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Abstract

This paper presents a discrete-time Markov chain model for TCP, the Transmission Control Protocol for reliable
transporton the Internet. The purpose is the evaluation of stationary TCP flows behavior using performance measures
such as the mean throughput. The model is based on previous works which are generalized by taking into account
the slow start phases that appear after each time-out recovery, whose importance is discussed.
© 2004 Published by Elsevier B.V.
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1. Introduction

The great expansion of the Internet has triggered a lot of work on its efficiency and on possible
improvements. The apparently simple mechanism ofTiaasport Control Protoco(TCP) used by
HTTP transfer, file transfer, email and remote access has thus been modeled with various stochastic tools.

Assuming a periodic window evolution marked by random loss events of probahilggparating
successive congestion avoidance phases, the authors of have shown that the mean thpowgkput
O(1/./p).

Many studies are based on a fluid approach and are usually and mainly focussing on getting an analytical
expression for the mean throughput of a single steady-state TCP connection. Itis thg6dsy 13,15)
but alsq[1,2,4,5]which focus on the window si2@&/, just before tha-th loss. The case of multiple TCP
connections is the subject [#,8,11]for instance. Among all other tools explored, the max-plus algebra
provides in[7] expressions for the mean throughput in the case of several routers in series.

Our paper is based on previous works present§®, I6,17]which consider a discrete-time model and
a discrete evolution of the window size. We propose here a discrete-time Markov chain model which aims
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at giving analytical expressions for measures such as the mean throughput of one bulk transfer TCP-Ren
flow among exogenous traffic. A flow may represent the transfer of a large data file as well as the global
TCP traffic from one ftp server to another for instance. This model also provides various results for the
successive TCP phases.

The paper is organized as follows. The TCP-Reno mechanisms are revieSattion 2and modeled
in Section 3with a discrete-time Markov chain based on the notioroohds Expressions for the send
rate and for the goodput are obtainedSaction 4and Section 5 in which our numerical results are
discussedSection 6shows the importance of slow start phases in terms of duration and of humber of
segments sengection 7eventually draws a conclusion.

2. Description of TCP

TCP is a reliable flow control protocol for connection oriented links, [4€g19] In this protocol,
network congestion, identified by packets loss, is detected by the lack of packet acknowledgments,
leading the protocol to a modification of the transmission throughput.

Indeed, each successfully transmitted packet is validated and confirmed to the source by a small packe
called ACK (ACKnowledggwhich contains the sequence number of the nextexpected byte and areceiver’s
maximum window size giving information about its buffer occupancy. So as not to unnecessarily load
the network, the receiver sometimes waits for more data to acknowledge before sending an ACK. Those
ACKs are thus calledelayedACKs. The numbeb of segments validated per ACK is typically equal to
1 or 2. AtimerTs will set the departure of an ACK if no new data is to be ACKed.

There are two kinds of loss detection:

e detection bytime-out(TO): if no ACK is received for byte numberbefore the expiry of a timefy,
then atime-outoccurs. The segment starting with byiés considered lost and is thus retransmitted,
and no more data is sent until byies ACKed;

e detection by the arrival ahree duplicateACKs (TD): if a segment beginning with byteis lost but
some following segments are received, each of these will generate an ACK requestingthgtds
one ACK requesting byte and successive duplicate ACKs. The reception of the third duplicate ACK
will halve the window and generate the segment retransmission. In fact, duplicate ACKs can occur
when disordered segments are received, and the arrival of one or two duplicate ACKs is not considered
as a proof of loss.

TCP is based on a sliding window dynamic. The window, initialized to 1, gives the number of bytes
that can be sent before receiving any ACK. Each time an ACK arrives, the window slides to the right
to release as many bytes as the ACK validates into the network. The function of TCP is to modify the
window sizeWF (in segments) according to the algorithm presented below and described in the RFC2001
[20].

