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Abstract-With the increasing complexity of multiprocessor 
and distributed processing systems, the need to develop efficient 
and accurate modeling methods is evident. Fault tolerance and 
degradable performance of such systems has given rise to con- 
siderable interest in models for the combined evaluation of 
performance and reliability [l], [2]. Markov or semi-Markov 
reward models can be used to evaluate the effectiveness of 
degradable fault-tolerant systems. Beaudry [l] proposed a sim- 
ple method for computing the distribution of performability in a 
Markov reward process. We present two extensions of Beaudry’s 
approach. First, we generalize the method to a semi-Markov 
reward process. Second, we remove the restriction requiring the 
association of zero reward to absorbing states only. We illus- 
trate the use of the approach with three interesting applications. 

Index Term-Computer performance, computer reliability, 
graceful degradation, Markov models, performability, reward 
processes, semi-Markov models. 

I. INTRODUCTION 

M ULTIPROCESSORS and distributed processing sys- 
tems can provide higher performance and higher relia- 

bility/availability over single-processor systems. In order to 
properly assess the effectiveness of such systems, measures 
that combine performance and reliability are needed. For this 
purpose, Meyer [2] developed a conceptual f ramework of 
performability. Markov and semi-Markov reward models 
are used in the performability evaluation of computer or 
communication systems. 

This paper presents a new algorithm for the computation of 
the distribution of accumulated reward until absorption in a 
semi-Markov reward process. Failures and repairs of system 
resources are modeled by a semi-Markov process, called the 
structure-state process [2]. A performance level, or reward 
rate, is associated with each state of the structure-state pro- 
cess. The resulting semi-Markov reward process is then able 
to capture not only failure and repair of system components, 

Manuscript received March 24, 1988; revised November 15, 1988. This 
work was supported in part by the U.S. Air Force Office of Scientific 
Research under Grant AFOSR-84-0132, by the NASA Langley Research 
Center under Grant NAG-I-70, and by the Software Productivity Consor- 
tium under Grant 88-023. 

G. Ciardo was with the Department of Computer Science, Duke Univer- 
sity, Durham, NC 27706. He is now with the Software Productivity Consor- 
tium, Hemdon, VA 22070. 

R. A. Marie and B. Sericola are with IRISA Campus de Beaulieu, 35042 
Rennes Cedex, France. 

R. S. Trivedi is with Department of Computer Science and Electrical 
Engineering, Duke University, Durham, NC 27706. 

IEEE Log Number 9037986 

but degradable performance as well. Application examples 
used to illustrate our method are fairly diverse and interest- 
ing. The first example is a repairable system with a limited 
number of repairs [3]. The second example is the M/M/2 
queueing system subject to failure and repair. The final 
example is based on a measurement-based performability 
model of a large IBM system [4]. 

In [l], Beaudry proposed an algorithm for computing the 
distribution of the accumulated reward until absorption in a 
continuous-time Markov chain. We extend her result in two 
directions. First, we consider semi-Markov reward pro- 
cesses, thus removing the restriction of exponentially dis- 
tributed sojourn times. We have observed in [4] that the use 
of an exponential distribution as an approximation to a non- 
exponential distribution can cause considerable errors in the 
results. Second, we allow nonabsorbing states with zero 
reward rate, which do occur in practical models [4]. In 
Beaudry’s method, these states would have caused a “divi- 
sion by zero” in the computations or would have required 
approximating their zero reward rate using a small positive 
quantity instead, but we caution the reader that the numerical 
errors due to such an approximation can be large (as will be 
shown in one of the examples of Section VI). 

In Section II, the problem of computing the distribution of 
accumulated reward for a semi-Markov process is intro- 
duced; in Section III, an informal approach to the solution of 
this problem is given; in Section IV, a transformation is 
defined, to obtain a new semi-Markov process whose lifetime 
is distributed as the accumulated reward of the original 
process. The efficient construction of the new semi-Markov 
process is discussed in Section V, while examples of the 
application of our method to the modeling of computer 
systems are presented in Section VI. Section VII contains 
some considerations for further extensions. Proofs of impor- 
tant results are given in the Appendix. 

II. THE SEMI-MARKOVREWARDPROCESS 

Assume that { X(t), t 1 0) is a right continuous semi- 
Markov process with state space S c M = (0, 1,2, . * * } 
and with probability of being eventually absorbed equal to 1. 
Let Tk be the time of the kth transition (TO = 0) and define 
v, = r,+, - T,, the sojourn time in the kth visited state 
(k E GJ).  Let X, = X( T,), the state reached after the kth 
transition. Let S, denote the set of absorbing states. Define 
the kernel, the transition probability matrix, and the initial 
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Fig. 1. A  simple example. 

probability row vector, respectively, as 

Q(t)=[Qi,j(t)] = [pr{X,+,=j,I/,~tIX,=~}] 

P = [Pj,j] = [pr{Xk+i =j] X, = i}] 

= [Qi,j(w>] = Q(w) 
a= [T;] = [pr{X(O) = i}]. 

Assume for simplicity that VIES,,  Q;, i(t) = u(t - l), 
where 

u(x) = I 0 ifx<O 
1 ifxr0 

andnotethatViES,, Pi,j=Ofor i#j. 
{ X,, k E IH} is a discrete-time Markov chain over the 

state space S with transition probability matrix P (see [5]). 
Eventually the process gets absorbed, so the first index K, 
such that X, is absorbing, is finite with probability 1. 

A real-valued reward rate ri is associated with each state 
i E S. Assume that the reward rates are nonnegative and, in 
particular, zero for the absorbing states: 

Vies, (riER,,rilO)A(iESA*ri=O). 

Define the accumulated reward earned up to time t by 

y(t) = /‘rx(,, d7. 
0 

The measure considered in this paper is the distribution of 
Y(a), representing the accumulated reward up to the absorp- 
tion, conditioned on the initial state i: 

= pr 
is 

co 
rxctj dt 5 x 1 X0 = i . 

0 I 
The problem of computing the distribution of Y(t) for a 
finite t in a Markov reward process is considered elsewhere 
[6]. The distribution of Y(t) in a semi-Markov reward 
process is discussed in [7] and [8]. 

The following semi-Markov reward process will be used as 
a running example throughout the paper. Errors arise in a 
system (initially in an up state) according to a Poisson 
process with rate X. When an error is detected, the system 
goes to a recover state, where it tries to handle the error. 
The error handling time is a given constant T. If a second 
error arises before the recovery completes (within T t ime 
units from the occurrence of a previous error), the system 
fails, going to a down state. This event has probability 
1 - c = 1 - ewhT. Fig. 1 shows the transitions between 
states. Using the given definitions, S = { up, recover, 

IEEE TRANSACTIONS ON COMPUTERS,  VOL. 39, NO. 10, OCTOBER 1990 

down}, S, = {down}, a = U,O,Ol, and 

[ 

0 1 - e-A’ 0 
Q(t) = cu(t - T) 0 1 _ e-hmin{t,T} 

0 

:+ 0 W)]. 

u(t - 1) I 

01 0 

00 1 

The reward rates are rup = 1, rrecover = y, rdown = 0, 
where 0 5 y I 1. If y = 0, then Y(a) is the total system 
uptime until failure and hence C(x) will be the distribution 
of system uptime. If y = 1, then Y(oo) will be the time to 
system failure. 

