
PERGAMON

I n t m ~ i l Joumml

computers &
mathematics
w.h q ~ k : ~ k x :

Computers and Mathematics with Applications 39 (2000) 217-234
www.elsevier.nl/locate/camwa

Performability Analysis
for Degradable Computer Systems

H. NABLI*
Facultd des Sciences de Monastir

5000 Monastir, Tunisia

B . SERICOLA
IRISA/INRIA, Campus de Beanlieu

35042 Rennes cedex, France

(Received November 1997; revised and accepted January 1999)

Abstract--Degradable performance of fault-tolerant computer systems has given rise to consider-
able interest in mathematical models for combined evaluation of performance and reliability. Most of
these models are based upon Markov processes. Several methods have been proposed for the compu-
tation of the probability distribution of performability upon an interval of time [0, t]. In this paper,
we present a new algorithm based on the uniformization technique to compute this distribution for
block degradable models. The main advantage of this method is its low polynomial computational
complexity and its numerical stability, since it only deals with a nonincreasing sequence of positive
numbers bounded by 1. This important property allows us to determine new truncation steps which
improve the execution time of the algorithm. We apply this method to a degradable computer system.
(~) 2000 Elsevier Science Ltd. All rights reserved.

Keywords - -B lock degradable models, Degradable systems, Markovian models, Performability.

1. I N T R O D U C T I O N

Reliability and availability measures are of considerable interest for the evaluation of depend-

ability of computer systems, and more specifically, of fault-tolerant computer systems. Thanks

to redundancies in both software and hardware, the system is able to reconfigure itself when

failures occur. Two types of fault-tolerant computer systems are usually identified: degradable

(or nonrepairable) systems and repairable systems.

As recognized in a number of recent studies, the evaluation of fault-tolerant computer systems

must simultaneously deal with aspects of both performance and reliability. As part of these

studies, Meyer [1] introduces a unified measure called performability which combines the two

aspects of performance and reliability. Performability is defined as the accumulated reward over

a period of time [0, t]. Formally, the fault-repair behavior of the system is assumed to be modeled

by a homogeneous Markov process. Its state space is divided into disjoint subsets, which represent

the different configurations of the system. A performance level (or reward rate) is associated with
each of these configurations. This reward rate quantifies the ability of the system to perform

*This author is a member of RSR Laboratory of the Ecole Nationale des Sciences de l'Informatique de Tunis.

0898-1221/00/$ - see front matter ~) 2000 Elsevier Science Ltd. All rights reserved. Typeset by .Ah,~q-TEX
PII: S0898-1221(99)00347-8

218 H. NABLI AND B. SERICOLA

correctly in the corresponding configuration. As a consequence, performability corresponds to
the accumulated reward over the mission time.

The distribution of this random variable has been studied in previous papers. For cyclic
models, Smith et al. [2] derive an algorithm to compute the distribution of performability using
Laplace transforms and a numerical inversion procedure to obtain the result in the time domain.
De Souza e Silva and Gaff [3,4] propose a method based on the uniformization technique, however
their method exhibits an exponential computational complexity in the number of reward rates.
Using the same technique, Donatiello and Grassi [5,6] obtain an algorithm with a polynomial
computational complexity. However, this algorithm seems to be numerically unstable since the
coefficient computed in their recursion can have positive and negative signs and are unbounded
which can lead to severe numerical errors and overflow problems. More recently, De Souza
e Silva and Gall [7] also obtain a new algorithm based on the general methodology of [3,4].
The computational cost of their algorithm is linear in a parameter that is smaller than the
number of rewards, but their algorithm seems to have the same unstability problem due the use
of both positive and negative coefficients. In [8,9], we present a new algorithm also based on
the uniformization technique. The main advantage of our method is that it uses only addition
and multiplication of nonnegative quantities that are moreover bounded by one. By this way,
we avoid numerical problems and improve the stability of the computation. Pattipati et al. [10]
obtain the distribution of the accumulated reward for nonhomogeneous Markov processes as the
solution of a system of linear hyperbolic partial differential equations which is numerically solved
by using a discretization approach.

Regarding the acyclic models, Meyer [11] obtains a closed form expression for the distribution
of the performability for a degradable computer system with N processors and a buffer with finite
capacity. Furchtgott and Meyer [12] define/-resolvable vectors to characterize the trajectories of
an acyclic semi-Markovian process corresponding to a certain performance level. By enumerating
all the possible trajectories of the system, they derive an integral expression for performability
which they solve numerically. However, the complexity of such an algorithm is exponential
in the number of states of the process. Beaudry [13] gives a method for the computation of
performability in a Markovian process until absorption. Ciardo et al. [14] generalize Beaudry's
approach to a semi-Markov reward process and remove the restriction requiring only the absorbing
states to be associated with a zero reward rate. Iyer et al. [15] propose an algorithm to compute
recursively the moments of the accumulated reward over the mission time, with a polynomial
computational complexity in the number of states. Goyal and Tantawi [16] derive a closed form
expression (precisely a finite sum of exponential functions) for the performability of degradable
heterogeneous systems. They also give an algorithm with a polynomial complexity O (d M 3) in
the number M of states and in the number d of components in the system. A method which
follows an approach similar to the one used by Goyal and Tantawi is presented in [17]. The
author derives an algorithm to compute the probability distribution of performability with a low
polynomial computational complexity in comparison with the algorithm of Goyal and Tantawi.

In this paper, we propose a new algorithm to compute the distribution of the accumulated
reward over a finite mission time for block acyclic Markov models. These models are more general
than the acyclic one's since the restriction of the Markov process on each block can be cyclic 1.
Our method uses the uniformization technique and it is based on the main result of [8] which
gives a performability solution for general Markov models. This approach consists of proving
some interesting mathematical results for block acyclic performability models which lead us to
use new truncation steps improving so the computational complexity of the algorithm. Also,
our method is characterized by its numerical stability once it only deals with a nonincreasing
sequence of positive numbers bounded by one.

1The infinitesimal generator for acyclic models is upper triangular and it is block upper triangular for block acyclic
models.

