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� We consider a Markovian queue and its associated exponentially averaged length. The set
of partial differential equations satisfied by the joint distribution of the queue and the averaged
queue length is given. We obtain a recursive expression for the moments of the averaged queue
length, and develop a stable algorithm to compute them. These results are illustrated through
numerical examples.
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1. INTRODUCTION

One of the important issues in teletraffic research is congestion control
and quality of service assurance. Different mechanisms were proposed
to tackle these problems and one of these mechanisms is the random
early detection (RED). Suggested by Floyd and Jacobson[2], it was first
aimed at preventing buffer overflows in networks as well as smoothing TCP
traffic arriving at a queue. Indeed in RED, packets are randomly dropped
according to a probability that depends on an average of the queue length
over time: this allows TCP sources not to increase or halve their rates all
at the same time. Other advantages of RED, developed in Floyd[2], include
less sensitivity to bursty traffic, as opposed to other congestion avoidance
mechanisms, such as Drop Tail. Several modifications of RED have been
proposed in the literature (see for instance Bodin[1] and Lin[6]) to cope in
addition with different types of traffics.
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600 Rabehasaina and Sericola

In this paper, we study the distribution and the moments of the
averaged length of a general Markovian queue, which is a first step towards
the analysis of the RED mechanism itself. Indeed, in that more difficult
case, we shall be able to tell, after evaluating the distribution or the
moments of the averaged queue, whether the RED protocol performs well
or not, since the difference between the averaged queue in our present
paper and the averaged queue in RED gives the averaged number of
customers rejected up to time t . This will be particularly interesting if we
want to meet constraints, say on the amount of rejected customers at a
fixed time (finite horizon constraint) or in the long run (infinite horizon
constraint).

The model we consider here generalizes the one studied by Kuumola
et al.[4,5], where the authors studied the averaged length of M/M/1/K
queue. More specifically, we consider a Markovian queue and its exponen-
tially averaged queue length between [0, t). As underlined in Kuumola[4],
the exponentially averaged queue length is taken with respect to time, as
opposed to normal RED, where this average is computed at the arrival time
of each new packet. Time average may in fact have been better suited than
average at each arrival, as was pointed out by the authors (Kuumola[4,5]).
Our paper generalizes some results from Kuumola[4,5], where analytical
results were obtained in the case of a finite M/M/1 queue of size 2 or 3. We
are particularly interested in a general Markovian queue, which includes
some classical queues such as MMPP/PH/1 or BMAP/PH/1 queues. The
Batch Markovian Arrival Process (BMAP) was first introduced by Neuts[8] as
the versatile Markovian point process. It generalizes the Markovian Arrival
Process (MAP) introduced by Lucantoni et al.[7].

This work is also related to Kella[3] and Rabehasaina[9,10] in which
the authors study a Markov modulated fluid queue with a service rate
depending linearly on the fluid level in the queue. However, the difference
with those latter papers is the interpretation of the model: the averaged
queue length and the instantaneous queue considered here are seen
respectively as the fluid queue level and the Markov chain driving the
fluid queue in Kella[3] and Rabehasaina[9,10]. We believe that these different
interpretations, as well as the techniques related to each of these two points
of view, can be exploited in future works. Stationary regime of the queue
(i.e. of the exponentially averaged queue length in our context) is studied
in Kella[3], in the case where the driving Markov chain has two states, and in
Rabehasaina[9], where the model in addition features a white noise factor.
Attention is given to the transient distribution in Rabehasaina[10]. As in
Rabehasaina[9,10], we focus in the present paper on expressing recursively
the moments of the exponentially averaged queue length and on obtaining
them easily from an algorithmic point of view.

The paper is organized as follows. In section 2 we describe the model
and set the differential equation satisfied by the distribution function of
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Transient Analysis in Markovian Queues 601

the exponentially averaged queue length by using a standard first passage
argument on the Markov process formed by the queue length at time t
and its exponentially averaged queue length over [0, t). In section 3 we
compute all moments of this averaged queue length recursively and we give
a numerically stable algorithm to compute these moments, which requires
only additions and multiplications of non-negative quantities. These results
are illustrated through numerical examples.

