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Abstract--Degradable performance of fault-tolerant computer systems has given rise to consider- 
able interest in mathematical models for combined evaluation of performance and reliability. Most of 
these models are based upon Markov processes. Several methods have been proposed for the compu- 
tation of the probability distribution of performability upon an interval of time [0, t]. In this paper, 
we present a new algorithm based on the uniformization technique to compute this distribution for 
block degradable models. The main advantage of this method is its low polynomial computational 
complexity and its numerical stability, since it only deals with a nonincreasing sequence of positive 
numbers bounded by 1. This important property allows us to determine new truncation steps which 
improve the execution time of the algorithm. We apply this method to a degradable computer system. 
(~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Reliability and availability measures are of considerable interest for the evaluation of depend- 

ability of computer systems, and more specifically, of fault-tolerant computer systems. Thanks 

to redundancies in both software and hardware, the system is able to reconfigure itself when 

failures occur. Two types of fault-tolerant computer systems are usually identified: degradable 

(or nonrepairable) systems and repairable systems. 

As recognized in a number of recent studies, the evaluation of fault-tolerant computer systems 

must simultaneously deal with aspects of both performance and reliability. As part of these 

studies, Meyer [1] introduces a unified measure called performability which combines the two 

aspects of performance and reliability. Performability is defined as the accumulated reward over 

a period of time [0, t]. Formally, the fault-repair behavior of the system is assumed to be modeled 

by a homogeneous Markov process. Its state space is divided into disjoint subsets, which represent 

the different configurations of the system. A performance level (or reward rate) is associated with 
each of these configurations. This reward rate quantifies the ability of the system to perform 
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correctly in the corresponding configuration. As a consequence, performability corresponds to 
the accumulated reward over the mission time. 

The distribution of this random variable has been studied in previous papers. For cyclic 
models, Smith et al. [2] derive an algorithm to compute the distribution of performability using 
Laplace transforms and a numerical inversion procedure to obtain the result in the time domain. 
De Souza e Silva and Gaff [3,4] propose a method based on the uniformization technique, however 
their method exhibits an exponential computational complexity in the number of reward rates. 
Using the same technique, Donatiello and Grassi [5,6] obtain an algorithm with a polynomial 
computational complexity. However, this algorithm seems to be numerically unstable since the 
coefficient computed in their recursion can have positive and negative signs and are unbounded 
which can lead to severe numerical errors and overflow problems. More recently, De Souza 
e Silva and Gall [7] also obtain a new algorithm based on the general methodology of [3,4]. 
The computational cost of their algorithm is linear in a parameter that  is smaller than the 
number of rewards, but their algorithm seems to have the same unstability problem due the use 
of both positive and negative coefficients. In [8,9], we present a new algorithm also based on 
the uniformization technique. The main advantage of our method is that  it uses only addition 
and multiplication of nonnegative quantities that are moreover bounded by one. By this way, 
we avoid numerical problems and improve the stability of the computation. Pattipati  et al. [10] 
obtain the distribution of the accumulated reward for nonhomogeneous Markov processes as the 
solution of a system of linear hyperbolic partial differential equations which is numerically solved 
by using a discretization approach. 

Regarding the acyclic models, Meyer [11] obtains a closed form expression for the distribution 
of the performability for a degradable computer system with N processors and a buffer with finite 
capacity. Furchtgott and Meyer [12] define/-resolvable vectors to characterize the trajectories of 
an acyclic semi-Markovian process corresponding to a certain performance level. By enumerating 
all the possible trajectories of the system, they derive an integral expression for performability 
which they solve numerically. However, the complexity of such an algorithm is exponential 
in the number of states of the process. Beaudry [13] gives a method for the computation of 
performability in a Markovian process until absorption. Ciardo et al. [14] generalize Beaudry's 
approach to a semi-Markov reward process and remove the restriction requiring only the absorbing 
states to be associated with a zero reward rate. Iyer et al. [15] propose an algorithm to compute 
recursively the moments of the accumulated reward over the mission time, with a polynomial 
computational complexity in the number of states. Goyal and Tantawi [16] derive a closed form 
expression (precisely a finite sum of exponential functions) for the performability of degradable 
heterogeneous systems. They also give an algorithm with a polynomial complexity O ( d M  3) in 
the number M of states and in the number d of components in the system. A method which 
follows an approach similar to the one used by Goyal and Tantawi is presented in [17]. The 
author derives an algorithm to compute the probability distribution of performability with a low 
polynomial computational complexity in comparison with the algorithm of Goyal and Tantawi. 

In this paper, we propose a new algorithm to compute the distribution of the accumulated 
reward over a finite mission time for block acyclic Markov models. These models are more general 
than the acyclic one's since the restriction of the Markov process on each block can be cyclic 1. 
Our method uses the uniformization technique and it is based on the main result of [8] which 
gives a performability solution for general Markov models. This approach consists of proving 
some interesting mathematical results for block acyclic performability models which lead us to 
use new truncation steps improving so the computational complexity of the algorithm. Also, 
our method is characterized by its numerical stability once it only deals with a nonincreasing 
sequence of positive numbers bounded by one. 

1The infinitesimal generator for acyclic models is upper triangular and it is block upper triangular for block acyclic 
models. 
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The remainder of this paper is organized as follows. In the next section, we introduce the 

mathematical model of the class of degradable systems and we give some interesting results for 

the distribution of the performability. In Section 3, we present a simple algorithm towards per- 
formability evaluation. We also discuss the computational complexity of the proposed technique. 
A numerical example of degradable multiprocessor system is presented and solved for a given 
performability measure in Section 4. The main points are summarized in the concluding section. 