Degradable Computer Systems 219

The remainder of this paper is organized as follows. In the next section, we introduce the

mathematical model of the class of degradable systems and we give some interesting results for

the distribution of the performability. In Section 3, we present a simple algorithm towards per-
formability evaluation. We also discuss the computational complexity of the proposed technique.
A numerical example of degradable multiprocessor system is presented and solved for a given
performability measure in Section 4. The main points are summarized in the concluding section.

2. M A T H E M A T I C A L M O D E L A N D R E S U L T S

Degradable computer systems operate at various levels of performance: when a component
fails, the system reconfigures itself and carries on functioning albeit with degraded performance.
Because of changes in its structure, due to failures, the system has different configurations in
a finite state space E = {1, 2 , . . . , M}. A reward rate p(i) which is independent of the time is
associated with each state i E E. This reward rate measures how well the system performs in the
corresponding configuration. Since we consider degradable systems, it must be that p(i) >_ p(j)
if a transition is possible from state i to state j . Therefore, we can number the states so that
i ~ p(i) becomes an increasing function. The accumulated reward random variable over a finite
period of time [0, t] is of interest.

Let therefore X = (Xs)8>0 be a homogeneous Markov process over the state space E. Since
two different states may have the same reward rate, we denote by rm > r ,~- i > . ' . > r0 the
m + 1 different reward rates (m < M), and by Bi the set of states having ri as reward rate, for

i E {0 , . . . , m}. It is clear that the subsets Bin , . . . , Bo are disjoint and their union gives in the
state space E. The process X is entirely determined by its infinitesimal generator A = (aij)i,jeE
and its initial probability distribution a = (a~)i~E. We assume a to be a row vector of the form
a = (aB.,, 0 , . . . , 0). This means that the system starts in subset Bm with probability 1. Since
the system is degradable and i ~ p(i) is a wide sense increasing function, we have

a~j = 0 , i f i E B t , j E B k , a n d l < k . (i)

Note that in the same subset Bt, we can have transitions between two different states i and j
even if i < j , which means that the process restricted on each block Bt can be cyclic, in this
case, the block Bz can be defined as an equivalence class. Also, if we consider each block Bt as
a macrostate, the graph of the Markov process X will be indeed acyclic. Such models are called

block degradable.
It is well known [18] that if the process X is uniformized with an intensity parameter A _>

max~eE(--a~i), then P = I + A / A is the transition probability matrix associated to the uniformized
chain where I is the M x M identity matrix. Using the decomposition of E with respect to the
partit ion {B in , . . . , B0} and equation (1), the matrix P can be written as follows:

p =

P B ~ B n , P B , , , B 1 " ' " P B , n B o

OB lB.*-,, P B 1 B 1 " " " P B , , , - 1 B o

O B o B OBoB , , , _ I " " " P B o B o

where the submatrix PB~Bj (respectively, OB~B~) contains the transition probabilities from states
of Bi to states of Bj (respectively, is a zero matrix). With the above notations, the accumulated
reward over the mission time [0, t] is defined by

t m f t
Yt = p(Xs) ds = ~ ri ~{x~es~} ds,

i=O J0

where lc = 1 if condition c is true and 0 otherwise.

220 H. NABLI AND B. SERIOOLA

The random variable Yt takes its values in the interval [rot, rmt] and we wish to derive
P{Yt > s}. The reward rates ri are arbitrary real numbers, but we can assume ro = 0 without
loss of generality. This is obtained by replacing ri by ri - r0 and s by s - rot. Therefore, we take
r o = O .

In [8], the distribution of performability over [0, t] for general finite Markov processes is derived
by a new method which essentially is based upon the following theorem.

THEOREM 2.1. For all j = 1 , . . . , m and s E [rj_lt, r / [, we have

~ { Y t > s} = E e -~t(k't)n k (1 - s j) n - k b (J) (n , k) , n] sj
n=0 k=O

i
where sj (s r j _ l t) / (r j r j _ l) t and b(J)(n,k) ~(J) (n,k). The values of the column = -- _ -- O~B,,~UB,,,

vectors b~](n, k) are positive bounded by I and, for a11 n >_ O, and j = I,..., m, are given by the
following set of recursive expressions:

• f o r j < l < m a n d l < k < n ,

{ 1 B z ,
b(2In, O) =

rt -- r j_ 1

i f j = 1,

otherwise,
m

--b(Js~(n,k-- - 1) + rj - l E PBtB'b(JB~ (n -- 1, k - 1);
rl -- r j_ l i=0

• f o r O < l < j - l a n d O < k < n - 1 ,

m
rJ-y-1 ----rl b(JB~(n,k + 1)-[- rJ --:-rJ---z1 E PB~BIb(B~ (n - X,k),

rj -- rl rj -- rl i=o

{ OBI, i f j = m,

otherwise

1B~ and Os~ are column vectors of dimension [Bl[and their values are, respectively, equal 1 and O.

PROOF. See [9]. |

In the case where m = 1, the performability distribution mentioned in Theorem 2.1 is the same
as the one given in [19] where the interval availability distribution is computed. It follows that
the method presented in [8] is the natural extension of the method in [19].

Note that for l < j < m, we have 0 < (rl - r j) / (rz - rj-1) = 1 - (rj - r j -1) / (r l - r j -1) _~ 1 and
for 0 _< l _< j - 1, we have 0 < (rj-1 - r l) / (r j - rz) -- 1 - (rj - r j _ l) / (r j - rz) _< 1. On the other

hand, the matrix P is stochastic (i.e., ~-~im__0 PB, B~IB~ = 1B,) and the initial value of b(Az)(n,O)

is equal to 1s~ for l > 1 and the final value of b('~)(n,n) is equal to 0s~ for l _< m - 1. So, it

is easily to obtain by recurrence that 0B, _< b~)(n, k) _< 1B~. Moreover, for every j 6 {1 , . . . , m}
and s 6 [rj_lt , r / [, we have 0 _< sj < 1. These remarks are essential from the computational
point of view since the manipulation of nonnegative quantities bounded by 1 allows us to avoid
the unstability problems which may appear in the algorithm described in [5,7].