First, TCP-Reno consists in three phases depending on loss events and on the comparison of th
congestion window siz@F to theslow start threshold W. If a TD loss occurs, thew" := max( W</2],

2) andWe := max(W¢/2], 1), then starts a congestion avoidance phase. If a TO loss occur§ythen
max(W-/2], 2), W* := 1, and a time-out phase starts.
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Time-out, slow start and congestion avoidance operate as follows:

e time-out(to): just after a TO loss detection, the apparently lost segment is retransmitted. After each
retransmission failure, the timer value doubles (frognto 2Ty, 4To, 8T, ...) until 64Ty, and then
remains constant (and gets bacKgat the end of this time-out period, that is when the corresponding
ACK arrives).

e slow start(ss): starts after a time-out recovery and lasts as long®as W, During slow start\\¢
;= WF + 1 each time an ACK is receiveth 6egments ACKed). If the whole window is successfully
transmitted, then it generat€¥//b] ACKs, where[x] denotes the smallest integex. Forb=1, a
window of sizeW* will thus generatd\* ACKs, so it will grow fromW° to 2WF. Consequently, the
congestion window grows exponentially during the slow start phase;

e congestion avoidancga): each ACK reception addsVily segments to the window size, so that the
ACKment of the whole window increas&¥® by 1bh. Consequently, the congestion window grows
linearly (of one segment evebyrounds) during the congestion avoidance phase.

3. The model

If the dispatch duration of all the segments and of all the ACKs held in a given window is negligible
compared to theound trip time(RTT), then we can justify the following definition edund given in
[9,16,17] aroundis the period of time between the departure of the first segment of the current window
and the arrival of its ACK. The duration of a round is close to the round trip time when the delayed ACK
timer Ts is small compared to the RTT.

3.1. Definition

We aim at modeling the window behavior using a homogeneous discrete-time MarkovXckain
(X)n=1 With two componentsx,, = (WE, WM. The first componenW?¢ denotes, when positive, the
window size during th&-th round. The null value foW} is used to represent the time-out period. The
second compone" denotes the value of the slow start threshold duringittteround. We denote by
Whax the maximum window size, which is the receiver’'s buffer capacity indicated in the ACKs (when
W reachedNimax it remains constant until the next loss). The description the state space of this Markov
chain is given, more formally, by:

o X, =(i,j)withie {1,..., Wnax} andj € {2,. .., [Wmnax'2] } when the current window size isnd the
slow start threshold i
e X, =(0,j)withj e {2,..., [Wmad2]} when the connection is in a time-out period with threshold

As long asW¢ =i > 1, a transition of the Markov chain represents one round and thus lasts RTT
seconds. In order to make the mean duration (in seconds) of a time-out BEFigicequal to RTT times
the mean number of successive visits to statg)(Qyve define the two following transitions from each
state (0),j =2,..., [Whax2]:

e from (0,j) to (1,]) with probability pg at the end of a time-out period,
e from (0,j) to (0,]) with probability 1— pg otherwise,
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Fig. 1. Example of congestion window evolution.

with pg = RTT/E[T,]. In Section 4.5 we give the expression d[T,] as a function of RTT,p
andTy.

The state spack of this Markov chain is a subset of the &tdefined byE' = {0, ..., Wnax} x {2,
... [ Whax'2] }. We can notice that folhax = 10, 50, 100, 200, the sEt contains, respectively, 44, 1224,
4949 and 19,899 states.

A simple example of the beginning of a connection is giveFigs. 1 and vhere we takeV" = 4
segmentsdVmax = 8 andb = 1. It can be noted ifig. 1, that, for instance, state (3, 4) will never be reached.
This is due to the fact that the window sizes reached in the slow start phase are for:

e b=1:1141/b1=2,2412/b] =4,8,16,32, ...
e b=2:11411/b1=2,2412/b]1=3,58,12...

This example leads to the following partitioning for the state space of the Markov chain, which is
represented iffig. 2 The state spadgis written asE = E° U AU B where

o EO={(0,/)2< < [Wmay/2l},

e B= {(i, ])|2 < J=<i=< Wnax and J = [Wmax/21},

e A={(i, ))1<i< j<|Wna/2] and3n > 0} such that = f ["I(1)}, where f(w) = w + [w/b],
F%w) = w, and f" = fln-Uo £ forn> 1.

The partition shown irFig. 2is in fact a partition of the state spa&é and the sef contains the
reachable states éf during the slow start phase.

with .
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Fig. 2. Markov chain transitions and partitioning.



S. Fortin-Parisi, B. Sericola / Performance Evaluation 58 (2004) 89—-108 93

TD
}
TD
oo {
%% th )
"""" Witk
jss Jca jczzca 1to
cycle

Fig. 3. Description of a cycle.