2.  M A T H E M A T I C A L  M O D E L  A N D  R E S U L T S  

Degradable computer systems operate at various levels of performance: when a component 
fails, the system reconfigures itself and carries on functioning albeit with degraded performance. 
Because of changes in its structure, due to failures, the system has different configurations in 
a finite state space E = {1, 2 , . . . ,  M}. A reward rate p(i) which is independent of the time is 
associated with each state i E E. This reward rate measures how well the system performs in the 
corresponding configuration. Since we consider degradable systems, it must be that  p(i) >_ p(j) 
if a transition is possible from state i to state j .  Therefore, we can number the states so that  
i ~ p(i) becomes an increasing function. The accumulated reward random variable over a finite 
period of time [0, t] is of interest. 

Let therefore X = (Xs)8>0 be a homogeneous Markov process over the state space E. Since 
two different states may have the same reward rate, we denote by rm > r ,~- i  > . ' .  > r0 the 
m + 1 different reward rates (m < M), and by Bi the set of states having ri as reward rate, for 

i E {0 , . . . ,  m}. It is clear that  the subsets Bin , . . . ,  Bo are disjoint and their union gives in the 
state space E. The process X is entirely determined by its infinitesimal generator A = (aij)i,jeE 
and its initial probability distribution a = (a~)i~E. We assume a to be a row vector of the form 
a = (aB.,,  0 , . . . ,  0). This means that  the system starts in subset Bm with probability 1. Since 
the system is degradable and i ~ p(i) is a wide sense increasing function, we have 

a~j = 0 ,  i f i E B t ,  j E B k ,  a n d l < k .  (i) 

Note that  in the same subset Bt, we can have transitions between two different states i and j 
even if i < j ,  which means that  the process restricted on each block Bt can be cyclic, in this 
case, the block Bz can be defined as an equivalence class. Also, if we consider each block Bt as 
a macrostate, the graph of the Markov process X will be indeed acyclic. Such models are called 

block degradable. 
It is well known [18] that  if the process X is uniformized with an intensity parameter A _> 

max~eE(--a~i), then P = I + A / A  is the transition probability matrix associated to the uniformized 
chain where I is the M x M identity matrix. Using the decomposition of E with respect to the 
partit ion {B in , . . . ,  B0} and equation (1), the matrix P can be written as follows: 

p = 

P B ~ B n ,  P B , , , B  . . . .  1 " ' "  P B , n B o  

OB ....  lB.*-,, P B  ..... 1 B  . . . .  1 " " " P B , , , - 1 B o  

O B o B  . . . .  OBoB , , , _ I  " " " P B o B o  

where the submatrix PB~Bj (respectively, OB~B~) contains the transition probabilities from states 
of Bi to states of Bj (respectively, is a zero matrix). With the above notations, the accumulated 
reward over the mission time [0, t] is defined by 

t m f t  
Yt = p(Xs) ds = ~ ri ~{x~es~} ds, 

i=O J0 

where lc = 1 if condition c is true and 0 otherwise. 
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The random variable Yt takes its values in the interval [rot, rmt] and we wish to derive 
P{Yt > s}. The reward rates ri are arbitrary real numbers, but we can assume ro = 0 without 
loss of generality. This is obtained by replacing ri by ri - r0 and s by s - rot. Therefore, we take 
r o = O .  

In [8], the distribution of performability over [0, t] for general finite Markov processes is derived 
by a new method which essentially is based upon the following theorem. 

THEOREM 2.1. For all j = 1 , . . . , m  and s E [rj_lt, r / [ ,  we have 

~ { Y t  > s} = E e  -~t(k't)n k (1 - s j ) n - k b ( J ) ( n , k ) ,  n] sj 
n=0 k=O 

i 
where sj (s r j _ l t ) / ( r j  r j _ l ) t  and b(J)(n,k) ~(J) (n,k). The values of the column = -- _ -- O~B,,~UB,,, 

vectors b~](n, k) are positive bounded by I and, for a11 n >_ O, and j = I,..., m, are given by the 
following set of  recursive expressions: 

• f o r j < l < m a n d l < k < n ,  

{ 1 B z ,  
b(2In, O) = 

rt -- r j_  1 

i f j  = 1, 

otherwise, 
m 

--b(Js~(n,k-- - 1) + rj - l E PBtB'b(JB~ (n -- 1, k - 1); 
rl -- r j_ l  i=0 

• f o r O < l < j - l a n d O < k < n - 1 ,  

m 
rJ-y-1 ----rl b(JB~(n,k + 1)-[- rJ --:-rJ---z1 E PB~BIb(B~ ( n -  X,k), 

rj -- rl rj -- rl i=o 

{ OBI, i f  j = m, 

otherwise 

1B~ and Os~ are column vectors of dimension [Bl[ and their values are, respectively, equal 1 and O. 

PROOF. See [9]. | 

In the case where m = 1, the performability distribution mentioned in Theorem 2.1 is the same 
as the one given in [19] where the interval availability distribution is computed. It follows that  
the method presented in [8] is the natural extension of the method in [19]. 

Note that  for l < j < m, we have 0 < (rl - r j ) / (rz  - rj-1) = 1 - (rj - r j -1 ) / ( r l  - r j -1)  _~ 1 and 
for 0 _< l _< j - 1, we have 0 < (rj-1 - r l ) / ( r j  - rz) -- 1 - (rj - r j _ l ) / ( r j  - rz) _< 1. On the other 

hand, the matrix P is stochastic (i.e., ~-~im__0 PB, B~IB~ = 1B,) and the initial value of b(Az)(n,O) 

is equal to 1s~ for l > 1 and the final value of b('~)(n,n) is equal to 0s~ for l _< m - 1. So, it 

is easily to obtain by recurrence that  0B, _< b~)(n, k) _< 1B~. Moreover, for every j 6 {1 , . . . ,  m} 
and s 6 [rj_lt ,  r / [ ,  we have 0 _< sj < 1. These remarks are essential from the computational 
point of view since the manipulation of nonnegative quantities bounded by 1 allows us to avoid 
the unstability problems which may appear in the algorithm described in [5,7]. 