2. MODEL DESCRIPTION

We consider a Markovian queue with either a finite or infinite capacity
waiting room. The states of this queue are represented by the regular
continuous time Markov chain X = �Xt , t ∈ �+� given by Xt = (Lt ,�Lt )
where Lt represents the instantaneous queue length at time t and �Lt
represents the environment, also called the phase process, associated with
Lt needed to ensure that X is a Markov chain. Note that the phase process
at time t may depend on the queue length Lt at time t . For example, if the
Markovian queue is the BMAP/PH/1 queue, then �Lt is the phase of the
arrival process if Lt = 0 and is a couple of which the first entry is the phase
of the arrival process and the second entry is the phase of the server at time
t , if Lt ≥ 1. That is why we shall sometimes call �Lt the phase process. Of
course, if the Markovian queue is the M/M/1 queue then there is no need
of the process �Lt , since Xt = Lt in that case.

The state space of the Markov chain X is denoted by E given by

E =
⋃
j∈�

� j� × �j ,

where � is the set �0, � � � ,K � if the capacity of the queue is finite and equal
to K and is the set � if the capacity is infinite. �j is the set of values taken
by the phase process �Lt when Lt = j . We suppose that for every j ∈ �, �j

is finite. We denote by Q the infinitesimal generator of the Markov chain
X and by qj ,� the output rate of state ( j ,�), where of course � ∈ �j . The
initial distribution of X is denoted by the row vector �(0).

The continuous version of the RED mechanism is based on the
exponentially averaged queue length St defined, for small values of h, by
S0 = 0 and

St+h = e−whSt + (1 − e−wh)Lt ,

where w ≥ 0 is a weighting or averaging parameter. By subtracting St from
each side, dividing by h, and letting h tend to 0, we obtain

d
dt
St = −w(St − Lt). (1)
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602 Rabehasaina and Sericola

This equation leads to the following expressions of St

St =
∫ t

0
Lt−uwe−wu du = e−wt

∫ t

0
Luwewu du. (2)

We first study in this paper the joint distribution of the process (St ,Lt).
To do that we consider the process (St ,Xt) which is a Markov process with
state space

� = �(x , ( j ,�)) | x ∈ �+, j ∈ �,� ∈ �j�.

Note that if the capacity is finite and equal to K , we can restrict the state
space by taking x ≤ K .

For every (x , ( j ,�)) ∈ � and t ∈ �+, we denote by Fj ,�(t , x) the joint
distribution of (St ,Xt), that is

Fj ,�(t , x) = Pr�St ≤ x ,Xt = ( j ,�)�.

It is easy to check that for a fixed t > 0, the distribution of St has
jumps which correspond to the fact that the number of customers in the
queue remains the same during the whole interval [0, t). More precisely,
we denote by Bj , for j ∈ �, the subset of states of the state space E
corresponding to a queue length equal to j , i.e.,

Bj = �(l ,�) ∈ E | l = j ,� ∈ �j�.

For j ∈ � and t > 0, we then have from either Relation (1) or Relation (2)

St = j(1 − e−wt) ⇐⇒ Ls = j , ∀s ∈ [0, t) ⇐⇒ Xs ∈ Bj , ∀s ∈ [0, t).
It follows that

Pr�St = j(1 − e−wt)� = �Bj (0)e
QBj Bj t�,

where QBjBj is the sub-infinitesimal generator of dimension |Bj | obtained
from Q by considering only the internal transitions of the subset Bj

and �Bj (0) is the subvector of dimension |Bj | obtained from the initial
probability distribution �(0) by considering only the initial probabilities of
states of Bj . The vector � is the column vector with all its entries equal to 1,
its dimension being given by the context, which is |Bj | here. In particular,
when the capacity of the queue is equal to K , we have St ≤ K (1 − e−wt).

Theorem 2.1. For every t > 0 and x �= j(1 − e−wt) for all j ∈ �, we have

�Fj ,�(t , x)
�t

= w(x − j)
�Fj ,�(t , x)

�x
+

∑
(k,�)∈E

Fk,�(t , x)Q(k,�),( j ,�). (3)
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Transient Analysis in Markovian Queues 603

Proof. By conditioning on the number Nt ,t+s of transitions of the Markov
chain X in [t , t + s), we have

Pr�St+s ≤ x ,Xt+s = ( j ,�)� = Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s = 0�

+Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s = 1�

+Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s ≥ 2�.