This discrete-time Markov chain is irreducible and aperiodic. It is thus ergodic and its stationary
distributions is the unique distribution verifyingP = = whereP is the transition probability matrix,
which is given inSection 3.3

3.2. Cyclic behavior

In what follows, we consider the Markov chain in stationary regime and we assume that the source
behaves as a saturated one, which means that there are always packets waiting for transmission.

In such a context, an observation of the congestion window size shows a cyclic evolution, consisting
in one slow start phase followed by several congestion avoidance phases separated by TD losses, anc
then a TO loss starting a time-out period at the end of which a new cycle begirEgs&g We denote,
respectively, by

Tio, TssandT¢, the duration of a time-out period, a slow start phase and a congestion avoidance phase,
tho, dssandd., the number of segments sent during the perifglsTss and T,

TEb?°kthe time between a time-out recovery and the next TO loss,

d®%the number of segments sent dur

Nioss the mean number of loss detections per cycle,

p the connection throughput, more precisely the mean transmission isgasratewhich takes into
account all segments that have left the source, including lost segments and retransmysisiang (

input rate seen by the network).

ObservingFig. 3and because of the cyclic window evolution, we would write the throughast

E[d%™ + E[dy]
E[TP2N + E[T;o]

(1)

However, this formula does not take into account the residual rounds that appear after each loss and
which are presented iBection 4.1ogether with the expression pf

3.3. The transition probabilities

We assume that losses only occur in the direction from the sender to the receiver (no loss of ACKs)
and that any segment has a fixed probabijlityp get lost. More precisely, the random variable defined
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by the number of consecutive segments that are transmitted before loss has a geometric distribution with
parameter - p.

Let us first suppose that the connection is in slow startWie= i < j = W'. As long as the Markov
chain remainsin slow start, the congestion window increases by one segmenteach time an ACKis received
And becaus¢W¢/b | segments are acknowledged for the whole roigl,, = W + [W</b]| = [yWE]
withy =1+ 1h. In the following propositions, we give expressions for the non-zero transition probabilities
of the Markov chain. These expressions being easy to obtain, we omit the proofs.

Proposition 1. Forl <i < j < |[Wnax/2] , We get

e Pijyn.j) = (1— p):noloss occurs
o P jyomax(is2l.2) = (1 — (1 — p))g:i: a TO loss occurs
o P j(max(i/2).10.max(is2).2)) = (1 — (1 — p))(1 — ¢g;): a TD loss occurs

where g (computed irSection 4.2 denotes the probability that a loss is due to time-out whémrW
Suppose now that the transmission is in congestion avoidance inisijted. W¢ =i > j = win.

Proposition 2. Observing that congestion avoidance globally raises the window sizéohiye. by one
segment every b roungdbden forl <j <i <Wnax

P jyi.y = (L= p)'(1 — 1/b): no loss occurs

PG ji+1.j) = (L = p)'(1/b): no loss occurs

P jomax(i/2).2) = (1 = (1 — p))g:: @a TO loss occurs

P, jymax(is2).1).max(i/2).2)) = (L = (L = p)')(1 — g;): a TD loss occurs

Note that in order to get the model more accurate about the raise of one segmertt evergls, we
should decompose the Markov chain staf¢)(into b new states, say,(j, 1), G, j, 2),..., (i, j, b), but,
first that would of course significantly increase the Markov chain size (evdn#@&) and secondly, that
would not change the measures of interest since the stationary distribution on the staté rgraams
the same after such a transformation.

Proposition 3. Similarly, for each j we have

& PWo )Womes) = (L — p)"™ no loss occurs
© PlWinar. )O.max(Wna2).2) = (1 = (L = p)"™)qw,,,: @ TO loss occurs
P Winar.J)Max(Wnae/2). 1).max(Way2).2)) = (1 — (L = p)"™)(1 — gw,,,): @ TD loss occurs

As explained infSection 3we define the transition probabilities in time-out.

Proposition 4. For each j we have

e Pp j)o0,j) = 1— (RTT/E[T]): no acknowledgment yet
e P 1 j = RTT/E[Ty]: the acknowledgment has arrived

The expression 0E[Ty] as a function of the timeily and the loss probability is computed in
Section 4.5

The shape of the transition probability matfxand the regions corresponding to the different types
of losses are shown iRig. 4.
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Fig. 4. Link between the transition matrixand TCP.