1II.A CHANGEOFPACE 

The stochastic process ( X(t), t L 0} defined in the previ- 
ous section is a semi-Markov reward process, since a reward 
rate is associated with each state of the semi-Markov process. 
A method of computing the distribution of accumulated re- 
ward until absorption when { X(t), t 1 0) is a Markov chain 
was given in [l], where transient states were restricted to 
strictly positive reward rates. More recently, in [9], this 
restriction is removed. A similar approach can be used in the 
semi-Markov setting. Beaudry’s idea in [I] is to define a new 
Markov chain ( X(x), x 2 0) by dividing the transition 
rates out of state i by ri, so that the distribution of time to 
absorption of the new process is the same as that of Y(w) in 
the original process. This is true because the transformation 
takes into account the earned reward in the “time” index of 
the stochastic process. The sojourn in state i is slowed down 
or accelerated according to the value of ri, being larger or 
smaller than 1. Then, for state i, sojourn times of length 7 in 
{X(t), t > 0) and of length Tri in {X(x), x I 0) are 
equivalent. Another way of thinking about this transforma- 
tion is a substitution of the index variable, from time to 
reward: a sojourn of t t ime units corresponds to a gain of tri 
reward units in state i (and a gain of x reward units in state i 
corresponds to a sojourn of x/ri t ime units). Fig. 2 illus- 
trates this correspondence. 

Following the example of Fig. 1, the sojourn time in state 
up is left unchanged and so is the one in state down (which 
is irrelevant since state down is absorbing), but the sojourn 
time in state recover is changed. The transition toward state 
down now has rate X/y and a successful recovery takes Ty 
“time’ (or, better, accrues Ty reward). 

There is a difficulty with the above approach: the reward 
rate of a transient state could be zero. No reward is earned 
during the sojourn in such a state; however, the system will 
eventually move either to another transient state, possibly 
with positive reward rate, or to an absorbing state. 

Intuitively, ze_ro reward rates corresp_ond to instantaneous 
transitions in { X(x), x 1 0} , since { X(x), x 1 0) spends 
no time ({X(t), t L 0) gains no reward) in transient states 
with zero reward rate. Note that it is possible to increase the 
reward rate in each state by a positive quantity b (e.g., 1) so 
that all the reward rates become strictly positive. The follow- 
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Fig. 2. Transformation on the index variable. 

ing equality then holds: 

E[ Y(a) ) X0 = i] = E[ W(W) ) X,, = i] - b MTTF, 

where g(w) is the cumulative reward computed using the 
shifted reward rates and MTTF, is the expected lifetime 
starting in state i (obviously independent of the reward 
rates). Unfortunately, the expression cannot be generalized to 
the distribution of Y(W), because the cumulative reward and 
the lifetime are not stochastically independent. 

Kulkami [9] showed how to eliminate zero reward tran- 
sient states if { X(t), t 1 0) is a Markov chain. A similar 
approach had already been used in the generalized stochastic 
Petri net (GSPN) framework [lo], where infinite rates arise 
directly from the definition, not from the presence of zero 
reward rates. In the GSPN, ‘ ‘timed” transitions represent 
activities whose time to completion is exponentially dis- 
tributed, while “immediate” transitions represent logic events 
taking no time. The markings (states) of the GSPN are 
partitioned into “tangible” and “vanishing,” the latter cor- 
responding to markings where at least one immediate transi- 
tion is enabled. Although vanishing markings may describe 
logical (but instantaneous) conditions of relevance, they must 
be eliminated before the underlying stochastic process can be 
studied: a GSPN is hence transformed into a smaller Markov 
chain whose states are the tangible markings only. 

Yet another related effort is reported in [ 111, where groups 
of “fast” states are approximated to be groups of vanishing 
states. In [ 121, the distribution of sojourn time until absorp- 
tion for a given subset of states in a Markov process is 
calculated. 

In Fig. 1, state recover becomes vanishing if y  is 0. This 
would amount to saying that no useful work is performed 
when a recovery is under way, a reasonable assumption. 

IV. THE DEFINITION OF THE NEW PROCESS 

In this section, a new semi-Markov process ( X(x), x  -> 
0) is defined, whose state space is a subset of S and whose 
time to absorption has the same distribution as Y(W). This is 
done by eliminating the vanishing states and by scaling the 
sojourn time in each state. 

Let So be the set of transient states with zero reward rates, 
ST be the set of transient states with positive reward rates, 
anddefineS,=S,US,=S\S,,sotbat S=SoUSTU 
S, = So U S,. If the states are reordered according to these 
subsets, the one-step transition probability matrix P and the 
initial probability vector ?r can be partitioned as 

?r = [ doI ) ,IU] = [ $‘I, I[=l ) a[*’ 1. 
The quantity 

M = [Mi,j] = (I- p[~l)-‘pIoll 

- pIW + ptwpw1 + pKu2pto~l + . . . 

=r , j@O=l j@O*l ] 

= 
I( 

I- pWl)-‘pV=l, (I- @ml)-‘pWl] 

will be often used in the following derivations. (I - Pro@) - ’ 
is the fundamental matrix of the discrete-time Markov chain 
{ X,, k E G4}  when all the states in S, are considered absorb- 
ing. Hence, the entries of A4 satisfy [ 131 

ViESo, VjES,, 

Mi,j= 5 pr{X,=j,vnO<n<kX,ESo)Xo=i). 
k=l 

that is, Mi, j is the probability that the first state visited in S, 
will be j, after an arbitrary number of transitions within So, 
given that the process { X, , k E N} is in stat,e i E So. 

The state space of the new process { X(x), x  1 0) is 
?? = S, . Let c  be the “time” of the ith transition for 
{X(x), x  r 0) and let PO = 0, pi = fi+i - c, and Xi = 
X(c). The kernel 

Q(x)  = [Qi,j(x)] = [pr{Xk+, =.i,~~;(x]X~=i}] 

is given by 

I Qi, j(X) if iESA. 

If state i E ST does not reach any state in So, this transforma- 
tion preserves the type of the Qi, j( *) distribution, it merely 
stretches or compresses its shape on the horizontal axis, from 
“time” to “reward.” If states in So are indeed reached, 
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Qi,j(*) is a mixture distribution, possibly completely differ- 
ent from Qi, j( e), which is just a component in the mixture 
(Qi, & *) could even be identically equal 0). 

The matrix 

B = Q(w) = [ Fi,j] = [pr {Xi =jl X0 = i}] 

= $=7-i 

[ 

p[T*i 

0 I 1 
is related to P by the following relation: 
I; = p[lll + p[lOlM = pull + pr’0lproll 

+ prlolprwproll + pwlpw12p[oll + . . . . (1) 

j defines the DTMC obtained from { X,, k E $9) when 
only transitions into states of S are considered: 

viE$,vjEf?, 

viES,,vn 2 0, pr{N(m) = n) X0 = i} 

= JgM,,jPr(Nm) =nIXo=j} 

Vn 2 0, pr {N(m)‘= n> = pr {I?(m) = n}. 