The interpretation, if any, of the b~J)(n, k)s is still an open problem. For the availability 

case, where m = 1, the authors of [19] prove that  the vectors bll)(n, k) is the probability that  
the uniformized Markov chain Z visits more than k states of B1 during the first n transitions, 
given that  the initial state is Z0 = i. For m > 2, it is more difficult to obtain a probabilistic 
interpretation of the vectors bl j) (n, k). For more details, see [20]. 

When the system is block degradable, new results for the sequence b ~  (n, k) can be obtained. 

For such models, the recursive expressions of the vectors b ~  (n, k) reduce to the following. 
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LEMMA 2.2. For all n k 0 and j = 1 , . . . ,  m, we have 

• f o r O < l < j - l a n d O < k < n ,  

b(~](n,k) = O s , ,  

• f o r j < l < m a n d l < k < n ,  

IB,, i f  j = 1, 

b~](n,O)= b~/1)(n,n),  otherwise, 

l 

b(~/(n,k ) _ rz - rj b ~ ( n , k -  1)+  rj - rj____2 E PB'B,b(B)(n-- 1, k -  1). 
rl -- rj_ 1 rl - -  ? ' j - -  1 

i = j  

Furthermore, for j = 1, the coefficients b(~] (n, k) are independent of index n. 

PROOF. See Appendix A. | 

The previous lemma shows that  b(~/(n,k) can be simplified in b(~(k). The case j = 1 means 
that  s belongs to [0, rlt[. If we apply Theorem 2.1 to this case, we can simplify the distribution 
of the performability. This is the object of the following corollary. 

COROLLARY 2.3. For all s E [0,rlt[, we have 

oo 

k! b(1)(k)' 
k=O 

where b(1)(k) = O~B.,b(~).(k). 
PROOF. See Appendix B. | 

In practise, the value of s is very close to rmt since it is generally required that  the random 
variable Yt should be close to its maximum value rmt with a probability close to 1. The following 
corollary gives the distribution of the performability when s E [r,~_lt, rmt[. 

COROLLARY 2.4. For all s E [rm-lt, rmt[, we have 

- s . , ) )  . ( r e _ l ) / ~  ~ IP{Yt > s} = aB,,,e A' ' '8 ' ' t  ~ e -xt(1-s'") (At(1 n -~"! OB,,, k'% '"1 
'n,=O 

PROOF. See Appendix C. | 

Our analysis will consist in obtaining new truncation steps by using properties of monotony 
of the sequence b~] (n, k). The next theorem states the relation between successive values of the 

b ~  (n, k). These properties allow us to improve the complexity of our algorithm as shown in the 
next section. 

THEOREM 2.5. For all 1 <_ j <_ m, n >_ 1, and j < l < m, we have 

• f o r l  < k < n ,  

b ~ / ( n , k ) < _ b ~ / ( n , k - 1 ) ,  

• f o r O < k < n - 1 ,  

b~/(n,k) <_ b ~ ( n -  1, k). 
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n = 0 

n = l  

' n = 2  

j = l  

1111 . 

bui(1) 

bul (2) 

copy 

copy 

j=2 j = 3 

~- U2 

bb,,(2, 0)~ 

, copy I 
bu2(1, 1~ 

2,2) ;I 

1 U3 

bv (1, 0) 1) 

bus(2, O) ~us (2, 1) bus( 2, 2) 
• . . . . . . . . . . ~  - - - - . . . . . . . . ~ -  

Figure  1. C o m p u t a t i o n  of coefficients bu~ (n, k) for m = 3 and  n = 0, 1, 2. 

PROOF. See Appendix D. | 

The first (respectively, the second) inequality of Theorem 2.5 expresses the decreasing of cells of 

the same line (respectively, column) in each triangle containing b~](., .) elements (see Figure 1). 
Putt ing together these results, we obtain the following inequalities: 

b(s](n,k)<b~](n, k -  - 1 )  <b(j)(n- B~ -1 ,  k - 1 ) .  (2) 

In the next section, we describe the computational aspect of the vectors b(J)(n, k). Subse- Bt 
quently, we give a numerical method to compute the distribution of the performability. With 
different results obtained for different values of s, we, successively, deal with the following cases 
s E [0,rlt[, s E [rio_it, riot [, 1 < jo < m, and s E [rm-lt, rmt[. In each case, we also analyze the 
numerical complexity. 

3. C O M P U T A T I O N A L  A N D  A L G O R I T H M I C  A S P E C T S  

3.1. C o m p u t a t i o n  of  b(~(n,k) 

Since coefficients b ~ ( n ,  k) are equal to 0B, for l < j ,  we define for every j = 1 , . . . ,  m, the 
subset Uj of the state space E as Uj = Bm U Bin-1 U "'" U Bj. Note that  the sets Uj decrease 
with respect to j in the sense of inclusion (i.e., Uj C Uj_ 0.  We also define the following column 
vector of length [Uj I: 

bu~ (n, k) = b (j)/,n 
k~ Bj k / 

With this notation, Figure 1 illustrates the sequence of computations (drawn only for m = 3 and 

n = 0, 1, 2) needed to evaluate the b(~'~(n, k)s for l > j.  The computation of each cell (n, k), k > 1 
depends on the two vectors associated with cells (n, k - 1) and (n - 1, k - 1). This dependence 
is pictured in Figure 1 with arrows. Figure 2 makes clear this dependence and shows how we 
calculate a coefficient b(~ (n, k). Note that  the symbol "copy" means that  each diagonal cell of 
each triangle must be reported in the corresponding cell of the first column in the next triangle 
(i.e., b(JBF1)(n , n) = b(~(n, O) for a l l / =  j , . . . ,  m). The use of relations in Lemma 2.2 leads us to 
perform the evaluation of the bvj (n, k)s in a line by line manner as shown in Figure 1. 

