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Abstract A crucial property of second order fluid models is the behaviour of the fluid level
at the boundaries. Two cases have been considered: the reflecting and the absorbing bound-
ary. This paper presents an approach for the stationary analysis of second order fluid models
with any combination of boundary behaviours. The proposed approach is based on the solu-
tion of a linear system whose coefficients are obtained from a matrix exponent. A practical
example demonstrates the suitability of the technique in performance modeling.

Keywords Second order fluid models · Matrix exponent · Stationary distribution ·
Numerical analysis

1 Introduction

In the recent years fluid flow models have been widely used to study complex communica-
tion, computer and flexible manufacturing systems. In particular, fluid queues with Markov
modulated input rates play a key role in queueing theory and performance evaluation of
networks. The main feature of these models is to describe systems using discrete and con-
tinuous quantities. The use of continuous quantities can significantly reduce the well-known
state space explosion problem. For example, a quantity that can take a very large number of
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possible values (like the queue size in a communication network) can be accurately approx-
imated by a continuous quantity.

The first studies of such queueing systems can be dated back in the early 1980’s. The
works (Kosten 1984) and (Anick et al. 1982) analyze fluid models in connection with statis-
tical multiplexing of several identical exponential on-off input sources in a buffer.

The above studies mainly focus on the analysis of the stationary regime and raise a series
of theoretical developments. For instance, Mitra (1987) and Mitra (1988) generalize the
analysis by considering multiple types of exponential on-off inputs and outputs. Stern and
Elwalid (1991) consider separable Markov modulated processes and express the equilibrium
equations as a sum of Kronecker product terms. Igelnik et al. (1995) derive a new approach
based on the use of interpolating polynomials for the computation of the buffer overflow
probability. Using the Wiener-Hopf factorization of finite Markov chains, Rogers (1994)
shows that the distribution of the buffer level has a matrix exponential form. Algorithmic
issues of that factorization are explored in Rogers and Shi (1994).

The papers (Ramaswami 1996) and (da Silva Soares and Latouche 2002), respectively,
exhibit and exploit the similarity between stationary fluid queues in a finite Markovian en-
vironment and quasi birth and death processes. In Ahn and Ramaswami (2003) a direct
connection by stochastic coupling is established between fluid queues and quasi birth and
death processes.

The transient analysis of fluid queues with exponential on-off sources is studied in
Kobayashi and Ren (1992), Ren and Kobayashi (1995) by using Laplace transform. These
studies are extended to the Markov modulated input rate model in Tanaka et al. (1995).
Sericola (1998) obtains a transient solution based on simple recurrence relations that have
interesting numerical properties. More recently, Ahn and Ramaswami (2004) approximate
the fluid model by the amounts of work in a sequence of Markov modulated queues of the
quasi birth and death type.

Second order models (also known as Markov modulated diffusion processes) are intro-
duced in Karandikar and Kulkarni (1995) and Asmussen (1995). In these works the authors
consider a “white noise” factor which represents the variability of the traffic during the trans-
mission periods. The fluid level is described by a reflected Brownian motion modulated by
a continuous time Markov chain (CTMC). When the CTMC is in state i, the fluid level is
modeled by a reflected Brownian motion with drift ri and variance parameter σ 2

i .
In first order models the fluid level grows linearly with a deterministic rate ri when the

modulating Markov chain is in state i. If x(t) denotes the fluid level at time t and t ′ is a time
instant such that t ′ > t , then:

x(t ′) = x(t) + (t ′ − t)ri , (1)

provided that the Markov chain remains in state i and the continuous variable does not reach
a boundary in the (t, t ′) interval. Markov modulated diffusion processes instead consider
random fluid changes. In these models, we have that:

x(t ′) = x(t) + N
(
(t ′ − t)ri , (t

′ − t)σ 2
i

)
, (2)

that is, the fluid level change in the (t, t ′) interval is normally distributed with mean (t ′ − t)ri

and variance (t ′ − t)σ 2
i . Note that (2) is valid if the Markov chain remains in state i and the

continuous variable does not reach a boundary in the (t, t ′) interval.
Second order models have been addressed in several works. The authors of Rabehasaina

and Sericola (2003) provide a stability analysis of such models when the modulating process
is general stationary ergodic (not necessarily Markovian).