Using the above definitions and results, the following lemmas 
are proved (in the Appendix): 

Lemma 1 (dealing with the case X0 E So): 

ViES,, Vn 10, pr(Y(w) Ix,N(a) = n)Xo= i} 

= ,~,"~,jPr{y(m) sx,N(a) = nl Xo=j} 

vies,, ci(x) = ,g,“‘, jcjCx>. 

Lemma 2 (relating the two processes, given the number of 
steps in ST before absorption): 

Iji,j= 2 pr(X,=j,VnO<n<kX,,ESoIXo=i}. vies=, vn 2 0, pr{X(x)ESA,G(03) = n120 = i} 
k=l =pr(Y(oo) lx,N(m) =nlX,=i}. 

That is, a single step from ieS to jeS in {Xkr kEN} can 
be seen as a sequence of steps in ( X,, k E RI}, starting from 

Lemma 3 (eliminating the condition on the number of 

i, ending in j, and such that the visited states, apart from the 
steps to absorption from the previous lemma): 

first and the last, belong to So. ViES,, Ci(X) = 6(x) 
The initial probability vector 

4 = [Gil = [pr{X(O) = i}] 
ViESO, ci(x) = Jg,“i,j4tx) 

, 
where 

of the transformed process is given by VjESl, e(x) =pr{X(x)ESA(.XO=j}. 
2 = aUl + aIOl~ = [ $=I, +*I] 

Removing the dependence on the initial state in Lemma 3, 

= [ *‘=I + &‘l~K’=l, a[*l + d%P*q . (2) we obtain the following. 
Theorem 1 (main result): 

That is, the probability that the initial state for { Xk, k E Nl} 
is i E S, is computed as the sum of the probability that the 
initial state for { X,, k E RI} is i plus the probability that the 

c(x)“~ciCx)Ti= ,&ci(x)Ti + i~oci~x)~i 

initial state for { X,, k E N} belongs to So but the first state 
visited in S,, after an arbitrary number of transitions in S,, 
. . 

(g,“i,jj;(x))*i 

is I. 

Define N(n) and I?(n) as the number of states in ST 
visited in the first n steps by { X,, k E RI} and { Xk, k E RJ} , 
respectively, including the initial state. Using the definition 
1(a) = 1 if event CY is true, I(,) = 0 otherwise: 

N(n) = i: Z(XkdT) fib> = i: Z&d,)~ 
k=O k=O 

N(m) and fi(m) are the number of states in ST visited 

using Lemma 3 

= g iitxjni + g eCx)( 2 gi”i,j) 
I 

= [g fi(x)?ri + Ig’i;(x)(*j o 7rj) using (2) 

= ]E$4~j 

I 

before absorption by the two processes, respectively, includ- where the last quantity can be defined as P(X), the uncondi- 
ing the initial state. We then obtain the following results: tional distribution of the time to absorption for process 

pr {&(a) = 01 = pr { XoESA) = 1 - iitT1l = *tA1l 
(Z(x), x 2 O}. 

The transformation of this section, applied to the example 
of Fig. 1 when y, the reward of state recover, is zero, gives 

vnr1, pr {I+(a) = n} = $=l$==l”-‘ljI=*ll i = {up, down}, 
where 1 is the column vector with all entries equal to 1. The 
following results are proved in [ 121: 

ViESl,vn 2 0, pr{N(m) = n I X0 = ‘} 

= pr {i?(m) = n ) 2, = i> 

(1 - c)(l - eKhx) 
u(x - 1) 1 

F= [; (1 ;“I. 
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Fig. 3. The equivalent Markov chain. 

Thus, the system stays in state up for a number of periods, 
until it jumps to state down, where it gets absorbed. The 
length of each period is exponentially distributed with param- 
eter X (the semi-Markov process is independent, since the 
distribution of the period does not depend on whether the 
destination state is up or down) and the number of periods 
up to absorption has a geometric distribution with parameter 
(1 - c). The sum of the lengths of all the periods is exponen- 
tially distributed with parameter x(1 - c), so the process is 
equivalent, as far as absorption time is concerned, to a 
Markov chain with state space {up, down} where the transi- 
tion from state up to state down has rate x(1 - c) and 
where state down is absorbing (see Fig. 3). Then 

pr { Y(o0) I x} = pr (z(x) = down} = 1 - e-W1pc)X. 

V. ELIMINATIONOFTHEVANISHING STATESAND 
COMPUTATIONOF C(x) 

The first part of this section discusses the cost of perform- 
ing the elimination of the vanishing states when the state 
space S is finite. Various methods to compute the functions 
F;(x), needed to obtain C(x) using Theorem 1, are discussed 
at the end of the section. 

In the GSPN, the presence of a recurrent subset of vanish- 
ing states implies that the process becomes stochastically 
discontinuous. By contrast, during the transformation of the 
process { X(t), t 1 0) into { 2(x), x  1 O}, this situation 
cannot arise, since recurrent subsets are neither present ini- 
tially nor generated during the construction (slowing down or 
accelerating the sojourn time in a state does not change the 
relative transition probabilities from a state to the other 
states). The absence of recurrent subset of vanishing states 
guarantees the existence of the inverse (I - proo1) ‘. 

Define G  as the subgraph obtained from the state transition 
diagram when only the vanishing states are considered. G  
can contain self-loops and transient loops. 

A self-loop is a transition from a vanishing state to itself 
(Pi, i f 0 for some i E S,) and it can be simply ignored: Pi, i 
is set to 0 and the other nonzero entries in row i for Ptool 
and Pro’] are normalized (the new value of Pi, j is Pi, j/(l 
- Pi, i), for j E S, j # i). Since state i is vanishing, this 
modification does not change the final result (only the final 
destination is relevant, not the number of jumps into state i 
before finally leaving it). The diagonal entries of PIOol from 
now on can be assumed to be zero. 

A transient loop is a set of mutually reachable transient 
states, a strongly connected component in G. The presence of 
transient loops is not a problem in principle, but it can 
negatively affect the performance of the algorithm for the 
elimination of the vanishing states. Let no and n, be the 
number of states in So and S,, respectively, let xtiil be the 
number of nonzero entries in Prijl, i, j E { 0, l} , and assume 

that a sparse storage technique is used (for simplicity of 
notation assume xtiil larger than both n, and nj). 

If no transient loop is present, a partial ordering is implic- 
itly defined on the states of So (nodes of G);  from it, a 
compatible total ordering can be found in time 0( xrool), by 
means of topological sort [14], so that, if state i follows state 
j, then j cannot be reached from i in G. 