Property (2) allows us to define a new truncation step for computing the infinite sum. Formally, 
for a tolerance error e specified by the user and a given positive number x, we define the integer 
N(x) = min{n e N : )-'~n__ 0 e-~(xi/i!) > 1 - E }  (N(x) is the truncation step of a Poisson 
series [21]). We denote by d the connectivity degree of matrix P which is defined by d --- 
maxieE{NZ(i)}, where NZ(i) is the number of nonzero entries in row i of P. 
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b 0 ) (n, k - l ) Bm 

b~l~ ( n -  1. k - 1) 

b~,5 (n, k - 1) / 
/ 

. . bua ( n ,  k )  

Figure 2. Computa t ion  of a coefficient b~](n ,  k). 

The main computational effort required for the computation of the distribution of Yt is due to 
the computation of the numbers b (j) (n k). In order to evaluate the complexity of our algorithm, 
we give an approximate count of the number of multiplications involved in the computation of 
the bl j) (n, k)s. To this end, we denote by #(H) the complexity of an algorithm which requires 
approximately H multiplications. 

3.2. C a s e  s E [0,rlt[ 

According to Corollary 2.3, the distribution of the performability Yt is given by the following 
expression: 

!1) k bO)(k). IP{Y~ > s} = E e  -~t~ (At; 
k=0 

This distribution can also be written as 

N()~tsl) 

IP{Yt > s} = E e-Xts' (At;:)kb(1)(k)+e(N()~tsl))'. 
k=O 

where e(N()~tsl)) satisfies 

e( N ( ;~tsl ) ) = E 
k=N(), tsl)+l 

oo 

k=N(,kts~)+l 

= 1 -  ~ k! 
k=O 

<_e. 

e-Xtsl(~t;~)t:b(1)(k ) 

e-Xts~ (AtSl) k 
k! ' since b(1)(k) <_ 1, 

Moreover, if we take into account the inequality bul(k) <_ bul(k - 1) given by Theorem 2,5, it is 
interesting to use another truncation step nl defined by 

nl = m i n ( N  (,~tsl),min { k E  N I b(ll(k + 1)<__ ~ } ) .  
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By considering this new truncation, we obtain 

n l  >s} (Atsl)  k 
k! b(1) (k) + e(nl). 

k=O 

The error introduced in the evaluation of the distribution of Yt remains smaller than ¢. In fact, 

e ( n l ) =  
o~ )kb(1)(k ) E e-~ts'(At;; 

k = n l + l  

k = n l + l  

< e .  

since b(1)(k) < ~, for k _> nl + 1, 

The computation of the distribution of Yt mainly involves computing the coefficients b(1)(k). 
Moreover, the complexity in computing of a vector bv, (k), which is one cell pictured in Figure 3, 
is #(d(M - ]Bo[)). Therefore, as the total number of required vectors bu, (k) is nl  + 1, the 
complexing in evaluating FB~(s,t) is #(d(nl + 1)(M -[/30[)) .  On the other hand, the total 
computational effort required with the method of [8] is #(dM[C(N - C) + mC2/2]), where C 
and N are, respectively, equal to N(Atsl) and N(At). Therefore, the algorithm in this section 
compares favorably with the method of [8]. 

j = l  
0 B  

b(1)(nl + 1) _< e 

N( tsl) D 
Figure 3. In dark, the computed vectors bu1 (.). In light, cells such that bO)(.) < ¢. 

3.3. C a se  s E [rjo-lt, riot [, 2 <_ jo <_ m - 1 

According to Theorem 2.1, the distribution of Yt is given by 

n[ n--0 k=0 

To compute the infinite sum, we define a truncation step njo as follows: 

njo=min(N(M) ,min{nEN[b(J° ) (n+ l,0) <_¢}). 

Since b(J°)(n O) ~(jo-1). B,. ~ , = "B,,, (n, n), we have 

n j o = m i n ( N ( A t ) , m i n { n S N I b ( J ° - l ) ( n +  i , n +  i) <_e}). 

Using inequalities (2), it is easy to establish that  all terms b(Jo)(n,k) are smaller than e, for 
n >_ njo + 1 and 0 < k < n (see Figure 4). It follows that  

]P{Yt > s} = ~... e n'. E ( k ) s j ° ( 1 -  s'~° J~n-kb(J°)rn, , k) +e(njo), 
n=0 k=0 
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where e(njo) satisfies 

- n k e(njo)= E e ;~t( ~-~(k)Sjo(l_Sjo)n-kb(JO)(n,k) 
n=njo + 1 k=0  

n k < e-Xt(At)n ~(k )S jo (1  - sjo) n -k  
- n !  

n = n j o + l  k=O 

= [ Z ° 
n = n j o + l  

< e .  