The interpretation, if any, of the b~J)(n, k)s is still an open problem. For the availability

case, where m = 1, the authors of [19] prove that the vectors bll)(n, k) is the probability that
the uniformized Markov chain Z visits more than k states of B1 during the first n transitions,
given that the initial state is Z0 = i. For m > 2, it is more difficult to obtain a probabilistic
interpretation of the vectors bl j) (n, k). For more details, see [20].

When the system is block degradable, new results for the sequence b ~ (n, k) can be obtained.

For such models, the recursive expressions of the vectors b ~ (n, k) reduce to the following.

Degradable Computer Systems 221

LEMMA 2.2. For all n k 0 and j = 1 , . . . , m, we have

• f o r O < l < j - l a n d O < k < n ,

b(~](n,k) = O s , ,

• f o r j < l < m a n d l < k < n ,

IB,, i f j = 1,

b~](n,O)= b~/1)(n,n), otherwise,

l

b(~/(n,k) _ rz - rj b ~ (n , k - 1)+ rj - rj____2 E PB'B,b(B)(n-- 1, k - 1).
rl -- rj_ 1 rl - - ? ' j - - 1

i = j

Furthermore, for j = 1, the coefficients b(~] (n, k) are independent of index n.

PROOF. See Appendix A. |

The previous lemma shows that b(~/(n,k) can be simplified in b(~(k). The case j = 1 means
that s belongs to [0, rlt[. If we apply Theorem 2.1 to this case, we can simplify the distribution
of the performability. This is the object of the following corollary.

COROLLARY 2.3. For all s E [0,rlt[, we have

oo

k! b(1)(k)'
k=O

where b(1)(k) = O~B.,b(~).(k).
PROOF. See Appendix B. |

In practise, the value of s is very close to rmt since it is generally required that the random
variable Yt should be close to its maximum value rmt with a probability close to 1. The following
corollary gives the distribution of the performability when s E [r,~_lt, rmt[.

COROLLARY 2.4. For all s E [rm-lt, rmt[, we have

- s . ,)) . (r e _ l) / ~ ~ IP{Yt > s} = aB,,,e A' ' '8 ' ' t ~ e -xt(1-s'") (At(1 n -~"! OB,,, k'% '"1
'n,=O

PROOF. See Appendix C. |

Our analysis will consist in obtaining new truncation steps by using properties of monotony
of the sequence b~] (n, k). The next theorem states the relation between successive values of the

b ~ (n, k). These properties allow us to improve the complexity of our algorithm as shown in the
next section.

THEOREM 2.5. For all 1 <_ j <_ m, n >_ 1, and j < l < m, we have

• f o r l < k < n ,

b ~ / (n , k) < _ b ~ / (n , k - 1) ,

• f o r O < k < n - 1 ,

b~/(n,k) <_ b ~ (n - 1, k).

222 H. NABLI AND B. SERICOLA

n = 0

n = l

' n = 2

j = l

1111 .

bui(1)

bul (2)

copy

copy

j=2 j = 3

~- U2

bb,,(2, 0)~

, copy I
bu2(1, 1~

2,2) ;I

1 U3

bv (1, 0) 1)

bus(2, O) ~us (2, 1) bus(2, 2)
• ~ - - - - ~ -

Figure 1. C o m p u t a t i o n of coefficients bu~ (n, k) for m = 3 and n = 0, 1, 2.

PROOF. See Appendix D. |

The first (respectively, the second) inequality of Theorem 2.5 expresses the decreasing of cells of

the same line (respectively, column) in each triangle containing b~](., .) elements (see Figure 1).
Putt ing together these results, we obtain the following inequalities:

b(s](n,k)<b~](n, k - - 1) <b(j)(n- B~ -1 , k - 1) . (2)

In the next section, we describe the computational aspect of the vectors b(J)(n, k). Subse- Bt
quently, we give a numerical method to compute the distribution of the performability. With
different results obtained for different values of s, we, successively, deal with the following cases
s E [0,rlt[, s E [rio_it, riot [, 1 < jo < m, and s E [rm-lt, rmt[. In each case, we also analyze the
numerical complexity.

3. C O M P U T A T I O N A L A N D A L G O R I T H M I C A S P E C T S

3.1. C o m p u t a t i o n of b(~(n,k)

Since coefficients b ~ (n , k) are equal to 0B, for l < j , we define for every j = 1 , . . . , m, the
subset Uj of the state space E as Uj = Bm U Bin-1 U "'" U Bj. Note that the sets Uj decrease
with respect to j in the sense of inclusion (i.e., Uj C Uj_ 0. We also define the following column
vector of length [Uj I:

bu~ (n, k) = b (j)/,n
k~ Bj k /

With this notation, Figure 1 illustrates the sequence of computations (drawn only for m = 3 and

n = 0, 1, 2) needed to evaluate the b(~'~(n, k)s for l > j. The computation of each cell (n, k), k > 1
depends on the two vectors associated with cells (n, k - 1) and (n - 1, k - 1). This dependence
is pictured in Figure 1 with arrows. Figure 2 makes clear this dependence and shows how we
calculate a coefficient b(~ (n, k). Note that the symbol "copy" means that each diagonal cell of
each triangle must be reported in the corresponding cell of the first column in the next triangle
(i.e., b(JBF1)(n , n) = b(~(n, O) for a l l / = j , . . . , m). The use of relations in Lemma 2.2 leads us to
perform the evaluation of the bvj (n, k)s in a line by line manner as shown in Figure 1.

Property (2) allows us to define a new truncation step for computing the infinite sum. Formally,
for a tolerance error e specified by the user and a given positive number x, we define the integer
N(x) = min{n e N :)-'~n__ 0 e-~(xi/i!) > 1 - E } (N(x) is the truncation step of a Poisson
series [21]). We denote by d the connectivity degree of matrix P which is defined by d ---
maxieE{NZ(i)}, where NZ(i) is the number of nonzero entries in row i of P.