We separately consider these three terms. For the first term, since
Xt+s = ( j ,�) is equivalent to Xt = ( j ,�) when Nt ,t+s = 0, we have

Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s = 0�

= Pr�St+s ≤ x ,Xt = ( j ,�),Nt ,t+s = 0�

= Pr�St+s ≤ x |Xt = ( j ,�),Nt ,t+s = 0�Pr�Xt = ( j ,�),Nt ,t+s = 0�

= Pr�St ≤ (x − j)ews + j |Xt = ( j ,�),Nt ,t+s = 0�Pr�Xt = ( j ,�),Nt ,t+s = 0�

= Pr�St ≤ (x − j)ews + j |Xt = ( j ,�)�Pr�Xt = ( j ,�),Nt ,t+s = 0�

= Pr�St ≤ (x − j)ews + j ,Xt = ( j ,�)�Pr�Nt ,t+s = 0 |Xt = ( j ,�)�

= Pr�Nt ,t+s = 0 | Xt = ( j ,�)�Fj ,�(t , (x − j)ews + j)

= e−qj ,�sFj ,�(t , (x − j)ews + j)

= (1 − qj ,�s)Fj ,�(t , (x − j)ews + j) + o(s).

The third equality follows from the fact that, if Xt = ( j ,�), which means
that Lt = j and Nt ,t+s = 0, we have St+s = e−wsSt + j(1 − e−ws). The fourth
and the seventh equalities follow from the Markov property.

For the second term, which we denote by G(s), we define

G(k,�)(s) = Pr�St+s ≤ x |Xt = (k, �),Xt+s = ( j ,�),Nt ,t+s = 1�.

We then have

G(s) = Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s = 1�

=
∑

(k,�)∈E
G(k,�)(s)Pr�Xt = (k, �)�Pr�Xt+s = ( j ,�),Nt ,t+s = 1 |Xt = (k, �)�

=
∑

(k,�)∈E
G(k,�)(s)Pr�Xt = (k, �)�H(k,�),( j ,�)qk,�s + o(s), (4)
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604 Rabehasaina and Sericola

where H = (H(k,�),( j ,�)) is the transition probability matrix of the embedded
Markov chain at the instants of state changes of X . It is given by the relation

H = I + 	−1Q , (5)

where I is the identity matrix whose dimension is given by the context and
	 is the diagonal matrix containing the output rates qj ,� of the states of X .

When Xt = (k, �), Xt+s = ( j ,�) and Nt ,t+s = 1, we have

e−wsSt + m(1 − e−ws) ≤ St+s ≤ e−wsSt + M (1 − e−ws),

where m = min�k, j� and M = max�k, j�. We thus have, using the Markov
property,

Pr�St ≤ (x − M )ews + M |Xt = (k, �)�

≤ Gk,�(s) ≤ Pr�St ≤ (x − m)ews + m |Xt = (k, �)�.

We then obtain from (4)∑
(k,�)∈E

Fk,�(t , (x − M )ews + M )H(k,�),( j ,�)qk,�s + o(s) ≤ G(s),

and

G(s) ≤
∑

(k,�)∈E
Fk,�(t , (x − m)ews + m)H(k,�),( j ,�)qk,�s + o(s).

By dividing by s and taking the limit when s tends to 0, we get

lim
s→0

G(s)
s

=
∑

(k,�)∈E
Fk,�(t , x)H(k,�),( j ,�)qk,�.

For the third term, we have

Pr�St+s ≤ x ,Xt+s = ( j ,�),Nt ,t+s ≥ 2� ≤ Pr�Nt ,t+s ≥ 2� = o(s).

Combining the three terms, we obtain

Fj ,�(t + s, x) − Fj ,�(t , x)
s

= (1 − qj ,�s)Fj ,�(t , (x − j)ews + j) − Fj ,�(t , x)
s

+ G(s)
s

+ o(s)
s

= Fj ,�(t , (x − j)ews + j)Fj ,�(t , x)
s

− qj ,�Fj ,�(t , (x − j)ews + j) + G(s)
s

+ o(s)
s

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
s
 
I
n
r
i
a
 
R
o
c
q
u
e
n
c
o
u
r
t
]
 
A
t
:
 
1
0
:
1
1
 
2
3
 
M
a
r
c
h
 
2
0
0
9



Transient Analysis in Markovian Queues 605

If now s tends to 0, we get

�Fj ,�(t , x)
�t

= w(x − j)
�Fj ,�(t , x)

�x
− qj ,�Fj ,�(t , x) +

∑
(k,�)∈E

Fk,�(t , x)H(k,�),( j ,�)qk,�.