Note that  in the case where all coefficients b (jo-1) (n + 1, n + 1) are strictly greater than e for all 
n <_ N(At), njo is equal to N()~t). In this case, e(njo ) = e(N(At)) remains smaller than e. 

j = l  j = 2  j = j 0 - 1  

m [ ]  e,~,o-')l,,jo + l,,,~,, + l) _< ..- 0 

r~) 0 

N(xt )  

O . O 0  

Figure 4. In dark, the computed vectors. In light, cells such that b(J)(., .) < e. 

j = j0 

Since the cardinality [Ujl is less than M - j ,  the computation of each vector buj (n, k) requires 
at most #(d(M - j ) )  (see equations bvj (n, k) in Lemma 2.2 and Figure 2). According to Figure 4, 
the number of cells that  have to be computed in the triangle associated with index j is equal to 

njo + 2, if j = 1, 

(njo + 2) (njo + 3) if 1 < j < jo, 
2 

(njo + 1) (njo + 2) if j -- j0. 
2 

Since we have jo ~j=2(M - j )  = (jo - 1)(M - (j0 +2) /2)  and can neglect nio with respect to nj o2 , 
we obtain a complexity for the algorithm of 

As opposed to the method relative of [8], we observe that the numerical complexity of this method 
depends on the index j0, and therefore on the value of s. Another improvement came from the 
new truncation step njo which is less than N(At). 

3.4. Case  s e [rm-lt, rmt[ 
According to Theorem 2.1, we have 

]P{Yt > s} =o~B,,,e Am''s''t [ Z  e-;~t(1-Sm) (At(ln!Sm))nb(m,,:l)(n,n) ] • 
U,_>o 
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Similarly to the previous section, we define the truncation step nm as follows: 

----min (N(At ( 1 -  Srn)),min {nE  N [b(smZO(n + 1,n + 1 ) <  ¢lBm}).  Urn 

Using inequalities (2) again, it is easy to establish that all terms b(m-1)(n, n) are smaller than e 
when n _> nm + 1. It follows that 

P{Yt > s} a e An s,,t [n,,_~ (At(1 ~7Sm))nb(::l)(n,n)] +e(nm), = B,,, '" e - A t ( 1 - s ' " )  

kn=O /1'* J 

where e(nm) satisfies 

Ol ~A Bm tam ~(n~) = B~ ~ E 
n > n m + l  

^ .  ~ A  B n [ 
~>n. ,  + l 

~_ OLB,. e A m ' ,  tSm g l  B , .  

_< ¢, since e Al~o, ts ' '  is a substochastic matrix. 

s ] e_AtO_sm ) ( A t ( l ,  m)) b(m-1)(n n) 
nr  B . .  ~ , 

. 

e_At(l_~,.) (At(1 - sin))" 
n! els,,, 

The global computational scheme using the truncation step n,n is shown in Figure 5, where only 
the dark part has to be computed. The number of dark cells is 

nm+ (m - 2) nrn(n 7 + 1) 

Similarly to the previous case, we prove that computing the sum ~-~nn"__'0e-At(1-s'")((At(1 - 

S,~))'Vn!)b(s~,T1)(n, n) has complexity 

m+l 2 ) ~ )  

j = l  j = 2  
omm mm 

T~.t 

j = m - 1  

O O 0  

b(~::l)(a., ,  + 1, . , .  + l) < ~1~,,, 

Figure 5. In dark, the computed vectors. In light, cells such tha t  b(m~l)(. ,  P~ < 

Next, to compute the matrix e A~',-s''t, we use the uniformization technique. Therefore, we 
first denote, respectively, by Am and dm the uniformization rate (i.e., Am = maxieB,,(--ai,)) 
and the degree of connectivity of matrix As,,,. It is easy to verify that A m <~ A and dm _< d. 
Then, the computational effort required to multiply the matrix As,, by a given column vector 
has complexity #(dmIBml). Moreover, it is well known that the truncation step in evaluating 
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e A~,.s''t is equal to N(~mSmt). Thus, computing the product of matrix e Ar~,..s''t by a column 
vector of dimension IBm[ has a total cost of #(dmlBmlN(hmSmt)). 

We can, therefore, conclude in this case that  the numerical complexity to compute the distri- 
bution of the performability is 

l z ( d ( M  m+l)(m-2)~-~+dmlBm[N(Amsmt))2 

Knowing that  the evaluation of matrix e A~,,,s'~t introduces an error less than ¢, it is easy to verify 
that  the total error in computing P{Yt > s}, s > r m _ l t  , is less than 2¢. On the other hand, the 
numerical complexity of the method presented in [8] is #(dM[C'(N - C') + mC'/2]) where C' 
and N are, respectively, equal to N(At(1 - sin)) and N(At). In practice, the truncation step nm 
is very small in comparison to C .  This result leads to a low computational time comparing with 
the algorithm of [8]. 

4. A N U M E R I C A L  E X A M P L E  

We consider in this section a multiprocessor system described and modeled in [16]. The system 
contains N processors each with its local memory, SM shared memory modules, and B busses 
to communicate among the processors and the memory modules. We study the multiprocessor 
system when N = SM = B = 2. The processors, shared memory modules, and busses are subject 
to random failures independently of each other. When one of these components fail, the number of 
available components decreases and consequently the processing power of the system decreases. 
The lifetime of each processor (respectively, bus) is assumed to be exponentially distributed 
with rate ~p (respectively, ,~b). The lifetime of each shared memory module is assumed to have 
a probability distribution of phase type with two states, with initial probability distribution 
~3 = (1,0, 0) and infinitesimal generator T given by 

--(/Zl,2 -b//1,0) /Zl,2 ]-tl,0 
T = tt2,10 - (~t2'10 -{- pt2'0) ~t0, 0 ) . 