Degradable Computer Systems 223

b 0) (n, k - l) Bm

b~l~ (n - 1. k - 1)

b~,5 (n, k - 1) /
/

. . bua (n , k)

Figure 2. Computa t ion of a coefficient b~](n , k).

The main computational effort required for the computation of the distribution of Yt is due to
the computation of the numbers b (j) (n k). In order to evaluate the complexity of our algorithm,
we give an approximate count of the number of multiplications involved in the computation of
the bl j) (n, k)s. To this end, we denote by #(H) the complexity of an algorithm which requires
approximately H multiplications.

3.2. C a s e s E [0,rlt[

According to Corollary 2.3, the distribution of the performability Yt is given by the following
expression:

!1) k bO)(k). IP{Y~ > s} = E e -~t~ (At;
k=0

This distribution can also be written as

N()~tsl)

IP{Yt > s} = E e-Xts' (At;:)kb(1)(k)+e(N()~tsl))'.
k=O

where e(N()~tsl)) satisfies

e(N (;~tsl)) = E
k=N(), tsl)+l

oo

k=N(,kts~)+l

= 1 - ~ k!
k=O

<_e.

e-Xtsl(~t;~)t:b(1)(k)

e-Xts~ (AtSl) k
k! ' since b(1)(k) <_ 1,

Moreover, if we take into account the inequality bul(k) <_ bul(k - 1) given by Theorem 2,5, it is
interesting to use another truncation step nl defined by

nl = m i n (N (,~tsl),min { k E N I b(ll(k + 1)<__ ~ }) .

224 H. NABLI AND B. SERICOLA

By considering this new truncation, we obtain

n l >s} (Atsl) k
k! b(1) (k) + e(nl).

k=O

The error introduced in the evaluation of the distribution of Yt remains smaller than ¢. In fact,

e (n l) =
o~)kb(1)(k) E e-~ts'(At;;

k = n l + l

k = n l + l

< e .

since b(1)(k) < ~, for k _> nl + 1,

The computation of the distribution of Yt mainly involves computing the coefficients b(1)(k).
Moreover, the complexity in computing of a vector bv, (k), which is one cell pictured in Figure 3,
is #(d(M -]Bo[)). Therefore, as the total number of required vectors bu, (k) is nl + 1, the
complexing in evaluating FB~(s,t) is #(d(nl + 1)(M -[/30[)) . On the other hand, the total
computational effort required with the method of [8] is #(dM[C(N - C) + mC2/2]), where C
and N are, respectively, equal to N(Atsl) and N(At). Therefore, the algorithm in this section
compares favorably with the method of [8].

j = l
0 B

b(1)(nl + 1) _< e

N(tsl) D
Figure 3. In dark, the computed vectors bu1 (.). In light, cells such that bO)(.) < ¢.

3.3. C a se s E [rjo-lt, riot [, 2 <_ jo <_ m - 1

According to Theorem 2.1, the distribution of Yt is given by

n[n--0 k=0

To compute the infinite sum, we define a truncation step njo as follows:

njo=min(N(M) ,min{nEN[b(J°) (n+ l,0) <_¢}).

Since b(J°)(n O) ~(jo-1). B,. ~ , = "B,,, (n, n), we have

n j o = m i n (N (A t) , m i n { n S N I b (J ° - l) (n + i , n + i) <_e}).

Using inequalities (2), it is easy to establish that all terms b(Jo)(n,k) are smaller than e, for
n >_ njo + 1 and 0 < k < n (see Figure 4). It follows that

]P{Yt > s} = ~... e n'. E (k) s j ° (1 - s'~° J~n-kb(J°)rn, , k) +e(njo),
n=0 k=0

Degradable Computer Systems 225

where e(njo) satisfies

- n k e(njo)= E e ;~t(~-~(k)Sjo(l_Sjo)n-kb(JO)(n,k)
n=njo + 1 k=0

n k < e-Xt(At)n ~(k)S jo (1 - sjo) n -k
- n !

n = n j o + l k=O

= [Z °
n = n j o + l

< e .

Note that in the case where all coefficients b (jo-1) (n + 1, n + 1) are strictly greater than e for all
n <_ N(At), njo is equal to N()~t). In this case, e(njo) = e(N(At)) remains smaller than e.

j = l j = 2 j = j 0 - 1

m [] e,~,o-')l,,jo + l,,,~,, + l) _< ..- 0

r~) 0

N(xt)

O . O 0

Figure 4. In dark, the computed vectors. In light, cells such that b(J)(., .) < e.

j = j0

Since the cardinality [Ujl is less than M - j , the computation of each vector buj (n, k) requires
at most #(d(M - j)) (see equations bvj (n, k) in Lemma 2.2 and Figure 2). According to Figure 4,
the number of cells that have to be computed in the triangle associated with index j is equal to

njo + 2, if j = 1,

(njo + 2) (njo + 3) if 1 < j < jo,
2

(njo + 1) (njo + 2) if j -- j0.
2

Since we have jo ~j=2(M - j) = (jo - 1)(M - (j0 +2) /2) and can neglect nio with respect to nj o2 ,
we obtain a complexity for the algorithm of

As opposed to the method relative of [8], we observe that the numerical complexity of this method
depends on the index j0, and therefore on the value of s. Another improvement came from the
new truncation step njo which is less than N(At).

3.4. Case s e [rm-lt, rmt[
According to Theorem 2.1, we have

]P{Yt > s} =o~B,,,e Am''s''t [Z e-;~t(1-Sm) (At(ln!Sm))nb(m,,:l)(n,n)] •
U,_>o

226 H. NABLI AND B. SERICOLA

Similarly to the previous section, we define the truncation step nm as follows:

----min (N(At (1 - Srn)),min {nE N [b(smZO(n + 1,n + 1) < ¢lBm}). Urn

Using inequalities (2) again, it is easy to establish that all terms b(m-1)(n, n) are smaller than e
when n _> nm + 1. It follows that

P{Yt > s} a e An s,,t [n,,_~ (At(1 ~7Sm))nb(::l)(n,n)] +e(nm), = B,,, '" e - A t (1 - s ' ")

kn=O /1'* J

where e(nm) satisfies

Ol ~A Bm tam ~(n~) = B~ ~ E
n > n m + l

^ . ~ A B n [
~>n. , + l

~_ OLB,. e A m ' , tSm g l B , .