Ann Oper Res (2008) 160: 69–82 71

The differential equations that describe a fluid model are hard to solve. The symbolic so-
lution of the equations can be obtained only for trivial cases. Different numerical solutions
are available for transient and stationary analysis. In the case of transient analysis the sys-
tem has an initial state which can be exploited as considered in Horton et al. (1998), Wolter
(1997), Chen et al. (2002), Sericola (1998) to mention a few. In the case of stationary analy-
sis, the equations that describe a fluid model are ordinary differential equations (ODEs), and
there is no initial condition. Indeed this problem has been solved for first order models by
the analysis of first passage time probabilities, see for instance Ramaswami (1996), da Silva
Soares and Latouche (2002), Ahn and Ramaswami (2003), Bean et al. (2005a, 2005b), da
Silva Soares and Latouche (2006) and the references therein. The key of these solutions lies
in the matrix characterization of the distribution of the phase visited at the end of a busy
period of the fluid queue.

The problem remains open for modulated diffusion processes, where the solution is ob-
tained from a set of boundary equations, ODEs and a normalizing condition. For example, in
case of fluid level independent transition and fluid drift, the solution of the ODE is obtained
by the computation of eigenvalues and eigenvectors of a matrix (Karandikar and Kulkarni
1995). Usually those approaches are very sensitive to the computation of the eigenvalues and
may lead to severe numerical errors. An alternative approach using modal decomposition is
proposed in Agapie and Sohraby (2001).

In this work, we address the problem of performing steady state solution of modulat-
ing diffusion processes using neither discretization nor singular value decomposition. Our
approach is similar to the one used in Gribaudo and German (2001), German et al. (2003)
for first order models. In particular, we focus on the boundary behaviours. Second order
models can have two different types of boundaries: absorbing or reflecting (Cox and Miller
1972). We are able to consider models where the upper and lower boundary of each state can
be either absorbing or reflecting. To the best of our knowledge second order fluid models
were applied in a wide range of application fields, but always with reflecting boundaries.
A special approximation method is proposed in Ang and Barria (2000) for approximating
the absorbing boundaries based on the solution of the system with reflecting boundaries.

The paper is structured as follows. First it presents a motivating example in Sect. 2. Sec-
tion 3 introduces the second order fluid models we consider, and it presents their transient
and steady state equations. The analysis technique is considered in Sect. 4. Section 5 pro-
vides an applicative example and the paper is concluded in Sect. 6.

2 A motivating example

We introduce the simple queueing system, represented in Fig. 1, to show the impact of the
boundary behaviour in second order fluid models.

The considered queueing system has a single server and a finite buffer of size B . Cus-
tomers arrive to the queue according to an on-off arrival process. Customers arrive only
during the on period according to a Poisson process of rate λ. The length of the on and the

Fig. 1 The discrete Markov
model of the queueing system
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Fig. 2 The discrete Markov
model of the queueing system

Table 1 Fluid behaviour versus system state

J (t) 1 2 3 4

Arrival-server On-on On-off Off-on Off-off

limh−→0[E(X(t + h) − X(t))]/h λ − μ λ −μ 0

limh−→0[V ar(X(t + h) − X(t)]/h λ + μ λ μ 0

off periods are exponentially distributed with parameters αon and αoff. The server follows an
on-off behaviour as well. During its on period it serves customers at rate μ and during its
off period it goes on vacation. Interrupted services are resumed as soon as the server comes
back from vacation. The on and the off period of the server are exponentially distributed with
parameters βon and βoff. Let N(t) (0 ≤ N(t) ≤ B) be the number of customers in the buffer
and J (t) be the combined state of both the arrival process and the server (1 ≤ J (t) ≤ 4). We
define J (t) = 1 when both the arrival and the service are on, J (t) = 2 when the arrival is
on and the service is off, J (t) = 3 when the arrival is off and the service is on, and J (t) = 4
when both the arrival and the service are off.