If the total ordering is applied to So, P@“’ becomes 
strictly upper triangular: 

q-1 

(PC”])“” = Oand (I- Pcnol)-’ = kzO (P[ml)k 

hence (I - Prool) - ’ is upper triangular with diagonal entries 
equal to 1. Although (I - Prool)-’ is never explicitly com- 
puted in practice, the triangular nature of PIOol allows great 
efficiency; the required steps are listed in the following, 
together with the asymptotic execution time requirements: 

. solve for A4 in (I + P@l)M = PC”] n,O( xrool) 

. compute W using W = P”olM n,O( xrl’l) 

. compute P using i = P1’ll + W O(n,n, + x1”‘). 

The total time requirement to compute fi is then (given the 
assumption xt”] 2 n, and xt”] 2 n,) 

o((x’w’ + xc’“‘) nl). (3) 
If transient loops are present, the worst case bound on the 

time requirement is higher, an LU factorization is involved, 
and the obtained matrices L and U can have a large fill-in, 
possibly 0( nt): 

. factorize Prool into L and U 004 
. solve for A4 in (I - Pcm1)A4 = Proll 

using L and U n,O(4) 
0 compute W using W = P[‘olM n,O(x[lol) 
. compute + using 1; = P[“l + W O(n,n, + xrlll). 

So the total time requirement is 

O(ni + (x[‘~] + ni)nl). (4) 
Comparing (3) to (4), the term 0( xrW1n,) is substituted by 
the term 0( ni + nt n,). The two terms are equivalent only if 
xrool = O(ni) and if no = O(n,). 

Finally, if transient loops are present, but their size can be 
considered “small” with respect to no, the topological sort 
idea can still be used to improve the performance. A partial 
ordering is now implicitly defined among the transient loops 
(strongly connected components in G),  not among the states 
(nodes in G), if each state not in a transient loop is consid- 
ered as a transient loop in itself. The strongly connected 
components can be found using a modification of the depth- 
first search algorithm [ 151, so the number of operations to 
find a total ordering on the states of So is still O(xtool) as 
before. The total ordering defined this way is such that, if 
state i follows state j, then either state j cannot be reached 
from state i in G, or states i and j are mutually reachable in 
G (they are in the same strongly connected component). 

Assume for simplicity that there are exactly no/k transient 
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loops of size k each: matrix Prool can then be put in upper vant value(s) of x or, even better, as a function of X, 
block triangular form, where each block P/,%1, 
size k X k. Also, denote with Mi j and roll 

i s j is of remains. Unfortunately this problem is generally harder than 

blocks forming A4 and PC”], 
Pi j the k x 1 

respectively, (a ‘small abuse of 
the elimination of the vanishing states itself. Viable methods 
include numerical integration of a system of coupled Volterra 

notation, since we already used the same symbols to indicate equations [17], use of Laplace-Stieltjes transforms, and, if 
elements of a matrix, not blocks). Each diagonal block must all Qi, j( *) are phase-type distributions, transformation of the 
then be LU factorized, introducing fill-in only in the block semi-Markov process into a CTMC to be solved using appro- 
itself, then a block-oriented back-substitution procedure can priate numerical methods. Regardless of the method em- 
be used to compute M, k rows at a time, without any fill-in ployed, additional advantages can be obtained by lumping all 
[16, p. 1611. The required steps are: the absorbing states together, an operation always advisable 

l for i = 1 upto no/k do 
factorize P,“,“’ into Li and Ui 

l for i = no/k downto 1 do 
for j = 1 upto n, do 

compute A using A = C;!?{:, P$“M,, j 
solve for Mi. i in (I - P$‘)Mi, i = Pi.‘jl - A using L; and Uj 

. compute W using W = P”“‘M 

. compute I; using F = P[“’ + W 

no/k. . . 
O(k3> 
no/k. . . 

:;A;. 
O(k2> I . 
n,O(x~‘“l) 
O(n,n, + x1”‘). 

The expression O(a) depends on the number of nonzero 
entries in each Pi[y’, but, summing over all the values of 1 

unless detailed information on the particular failure state 

and i it gives O(.&“‘l), to be summed over all n, values of 
(reason or “mode” of the failure) is required. In the follow- 
ing, it is assumed that this lumping is performed and the 

j, so the total time requirement is absorbing macro-state is L. 
O(k*n, + kn,n, + (x@“’ + xl’ol)n,). (5) 

If k = O( no), there is a small (constant) number of large 
loops: expressions (5) and (4) coincide. If k = O(l), there is 
a large number of small (constant size) loops: expressions (5) 
and (3) coincide. Finally, if k is a sublinear function of no 
for example k = 0( &), the dominant term in (5) will be 
determined by the relative value of no, n, , xtool, and xt”], 
but the running time of the algorithm will be in any case 
improved by exploiting this ordering, especially considering 
that the determination of the ordering itself is an inexpensive 
operation in comparison to the other steps. 

For simplicity, we will drop the “-” notation, since the 
problem is now the computation of the time to absorption for 
a semi-Markov process and the fact that this process was 
obtained from yet another process is irrelevant. The goal is 
the computation of the time-dependent state probability for 
state L (or the first-passage time distribution to state L), 
conditioned on the initial state i, for each state i E S \ S, 
such that rri > 0. 

So far the discussion has been on the computation of p. It 
should be clear how the same bounds hold when considering 
the computa;ion of Q, although, in general, the analogous 
expression Q(x) = Q”“(x/r) + Q”“(x/r)M (where Qt”] 
and Q *“’ have the obvious meaning) in general involves 
sums of real functions, not of real numbers. The bounds 
are nonetheless valid even in this case, for example the 
reader could imagine that they represent the time to output Q 
in symbolic sparse format. 

Conceptually only O(n,) distribution functions are needed, 
or even less; for example, only one function is needed if the 
initial state is certain, that is, 3i E S \ S, such that n, = 1. 
Unfortunately, in general, additional information must be 
computed to obtain the required distribution(s), so that the 
solution can be very expensive in terms of execution time, 
memory requirements, or both. 

The elimination of vanishing states helps the subsequent 
numerical solution both by reducing the overall size of the 
problem (especially when no is large in comparison to n, 
and the fill-in introduced in F is small) and by avoiding the 
introduction of distributions having extremely small aver- 
ages, to approximate vanishing states. As it will be pointed 
out in the section on the examples, the existence of “fast” 
states puts an excessive burden on the numerical solution. 
Furthermore, the incorporation of the reward information 
into the rate allows us to reduce the problem of computing 
the accumulated reward to that of computing the time to 
absorption. Once matrix Q has been obtained, the problem 
of computing C(x) (by computing ki( x) first) for the rele- 

If each distribution is approximated using a phase-type 
expansion, a Markov chain is obtained. A survey of numeri- 
cal methods to solve for the time-dependent state probabilities 
is presented in [18]. There is a tradeoff between the number 
of stages used in the expansions and how well the distribu- 
tions are fitted, but the first and main tradeoff is between size 
and simplicity: the state space is increased to allow a (sim- 
pler) Markovian analysis. 