4. Computation of the throughput
4.1. Residual rounds

First, we make the assumption that in a given round, the loss of one segment leads to the loss of
the following segments (correlated losses). This should be the case in a high-speed network for instance.
Moreover, inthe round where the loss takes pladeséfgments are however transmitted before congestion,
then those segments will generate ACKs and the window will slide. This mearisribatsegments are
transmitted in the next round, which is called tesidual round

This behavior is shown iRig. 5 which depicts the case where the last segment sent during the residual
round is lost. We consequently introduce the following notations:

e d: number of segments sent in a residual round,
e Dy probability that a loss is followed by a residual round, that is probability that a residual round is
not empty.

We can now give the expression of the send pate

Proposition 5. The send rate is given by

. Eld] + E[dgg(:k] + NiossE[dyr]
E[Tio] + E[T2Y + RTT(Noss— 1)prr

(2)

Proof. The first terms of expression (2) correspondtp (1) The last terms, whenms,,ss appears, are
due to the residual rounds. In counting the mean number of segments transmitted during a cycle, we also

Fig. 5. The residual round.
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Fig. 6. Detail of a time-out period.

need to take into account the mean number of segments constituting the residual rounds generated by tt
Nioss l0ss detections. This mean number of segments is eqiNt&[d].
For what concerns the mean cycle duration, itis increasegg BY T for each of theNoss— 1) TD losses,
because the TO loss residual round is taken into account in the next time-out period, as shigve.in

O

The expressions d¥liess, Prr, E[dy], E[dko], E[Tiol, E[T5, E[d3%q are given inEgs. (4)—(8) and
(11)-(12)

Remark 6. Let us denote by, the number of ca phases in a cycle ad = E[n.5]. Whereas, it is
clear thatE[ng‘Ck] = E[Tsd + E[ncalcd], our numerical results have shown th%{lTEbj‘C"] is very closed

to E[Tsg + NeaE[Tca], which means that., andT., can be considered as independent. The same results
hold for variables., andd.a.

4.2. TO-type losses proportion

Now that we introduced residual rounds, we are able to understand how a loss might be a TO loss
and not a TD loss, and thus to compute probabilitjethat a loss is due to TO whai® =i, which are
necessary for the evaluation of transition probabilities.

Proposition 7. The probability gthat a loss is due to TO when®W iis givenbyqg; = 1ifi <2b+1
and
(A -@-p)"HE+A-p*t-1-p)

1) , ifi<2b+1. 3)

i

Proof. Using the notation irrig. 5, we have

e If i <2b+ 1thenk < 2bhence no TD loss can happen (three duplicate ACKs heed+ 1 =2b+ 1
segments to be received). In this case, the loss is necessarily due to TPsile.
e Ifi>2b+ 2then
o if k < 2b: similarly, only a TO loss can occur;
o if k> 2b+ 1: there is a TO loss only when less tham21 segments from the residual round arrive
at destination (thel2+ 1 first segments are not all received), i.e. ltiesegment from the residual
round gets lost, with | < 2b + 1.
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Thus, if we denote bl , the event corresponding to the loss of tke-(1)th segment, we get

i—1
gi = P(TO|W® = i&l0sS)= >~ qi4 P(Lis1|W® = i &l0sS)
k=0

where

1, if k < 2b,

= P(TO|W® = i & Lyisi) = !
gix = P(TO L) =11 1 2 ks 2ptl,

andP(Li,1|W€ = i&loss) = (1 — p)*p)/(1L — (1 — p)). Eq. (3)then follows after some algebra.]

4.3. Mean number of losses per cycle

Proposition 8. The mean number,§s of loss detections per cycle is given by

1- Z(i,j)eE (1- P)in’(i, )

Nioss = RN
T Y yerai— Q- p)nt. )

(4)

Proof. Each cycle (se€ig. 3) is composed of several TD losses and only one TO loss. Thus, we have

1 Wmax

= P(TOlloss &WE > 1)= Z qi Pi|loss
i=1

loss

where

P(los§W¢ = i)P(W® = i|W® > 1)
P(losgwe > 1)

Dilloss = P(W®=illoss&W°®> 1) =

_ (@-@-pipwe=i/Pwe=1))  (@-(1- D) B ET )
YL = (L= p))(PWe = i)/P(We = 1)) X yep(l— A= p))n(i))
O
4.4, The weight of residual rounds
Proposition 9. The probability p that a residual round appears after loss is given by
1— Z\_.V_Vmax/an,(O’ )
pr=1—p = (5)