_< ¢, since e Al~o, ts ' ' is a substochastic matrix.

s] e_AtO_sm) (A t (l , m)) b(m-1)(n n)
nr B . . ~ ,

.

e_At(l_~,.) (At(1 - sin))"
n! els,,,

The global computational scheme using the truncation step n,n is shown in Figure 5, where only
the dark part has to be computed. The number of dark cells is

nm+ (m - 2) nrn(n 7 + 1)

Similarly to the previous case, we prove that computing the sum ~-~nn"__'0e-At(1-s'")((At(1 -

S,~))'Vn!)b(s~,T1)(n, n) has complexity

m+l 2) ~)

j = l j = 2
omm mm

T~.t

j = m - 1

O O 0

b(~::l)(a., , + 1, . , . + l) < ~1~,,,

Figure 5. In dark, the computed vectors. In light, cells such tha t b(m~l)(. , P~ <

Next, to compute the matrix e A~',-s''t, we use the uniformization technique. Therefore, we
first denote, respectively, by Am and dm the uniformization rate (i.e., Am = maxieB,,(--ai,))
and the degree of connectivity of matrix As,,,. It is easy to verify that A m <~ A and dm _< d.
Then, the computational effort required to multiply the matrix As,, by a given column vector
has complexity #(dmIBml). Moreover, it is well known that the truncation step in evaluating

Degradable Computer Systems 227

e A~,.s''t is equal to N(~mSmt). Thus, computing the product of matrix e Ar~,..s''t by a column
vector of dimension IBm[has a total cost of #(dmlBmlN(hmSmt)).

We can, therefore, conclude in this case that the numerical complexity to compute the distri-
bution of the performability is

l z (d (M m+l)(m-2)~-~+dmlBm[N(Amsmt))2

Knowing that the evaluation of matrix e A~,,,s'~t introduces an error less than ¢, it is easy to verify
that the total error in computing P{Yt > s}, s > r m _ l t , is less than 2¢. On the other hand, the
numerical complexity of the method presented in [8] is #(dM[C'(N - C') + mC'/2]) where C'
and N are, respectively, equal to N(At(1 - sin)) and N(At). In practice, the truncation step nm
is very small in comparison to C . This result leads to a low computational time comparing with
the algorithm of [8].

4. A N U M E R I C A L E X A M P L E

We consider in this section a multiprocessor system described and modeled in [16]. The system
contains N processors each with its local memory, SM shared memory modules, and B busses
to communicate among the processors and the memory modules. We study the multiprocessor
system when N = SM = B = 2. The processors, shared memory modules, and busses are subject
to random failures independently of each other. When one of these components fail, the number of
available components decreases and consequently the processing power of the system decreases.
The lifetime of each processor (respectively, bus) is assumed to be exponentially distributed
with rate ~p (respectively, ,~b). The lifetime of each shared memory module is assumed to have
a probability distribution of phase type with two states, with initial probability distribution
~3 = (1,0, 0) and infinitesimal generator T given by

--(/Zl,2 -b//1,0) /Zl,2]-tl,0
T = tt2,10 - (~t2'10 -{- pt2'0) ~t0, 0) .

The performance measure used here is the processing power of the system, that is, the processor
utilization rate multiplied by the number of available processors. The values of the processing
power have been taken from [16] and are the following. We define pp(n, sm, b) as the processing
power of the system when there are n processors, sm shared memory modules, and b busses
available. The values of pp(n, sin, b) have been taken from [16] and are the following:

pp(1, sin, b) = 0.8, for 1 _< sin, b _ 2,

pp(2, am, 1) = 1.56, for 1 < s m < 2,

pp(2, 1, 2) = 1.56, and pp(2, 2, 2) : 1.58.

When one of the three n, sin, and b is 0 we set pp(n, sin, b) = 0. The values of the failure rates Ap
and Ab are also chosen as in [16], that is, Ap = 6 x 10 -5 per hour and Ab = 4 × 10 -5 per hour.
The parameters of the phase type distribution of the lifetime of each memory modules are given
by

t t l , 2 = 1 4 x 1 0 -5, t Z l , 0 = 6 x l 0 -5, # 2 , 1 = (4) ×10 -5, # 2 , 0 = (~ -) ×10 -5.

With these values, we obtain a mean lifetime for each shared memory module equal to 0.25 x 105
hours which is the same expected value as in [16].

228 H. NABLI AND B. SERICOLA

In order to obtain a Markov process to describe the behaviour of the system, we take as s tate
description the vector (n, (phl ,ph2) , b) where 1 < n, b < 2 and phi, i = 1, 2, denotes the number

of memory modules in phase i. The value s m = phi + ph2 gives the number of available memory

modules (0 _< ph l , ph2 <_ 2). All the states corresponding to the down state of the system, that

is, when n = 0 or s m = 0 or b = 0, are lumped into only one absorbing state having a processing

power equal to 0. Thus, we compute a Markov process with 21 states, one of them being an
absorbing state. There are four distinct reward rates: r 3 = 1.58, r2 = 1.56, r l = 0.8, and r0 = 0

and we have (IB31, IB21, IBll, IB01) = (3, 7, 10, 1), see Figure 6, where the transitions in dashed
lines without destination are to the absorbing state 0. The value of ~ is fixed to 10 -6.

B3 B2
: : ~ 2 A , , ~ - - -> Ab

s !,, (°'1)'2 :i
j o

r,,'
;2, i t

1

2Ab

Figure 6. The Markov chain graph.