The Markov chain of the queueing system is depicted in Fig. 2. When B is large the
number of customers in the system (N(t)) can be represented with a continuous variable
X(t) commonly referred to as fluid level. The behaviour of the fluid level depends on the
state of both the arrival process and the server, i.e., on J (t). Between the boundaries, we
have the cases reported in Table 1.

Conventional second order fluid model approximations consider only states with reflect-
ing boundaries. The comparison of the fluid model approximation with the exact solution,
as depicted in Fig. 3, shows that the former fails to describe the behaviour at the boundaries.
In particular it does not consider the jumps created by probability masses. This can be a
very critical issue, since many important performance indices rely on the probability at the
boundaries (i.e., utilization and blocking probability).

Previous results prove that the reflecting behaviour is not appropriate in describing the
actual model (in some of its states). To investigate this problem, we analyze the Markov
chain of the queuing system represented in Fig. 2. The structure of the Markov chain indi-
cates that in state J (t) = 1 the fluid level can vary between the barriers independent of the
fact that the buffer gets empty or full. In state J (t) = 2 the fluid level can leave the lower
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Fig. 3 Various solution of the
queueing system

barrier, but if it reaches the upper barrier it remains there as long as J (t) = 2. Similar obser-
vations are valid for J (t) = 3 and J (t) = 4. It follows that in state J (t) = 1 both the lower
and the upper boundaries are reflecting, in state J (t) = 2 the lower boundary is reflecting
and the upper boundary is absorbing, in state J (t) = 3 the lower boundary is absorbing and
the upper boundary is reflecting, and finally in state J (t) = 4 both the lower and the upper
boundaries are absorbing. If we exploit the correct barrier behaviour at both boundaries, we
obtain more accurate results as shown in Fig. 3.

This example is only to justify the importance of models with mixed (reflecting and
absorbing) boundary behaviour. In the following sections we show how such continuous
models can be solved, but this solution is independent of the discrete model presented
here.

3 Notation and preliminaries

3.1 Notation

The transient analysis of Markov modulated diffusion processes with finite buffer is based
on the transition matrix Q, the drift matrix R, the variance matrix S, the buffer size B and
the description of the boundary behaviour. The corresponding stochastic process is defined
by a couple {Z(t),X(t)}. Z(t) is a CTMC with generator matrix Q, and X(t) represents the
fluid level process. During a sojourn in state i, i.e. Z(t) = i, the fluid level X(t) follows a
Brownian motion with rate ri and variance s2

i . R and S are diagonal matrices containing the
state dependent drift and variance parameters (R = diag(ri), S = diag(s2

i /2)). For each state
j we define

• The fluid distribution: Fj (t, x) = Pr(Z(t) = j,X(t) ≤ x),
• The fluid density: fj (t, x) = limh−→0[Fi,j (t, x + h) − Fi,j (t, x)]/h,
• The mass at the lower boundary: �j (t) = Pr(Z(t) = j,X(t) = 0),
• The mass at the upper boundary: uj (t) = Pr(Z(t) = j,X(t) = B).
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3.2 State space partitioning and boundary behaviour

We partition the state space into six disjoint subsets S = S+ ∪ S0 ∪ S− ∪ S⊕ ∪ S� ∪ S�,
where:

S+ = {i : ri > 0, si = 0}, S0 = {i : ri = 0, si = 0}, S− = {i : ri < 0, si = 0},
S⊕ = {i : ri > 0, si > 0}, S� = {i : ri = 0, si > 0}, S� = {i : ri < 0, si > 0}.