1- Z(i,j)e (- P)i”(i, 7 '



98 S. Fortin-Parisi, B. Sericola / Performance Evaluation 58 (2004) 89-108

Proof. LetK be the random variable equal to the number of segments sent before loss in the round in
which that loss occurred (s€&g. 5, in which we have drawn the cake= k). We thus have

Wmax
pr=P(K # 0|loss&W°® > 1) = )~ P(K # O|W® = i &0SS)pjjioss
i=1
Wrnax

= ; <1 1—(1— p)i) Dilloss:

which leads td=q. (5)using the expression &;0ss given in the proof ofProposition 8 O

Proposition 10. The mean number of segmeni{slg that are sent in a residual round is given by

1-p Y iperi@—p)a(, j)
1= per@—=pYnl j)

Eldy] = (6)

Proof. As above, we denote by the random variable equal to the number of segments sent before loss
in the round in which that loss occurred (d€g. 5). We have

Wmax
E[dy] = E[K|loss &W° > 1] = Z El[dy|i] pijioss
i=1

where

i=1 k i . i-1
Eldu |1 — E[KIW® — i & loss] — Zkl(l— p) P _ (1—p> 1-(1-p) - lP(li— T
—~ —-(1-p 4 1-(1-p)

Eq. (6)is then obtained using the expressiorPgfss given in the proof oProposition 8 O

4.5. Time-out study

The behavior of TCP during a time-out period is illustratedrig. 6, where rr denotes the residual
round (see alsbig. 5. The following result can be found {i7].

Proposition 11. The mean number of segments sent during a time-out period and the mean duration of
a time-out period are given by

Eldyp] = % (geometric distribution of segments loss), (7

and

1+ p+2p?+4p3 +8p* + 16P° + 32p°
1-p

E[Tio] = To —RTT. (8)
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4.6. Between two time-out periods

In the following remark, we briefly recall some results on sojourn times in Markov chains. These
results have been obtained[ii8].

Remark 12. Consider an irreducible discrete-time Markov chain with finite state spat@nsition
probability matrixP and stationary probability distribution We denote by the column vector with all
the entries equal to 1. LEétbe a proper subset &fandF’ the complementary subget- F. The partition
F, F’ of E induces the following decomposition Bf = and1:

P Pr 1
P=< r ”), 7= (nr 7p) and ﬂ:<F>.
Ppr  Pp 1F
If v; denotes the stationary probability that a sojourf iimitiates in state (i € F) andv the row vector
composed of the;, then
_ np(l—Pp)  wpPpr
np(Il — Pe)lp  wpPe plfp’

(9)

wherel is the identity matrix of dimension given by the context. Moreover, for every, letN; » be
the number of visits to stateduring a sojourn ir- and letr; be any real number. If we denote by the
column vector composed of tlieand, byCr the random, variabl€, = )", _ . r;N; r, we easily get

E[CF] = o(I — Pp) Yrp = —2FF (10)
g P plp

Using these results, we have the following proposition.

Proposition 13. The mean timeE[ng"Ck] between the end of a time-out perifide beginning of slow
starf) and the next TO loss is given by

E[TREN = RTT 1 -1]. (11)
po | [Wmaxz) .
> 7(0,))
j=2

Proof. E[T]'g;'jIC is RTT times the mean time spent by the Markov chain in suldsetB. Following
Remark 12Eq. (10) we have

E[T2% = RTT x E[Cyy] = RTT——A8lAUE

7o Ppo aulaus
wherer up = 14u5. We thus have

E[T%) = RTT Dpeavs @)  RTT1—=3 ;hcpn(i.j) RIT1- ZLWmEX/ZJ 7(0, j)
[Wmax/2] N [ Wmax/2] N [Wmax/2] .
2= T pom(0,j)  po 35 (0, ) po > ;57" (0, ))

where the last equality derives from the fact tB&is the subset of states 9.j=2,..., Whad2]. O
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Wmax = 8, b= 2, TO =0.500 s
T T T
RTT =0.050 s

RTT =0.100 s
150 RTT =0.250 s ]
P 100 N

50 3

200

0 1 1 - 1
0 0.002 0.004 0.006 0.008 0.01
p

Fig. 7. Send rate for different values of RTT.