The performance measure used here is the processing power of the system, that  is, the processor 
utilization rate multiplied by the number of available processors. The values of the processing 
power have been taken from [16] and are the following. We define pp(n, sm, b) as the processing 
power of the system when there are n processors, sm shared memory modules, and b busses 
available. The values of pp(n, sin, b) have been taken from [16] and are the following: 

pp(1, sin, b) = 0.8, for 1 _< sin, b _ 2, 

pp(2, am, 1) = 1.56, for 1 < s m  < 2, 

pp(2, 1, 2) = 1.56, and pp(2, 2, 2) : 1.58. 

When one of the three n, sin, and b is 0 we set pp(n, sin, b) = 0. The values of the failure rates Ap 
and Ab are also chosen as in [16], that  is, Ap = 6 x 10 -5 per hour and Ab = 4 × 10 -5 per hour. 
The parameters of the phase type distribution of the lifetime of each memory modules are given 
by 

t t l , 2 = 1 4 x 1 0  -5, t Z l , 0 = 6 x l 0  -5, # 2 , 1 = ( 4 )  ×10 -5, # 2 , 0 = ( ~ - )  ×10 -5. 

With these values, we obtain a mean lifetime for each shared memory module equal to 0.25 x 105 
hours which is the same expected value as in [16]. 
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In order to obtain a Markov process to describe the behaviour of the system, we take as s tate  
description the vector (n, (phl ,ph2) ,  b) where 1 < n, b < 2 and phi, i = 1, 2, denotes the number 

of memory  modules in phase i. The value s m  = phi  + ph2 gives the number of available memory  

modules (0 _< ph l , ph2  <_ 2). All the states corresponding to the down state of the system, that  

is, when n = 0 or s m  = 0 or b = 0, are lumped into only one absorbing state having a processing 

power equal to 0. Thus, we compute a Markov process with 21 states, one of them being an 
absorbing state. There are four distinct reward rates: r 3 = 1.58, r2 = 1.56, r l  = 0.8, and r0 = 0 

and we have (IB31, IB21, IBll, IB01) = (3, 7, 10, 1), see Figure 6, where the transitions in dashed 
lines without destination are to the absorbing state 0. The value of ~ is fixed to 10 -6. 

B3 B2 
: : ~  2 A , ,  ~ - -  ->  Ab 

s !,, (°'1)'2 :i 
j o 

r,,' 
;2, i t 

1 

2Ab 

Figure  6. The  Markov chain graph.  

Figure 7 shows the probabili ty to get a cumulative reward rate over the specified period t = 105 
hours greater than the corresponding value on the s axis. I t  is interesting to note tha t  for 
s = 5 x 104, the truncation step nl is equal to 59 while C = N ( A t s l )  is equal to 96. Figure 8 
shows the probabili ty tha t  the processing power during (0, t) averaged over t ime is greater than 
995~ of the maximum processing power (that is, 1.58) of the system. 
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Figure  7. Dis t r ibu t ion  of Yt for t = 10 5 hours. 
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Figure  8. Dis t r ibu t ion  of Yt/t. 

Table 1. Compar i son  of C P U  times.  

1 1.25 1.5 1.56 1.57 1.575 

79.4 79.4 79.4 79.4 37.3 18.5 

0.2 0.2 0.2 0.1 0.1 0.1 

10 ( X 10 a) 

Table 1 compares the computation times in seconds obtained by the execution of the general 
algorithm given in [8] and referred as "Algol" and of the algorithm developed here which is 
referred to as "Algo2". We have chosen t = 10 6 hours. As expected, we easily see that  "Algo2" 
performs better than "Algol". These low computational times of "Algo2" are due to low trunca- 
tion steps. For instance, for s = 1.56 x 106, we obtain C' -- N(At(1 - sin)) = 724 and nm = 41. 
All these results have been obtained on SPARCstation 5 Model 110 (Sun). 

5. C O N C L U S I O N  

The current method to evaluate the performability distribution for degradable computer sys- 
tems, based on the uniformization technique, leads to a new algorithm with a low polynomial 
computational complexity. Its main advantage involves a complexity at most quadratic in a 
truncation step which is smaller than the Poisson's one usually used in all methods based on 
uniformization. Another advantage of this algorithm is an improvement in its stability because 
only positive numbers bounded by 1 are involved. 

A P P E N D I X  A 

PROOF OF LEMMA 2.2. Using the recurrence relationship given by the Theorem 2.1, we can 
prove, by recurrence on n and k, that  b(JB~(n,k ) is equal to 0B~ for all index l < j .  If we also 
use equality (1) (i.e., PB~B~ = 0B, for l < k), the first part of the lemma is immediately proved. 

For the case j = 1, we can show by recurrence that  b ~  (n, k) = pkB~s, 1BI. Thus, the coefficients 

b(~/(n, k) do not depend on index n for l = 1. We suppose now that  this property is true up to 
l - 1, that  is, 

Vl < i < l - 1 ,  Vn>_l ,  a n d V l < k < n ,  b ~ ( n , k )  is independent of n. 