A direct approach for the transient analysis of the semi- 
Markov process involves solving the system of integral equa- 
tions 
ViES, VjeS, ni, j( x, = z(i=j)(l - Hi(x)) 

+C s xn,,j(X - u> dQi, l(u) 
IES 0 

where 
n(x) = [n,,,(X)] = [pr(X(x) =jj x0 = i}] 

is the matrix expressing the time-dependent probability of 
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Fig. 4. Limited repairs 

being in state j conditioned on i being the initial state and 

H(x) = [Hi(x)] = [pr{vk;(‘x]X,=i}] 

is the vector of the holding time distributions in each state, 
independently of the destination state. The conditional distri- 
bution of time to absorption is then given by F;(x) = 
Iii, L(x). Further discussion on numerical methods for the 
above integration may be found in [17]. 

Laplace-Stieltjes transforms (LST) can also be employed. 
Define the LST of Qi, j( x)  by Qi, j(s) = 1,” eesx dQi, j( x). 
Partition Q(x)  as 

QITL’( x) 

I Q&d 

state U, to state Di (1 I i I k) and from state Di to state 
V,,, (1 I i I k - 1). 

Q,, D,(t) = cpi( t) (distribution of ith up period) 

Q  D,.U,+,Ct> = piCt> td’ istri u ion of ith repair period). b t 

If the reward rate in state Vi is ri > 0 and in state Di is 
0 (1 I i I k), then D,, * * . , D,_ , are vanishing states. 
Applying the transformations, S = { U, , U, , . . * , U,, Dk} 
and 

a,..,(x)=,,x)=~i(r) (Isirk-1) I 
OUk,Dk(X) = G ,(x) = Vk( x). 

The distribution of the accumulated reward up to absorption 
is 

C”,(X) = (a,* **. *a,)(x) 

= I”.r,“-“’ e-0 s,““- “. -$,(x - xl - .-- - xk-,) d&,(x,-,) 0.. d&(x,) d&(x,) 

x X-Y,T, x-y,r,- “’ -Y*-*Tk-2 - 
f.1 

= 
ss 

r2 Tk-1 x - y,r, - ... - Yk-2f-k-2 ‘k-1 . . . 
J’ 

‘pk - Yk-1 
0 0 0 ‘k-1 I-) rk 

Let Q(s)  be the matrix of the LST of Q(x)  and partition it where * denotes the convolution operator. The expression for 
accordingly: the LST transform is simpler: 

a4 = o 
i 

Q”l(s) owl 

I &L(S) . 

The vector P(s), whose elements are the LST of E;l( x), for 
i E S \ S,, can be computed as the solution of (see [ 191) 

(z - @ “‘(s))F(s) = Q ”“‘(S) (6) 

[as expected, F(s) is independent of Q,, L(s)]. In order to 
obtain F(t), we use a two-phase approach. First we solve the 
matrix equation (6) in s-domain and subsequently use numer- 
ical inversion of the vector E(s) into F(t); see [20] for a 
discussion on LST inversion. 

VI. EXAMPLES 

Limited number of repairs [3]: Consider a system experi- 
encing failures. When a failure occurs, the system is re- 
paired, but only up to k - 1 times. At the kth failure, the 
system will not be repaired any more; it will remain in the 
failed state (Fig. 4). The state space is S = 
(4, D,, u,,**-, U,, Dk} , there is only one absorbing state, 
S, = { Dk}, and a = [l, 0, 0, * * * , 01. Transitions are from 

Note that if ri = 1 for all the nonabsorbing states, then 
C,,(x) is simply the distribution of total uptime until failure. 
Interesting cases are: 

l Qui, D,(-) - CONST( T), for 1 I i I k. If ri = 1, for 
1 I i I k, then CU,( a) - CONST(kT);  if ri = k + 1 - i, 

for 1 5 i c: k, then C,(e) - CONST( 
k(k + 1) 

2 T). Note 

the independence of the result from the distributions 
Qoi, Ui+ ,( * ). Independence from the sojourn time distribution 
of the states with zero reward is a general property of this 
method, further simplifying the analysis. 

l Qu;, D,(*) - EXPO(h,), for 1 I i I k, then C,(a) - 
HYPo(Xl /rl , ’ ’ ‘, Ak/rk)j assuming that all the fractions X,/r, 
are different. 

l Qu,, D,(*) - NORMAL(p,  a*), for 1 I i I k. If ri = 
1, for 1 I i I k, then C,(a) - NORMAL(kp,  ka2); if 
ri= k+ 1 -i, for 1 5 i I k, then C,,(a) - 
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reward = 0 reward = p reward = 2~ 

L-----------------J 

Fig. 5. The Markov chain corresponding to the M/M/2/K system. 

k(k + 1) 
NORMAL( 2 CL, 

k(k + 1)(2k + 1) 
6 

2). 

l Qu,, D,(*) - EXPO( X) and ri = 1, for 1 5 i 5 k, then 
C,(e) - ERL( X, k). This could correspond to the simple 
case of a uniprocessor system, which can be either up or 
down. 

. QrS, Di(*) - EXPO((k + 1 - i)X) and rj = k + 1 - i, 
for 1 I i 5 k, then C,(e) - ERL( X, k), as before, interest- 
ingly enough, since this could correspond, for example, to a 
k-processor system without repair (pi is related to the time to 
reconfigure the system after the ith failure, not to the time to 
repair it). 

Cumulative computation of an M/M/2 /K system 
before failure: Consider a queueing system with Poisson 
arrivals, two servers, exponentially distributed service times, 
and finite capacity K. Let 1 /X and 1 /p be the average 
interarrival and service times, respectively. Lifetime and 
repair time of each server are independent and exponentially 
distributed with average l/4 and 1 /p, respectively. For 
example, the reader might imagine a system performing a 
certain set of tasks using two processors. Tasks are sorted 
according to their priority and low priority ones may be 
discarded if there is no waiting room available. When only 
one processor is available, tasks are more likely to be dis- 
carded (especially if with lower priority), but the system is 
still able to survive. If the second processor fails while the 
first is being repaired, no task can be performed and the 
system is considered down. The measure of interest is the 
cumulative computation performed up to the first failure of 
the system. 

The state of the system is denoted by a pair (i, j) where 
i = 0, I,2 is the number of nonfailed servers, and j is the 
number of jobs in the system (j is absent if i = 0). The 
system is initially in state (2,O) with probability 1. The 
cumulative computation for this system is represented by 
Y(a) for the CTMC in Fig. 5 when the reward rates are 
defined as 

r (2,O) = 07 ‘(2,l) = II? vj 2 2, r(2, j) = 2cL, 
r - 0, (1.0) - v.i 2 1, r(l,j) = P, 

‘co, - - 0. 

The SHARPE package [21] was used to analyze C(x) for 
the system, both with an “approximate” approach (the re- 

(27 1) (” 
VW zO- (2,2) -..* 

A[ ID 1+,Pl [P/P l 

WP - (2,K) 70 HP I t P IP 
1 Qfg--...y 

A=2+ ~+Pw~:Xw+A) [ I 
‘w 

H=P[$+PX+(2y++A;(i+X) 
D=p 1, [ 

x 
C=PX+(26+X)(++X) P  p~+(24+X)($+X) I 

Fig. 6. The transformed Markov chain corresponding to the M/M/2/K 
system. 