Proposition 14. The mean numbe‘f[dgf}c‘ﬂ of segments sent between the end of a time-out period and
the next TO loss is given by

backy __ Z(i,j)eAuB iﬂ(i, J)

E[d%Y = —. (12)
poy_ 3=/ (0, j)

Proof. E[dgi’}c“] is the mean number of segments sent during a sojoutn.inB. We thus havé?[dgfg‘c‘ﬂ =

E[C aus] Where the entryi(j) of vectorr 4 5 is now the number of segments sent when the Markov chain
isin state {, j) € AU B, thatisr; j =i, for every (, ) € AU B. FollowingRemark 12Eq. (10) the rest

of the proof is similar to that oProposition 13 O

4.7. Numerical results
In Fig. 7, the send ratpe gets equal tdVihax Segments per RTWha/ RTT segments per second) when

loss probabilityp is close to zero, and converges to zero wpercreases. Moreover, the shorter the RTT,
the more segments per second (quick acknowledgments) are séiy. B) whenWax increases, the

RTT =0.250s,b=2, Ty = 0.500 s
T T

200 T T

Wmax =8 —

ax = 16 ——
150 - Winax = 32 —— 7
P 100 b
50 b

0 | 1 | |
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 8. Send rate for different values 0Wpnax.
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RTT =0.250 s, b= 2, Tp = 0.500 s
T T

P Y A R
4 (1% (f{fﬁTmB/c%

our model

140
120
100
p 80
60
40
20 - ]

0 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 9. Comparison to other models for RTT = 0.250s.

RTT =0.010 s, b=2, Ty = 0.500 s
T T

—T —T

4000 -
(18] (fall mYdely

3000 our model =

P 2000

1000

0 1 1 ] 1
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 10. Comparison to other models for RTT = 0.010s.

window size can reach higher values and the mean throughput naturally increases too. Note that for small
values of the loss probability, p reachedNV . /RTT segments per second, and for large valugs, of

seems to be less dependentiiR,y. Indeed, fop = 0.01,p gets close to 20 or 30 segments per second,
that is around 6 segments per RTT Y1 = 8, 16, 32.Figs. 9 and 1@rovide a comparison to simpler
modelg14,17]which have been validated from both simulations and real traffic measurements which we
do not report here but which can be found9l4,17] Note that the throughput of our model, evaluated

with less simplifications, is lower than the one obtained by the auth¢igldif7] But the higher the RTT,

the closer the different models are.

5. Computation of the goodput
In this section, we study thgoodput(or output ratg of the connection, defined as the mean number

of segments successfully transmitted per second. The goodput thus represents the throughput seen by th
receiver.
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If we denote bwgﬁ‘cko the number of segments successfully transmitted dm’ﬁj‘ﬂﬁ and byd? the

number of segments successfully transmitted in a residual round, then the connection goodput, denote:
by 0o, is given by the following proposition.
Proposition 15. The goodpupg can be expressed as

_ E[dggcko] + NlossE[drOr
E[T] + E[TgoaCk_I + RTT(Nioss — l)Prr‘

0o (13)

Proof. The goodput is computed as the mean number of segments successfully transmitted during a
cycle over the mean duration of a cycle. The difference wiib thus confined to the numerator, and
during a time-out period, no segment is received (as shoviiging, the reception of the retransmitted
segment is included in the slow start phase that thus begins). O

In the next subsection, we give the expression8[af3™°] and E[d9].

5.1. Successfully transmitted segments

Proposition 16. The mean numbeE[d0] of segments transmitted in a residual round is given by

]_l—p 1-p 1_2(,',]‘)615(1_[7)2[77(1'»]')

E[d} - '
[dy D r(2—p) Z(i,j)e A= p)n(@,j)

Proof. If the random variabl& is still defined as the number of segments sent before loss in the round
in which the loss occured (sédg. 5, and ifL denotes the random variable such that| when, in the
residual roundl segments are transmitted and the ()th gets lost, we have

Wiax—1
E[d}] = E[L|loss&W°® > 1] = Y E[L|K = k&loss]P(K = k|loss &W® > 1)
k=0
with
S (1-pA-@1-p))
E[LIK = k&loss] = Y I(1 - p)' p+ k(L — p)f = P
p
=0
and
Whnax Whax