Figure 7 shows the probabili ty to get a cumulative reward rate over the specified period t = 105
hours greater than the corresponding value on the s axis. I t is interesting to note tha t for
s = 5 x 104, the truncation step nl is equal to 59 while C = N (A t s l) is equal to 96. Figure 8
shows the probabili ty tha t the processing power during (0, t) averaged over t ime is greater than
995~ of the maximum processing power (that is, 1.58) of the system.

0.7

0.6

{}.5

0.4
Ip{w, > s}

0.3

0.2

0.1

0

I I I I I I I

I I I

0.5 1 1.5 2 2.5 3 3.5 4 4.5
8

Figure 7. Dis t r ibu t ion of Yt for t = 10 5 hours.

(× 10 4)

Degradable Computer Systems 229

1

0.8

0.6

IP{~ > 0.99ra}

0.4

0.2

0

s (XlO 6)

Algol

Algo2

I

2 4 6 8
t

Figure 8. Dis t r ibu t ion of Yt/t.

Table 1. Compar i son of C P U times.

1 1.25 1.5 1.56 1.57 1.575

79.4 79.4 79.4 79.4 37.3 18.5

0.2 0.2 0.2 0.1 0.1 0.1

10 (X 10 a)

Table 1 compares the computation times in seconds obtained by the execution of the general
algorithm given in [8] and referred as "Algol" and of the algorithm developed here which is
referred to as "Algo2". We have chosen t = 10 6 hours. As expected, we easily see that "Algo2"
performs better than "Algol". These low computational times of "Algo2" are due to low trunca-
tion steps. For instance, for s = 1.56 x 106, we obtain C' -- N(At(1 - sin)) = 724 and nm = 41.
All these results have been obtained on SPARCstation 5 Model 110 (Sun).

5. C O N C L U S I O N

The current method to evaluate the performability distribution for degradable computer sys-
tems, based on the uniformization technique, leads to a new algorithm with a low polynomial
computational complexity. Its main advantage involves a complexity at most quadratic in a
truncation step which is smaller than the Poisson's one usually used in all methods based on
uniformization. Another advantage of this algorithm is an improvement in its stability because
only positive numbers bounded by 1 are involved.

A P P E N D I X A

PROOF OF LEMMA 2.2. Using the recurrence relationship given by the Theorem 2.1, we can
prove, by recurrence on n and k, that b(JB~(n,k) is equal to 0B~ for all index l < j . If we also
use equality (1) (i.e., PB~B~ = 0B, for l < k), the first part of the lemma is immediately proved.

For the case j = 1, we can show by recurrence that b ~ (n, k) = pkB~s, 1BI. Thus, the coefficients

b(~/(n, k) do not depend on index n for l = 1. We suppose now that this property is true up to
l - 1, that is,

Vl < i < l - 1 , Vn>_l , a n d V l < k < n , b ~ (n , k) is independent of n.

To prove the property for index l, we proceed by recurrence on k. In fact, for k = 0, the term
b ~ (n, 0) is always equal to I s , , so it is independent of n. On the other hand, since

l

rl ~ (1) (n- 1 , k - 1), b(2 = r,-r, b(2(n, k - 1) + r ,

we get: b~] (n, k) is independent of n. |

230 H. NABLI AND B. SERICOLA

A P P E N D I X B

PROOF OF COROLLARY 2.3. Using Theorem 2.1 and Lemma 2.2, we can write

co ,~t) n n n k
l~{Y t > 8} -- E e-At (n ! Z (k) 8 1 (1 - 81)n-kb(1)(k)

n=O k=O
(90 oo

n! (~)~lk(1 - ~l)~-kb(~)(k)
k=0 n=k

co)kbO)(k)
= e-At E (At~lk=o n=k (At(1-Sl))n-k-(n---'-~)t"

I

But Znco__k((at(1 - S l)) n - k / (n - - k)!) = e M(1-sl), then

co)kb(l) (k) ~ t;~)kb(1)(k) • ~{gt > 8} = e-Ate At(1-s') Z (A~I. = e_Ats~ (A
k=0 k=0

PROOF OF COROLLARY 2.4. Since

b(m)(n O) = b(Bmff l)(n,n) Bm k

we get

A P P E N D I X C

and b(m)(n, = PB,,,.B,..b(Bm,,~(n - 1,k - 1),

b(m)(n,k) = pk b(m)(n - k,O) pk b(m-1), s , . BINS.,, B., , = S , , , B m B,,, t n - - k , n - k) .

Applying Theorem 2.1 for j = m, we obtain
n

n k
> _- - k)

n! n>O k=O

= E v--At(At)n~ E n k _ Sm)~n-kaB,.P~.,b(m,~-l)(n-k,n-k)k
n>_O k=O

:EEe-At(At)n(nk)skm(l--sm)n-kaB"Pkn' B,,,~B~(m- 1) (n -- k , n - k)
k>On>k

(AtSm) k k (At(1 - Sm)) ~-k (re- =e-At E -~. aB,,,P~,,,. E -(n'---~. bB'" 1) (n-k 'n-k)"
k>O n>k

If we write e -At as the product of e -Atsl and e -At(I-81), we obtain

~{Yt > s}=aB"~[Ee-Ats" k! S,,][n~>_k e-At(1-s''')(At(1- sm))n-k-(~'--~)I, b(~,Z 1)(n - k'n - k)]

=aB,,,[Ze-Ats,,,.(AtSm)kpk][~'~e-At(l-s.~)()~t(l--sm))nb(m-1)tn, rt,]
k! em//Z-" n! e ~ J/

Lk>_o jLn>__o J

=OtB,, eAtS,,.(p~, _ll,,,)[n~>_O e_At(l_s,,,) ()~t (1 - Sm))nb(m-l)[n n,]

Since P = A/A + I, then As,,. = A(PB,, - Is,,,). So

~{gt >S}=OlB,,,e Am'ts'' [Ee-'~t(1-s'")(At(1-Sm))nb(m-l)(n,n)l
, | "

L-_>0

The proof of Corollary 2.4 is then completed. |

Degradab le C o m p u t e r S y s t e m s 231

A P P E N D I X D

To prove Theorem 2.5, we first need two technical lemmas which can be proved by recurrence.
To simplify notations, we denote the fraction (rl - r j) / (r l - r j-1) by a l j . Note that (rj -
r j - 1) / (r l - r j-1) = 1 - ctl, j and 0 < c~j < 1 if I >_ j.