1 I  1 I  I  I  .  ...“‘-“” , ,  

. ..” 
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,.....” 

,,....” ,,....... 

,..’ 0.8 - ,..’ 
_..’ 

,...” 
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,. 
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_.’ 
- ,.: 

.:’ 
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0.4 _ ! 

0.3 - ;! 

0.2 - i 

0.1 i 
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0 1 2 3 4 5 6 7 8 9 (x10’) 

Fig. 7. C(x) of the M/M/2/K system. 

ward for states (2,O) and (1,0) is defined as 0.000001) and 
with the “exact” method proposed in this paper (states (2,0) 
and (1,O) are eliminated because they are vanishing). The 
transformed CTMC is in Fig. 6. The initial probability vector 
for the transformed CTMC, given the choice 1rc2, o) = 1, is 

,. h(4+A+p) 
X(2, 1) = 

PA  + (24 + x)(4 + A) ’ 

e 2x4 
T(l, 1) = 

PA  + (24 + A)(4 + A> ’ 

e 242 
T(O) = 

PX + (24 + X)(4 + A) ’ 

The values assigned to the parameters are K = 10, p = 
1.0, h = 0.6, 4 = 0.00001, and p = 0.005. Thedistribution 
function C(x) is plotted in Fig. 7. The difference between 
the exact and the approximate values of C(x) is plotted in 
Fig. 8 (note the logarithmic scale on the x axis). As ex- 
pected, the approximate solution is slightly more optimistic 
than the exact one (shown in figure), since it assumes that 
some computation is performed in the two states that would 
otherwise be vanishing. Unfortunately, the presence of ex- 
tremely small reward rates (six orders of magnitude smaller 
than the reward rates for the other states) causes numerical 
problems in SHARPE. The values of C(x) obtained with the 
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Fig. 8. Exact C(x) minus approximate C(x), for 10 5 x 5 10000. 

Ho N EXP( lOOOO.O)  

HI N  .29EXP(.003) t .71(EXP(.OOlO39)*EXP(.OO47974)] 

Hz - .205EXP(.006)+.54588EXP(.000995)t.24912EXP(.0004539) 

H, ~.385EXP(.004)+.615[EXP(.002193)*EXP(.0059258)] 

H4 - .073EXP(.002) + .76988EXP(.001030) + .15712EXP(.0002102) 

Hs - .195EXP(.Ol) t .5238EXP(.001030) t .2812EXP(.0005528) 

A6 -.33EXP(.004)+.67[EXP(.000998)*EXP(.014442)] 

117 - .35EXP(.OO5) + .49119EXP(.002163) + .15881EXP(.0006993) 

li, - EXP(J9689) 

II. r-v .925039EXP(.044518) t .074961EXP(.0036075) 

H,, ~.25EXP(.15)t.07EXP(.1)+.59296EXP(.014562)+.08704EXP(.0021377 

H,,, ,-- EXP(.003817)*EXP(.0301092) 

Hh - EXP(2.0) 

II, N  EXP( 1.0) 

Fig. 9. Holding time distributions. 

approximate method appear to be correct only up to x  = 103, 
then they become unstable, getting larger than the one ob- 
tained using the exact method. 

Measurement-based performability of a multiprocessor 
system: In [4], a performability study of an IBM 3081 
system is reported. The analysis involves three aspects: per- 
formance, failure, and recovery behavior. The working states 
are classified into clusters, according to the utilization of 
resources (CPU, channel, direct access storage). States 1 
through 7 correspond to the clusters. When a failure arises in 
a working state, it is logged as a channel (c), software (e), or 
direct access storage (d) error. Furthermore, a failure affect- 
ing several components is classified as a multiple (m) error. 
When the system enters state c, e, d, or m, a recovery 
process tries to restore the state of the system. Hardware (h) 
and software (s) recovery can be attempted on-line. If they 
fail, an off-line (0) recovery is necessary and the system is 
considered down. It is observed that the failure behavior is 
dependent on the particular working state. An extra state, 0, 
is added, to signify the periods of no data collection. A 
transition from state 0 to state x  means that the state is x  at 
the beginning of an observation period. A transition from 
state y  to state 0 means that an observation period ended 
while the state was y. The state space is then 
{0,1,2,3,4,5,6,7, c, e, d, m, h, s, o>. 

The process is assumed to be independent semi-Markovian 
and the holding time distributions for the transient states are 

fitted to the stage-type distributions shown in Fig. 9 (the 
holding time is independent of the next state reached): 

Vies, Hj(t)=pr{Vk/,lt(X,=i}. 

The transition probability matrix P resulting from the obser- 
vations is given in Fig. 10. Note that state o is the only 
absorbing state. Assume ?ro = 1. The following reward rates 
for the states are defined: 

ro = *** = r7 = 1; r, = 0.9946; re = 0.2736; 
rd = 0.5708; rm = 0.2777; r,, = rs = 0.0001; r0 = 0. 

This example was also analyzed using SHARPE. Each stage- 
type distribution was expanded, increasing the state space, 
but obtaining a CTMC as a result. 

An observation of the transition and reward rates suggests 
that this model has two types of vanishing states. The 
reward rates for states h and s are nearly 0, they would be 
specified as 0 if SHARPE had a provision for zero reward 
transient states (the system gains no reward in them). The 
remaining states have a nonnegligible reward, but the holding 
time in state 0 is negligible in comparison to the one in the 
other states. State 0 is indeed introduced as a device to 
represent the interruption of observation epochs; it simply 
provides a probabilistic switch from the states having a 
transition to it (1, * * * , 7, h, s) to the states reached from it 
(~2~4, -. , 7). State 0 is vanishing because the original 
process does not spend time in it (state 0 is really an 
abstraction), not because its reward rate is zero, but the final 
effect is the same: ideally the process does not gain any 
reward in states 0, h, or s. 

Using the notation previously introduced, s^ = 
{ 1,2,3,4,5,6,7, c, e, d, m, o}. Since the original process 
is independent, also the new process is independent, and, in 
addition, the holding time distributions for its states are 
obtained by stretching the corresponding original distribu- 
tions on the horizontal axis (no mixture distribution is gener- 
ated) : 

Vie91 (01, fij(x) = Hi t and e,,(x) = H,(x). 
i 1 I 

The transition probability matrix F (Fig. 11) completes the 
specification of the new process. The matrix F was obtained 
applying (1) with the help of the MATLAB package [22]. 

The analysis of the new process is also performed using 
SHARPE, expanding the stage-type distributions, as was 
done for the original process, but now matrix i contains 
nonzero diagonal entries and this leads, in the expanded 
CTMC, to arcs having coinciding source and destination. 
When this happens, the correct CTMC is obtained by simply 
ignoring these arcs (the holding time in the state or stage is 
increased). 