1— k
P(K = klloss&W° > 1)= > P(K = k|W® = i &0SS)pijoss= » | (1-p) P
i=k+1 i=k+1 1- (1 - p)

Dilloss
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Thus, using the expression Bfjixss given in the proof oProposition 8
i— i A
Tper—p) (i - o) - Tis(@ - p?)) 7. J)
Z(i,j)eE(l -(1- P)i)ﬂ(i, b))

1—p2peel—(1- p))n(i, j) _1-p Yyl —(1A- )i, j)

P iyl —=QA=p))m(i, )) PC—p) 3 icrnl— Q- p))nG )
1-p  1-p 1=F4yee@=p)*n(.J)

p p(2—p) 1_Z(i,j)eE(1_p)in(i7j).

E[d)] =

O

back0] successfully transmitted between the end of a

Proposition 17. The mean number of segmenfs/,,

time-out period and the next TO loss is given by
1-p Z(i,j)e AUB(l — (1= p)i)xn(i, j)

E[dbaCKO] —
£ PPo > M2l (0, j)

Proof. E[dgf,‘cko] is the mean number of segments successfully transmitted during a sojoArw in
B. We thus haveE[dgﬁ"ko] = E[Caug] Where the entryi( j) of vectorr 45 is the number of segments
successfully transmitted when the Markov chain is in stiqaf¢ € AU B, that is
i—1 . . 1-p ‘
rip) =) kA= p)p+ill—p) ="—=(1~ @1~ p))
k=0 p
Following Eq. (10)in Remark 12the rest of the proof is similar to that Broposition 13 O

5.2. Numerical results

Comparing-igs. 8 and 11lwe notice thap andpg seem to take very close values. Itis thus interesting to
evaluate the ratie= po/p. This ratio represents the proportion of received segments among the transmitted
ones, that is the percentage of “useful data”. For this reason, we calkdfittiencyof the connection.

RTT =0.250 s, b =2, Ty = 0.500 s
200 T T T T

Wiax =8 ——
Whax =16 ——

max:32_

=
=}
—
ol
(=]
T
1

0 1 ] 1 1
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 11. Goodpupy for different values oWax.
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RTT =0.250 s, b =2, Tp = 0.500 s
T

1 T T T
0.98 - -
0.96 =
e

0.94 - R

Wiax =8 ——

Wmax =16 —
0.92 - Wmax =32 — T

0.9 1 1 1 1

0 0.002  0.004 0.006  0.008 0.01
p

Fig. 12. Efficiencye = po/p for different values ofVyax.

Our numerical results have shown tlees weakly sensitive to RTT, so the curves represengifay
different values of RTT with a given value @5« will merge.

However,e depends oW ax Indeed, as shown iRig. 12 the values o0& = po/p decrease wheWmax
increases. Itis explained by the correlated losses assumption made at the begiBeictipof4.1In fact,
the higheWnax, the more segments are lost in each round where a loss occurs, and each lost segment will
generate retransmissions. In other words, the higher the bandwidth (large vallygdfthe faster you
may transmit datagp increases), however this also entails a higher number of retransmissions, which
means overloading the network.

6. The importance of slow start

The strength of our model is that it allows us to give a detailed description of the window evolution.
In particular, we obtain the expressionHifTsg, the mean duration of a slow start phase, ané&[akg,
the mean number of segments sent in a slow start phase.

Proposition 18. The mean duration Hsg of a slow start phase is

RTT Z [Wmax/2] Z JT(l 7)
po Z LWmax/ZJ 7.[(0’ _])

E[T =

Proof. E[Tsdis RTT times the mean time spent by the Markov chain in sulsebllowingRemark 12
Eq. (10) we have

E[Ts] = RTT x E[C,] = RTT— A%

roupProup,ala
wherer, = 14. We thus have

i W2 ;
E[Tss] —RTT Z(z )eA (’]) _ RTTZ Z 7T( ])

ZLWmax/zJp 7'[(0, ]) Do ZLWmaX/ZJJT(O, J)
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Proposition 19. The mean number[Bs{ of segments sent during a slow start phase is O

max, 2 j _ .