LEMMA D.1. For ali 1 < l < m and k >_ 1, we have

b~(k) < b~) (k- 1).

PRoof. We prove this lemma by recurrence on Z. ~or I = 1, we easily obtain b~(k) __ b~:(k- 1)
for all k E N* by considering the following system:

b~l (k) = PB~b(~] (k - 1),

PBl l B1 <-- 1B1.

We suppose now that the property is true up to l - 1. To prove the property for index l, we proceed
k. The initial condition for k = 1 is verified since b(~)(1) < b~)(0) = 1B~. The by recurrence o n

property for k - 1 is equivalent to

b ~ (k - 1) <_ b (~ (k - 2) (D1)

The Lemma 2.2 can be written, for j = 1, as

l

b(~] (k) = cq,lb(~)(k - 1) + (1 - at,t) Z PB'B~b(B~ (k - 1)

l-1]
= a , , l b (~ (k - 1) + (1 - a,, ,) [~--~ PB~s,b(~)(k - 1) + PB, s,b(~)(k - 1) .

Li=I

According to the recurrence hypothesis on index l - 1, we have

v l < i < l - 1 , b~)(k-1)<b(~)(k-2).
i - - i

Since the P matrix is positive and al,1 E [0, 1[, we obtain

l - 1 l - 1

(1 - ~,~) Z P ' , ' , b (2 (k - 1) <_ (~ - ~ , ~) F_."-~, .~ ~.,~(')(k - 2).
i : 1 i : 1

The recurrence hypothesis (D1) gives

PB,8,b(~)(k- 1) _< PB, B,b(~(k- 2) and amb(~)(k- I) _< (~mb(~)(k- 2).

It follows that
l

i = I

= b ~ ¢ k - 1) .

The proof of the lemma is completed. |

REMARK. According to Lemma 2.2, we observe that the coefficient b~ (n, k) is a convex com-

bination of the two vectors b (~ (n , k - 1) and ~li=jr~l-BLBiUB,~(J)(n- 1, k - 1). So, we obtain the
following equivalence:

l

b ~ / (n , k) < b ~) (n , k - i) ~ Z PB~B,-b~I(n- 1, k - 1) <_ b ~] (n , k - 1). (D2)
i=j

This remark above will be exploited in the following lemma.

232 H. NABLI AND B. SERICOLA

LEMMA D.2. For n k 1, 2 <_ j <_ m, and j < l < m, we have

b~,-1)(n,n) <_ b(~F1)(n,n - 1) ~ b~](n, 1) < b(~](n,O).

PROOF. Since we have

l

b~](n,O) =b(~Z1)(n,n)=oq,j_lb~Z1)(n,n _ 1) + (1 - a i d - i) E PB, s,b~Ti)(n - 1,n-- 1),
i = j - - 1

then

l

E PB, B~b~I(n- 1,0) < b~(n,O)
i=j

l l

E PB'B,b~(n-- I,O) <c~l,j_lb~,-1)(n,n - 1) + (1-~ / , j_ l) E PB, B 'b~ f l) (n - l , n - 1)
i=j i=j-- 1

!

OBI <(O~l, j -1 b~,-1)(n,n- i)-
i = j - 1

i)[+ PB sj_lb~-l,)(n- 1,n- 1). PB~B~b(~Z1) (n - 1,n
J

So, if b(~-l)(n, n) _ b~Z1)(n, n - 1), then, according to (D2), the vector between hooks is greater

than 0B,. This is equivalent to ~ti= J PB~B~b~(n -- 1,0) < b~,)(n,O). By taking into account
equivalence (D2), we get b(~](n, 1) _< b(~(n,O). |
PROOF OF THE FIRST INEQUALITY OF THEOREM 2.5. To prove this first inequality, we proceed
by recurrence on the indexes j , n, and k. For 1 _< j _< m fixed, we consider the following
property ~(j) :

N(j) : [Vn > 1, V1 < k < n, and Vj <l < m, bO](n,k)< b(J)(n,k 1)]
- - - - B I - - "

For j = 1, according to Lemma D. 1, the vectors b(~) (n, k) are independent of n, so N(1) is verified.
We suppose that N(j - 1) is true. In order to prove the property N(j), we proceed by recurrence
on n. For n = 1, the recurrence hypothesis N(j - 1) leads to b~,-1)(1, 1) < b~71) (1, 0), which
gives according to Lemma D.2

b(~(1, 1) _< b~](i, 0).

We suppose now that the property holds for n - 1. This means that the property N(j, n - 1) is
true, where

N (j , n - 1) is [V1 < k < n - l a n d V j < l < _ m , b~)(n-l ,k)_<b(~)(n - 1 , k - I)] .

In order to prove N(j, n), we proceed by recurrence on k. For k = 1, the hypothesis N(j - 1)
allows us to write b(~71)(n, n) < b(~-S)(n, n - 1), which gives according to Lemma D.2,

b(~(n, 1) <_ b(~(n,O).

At present, we suppose the property true for k - 1. That means that property N(j, n, k - 1) is
true, where

N (j , n , k - 1) is [V j < l < m , b(~](n- l ,k) _< b(~(n- l , k _ l)] .

Degradable Computer Systems 233

According to L e m m a 2.2, b ~ (n , k) a n d b (~ (n , k - 1) c a n be wr i t ten as

l

V" p bO)~n
i=j

l

bO](n,k - 1) = al,jb(JB](n,k- 2) + (1 - a,,j) ~ PBtB, b(JB~(n-- 1, k - 2).
i=j

Moreover , according to N(j ,n - 1), we have b(J)lns~, - 1, k - 1) <_ bOl(n - 1, k - 2), and, since the

ma t r ix P is posi t ive and 0 _< at,j < 1, we get

I l

V " p bO),n (1 al,j) E PstB b~)(n-- l , k - - 2) • (1 - a l , J) 2 _ _ , BtB~ B , t - 1 , k - l) < - , t
i=j i=j

T h e hypothes is N (j , n , k - 1) and the previous expressions for b~/(n,k) and for b ~] (n , k - 1) lead

to the required inequal i ty
b ~ (n , k) < b ~ (n , k - 1) .