To prove the property for index l, we proceed by recurrence on k. In fact, for k = 0, the term 
b ~  (n, 0) is always equal to I s , ,  so it is independent of n. On the other hand, since 

l 

rl ~ (1) (n-  1 , k -  1), b(2 = r,-r, b(2(n, k - 1) + r ,  

we get: b~] (n, k) is independent of n. | 
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A P P E N D I X  B 

PROOF OF COROLLARY 2.3. Using Theorem 2.1 and Lemma 2.2, we can write 

co ,~t) n n n k 
l~{Y t > 8} -- E e-At ( n !  Z ( k ) 8 1  (1 - 81)n-kb(1)(k) 

n=O k=O 
(90 oo 

n! (~)~lk(1 - ~l)~-kb(~)(k)  
k=0 n=k 

co )kbO)(k) 
= e-At E (At~lk=o n=k (At(1-Sl))n-k-(n---'-~)t" 

I 

But Znco__k((at(1 - S l ) ) n - k / ( n  - -  k)!) = e M(1-sl),  then 

co )kb( l ) (k  ) ~ t;~)kb(1)(k) • ~{gt  > 8} = e-Ate At(1-s') Z (A~I. = e_Ats~ (A 
k=0 k=0 

PROOF OF COROLLARY 2.4. Since 

b(m)(n O) = b(Bmff l)(n,n) Bm k 

we get 

A P P E N D I X  C 

and b(m)(n, = PB,,,.B,..b(Bm,,~( n -  1,k - 1), 

b(m)(n,k) = pk b(m)(n - k,O) pk b(m-1), s , .  BINS.,,  B., ,  = S , , , B m  B,,,  t n  - -  k ,  n - k ) .  

Applying Theorem 2.1 for j = m, we obtain 
n 

n k 
> _-  - k ) 

n! n>O k=O 

= E v--At(At)n~ E n k _ Sm)~n-kaB,.P~.,b(m,~-l)(n-k,n-k)k 
n>_O k=O 

:EEe-At(At)n(nk)skm(l--sm)n-kaB"Pkn' B,,,~B~(m- 1) ( n .... -- k , n - k )  
k>On>k 

(AtSm) k k (At(1 - Sm)) ~-k (re- =e-At E -~. aB,,,P~,,,. E -(n'---~. bB'" 1) (n-k 'n-k)"  
k>O n>k 

If we write e -At as the product of e -Atsl and e -At(I-81), we obtain 

~{Yt > s}=aB"~[Ee-Ats" k! S,, ][n~>_k e-At(1-s''')(At(1- sm))n-k-(~'--~)I, b(~,Z 1)(n - k'n - k ) ] 

=aB,,,[Ze-Ats,,,.(AtSm)kpk ][~'~e-At(l-s.~)()~t(l--sm))nb(m-1)tn, rt,] 
k! em//Z-" n! e ..... ~ J/ 

Lk>_o jLn>__o J 

=OtB,, eAtS,,.(p~, _ll,,,)[n~>_O e_At(l_s,,, ) ()~t (1 - Sm) )nb(m-l)[ n n, ] 

Since P = A/A + I, then As,,. = A(PB,, - Is,,,). So 

~{gt >S}=OlB,,,e Am'ts'' [Ee-'~t(1-s'")(At(1-Sm))nb(m-l)(n,n)l 
, | " 

L-_>0 

The proof of Corollary 2.4 is then completed. | 



Degradab le  C o m p u t e r  S y s t e m s  231 

A P P E N D I X  D 

To prove Theorem 2.5, we first need two technical lemmas which can be proved by recurrence. 
To simplify notations, we denote the fraction (rl - r j ) / ( r l  - r j-1)  by a l j .  Note that  (rj - 
r j - 1 ) / ( r l  - r j-1)  = 1 - ctl, j and 0 < c~j < 1 if I >_ j.  

LEMMA D.1. For ali 1 < l < m and k >_ 1, we have 

b~(k) < b~) (k-  1). 

PRoof.  We prove this lemma by recurrence on Z. ~or I = 1, we easily obtain b~(k) __ b~:(k-  1) 
for all k E N* by considering the following system: 

b~l (k  ) = PB~b(~] (k -  1), 

PBl l B1 <-- 1B1. 

We suppose now that  the property is true up to l -  1. To prove the property for index l, we proceed 
k. The initial condition for k = 1 is verified since b(~)(1) < b~)(0) = 1B~. The by recurrence o n  

property for k - 1 is equivalent to 

b ~ ( k -  1) <_ b ( ~ ( k -  2) (D1) 

The Lemma 2.2 can be written, for j = 1, as 

l 

b(~] (k) = cq,lb(~)(k - 1) + (1 - at,t) Z PB'B~b(B~ (k - 1) 

l-1 ] 
= a , , l b (~ (k  - 1) + (1 - a,, ,) [~--~ PB~s,b(~)(k - 1) + PB, s,b(~)(k - 1) . 

Li=I  

According to the recurrence hypothesis on index l - 1, we have 

v l  < i < l - 1 ,  b~)(k-1)<b(~)(k-2). 
i - -  i 

Since the P matrix is positive and al,1 E [0, 1[, we obtain 

l - 1  l - 1  

(1 - ~,~) Z P ' , ' , b (2 ( k  - 1) <_ (~ - ~ , ~ )  F_."-~, .~ ~.,~(')(k - 2). 
i : 1  i : 1  

The recurrence hypothesis (D1) gives 

PB,8,b(~)(k- 1) _< PB, B,b(~(k- 2) and amb(~)(k- I) _< (~mb(~)(k- 2). 

It follows that  
l 

i = I  

= b ~ ¢ k - 1 ) .  

The proof of the lemma is completed. | 

REMARK. According to Lemma 2.2, we observe that  the coefficient b~  (n, k) is a convex com- 

bination of the two vectors b ( ~ ( n , k  - 1) and ~li=jr~l-BLBiUB,~(J)(n- 1, k - 1). So, we obtain the 
following equivalence: 

l 

b ~ / ( n , k )  < b ~ ) ( n , k -  i) ~ Z PB~B,-b~I(n-  1, k -  1) <_ b ~ ] ( n , k -  1). (D2) 
i=j 

This remark above will be exploited in the following lemma. 
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LEMMA D.2. For n k 1, 2 <_ j <_ m, and j < l < m, we have 

b~,-1)(n,n) <_ b(~F1)(n,n - 1) ~ b~](n, 1) < b(~](n,O). 