We refer to the states belonging to S+ ∪ S0 ∪ S− as first order states, and to the ones
belonging to S⊕ ∪ S� ∪ S� as second order states. Furthermore, we introduce

S© = S⊕ ∪ S� ∪ S�.

The cardinality of a subset U of the state space is denoted by #U . The background CTMC
is supposed to be irreducible, hence it stays for a finite amount of time in all non-empty and
valid subsets of states. The reflecting and absorbing behaviours determine the fluctuation
of the fluid level when it reaches a boundary. Let us focus on the lower boundary. The
absorbing boundary retains the fluid at the border till the background CTMC moves to a
new state where the boundary behaviour is reflecting. This implies that for an absorbing
state j we have �j (t) > 0. Instead, the reflecting boundary immediately reflects the fluid. In
this case for a reflecting state i we have �i(t) = 0. Similar considerations are valid for the
upper boundary.

It is important to note that in a system where all the states have an absorbing behaviour
the fluid is confined at the boundaries. States with reflecting behaviour allow the fluid to
leave the barriers.

3.3 Transient behaviour

We denote respectively by f (t, x), F(t, x), �(t) and u(t) the row vectors containing the
fj (t, x), Fj (t, x), �j (t) and uj (t). They satisfy the equations (Karandikar and Kulkarni
1995):

∂F (t, x)

∂t
+ ∂F (t, x)

∂x
R − ∂2F(t, x)

∂x2
S = F(t, x)Q, for 0 < x < B,

∂f (t, x)

∂t
+ ∂f (t, x)

∂x
R − ∂2f (t, x)

∂x2
S = f (t, x)Q, for 0 < x < B,

∂�(t)

∂t
+ f (t,0)R − f ′(t,0)S = �(t)Q, for x = 0,

∂u(t)

∂t
− f (t,B)R + f ′(t,B)S = u(t)Q, for x = B,

(3)

where f ′(t,0) (resp. f ′(t,B)) is the derivative, with respect to x, of the density density
f (t, x) taken at point x = 0+ (resp. x = B−). In order to simplify the notation we write
f (t,0) and f (t,B) instead of f (t,0+) and f (t,B−). Boundary equations are defined as
follows:

• Lower boundary:
– �j (t) = 0 for j ∈ S+,
– �j (t) = 0 for j ∈ S© and reflecting lower boundary in j ,
– fj (t,0) = 0 for j ∈ S© and absorbing lower boundary in j .
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• Upper boundary:
– uj (t) = 0 for j ∈ S−,
– uj (t) = 0 for j ∈ S© and reflecting upper boundary in j ,
– fj (t,B) = 0 for j ∈ S© and absorbing upper boundary in j .

A rigorous proof of these boundary equations is given in Cox and Miller (1972) (absorb-
ing in Sect. 5.7[i], reflecting in Sect. 5.7[ii]).

3.4 Stationary behaviour

Since the buffer capacity is finite, the stationary distribution exists and is given by the fol-
lowing limits:

• fj (x) = lim
t−→∞fj (t, x),

• Fj (x) = lim
t−→∞Fj (t, x),

• �j = lim
t−→∞�j (t),

• uj = lim
t−→∞uj (t),

which results in the following equations

• Differential equations:

F ′(x)R − F ′′(x)S = F(x)Q, (4)

f ′(x)R − f ′′(x)S = f (x)Q, (5)

where f (x), f ′(x), f ′′(x), F(x), F ′(x), F ′′(x), � and u are the row vectors containing
the fj (x), f ′

j (x), f ′′
j (x), Fj (x), F ′

j (x), F ′′
j (x), �j and uj . Note also that we have F ′(x) =

f (x), F(0) = �, F(B−) = π −u and F(B) = π , where π is the stationary distribution of
the driving CTMC (Z(t)), i.e., the probability distribution which satisfies πQ = 0.