The system was modeled with the original description 
method using several sets of data, differing in the choice of 
Ho, rh, and r,, to observe how the results were affected (all 
the other specifications were as in Fig. 9). The choices were 
H O  - EXP(lOR) and rh = rs = lo-“, for n = 1,2,4,6, and 
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1 234567ee dmo 

.0031 .0510 .0150 .0405 .0531 .0986 ‘.0037 .0150 .2270 .3870 .I060 - 

.0585 .0071 - .0706 .0456 .0879 .0184 .0070 .262Il .3830 .0600 - 

.0123 .1107 - .1008 .0319 .0025 .0148 - .0910 .5450 .0910 - 

.0166 .0351 - .OlOO .0326 .0655 .0152 .0070 .2320 .5040 .0820 - 

.1726 .1171 - .0211 .0067 .1325 .0601 .0190 .1510 .2260 .0940 - 

.0274 .0596 - .0733 .0250 .OOll .0065 .0260 .2080 .4820 .0910 - 

.1623 .0779 .0480 .0154 .0972 .0519 .0233 - .1430 .3810 - - 

.1361 .1490 .0131 .3291 .0431 .3123 .0171 - - - - .00005 

.1480 .1662 .OlOl .3169 .0456 .2987 .0130 - - - - .0015 

.1361 .1490 .0131 .3291 .0431 .3123 .0171 - - - - .00005 

.1445 .1612 .0109 .3204 .0449 .3027 .0142 - - - - .OOll 

- - - - - - ---- -1 

Fig. 11. P, the transition probability matrix of the new process (entries are 
rounded). 

01234567eedmhso 

- ,135 ,216 - .I08 ,351 ,027 ,163 - - - - - - - 

.023 - ,046 ,015 ,038 ,045 ,098 - ,015 ,227 ,387 ,106 - - - 

,033 ,054 - - ,067 ,034 ,087 ,013 ,007 ,262 .383 .060 - - - 

,091 - ,091 - ,091 - - - - ,091 ,545 ,091 - - - 

.093 ,004 ,015 - - - ,063 - .007 ,232 ,504 .082 - - - 

,019 ,170 .113 - ,019 - .132 ,057 ,019 ,151 ,226 ,094 - - - 

.040 ,022 ,051 - ,069 ,011 - - ,026 ,208 ,482 ,091 - - - 

,143 ,143 ,047 .048 - .047 ,048 - - .I43 ,381 - - - - 

1 - - 

5 .5 - 

1 - - 

_-___- -_- - -- .645 ,355 - 

,018 ,131 ,142 ,013 .322 ,036 ,307 ,014 - - - - - .017 - 

,006 .159 .182 ,007 .304 ,046 ,285 ,008 - - - - - - .003 

1 

Fig. 10. P, the transition probability matrix of the original process. 

/ 

0: I I I I I 
0 5 10 15 20 25 (x106) 

Fig. 12. C’“‘(x) for 0 5 x 5 3 . 10’. 

8 (in Fig. 9, n is 5). Let C[“]( x) be the accumulated reward 
up to absorption computed this way, for n = 1,2,4,6, and 
8. 

The system was then modeled with the exact method, 
where states 0, h, and s are absent, obtaining a distribution 
of the accumulated reward consistently more pessimistic than 
the previous ones. The exact accumulated reward, C’“‘(X), 
is shown in Fig. 12). 

15 

10 

5 

(x10-8) 0 

I I I I I I f I I I 

20 30 40 50 60 70 80 90 

Fig. 13. From top to bottom, C@‘](x) - C”‘(x), C[“‘( x) - Cu2’(x), and 
C’“‘(x) - C141(x), for 10 5 x 5 100. 

The absolute differences between Ct”‘( x) and C?‘](x), 
Cr2](x), and Ct4](x), respectively, are reported in Fig. 13 
(for small values of x, from 10 to 100 reward units) and in 
Fig. 14 (for large values of x, up to 3 * 10’ reward units). 
As expected, the differences tend to be smaller (closer to 0) 
as n increases, but raising n too much (n 2 6) causes 
numerical problems in SHARPE. Interestingly enough, 
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I  I  I  I  4 

5 10 15 20 25 (x106) 

Fig. 14. From top to bottom, C[“‘(x) - C”‘(x), C’“‘(x) - C12]( x), and 
C[“l(x) - Cr4k,x), for 0 5 x  5 3 . 107. 

Ct4](x), whose computation is numerically correct, is still 
consistently apart from C[“‘( x). The cause of this behavior 
is the large number of visits to states 0, h, and s before 
absorption: state 0 has an extremely short holding time, but 
its reward rate is 1; and states h and s have an extremely 
small reward rate, but their holding times are not negligible. 
To obtain an almost perfect match with @ ‘l(x) without 
numerical problems, both the reward rate for state 0 and the 
sojourn times for states h and s had to be reduced. In other 
words, it may be difficult to obtain exact results using a 
“limiting” operation that will stress, if not compromise, 
most numerical methods: it is safer, and generally faster, to 
explicitly eliminate the vanishing states. 

VII. OBSERVATIONS 

Cumulative time spent in a subset of states up to 
absorption: If the reward rates for the transient states are 
restricted to be either 0 or 1, the reward rates for the 
absorbing states are 0, and the set B C S \ S, is defined as 
B = (i E S \ S, A ri = 1) , then C(x) represents the proba- 
bility that no more than x time units are globally spent in the 
states of the subset B before absorption. By changing the set 
of states having reward rate 1, different transformed pro- 
cesses can be obtained and different aspects of the same 
system can be analyzed. 

Extensions .of the class of semiMarkov processes con- 
sidered: The proposed transformation has been applied to 
semi-Markov processes with probability of absorption equal 
1 and with state space S partitioned into two subsets, S \ S,, 
composed of transient states with nonnegative reward rate, 
and S, , composed of absorbing states with zero reward rate. 
A more general class of semi-Markov processes could be 
considered, partitioning the state space S into two subsets, 
S,, composed of transient states with positive reward rates, 
and S \ S,, composed of states with zero reward rates. States 
in S \ S, may be recurrent, transient, or absorbing, as long 
as the states of S, are transient. It is easy to see, though, that 
this is a trivial generalization, where a recurrent subset of 
states with zero reward can be substituted for a single absorb- 
ing state with null reward rate. 

Another class of semi-Markov process that could fit the 
proposed approach is exemplified by the process { X(t), t L 
O> having S = M, ViEM, v~EM, Qi,j(t) - EXP(2’), if 
j = i + 1, Qi j(t) = 0 otherwise, r. = 1, a classical exam- 

ple of nonregular CTMC [23]. The properties of the process 
obtained applying the transformation will be dependent on the 
reward rates assigned to each state. If we let ri = 1 V i E M, 
the transformed process {g(x), x  L 0} will be nonregular 
as well: its lifetime, and Y(W), will be finite with probability 
1. If, on the other hand, we let ri = 2 i Vi E RI, the trans- 
formed process has a sojourn time - EXP(l) in each state; 
hence, it is regular: its lifetime, and Y(W), will be 03 with 
probability 1. 