Because from (5), Q = −	 + 	H , we obtain that

�Fj ,�(t , x)
�t

= w(x − j)
�Fj ,�(t , x)

�x
+

∑
(k,�)∈E

Fk,�(t , x)Q(k,�),( j ,�),

which completes the proof.

We denote by F (t , x) the row vector (Fj(t , x))j∈� where each Fj(t , x) is
itself a row vector of dimension |Bj | equal to (Fj ,�(t , x))�∈�j and by Dj(x) the
diagonal matrix Dj(x) = w(x − j)I of dimension |Bj |. Relation (3) can then
be written as

�Fj(t , x)
�t

= �Fj(t , x)
�x

Dj(x) +
∑
k∈�

Fk(t , x)QBkBj ,

where QBkBj is the sub-matrix of Q containing the transitions from states of
Bk to states of Bj . It can be also written as

�F (t , x)
�t

= �F (t , x)
�x

D(x) + F (t , x)Q ,

where D(x) is the block diagonal matrix whose blocks are the diagonal
matrices Dj(x).

3. MOMENTS EVALUATION

We introduce the transient state probabilities of the Markov chain X
defined, for every ( j ,�) ∈ E , by �j ,�(t) = Pr�Xt = ( j ,�)�. We denote by
�(t) the row vector containing all the �j ,�(t). This probability distribution
is given by

�(t) = �(0)eQt .

For every ( j ,�) ∈ E , r ≥ 0 and t ≥ 0, we denote by Vj ,�(t , r ) the r th
moment of St when Xt = ( j ,�), that is

Vj ,�(t , r ) = E(S r
t 1�Xt=( j ,�)�) =

∫ ∞

0
xr dFj ,�(t , x),
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606 Rabehasaina and Sericola

where 1�c� equals 1 if condition c holds and 0 otherwise. For t ≥ 0 and r = 0,
we have Vj ,�(t , 0) = �j ,�(t) and for t = 0 we have Vj ,�(0, r ) = �j ,�(0)1�r=0�.

We denote by V (t , r ) the row vector containing the Vj ,�(t , r ), for
( j ,�) ∈ E . We first make sure that all these moments exist, i.e., that
E(S r

t ) < +∞ for all r > 0 and t ≥ 0. This can be done as follows. From
Relation (2), we have

S r
t =

( ∫ t

0
Lt−uwe−wudu

)r

≤
( ∫ t

0
wLt−udu

)r

=
( ∫ t

0
wLudu

)r

= t r wr

(
1
t

∫ t

0
Ludu

)r

≤ t r−1wr

∫ t

0
Lr
udu from Jensen’s inequality.

Taking expectations on both sides, we get

E(S r
t ) ≤ t r−1wr

∫ t

0
E(Lr

u)du.

The Markov chain X being supposed to be regular, the moments E(Lr
u) are

finite for all u ≥ 0 and r ∈ �, and so the moments E(S r
t ) are also finite for

all t ≥ 0 and r ∈ �.
The following theorem gives a recursive expression for the moments

of St . We denote by D the block diagonal matrix whose j th block Dj is of
dimension |Bj | and is given by Dj = jI , for j ∈ �.

Theorem 3.1. For every r ≥ 1 and t ≥ 0, we have

V (t , r ) = wr
∫ t

0
V (t − u, r − 1)De (Q−wrI )udu. (6)

Proof. From Relation (1), we easily get, for r ≥ 1,

d
dt
S r
t = rS r−1

t

d
dt
St = −wrS r

t + wrS r−1
t Lt .

For r ≥ 1, we have S r
0 = 0, so the solution to this equation is

S r
t =

∫ t

0
wre−wruS r−1

t−u Lt−udu.
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Transient Analysis in Markovian Queues 607

Multiplying both sides by 1�Xt=( j ,�)� and taking expectation, we get, for all
( j ,�) ∈ E ,

Vj ,�(t , r ) = E
( ∫ t

0
wre−wruS r−1

t−u Lt−udu 1�Xt=( j ,�)�

)

=
∫ t

0
wre−wruE(S r−1

t−u Lt−u1�Xt=( j ,�)�)du

=
∫ t

0
wre−wru

∑
(k,�)∈E

E(S r−1
t−u Lt−u1�Xt−u=(k,�)�1�Xt=( j ,�)�)du

=
∫ t

0
wre−wru

∑
(k,�)∈E

kE(S r−1
t−u 1�Xt−u=(k,�)�1�Xt=( j ,�)�)du. (7)