PROOF. Since we have 

l 

b~](n,O) =b(~Z1)(n,n)=oq,j_lb~Z1)(n,n _ 1) + ( 1 - a i d - i )  E PB, s,b~Ti)( n -  1,n-- 1), 
i = j - -  1 

then 

l 

E PB, B~b~I(n- 1,0) < b~(n,O) 
i=j 

l l 

E PB'B,b~(n-- I,O) <c~l,j_lb~,-1)(n,n - 1 )  + (1-~ / , j_ l  ) E PB, B 'b~ f l ) (n -  l , n - 1 )  
i=j i=j-- 1 

! 

OBI <( O~l, j -1 b~,-1)(n,n- i)- 
i = j - 1  

i)[ + PB sj_lb~-l,)(n- 1,n- 1). PB~B~b(~Z1) (n - 1,n 
J 

So, if b(~-l)(n, n) _ b~Z1)(n, n -  1), then, according to (D2), the vector between hooks is greater 

than 0B,. This is equivalent to ~ti= J PB~B~b~(n -- 1,0) < b~,)(n,O). By taking into account 
equivalence (D2), we get b(~](n, 1) _< b(~(n,O). | 
PROOF OF THE FIRST INEQUALITY OF THEOREM 2.5. To prove this first inequality, we proceed 
by recurrence on the indexes j ,  n, and k. For 1 _< j _< m fixed, we consider the following 
property ~( j ) :  

N( j ) :  [Vn > 1, V1 < k  < n, and Vj <l  < m, bO](n,k)< b(J)(n,k 1)] 
- -  - -  B I  - -  " 

For j = 1, according to Lemma D. 1, the vectors b(~ ) (n, k) are independent of n, so N(1) is verified. 
We suppose that N(j  - 1) is true. In order to prove the property N(j), we proceed by recurrence 
on n. For n = 1, the recurrence hypothesis N(j - 1) leads to b~,-1)(1, 1) < b~71) (1, 0), which 
gives according to Lemma D.2 

b(~(1, 1) _< b~](i,  0). 

We suppose now that the property holds for n - 1. This means that the property N(j, n - 1) is 
true, where 

N ( j , n - 1 )  is [V1 < k < n - l a n d V j < l < _ m ,  b~)(n-l ,k)_<b(~)(n - 1 , k - I ) ] .  

In order to prove N(j, n), we proceed by recurrence on k. For k = 1, the hypothesis N(j - 1) 
allows us to write b(~71)(n, n) < b(~-S)(n, n - 1), which gives according to Lemma D.2, 

b(~(n, 1) <_ b(~(n,O). 

At present, we suppose the property true for k - 1. That means that property N(j, n, k - 1) is 
true, where 

N ( j , n , k - 1 )  is [ V j < l < m ,  b(~](n- l ,k) _< b(~(n-  l , k _  l)] . 
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According to L e m m a  2.2, b ~ ( n , k ) a n d  b ( ~ ( n , k -  1 ) c a n  be wr i t ten  as 

l 

V"  p bO)~n 
i=j  

l 

bO](n,k - 1 ) =  al,jb(JB](n,k- 2 ) +  ( 1 -  a,,j) ~ PBtB, b(JB~(n-- 1, k -  2). 
i=j 

Moreover ,  according to N(j ,n - 1), we have b(J)lns~, - 1, k - 1) <_ bOl(n - 1, k - 2), and,  since the  

ma t r ix  P is posi t ive and 0 _< at,j < 1, we get 

I l 

V "  p bO),n (1 al,j) E PstB b~)(n-- l , k - -  2) • ( 1 - a l , J ) 2 _ _ ,  BtB~ B , t  - 1 ,  k - l )  < - , t 
i=j i=j 

T h e  hypothes is  N ( j , n , k -  1) and the previous expressions for b~/(n,k) and for b ~ ] ( n , k -  1) lead 

to the  required inequal i ty  
b ~ ( n , k ) < b ~ ( n , k - 1 ) .  

T h e  proof  of  the  the  first pa r t  of Theo rem 2.5 is then  completed.  | 

PROOF OF THE SECOND INEQUALITY OF THEOREM 2.5. For j = 1, the  sequence (b(~)(n, k))n>k 
is independent  of  n. We suppose  now tha t  the  p roper ty  holds for j - 1. We mus t  prove it for 

the the  index j .  T h e  elements  bO)(n,O) and b~] (n -  1,0) are, respectively, equal  to b ~ t ) ( n , n )  Bl 
and b~t,1)(n - 1 , n -  1). According to Theo rem 2.5, we have b~;1)(n,n) <_ b ~ l ) ( n , n -  1), and 

according to the  recurrence hypothesis ,  we have b~t-1)(n,n - 1) -< b(J-1)Cnst \ - 1, n - 1). So, we 

get b~j1)(n,n) <_ b~S1)(n - 1 , n -  1). I t  follows tha t  

b~(n,O) <- b(J)tns, , - 1,0). 

This  inequal i ty  proves the  result  for k = 0. We suppose now tha t  the  p rope r ty  holds for k - 1 

and we show t h a t  b~](n,k) <- b(J)( n - B ,  1, k). For this purpose,  we wri te  

l 

b~(n , k )  = aljbO~(n,k - 1 ) +  (1 - al,j) E DI-Bt B~ uB~O)(n - 1,k - 1) 
i=j 

l 

L(J),~ (1 - al,j) E PB'B'bB* (n -- 2, k - 1) <- al,jus~ t'~ - 1, k - 1) + (i) 
i=j 

= b (J) (n - 1, k), Bl 

which comple tes  the  proof  of Theo rem 2.5. 
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