• Boundary conditions:

f (0)R − f ′(0)S = �Q, (6)

−f (B)R + f ′(B)S = uQ. (7)

• Constraints on lower boundary:
– �j = 0 for j ∈ S+,
– �j = 0 for j ∈ S© and reflecting lower boundary in j ,
– fj (0) = 0 for j ∈ S© and absorbing lower boundary in j ,

• Constraints on upper boundary:
– uj = 0 for j ∈ S−,
– uj = 0 for j ∈ S© and reflecting upper boundary in j ,
– fj (B) = 0 for j ∈ S© and absorbing upper boundary in j .

4 Solution

This section presents the main result of this paper, that is the stationary analysis of second
order fluid models with finite buffer. First we consider the known case in which the system
has only reflecting boundaries. Then we generalize the approach to study state dependent
absorbing or reflecting boundaries.
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4.1 Fully second order fluid models with reflecting boundaries

We define fully second order model cases where S = S© (si > 0,∀i ∈ S), S+ = S− =
S0 = ∅, and S is non-singular. Due to the reflecting behaviour at both boundaries, we have
� = u = 0. We introduce the row vector G(x) = (F (x),F ′(x)) and we insert it in (4):

G′(x)

(
R I
−S 0

)
= G(x)

(
Q 0
0 I

)
, (8)

where the row vector G′(x) is the derivative of G(x) with respect to x, that is G′(x) =
(f (x), f ′(x)). Multiplying with the inverse of the matrix on the left hand side, we get

G′(x) = G(x)

(
Q 0
0 I

)(
0 −S−1

I RS−1

)
= G(x)

(
0 −QS−1

I RS−1

)
. (9)

The solution to (9) is given, for x ∈ [0,B], by

G(x) = G(0)eMx, where M =
(

0 −QS−1

I RS−1

)
. (10)

Differentiating relation (10), we get

G′(x) = (f (x), f ′(x)) = G(0)(eMx)′ = (�, f (0))(eMx)′. (11)

Using the sub-matrix decomposition

eMx =
(

�1(x) �2(x)

�3(x) �4(x)

)
,

we can compute G′(B) from (11) as

f (B) = ��′
1(B) + f (0)�′

3(B), (12)

f ′(B) = ��′
2(B) + f (0)�′

4(B). (13)

Note that the relation (eMx)′ = MeMx = eMxM leads to

�′
1(x) = −QS−1�3(x) = �2(x)

�′
2(x) = −QS−1�4(x) = −�1(x)QS−1 + �2(x)RS−1

(14)
�′

3(x) = �1(x) + RS−1�3(x) = �4(x)

�′
4(x) = �2(x) + RS−1�4(x) = −�3(x)QS−1 + �4(x)RS−1.

Since F(0) = � = 0 and u = 0, we have

f (B) = f (0)�′
3(B) = f (0)�4(B), (15)

f ′(B) = f (0)�′
4(B) = f (0)(�2(B) + RS−1�4(B)), (16)

and the boundary condition (7) can be expressed as

f ′(B) = f (B)RS−1. (17)
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Combining (15), (16) and (17) we have

(f (0), f (B))

(
�4(B) �2(B) + RS−1�4(B)

−I −RS−1

)
= 0. (18)

The normalizing condition of (18) can be obtained from (10) since for x = B we have

π = F(B) = f (0)�3(B),

and multiplying it with 1, the column vector of ones, we get

f (0)�3(B)1 = 1.

4.2 Fully second order fluid models with state dependent absorbing and reflecting
boundaries

In this section we consider the fully second order fluid models, where in each state both
the upper and the lower boundaries may have either an absorbing or reflecting barrier. We
partition the state space S© in four subsets

S© = Saa ∪ Sar ∪ Sra ∪ Srr , (19)

where the first subscript refers to the lower boundary and the second one to the upper bound-
ary. In both cases a stands for absorbing and r for reflecting.