Analogously, consider an initial process as before, but 
with Qi, I+ l(t) - EXP(l), an example of regular CTMC 
where all states are transient. If we let ri = 1 Vi E RI, the 
transformed process is regular and its lifetime, and Y(W), 
are co with probability 1. If instead we let ri = 2-’ Vi E RI, 
the transformed process has a sojourn time - EXP(2’) in 
state i; hence, it is irregular and its lifetime, and Y(m), will 
be finite with probability 1. 

Absorbing states with positive reward rate: If a positive 
reward rate is assigned to an absorbing state reachable from 
the initial state i, then E[ Y(m) 1 X0 = i] = + 00. Further- 
more, if the absorbing states S, are partitioned into SAo and 
S A+, the former containing states with zero reward rate and 
the latter containing states with positive reward rate, then the 
value of 

ai=pr{Y(oo) = +wIX,=i} 

=pr(X(oo)ESA+IXO= i} 

will influence the subsequent analysis. If cyi < 1, the condi- 
tional distribution of Y(W), given that the process is ab- 
sorbed in a state with zero reward rate and the initial state i, 
may be computed, 

pr { Y(o0) I x  ( X0 = i, X(00) cSAO} 

as well as its expectation, 

E[ Y(m) ) X0 = i, x(00) ~S,Q]. 

Once cyi has been computed, the problem is reduced to the 
one previously discussed and it can be solved with the same 
technique ( cyi is simply the mass at 00 for a defective 
distribution). 

Negative reward rates: A further complication arises in 
the presence of negative reward rates, often present, for 
example, when costs are considered. If some absorbing state 
has a negative reward rate, then S, must be partitioned into 
S,-, S*O, and S,+. CY;, CZ~, and CZ+ can be defined as the 
probabilities of being absorbed in each subset, respectively. 
If ap > 0, the conditional distribution of Y(W) can be 
defined, as done in the previous paragraph, but its computa- 
tion is complicated by transient states with negative reward 
rate. If there is a lower bound - b to the value of these rates, 
the reward rate of the transient states can be shifted by 
adding b to them, so that they become nonnegative. In 
particular, if S is finite, b always exists. 

As already mentioned in Section III, though, performing 
this shift is useful only to compute the expected value of 
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Y(W) using the relation 

E[ Y(a) 1 X0 = i] = E[ g(w) 1 X,, = i] - bMTTF, 

but not to compute its distribution. 
VIII. CONCLUSION 

In this paper, we have presented an algorithm for the 
computation of the accumulated reward in a semi-Markov 
reward process. This is an extension of an algorithm pro- 
posed by Beaudry. The algorithm is robust, since it allows 
for zero reward states that are nonabsorbing. The algorithm 
proceeds by replacing zero reward nonabsorbing states by a 
probabilistic switch; thus it is related to the elimination of 
“vanishing” states from the reachability graph of a general- 
ized stochastic Petri net [lo] and to the elimination of fast 
transient states in a decomposition approach to stiff Markov 
chains [ll]. The usefulness of the algorithm is illustrated 
with several examples. 

APPENDIX 

Proof of Lemma 1: ViES,,Vn 2 0, 

pr{Y(~)5x,N(03)=nlXo=i} 

= jE~us,pi, j pr {Y(M) 5 X, N(m) = n 1 X0 = j} 

= jzopi, j pr {Y(m) 5 x, N(m) = n I X0 = j} 

+ Jz, pi, j pr { Y(m) 5 x, N(oo) = n I Xa = j}. 

Defining the column vectors 

Uo= [pr{Y(=)lx,N(=) =nlX,=i}] i E So 

U1=[pr{Y(oo)5x,N(m)=n/Xo=i}] i E S, 

we obtain 

u, = (I - P[~y'pwT~ =MU, 

and the first result follows. The second result is obtained 
summing over n. 

Proof of Lemma 2: For n = 0, the two quantities are 
trivially equal to 0. For n 2 1, the proof is made by induc- 
tion on n. Let iE&, then, for n = 1, 

pr{R(x)ESA,~(m)=ll~o=i}=~~~&i,j(x) 

and 

pr{Y(03)4x,N(oO)=l(X,=i) 

= ;:, Pr { XhESA, vnO<n<hX,ESO,~~~XIXO=i 
> ‘i I 

=pr X,ESA, Vo5 :IXO=i 
i I I 

X,ESA,VnO<n<hX,ESO,~~/O rlX,=i 
‘i I 

= IEAQi,j(r) + & ~2pr[xhts~,vnl<“<hX,sSo,X,=~,~o~ r\XO=i) 
I 0 I 

= 
gQiJ(:) + 2 E2 i 

pr Xh~SArV~l~n<hX~~So~X~=I,~~~~,XO=~ 
I II I I 

*pr X,=I,V,<~lX,=i 
i ‘i 1 

= zAQi,j(E) + ~Qi,i(~)~2Pr(x,tS~.Vn1<n<hX.ESolX, =l> 0 I 

= ICAQi.j(r) + ~Qi,,(~)~,Pr~X~~S~,V~O<n<IIX,ES,IXo=I) I I 

= gAQi,j( t) + S  &Qi,l( r)M ,,j = zAQi,j(x). 1 I 
Supposenowthelemmaistruefor1,2;~~,n- landletn> 1. 

pr{X(x)ESArG(M) =n120=i} 

= b?(w) = n - 1 I X0 = j} d&, j(z4) 



= C Sxpr{Y(m) cx- u, N(m) = n - 1) ito = j} dQi,j(u) 
Mr 0 

= C Jxpr{Y(m) cx- 
i+ 0 

u,N(w) =II- 1120=j)dQi,j : 
i i I 

+c J xpr{Y(oo) 5x- 
&ST 0 

u,N(m) =n- lIko=j}~M,,jdQi,, z 
16.7, i i I 

pr(Y(w) Ix, N(a) = n)Xo= i} 

= C J’ pr (y(w) 5  x - riu, ~(a) = n - 1) X0 = j} dQi,j(u) 
.I+ 0 

x 

+C J “Pr{Y(m) sX-riU,N(w) =n- lIXo=j}dQi,j(u) 
ie& 0 

+C J ie% 0  
‘/gMj,,Pr{Y(a) sx-riu,N(a) =  n  - 11X0= I}dQi, j(u)usingLemmal 

T  

= c J*pr{Y(m) Ix- 
&ST 0 

u,N(w) =n- lIXo=j}dQi,, : 
i 1  I 

+C 
jd, J xCM,,,p r(Y(W )~x-u,N(w)=n- IIXo=l)dQi,j : 0  IaS, i 1  I 

= c J*pr{Y(m)<x- 
i+ 0  

u, N(w) =  n  - 1) X0 = j] dQi,j F 
i 1  I 

+C ~“,(y(m)rx-~,~(~)=n-L~X,=j/~~l,j~Qi,l(~)~ 0  I jet+ .I0 

Proof of Lemma 3: Distinguish three cases: 
If iEST, 

C,(x) = nTo pr { Y(w) i x, N(w) = n ( X0 = i} 

using Lemma 2 
= k(x). 

If iES,, Ci(x) = e(x) = 1. 
If iESO, 

Ci( x) =  C Mi, jCj( x) using Lemma 1  
j+ 
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