl Probab (2010) 12:51–62

observation demonstrates the scalability properties of a protocol relying on a local
coloring process since its stabilization time is directly linked to the length of this
ascending run (Mitton et al. 2006).

Figure 2 shows the expected length of maximal ascending run over a n-node chain
for different values of n.

Our numerical results indicate that for a fixed number of nodes n, the expected
length of the maximal ascending run seems to converge toward a finite value,
depending of n. This implies that using a large number of colors does not impact
the stabilization time of the client algorithm.

References

Csaki E, Foldes A (1996) On the length of the longest monotone block. Stud Sci Math Hung 31:35–46
Dijkstra EW (1974) Self-stabilizing systems in spite of distributed control. Commun ACM 17(11):

643–644
Dolev S (2000) Self stabilization. MIT Press
Eryilmaz S (2006) A note on runs of geometrically distributed random variables. Discrete Math 306:

1765–1770
Foata D, Fuchs A (1996) Calcul des probabilités. Masson
Frolov AN, Martikainen AI (1999) On the length of the longest increasing run in Rd. Stat Probab

Lett 41(2):153–161
Fu JC, Chang YM (2002) On probability generating functions for waiting time distributions of

compound patterns in a sequence of multistate trials. J Appl Probab 39:70–80
Fu JC, Lou WYW (2003) Distribution theory of runs and patterns and its applications: a finite

Markov chain imbedding approach world scientific. Singapore
Herman T, Tixeuil S (2004) A distributed TDMA slot assignment algorithm for wireless sensor net-

works. In: Proceedings of the first workshop on algorithmic aspects of wireless sensor networks
(AlgoSensors’2004), no. 3121 in lecture notes in computer science. Springer-Verlag, Turku,
Finland, pp 45–58

Louchard G (2002) Runs of geometrically distributed random variables: a probabilistic analysis.
J Comput Appl Math 142(1):137–153

Louchard G (2005) Monotone runs of uniformly distributed integer random variables: a probabilistic
analysis. Theor Comp Sci 346(2–3):358–387

Louchard G, Prodinger H (2003) Ascending runs of sequences of geometrically distributed random
variables: a probabilistic analysis. Theor Comp Sci 304:59–86

Mitton N, Fleury E, Guérin-Lassous I, Tixeuil S (2005) Self-stabilization in self-organized multihop
wireless networks. In: WWAN’05. Columbus, Ohio, USA

Mitton N, Fleury E, Guérin-Lassous I, Sericola B, Tixeuil S (2006) Fast convergence in self-stabilizing
wireless networks. In: 12th international conference on parallel and distributed systems
(ICPADS’06). Minneapolis, MN, USA

Tixeuil S (2007) Wireless ad hoc and sensor networks, chap. Fault-tolerant distributed algorithms for
scalable systems. ISTE http://www.iste.co.uk/index.php?p=a&ACTION=View&id=166. ISBN:
978 1 905209 86

http://www.iste.co.uk/index.php?p=a&ACTION=View&id=166

	Ascending Runs in Dependent Uniformly Distributed Random Variables: Application to Wireless Networks
	Abstract
	Introduction
	Associated Markov Chain
	Hitting Times and Maximal Ascending Run
	Algorithm
	Application to Wireless Networks: Fast Self-Organization
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