The boundary conditions (6) and (7) can be expressed as

f ′(0) = f (0)RS−1 − �QS−1, (20)

f ′(B) = f (B)RS−1 + uQS−1. (21)

Using (14), relations (12) and (13) can be rewritten as

f (B) = ��2(B) + f (0)�4(B), (22)

f ′(B) = −�QS−1�4(B) + f (0)(�2(B) + RS−1�4(B)). (23)

The constraints on lower and upper boundaries given at the end of Sect. 3.4 can be written
using the decomposition of the state space in (19):

f (0) = (0,0, fra(0), frr (0)),

� = (�aa, �ar ,0,0),
(24)

f (B) = (0, far (B),0, frr (B)),

u = (uaa,0, ura,0).

Note that each element of the vectors on the r.h.s. of (24) represents a boundary combination.
Let us define the vectors v and w as

v = f (0) + � = (�aa, �ar , fra(0), frr (0)), (25)

w = f (B) + u = (uaa, far (B),ura, frr (B)). (26)
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Using vector v relations (22) and (23) can be rewritten as

f (B) = v(�2(B)a• + �4(B)r•), (27)

f ′(B) = v([−QS−1�4(B)]a• + [�2(B) + RS−1�4(B)]r•), (28)

where, for any matrix H of dimension #S , we denote by Ha• (resp. Hr•) the matrix obtained
from H by setting to zero the rows not corresponding to states of Saa ∪Sar (resp. Sra ∪Srr ).
In the same way, we denote by H •a (resp. H •r ) the matrix obtained from H by setting to
zero the rows not corresponding to states of Saa ∪ Sra (resp. Sar ∪ Srr ).

Using vector w, relation (21) can be written as

f ′(B) = w([RS−1]•r + [QS−1]•a). (29)

Combining (24) and (26), we have

f (B) = wI•r . (30)

Putting together relations (27), (28), (29) and (30), we obtain the following system of di-
mension 2#S

(v,w)U = 0 where U =
(

A �

−I•r −C

)
, (31)

and

A = �2(B)a• + �4(B)r•,

� = [−QS−1�4(B)]a• + [�2(B) + RS−1�4(B)]r•,
C = [RS−1]•r + [QS−1]•a.

The normalizing condition is given by writing G(B−) = G(0)eMB . Since F(B−) =
π − u, it corresponds to

π − u = ��1(B) + f (0)�3(B),

F ′(B−) = f (B−) = f (B) = ��2(B) + f (0)�4(B).

This leads, using (25) and (26), to

u = π − v(�1(B)a• + �3(B)r•),

f (B) = w − u = v(�2(B)a• + �4(B)r•).

If we compute the sum of these two relations, we get

w = π + v(�2(B)a• − �1(B)a• + �4(B)r• − �3(B)r•),

that is

w1 + v(�1(B)a• − �2(B)a• + �3(B)r• − �4(B)r•)1 = 1.
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5 Application example

In this section we apply the proposed technique to model the receiving buffer of the video
streaming application depicted in Fig. 4. The model takes into account videos encoded with
variable bit rate (VBR), and it is divided into two components: the network and the video
player application. Fluid is used to model the receiving buffer. The streaming application
cycles among three states: buffering, playing, and finishing. In state buffering, the application
receives data from the network without playing it. In state playing, the application decodes
the data stored in the buffer. In this state the application continues to receive data from the
network. State finishing models the completion of the transmission while the player decodes
the last part of the stream. The network can be in two states: normal and congested. In
state congested, data arrive at a lower speed. The discrete part of the model is composed
by five states as depicted in Fig. 5. Each state represents a combination of the status of the
two components. Note that when the application does not receive data (in state finishing)
the status of the network can be neglected. Parameters 1/βB , 1/βP and 1/βF represent
the mean sojourn time spent by the application in state buffering, playing, and finishing.
Parameters αHL and αLH describe the rate at which the network switches from the normal
(H) to congested (L) states and vice versa. The infinitesimal generator Q of the underlying
Markov chain is given by:

Q =

⎛

⎜⎜
⎜⎜
⎝

−βB − αLH βB αLH 0 0
0 −βP − αLH 0 αLH βP

αHL 0 −βB − αHL βB 0
0 αHL 0 −βP − αHL βP

βF
αHL

αHL+αLH
0 βF

αLH

αHL+αLH
0 −βF

⎞

⎟⎟
⎟⎟
⎠

.