The expectation on the right hand side is given by

E(S r−1
t−u 1�Xt−u=(k,�)�1�Xt=( j ,�)�)

= E(S r−1
t−u |Xt−u = (k, �),Xt = ( j ,�))Pr�Xt−u = (k, �),Xt = ( j ,�)�

= E(S r−1
t−u |Xt−u = (k, �))Pr�Xt−u = (k, �),Xt = ( j ,�)�

= E(S r−1
t−u 1�Xt−u=(k,�)�)Pr�Xt = ( j ,�) | Xt−u = (k, �)�

= Vk,�(t − u, r − 1)(eQu)(k,�),( j ,�),

where the second equality follows from the Markov property. Replacing this
result in Relation (7), we obtain

Vj ,�(t , r ) =
∫ t

0
wre−wru

∑
(k,�)∈E

kVk,�(t − u, r − 1)(eQu)(k,�),( j ,�)du

= wr
∫ t

0

∑
(k,�)∈E

kVk,�(t − u, r − 1)(e (Q−wr )u)(k,�),( j ,�)du.

This gives in matrix notation

V (t , r ) = wr
∫ t

0
V (t − u, r − 1)De (Q−wrI )udu,

which completes the proof.
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608 Rabehasaina and Sericola

As V (t , 0) = �(t) for every t ≥ 0, we have from (6)

V (t , 1) = w
∫ t

0
�(t − u)De (Q−wI )udu

= w�(0)
∫ t

0
eQ (t−u)De (Q−wI )udu

= we−wt�(0)
∫ t

0
e (Q+wI )uDeQ (t−u)du.

This gives, since eQ (t−u)� = �,

E(St) = V (t , 1)� = we−wt�(0)
∫ t

0
e (Q+wI )uduD�. (8)

Note that for w > 0, the matrix Q + wI is in general a singular matrix.

3.1. Moments Computation

We suppose in this subsection that the Markov chain X is uniform
which means that 
 = max�qj ,�, ( j ,�) ∈ E� is finite. We denote by P the
transition probability matrix of the uniformized discrete-time Markov
chain, with respect to 
, associated to X . The matrices P and Q are related
by P = I + Q /
. We then have the following theorem.

Theorem 3.1.1. For every t ≥ 0, r ≥ 0, and for every � ≥ 
, we have

V (t , r ) =
∞∑
n=0

e−�t (�t)
n

n! U (n, r ), (9)

where the row vectors U (n, r ) are given by

U (n, 0) = �(0)
(
� − 


�
I + 


�
P

)n

for n ≥ 0 (10)

U (0, r ) = 0 for r ≥ 1 (11)

U (n, r ) = wr
�
U (n − 1, r − 1)D +

(
1 − 
 + wr

�

)
U (n − 1, r )

+ 


�
U (n − 1, r )P for n ≥ 1 and r ≥ 1 (12)

Proof. When r = 0, we have V (t , 0) = �(t) = �(0)eQt and

Q = −
(I − P ) = −�

[
I −

(
� − 


�
I + 


�
P

)]
,
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Transient Analysis in Markovian Queues 609

so, we easily get

V (t , 0) =
∞∑
n=0

e−�t (�t)
n

n! �(0)
(
� − 


�
I + 


�
P

)n

.

In order to satisfy Relation (9) for r = 0, we take

U (n, 0) = �(0)
(
� − 


�
I + 


�
P

)n

.

For r ≥ 1 and t = 0, we have V (0, r ) = 0 and Relation (9) gives V (0, r ) =
U (0, r ), so we take U (0, r ) = 0 for r ≥ 1.

Consider Relation (6). Using a change of variable, it can be written,
for t > 0 and r ≥ 1, as

V (t , r ) = wr
∫ t

0
V (u, r − 1)De−(Q−wrI )udue (Q−wrI )t .

Differentiating with respect to t , we obtain

dV (t , r )
dt

= wrV (t , r − 1)D + V (t , r )(Q − wrI ). (13)

We write the solution to that differential equation as (9) and we determine
the relations that must be satisfied by the row vectors U (n, r ). From
Relation (9), we have

dV (t , r )
dt

=
∞∑
n=0

e−�t (�t)
n

n! �(U (n + 1, r ) − U (n, r )),

wrV (t , r − 1)D =
∞∑
n=0

e−�t (�t)
n

n! wrU (n, r − 1)D,

and, using also the relation Q = −
(I − P ),

V (t , r )(Q − wrI ) =
∞∑
n=0

e−�t (�t)
n

n! U (n, r )(Q − wrI )

=
∞∑
n=0

e−�t (�t)
n

n! U (n, r )(−(
 + wr )I + 
P ).