T h e proof of the the first pa r t of Theo rem 2.5 is then completed. |

PROOF OF THE SECOND INEQUALITY OF THEOREM 2.5. For j = 1, the sequence (b(~)(n, k))n>k
is independent of n. We suppose now tha t the p roper ty holds for j - 1. We mus t prove it for

the the index j . T h e elements bO)(n,O) and b~] (n - 1,0) are, respectively, equal to b ~ t) (n , n) Bl
and b~t,1)(n - 1 , n - 1). According to Theo rem 2.5, we have b~;1)(n,n) <_ b ~ l) (n , n - 1), and

according to the recurrence hypothesis , we have b~t-1)(n,n - 1) -< b(J-1)Cnst \ - 1, n - 1). So, we

get b~j1)(n,n) <_ b~S1)(n - 1 , n - 1). I t follows tha t

b~(n,O) <- b(J)tns, , - 1,0).

This inequal i ty proves the result for k = 0. We suppose now tha t the p rope r ty holds for k - 1

and we show t h a t b~](n,k) <- b(J)(n - B , 1, k). For this purpose, we wri te

l

b~(n , k) = aljbO~(n,k - 1) + (1 - al,j) E DI-Bt B~ uB~O)(n - 1,k - 1)
i=j

l

L(J),~ (1 - al,j) E PB'B'bB* (n -- 2, k - 1) <- al,jus~ t'~ - 1, k - 1) + (i)
i=j

= b (J) (n - 1, k), Bl

which comple tes the proof of Theo rem 2.5.

R E F E R E N C E S

1. J.F. Meyer, On evaluating the performability of degradable computing systems, IEEE Transactions on Com-
puters (J.29 (8), 720-731, (August 1980).

2. R.M. Smith, K.S. Trivedi and A.V. Ramesh, Performability analysis: Measures, an algorithm, and a case
study, IEEE Transactions on Computers 37 (4), 406-417, (April 1988).

3. E. de Souza e Silva and H.R. Gall, Calculating availability and performability measures of repairable.computer
systems using randomization, J. ACM 36 (1), 171-193, (January 1989).

4. E. de Souza e Silva and H.R. Gall, Performability analysis of computer systems: From model specification to
solution, Performance Evaluation, Performability Modelling of Computer and Communication Systems 14
(3/4), 157-196, (February 1992).

5. L. Donatiello and V. Grassi, On evaluating the cumulative performance distribution of fault-tolerant computer
systems, IEEE Transactions on Computers 0-40 (11), 1301-1307, (November 1991).

234 H. NABLI AND B. SERICOLA

6. L. Donatiello and V. Grassi, Sensitivity analysis of performability, Performance Evaluation, Performability
Modelling of Computer and Communication Systems 14 (3/4), 227-238, (February 1992).

7. E. de Souza e Silva and H.R. Gail, Calculating transient distributions of cumulative reward, Technical Report
CDS-930033, UCLA, University of California, Los Angeles, (September 1993).

8. H. Nabli and B. Sericola, Performability analysis: A new algorithm, IEEE Transactions on Computers 45
(4), 491-494, (April 1996).

9. H. Nabli and B. Sericola, Performability Analysis of fault-tolerant computer systems, Technical Report
2254, INRIA, Campus de Beaulieu, (May 1994); f t p : / / f t p , i n r i a , f r / I h ' R I h / t e c h - r e p o r t s / p u b l i - p s -
gz/RR/RR-2254, ps. gz.

10. K.R. Pattipati, Y. Li and H.A.P. Blom, A unified framework for the preformability evaluation of fault-tolerant
computer systems, IEEE Transactions on Computers 42, 312-326, (March 1993).

11. J.F. Meyer, Closed-form solutions of performability, IEEE Transactions on Computers C-31 (7), 648-657,
(July 1982).

12. J.F. Meyer, D.G. Furchtgott and L.T. Wu, Performability evaluation of the SIFT computer, IEEE Transac-
tions on Computers C-29 (6), 501-509, (June 1980).

13. M.D. Beaudry, Performance-related reliability measures for computing systems, IEEE Transactions on Com-
puters C-27, 540-547, (June 1978).

14. G. Ciardo, R. Marie, B. Sericola and K.S. Trivedi, Performability analysis using semi-Maxkov reward pro-
cesses, IEEE Transactions on Computers C-39, 1251-1264, (October 1990).

15. B.R. Iyer, L. Donatiello and P. Heidelberger, Analysis of performability for stochastic models of fault-tolerant
systems, IEEE Transactions on Computers C-35 (10), 902-907, (1986).

16. A. Goyal and A.N. Tantawi, Evaluation of performability for degradable computer systems, IEEE Transac-
tions on Computers C-36 (6), 738-744, (June 1987).

17. H. Nabli, Performability measure for acyclic Markovian models, Computers Math. Applic. 35 (8), 41-51,
(1998).

18. S.M. Ross, Stochastic Processes, John Wiley and Sons, (1983).
19. G. l~ubino and B. Sericola, Interval availability distribution computation, In Proceedings IEEE ~rd Fault-

Tolerant Computing Symposium, Toulouse, France, pp. 49-55, (1993).
20. H. Nabli, Mesure de performabilit4 sur des processus de Markov homog~nes ~ espace d'4tats fini, Th~se de

Doctorat, Vol. 1378, pp. 136-150, Universit~ de Rennes I, (September 1995); h t t p : / / w ~ , i r i s a , f r / m v d e l /
theses, html.

21. P.N. Bowerman, R.G. Nolty and E.M. Scheuer, Calculation of the Poisson cumulative distribution function,
IEEE Transactions on Computers 39 (2), 158-161, (June 1990).