Fig. 4 Video streaming
application model

Buffering, Playing, Finishin

Normal

Congeste

Networ

Fig. 5 Discrete part of the fluid
model
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Fig. 6 Buffer occupancy
(measured in 128 kb chunks)
distribution versus the
compression rate variance

Video streaming packets are decoded at rate μ with variance σ . The variance is due
to the variable bit rate encoding. Data streaming arrives at rate λL with variance γL in state
congested and at rate λH with variance γH in state normal. This allows us to compute matrix
R and matrix S as follows:

R =

⎛

⎜
⎜⎜⎜
⎝

λL

λL − μ

λH

λH − μ

−μ

⎞

⎟
⎟⎟⎟
⎠

,

S =

⎛

⎜⎜
⎜⎜
⎝

1
2 γL

1
2 (γL + σ)

1
2γH

1
2 (γH + σ)

1
2σ

⎞

⎟⎟
⎟⎟
⎠

.

We suppose that the streaming application exchanges chunks of 128 kb. The buffer size
is 1 Mb (i.e. 8 chunks/s). The mean arrival rate is 256 kbps (i.e. 2 chunks/s) in state con-
gested and 640 kbps (i.e. 5 chunks/s) in state normal. The video is encoded at a mean rate
of 512 kbps (i.e. 4 chunks/s). We set the variance equal to the corresponding rate. The
mean time spent by the application in state buffering and finishing is approximately 10 sec.
Parameters can be summarized as follows: λL = γL = 0.25, λH = γH = 0.625, μ = 0.5,
βF = 0.1, βB = 0.1.

According to the discussion of Sect. 2, we have an absorbing behaviour at the lower
boundary in state finishing and at the upper boundary in state buffering. All the other bound-
aries are reflecting.

First, we study the behaviour of the buffer occupancy distribution as function of the com-
pression rate variance. We vary σ from 0.1 to 5. Other parameters are configured as follows:
B = 1Mb,βP = 0.03, αLH = αHL = 1/60. Results are reported in Fig. 6. The buffer occu-
pancy distribution tends to become uniform as the variance increases. Table 2 shows that the
empty and full buffer probabilities are only slightly affected by the variance.

Then we observe the buffer occupancy distribution as function of the network behaviour.
In particular, we vary the mean duration of state normal and congested. We fix αLH = αHL

such that the mean sojourn time in both states ranges from 0.6 to 600 sec. Results are
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Table 2 Empty and full buffer probability

σ 0.1 0.5 1.0 2 5

Empty buffer probability 0.02628 0.02624 0.02620 0.02614 0.02608

Full buffer probability 0.02257 0.02258 0.02259 0.0226 0.02263

Fig. 7 Buffer occupancy
(measured in 128 kb chunks)
distribution versus the network
behaviour

reported in Fig. 7. When the network status changes more rapidly the distribution is more
uniform, otherwise when changes are less frequent the distribution is more skewed.

6 Conclusion

This paper considers the stationary solution of second order bounded fluid models. In par-
ticular it focuses on the boundary equations for the absorbing and reflecting cases. The set
of second order equations is reduced to a set of first order equations by adding extra vari-
ables. The resulting equations are expressed in matrix form in a way that can be easily
implemented into an algorithm.

The equations for the general case where the model can have states belonging to all the
possible subsets are not presented for space constraint. However, they can be derived from
the equations provided in Sect. 4.

We implemented the numerical analysis in Mathematica, and used it to compute the
solutions for the example presented in Sect. 5. We are currently working on a more efficient
implementation of the algorithm in C. Further improvements can be achieved by developing
a matrix exponentiation algorithm that exploits the particular block structure of the matrix
defining the second order fluid model.
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