It follows that if the U (n, r ) are such that

�(U (n + 1, r ) − U (n, r )) = wrU (n, r − 1)D − (
 + wr )U (n, r ) + 
U (n, r )P ,
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610 Rabehasaina and Sericola

then Equation (13) is satisfied. This relation can be rewritten, for n ≥ 1
and r ≥ 1, as

U (n, r )= wr
�
U (n − 1, r − 1)D +

(
1 − 
+wr

�

)
U (n − 1, r )+ 


�
U (n − 1, r )P .

3.2. Algorithmic Aspects

We suppose in this subsection that the Markovian queue has a finite
capacity that we denote by K . We consider the computation of the R first
moments E(St),E(S 2

t ), � � � ,E(S
R
t ) for � different values of t , say t1 < · · · < t�.

By taking � = 
 + wR , Relation (12) becomes a convex combination
of three vectors. It is then easy to check from Relations (10), (11) and
(12) that, for every n ≥ 0 and r ≥ 0, the vectors U (n, r ) have non-negative
entries and that we have

U (n, r )� ≤ K r .

Also from Relations (11) and (12), it can be shown by recurrence that
U (n, r ) = 0 for r ≥ n + 1. These considerations yield a computational
method that avoids numerical problems since all the computed
quantities are bounded and require only additions and multiplications of
nonnegative numbers.

Let � be the desired precision for the computation of all these
moments. For every t > 0, we define the integer N (t) by

N (t) = min

{
n ≥ 0

∣∣∣∣
n∑

i=0

e−�t (�t)
i

i! ≥ 1 − �

KR

}
. (14)

We thus have

E(S r
t ) = V (t , r )� =

N (t)∑
n=0

e−�t (�t)
n

n! U (n, r )� + e(N (t)),

where, by definition of N (t), the remainder of the series e(N (t)) satisfies

e(N (t)) =
∞∑

n=N (t)+1

e−�t (�t)
n

n! U (n, r )� ≤ K r
∞∑

n=N (t)+1

e−�t (�t)
n

n!

≤ KR

(
1 −

N (t)∑
n=0

e−�t (�t)
n

n!

)
≤ �.
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FIGURE 1 Mean value and standard deviation of St as a function of t for w = 1.

In order to compute the R first moments of St at the instants t1 < · · · < t�,
we need only to evaluate the vectors U (n, r ) for n = 0, 1, � � � ,N (t�), as these
vectors do not depend on the values of t1 < · · · < t� and as the function
N (t) is an increasing function of t .

3.3. Numerical Examples

Consider the M/Cox2/1/K queue with finite capacity equal to K , arrival
rate equal to 
 and with a two phases Coxian service time distribution given

FIGURE 2 Mean value and standard deviation of St as a function of t for w = 0. 1.
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612 Rabehasaina and Sericola

FIGURE 3 From top to the bottom : Mean values of Lt and St as a function of t for w =
3, 2, 1, 0. 5, 0. 2, 0. 1, 0. 05, 0. 03, 0. 01 respectively.

by the classical representation (�,T ) of phase-type distributions, where

� = (1, 0) and T =
(−3/2 1

0 −2

)
.

The mean service time −�T −1� is thus equal to 1. The queue is
supposed to be initially empty and we take 
 = 0. 8 and K = 50. The
precision is specified as � = 10−5.

Figure 1 and Figure 2 show the mean value E(St) and the standard
deviation �(St) = [E(S 2

t ) − E(St)2]1/2 as a function of t when the weighting
parameter w is equal to 1 and 0. 1 respectively.

We observed that when the weighting parameter w is greater than 1, the
results obtained for the mean value E(St) and the standard deviation �(St)
are very close to those obtained in the case where w = 1. This behavior is
illustrated in Figure 3 which shows the convergence of E(St) to E(Lt) when
w tends to infinity.
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