SN Ay wa (L — p) (O, )
max/ 2. .

where in any slow start phase, is the size of nth roundl, = Y _;_, w (with dy = 0) is the number of
segments sent during the first n rounds andsnthe number of rounds needed to reach the slow start
threshold j

E [dss] =

’

Proof. Let us denote by, the state of subsek by which a sojourn iPA begins. These states are
necessarily the states (),forj=1,..., |Wma/2|. FromRemark 12Eq. (9) P(Z4 = (1, j)) is equal to
the entry (1)) of the vectorr 4 (I — Pn)/[ta(I — P4)14], thatis
[ral — POIL ) _ [weoPpoal(L,j) _  pon(0, )

ma(l — Pa)la TgoPpo alla Z&vzvgaX/ZJpon(i, 7

P(Zy=(1)) =

Now, if the slow start phase initiates by statejjithen the maximum number of rounds in that phase is
equal ton;. Forn < n;, thew, segments of tha-th round are sent if no loss has occurred duringthe
1 first rounds, that is among tlok_; first segments. Thus
nj
Eldss|Zs = (1, )] = Z w, (1 — P)dnil-
n=1
The result follows by writing

[Wmax/2]
Eldd = Y EldsdZs = (L j)]P(Zs = (L))
j=2
]

We can notice ifrig. 13that the proportion of time spent in slow start per cycle depend¥.qr since
whenWax gets higher, slow start phases can reach higher thresholds and thus last longer (whereas in
congestion avoidance, the bigger the window size, the higher the probability of a loss is, thus stopping the
congestion avoidance phase). But the main remark is that the duration of a slow start phase may reach 10

RTT =0.250 5, b =2, Ty = 0.500 s
T T T T

| W =8 —— |
021 ™ 16 ——
W = 32 ——

0.1

0 ! 1 1 1
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 13. Proportion of time in each cy(:IE[TSS]/E[Tg;’;lc .
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RTT =0.250 s, b =2, Tp = 0.500 s
T T T T

0 1 1 1 Il
0 0.002 0.004 0.006 0.008 0.01

p

Fig. 14. Number of segments in each cycﬂeﬁdss]/E[dggc .

or 15% ofE[TgS‘C‘ﬂ. Contrary to slow start duratiokjg. 14shows that the number of segmeBfds{ sent
in slow start remains less than 5%E[dgg°k], even for a highVnax This implies that in the expression
of p given in Relation (2), the numerator will not change a lot if slow start is not taken into account, but
the denominator will be significantly reduced, and thusay significantly grow.
The best way of neglecting slow start phase is to consider that this phase is instantaneous. So if we

denote byp’ the throughput obtained without integrating slow start phases, we have

. Eldio] + (E[d%™ — E[ds]) + NiossEldn]
~ E[Ti] + (E[T?% — E[Tsd) + RTT(Nioss— 1)prr

Fig. 15 shows thap’ can be up to 12% higher than The lower the loss probability, the closer’
is to p. But traffic management and bandwidth allocation for instance need a good estimagicemolf
even a 5% overestimation can lead to severe problems in performance evaluation of other measures ¢
interest.

Winax = 100, RTT = 0.300 s, b = 2, Tp = 0.400 s
1.15 T . . T

1.1 b

1 1 1 ] 1
0 0.002 0.004 0.006 0.008 0.01
p

Fig. 15. o'/ p vs. the loss probabilitp.
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7. Conclusion

The main assumption we made is that the connection is established in a high speed and wide area
(large RTT) network. Indeed, the time needed to send all segments in congestion window and the time
interval between ACKs must be significantly low compared to the round trip time for the identification
of separated bursts, called and definedasnds

Moreover, we supposed that the loss probabjitywas independent of the window size, because in
high capacity networks, the load of a single connection is not responsible for congestion. Concerning loss
correlation (when a segment gets lost, all the following ones in the same round also get lost), we apply
our model to high capacity and high speed networks with drop-tail routers, in which the connection is not
the cause of congestion and packets of a given round arrive in burst in the overflowed router. And despite
multiplexing, a router remains full as long as packets of the same window arrive and thus rejects all of
them.

With these assumptions, we have been able to obtain an analytical expression for the send rate and for
the goodput of a long-term steady-state connection (stationary regime). But our model gives a more precise
description of TCP, which allows an accurate study of its performance. Other performance measures can
be discussed such as, for instance, the proportion of TO-type losses, the average time interval between
two consecutive losses, and the proportion of time during which the window size is at its maximum.
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