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OCCUPATION TIMES IN MARKOV PROCESSES 

Bruno Sericola 

IRISA - INRIA 
Campus de Beaulieu 

35042 Rennes Cedex, France 

ABSTRACT 

In a homogeneous finite-state Markov process, we consider the occupation 
times, that is, the times spent by the process in given subsets of the state 
space during a finite interval of time. We first derive the distribution of the 
occupation time of one subset and then we generalize that result to the joint 
distribution of occupation times of different subsets of the state space by the 
use of order statistics from the uniform distribution. Next, we consider the 
distribution of weighted sums of occupation times. We obtain forward and 
backward equations describing the behavior of these weighted sums and we 
show how these lead to simple expressions for that distribution. 

1 INTRODUCTION 

Let X = {Xu, u 2 0) be a homogeneous Markov process with finite state space 

S .  The occupation time of a subset U c S over [0, t )  is defined as the random 

variable 

where If,) = 1, if condition c holds and 0 otherwise. That random variable 

has drawn much attention as it is also known as the interval availability in 

Copyright O 2000 by Marcel Dekker, Inc. 
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480 SERICOLA 

reliability and dependability theory. In [2] an expression for the distribution 

of Wt was obtained using uniform order statistics on [0, t ) .  From a computa- 

tional point of view that expression is very interesting; various methods were 

developed to compute it even in the case of denumerable state spaces (see 121, 

[lo], [8], [9] and the references therein). 

We first recall how the joint distribution of the pair (Wt, Xt )  was obtained 

in [2] by using the forward and backward equations associated with the uni- 

formized Markov chain of the process X .  We then generalize that result to 

the joint distribution of W:, . . . , W,", X,, where W; is the occupation time of 

a subset Bi over the interval [0, t). Finally, we consider a weighted sum of 

occupation times, that is the random variable Y ,  defined by 

where for each i E S ,  p(i) is a nonnegative constant. The quantity & aris- 

es in the performability analysis in reliability and dependability theory (see 

[3], [5] and the references therein). Here we derive backward and forward 

equations describing the behavior of the joint distribution of (Y,, Xt).  These 

partial differential equations are then solved. We show that they lead to simple 

expressions for the joint distribution of (Y,, Xt). 

The remainder of the paper is organized as follows. In the next section, we 

consider the joint distribution of uniform order statistics and the joint condi- 

tional distribution of the jumps in a Poisson process and we recall how they 

are related. In Section 3, we consider the case m = 1, to obtain the distribu- 

tion of occupation time for a discrete time Markov chain. That distribution, 

combined with the results of Section 2, leads to a simple expression for the 

joint distribution of the pair (W,, X,). In Section 4, the results of Section 3 are 

generalized to the case m > 1. Finally, Section 5 deals with the distribution 

of the pair (Y,, Xt).  
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OCCUPATION TIMES IN MARKOV PROCESSES 

2 ORDER STATISTICS 

2.1 The Uniform Distribution 

We consider the order statistics of uniform random variables on [0, t).  Formally, 

let X1, X2, . . ., Xn be n i.i.d. uniform random variables on [0, t ) .  If the random 

variables X I ,  X2,  . . ., Xn are rearranged in ascending order of magnitude and 

we call X(i) the ith order statistic, i = 1,2, . . . , n. 

Let Fr(x) be the distribution of X(,). We know that (see for instance [I]), 

for x E (O,t), 

In [I] it is shown that the joint density of X(l,), X(ll+l,), . . . , X(ll+lz+,.,+lk) is 

given, for 1 < k < n, 1 < ll + 12 + . . . + lk < n (li 2 I ) ,  and x1 5 2 2  5 . < xk 

Furthermore, iffor fixed 1 < k 5 n a n d  1 < 11+12+.. .+lk 5 n (li 1 I),  we 

define Yl = X(11) and = X(il+iz+...+ii) - X(il+iz+...+ii-l) for i = 2 , .  . . , k, then 
8 

the joint density function of Yl, Y2, . . . , Yk is given, for 0 < sl  +s2 + . . .+ s k  < t 

that is, 
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SERICOLA 

In particular, for k = n ,  we get the joint density function of the spacings 

6 = X p ) ,  Y2 = X(2) -X(l),  . . . , Yn = X(,) -X(n-l), denoted by h(x1, x2, . . . , x,) 

by setting l1 = l2 = . . . = 1, = 1 in the preceding expression, that  is 

( 0 otherwise. 

By writing Y,+l = t - X(,), this also determines the (degenerate) joint density 

of Yl, Yz, . . . , Y,, Yn+l on the set 

The joint distribution Hl,,l ,,,,,, 1, (sl, s2, .  . . , sk)  of XI ,  K O , .  . . , Kk is given in 

the following lemma. 

Lemma 2.1 For 1 5 k 5 n, 1 5 l1 + 12 + . . . + lk < n (li 2 l), and 0 < 

sl + s 2  + . . . + SI, < t (si E ( 0 ,  t)), we have that 

Proof. It suffices to show that  

To simplify notation, we define 
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OCCUPATION TIMES IN MARKOV PROCESSES 

We obtain 

where the second equality is obtained by the change of variable ik ---+ i k + l .  By 

successively iterating the same argument with respect to  variables s k - 1 , .  . . , s 2 ,  

we obtain 

and finally, 
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484 SERICOLA 

where the second equality is obtained by the change of variable il  + i l  + 1. 

I 

2.2 The Poisson Process 

Let {Nt, t E R) be a Poisson process of rate X and To, To + TI, . . ., To + TI + 
. .+Tn-1, be the first n instants of jumps of {Nt) in [0, t ) .  It is well-known, see 

141, that the density of the conditional distribution of To, T I , .  . . , Tn-1, given 

That is also, as seen in the previous subsection, the joint density of the order 

statistics from the uniform distribution on (0, t ) .  

If we write Tn = t - (To + Tl + . - - + Tn-l), this also determines the (de- 

generate) joint density function of To, TI, . . . , Tn-l1 Tn on the set 

The symmetric role of the variables xo, xl, . . . , xnPl, xn shows that the random 

variables To, TI , .  . . , Tn-l are exchangeable. It follows from relation (1) that, 

for 1 I 1 5  n, { i l , . . .  , i l l  c {O,l , .  . . , n ) ,  and s E (O,t), we have 

More generally, let k be an integer such that 1 5 k I n and let 11, 12,. . . , lk 

be integers such that 1 5 l1 + l 2  + . . . + lk < n (li > 1). For any subset 

(21, i2,.  . . , i11+12+...+lk) of { O , l , .  . . , n - 1, n}, the vectors 
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OCCUPATION TIMES IN MARKOV PROCESSES 

and 

have the same conditional distribution given that Nt = n .  By lemma 2.1, for 

0  < sl + s2 + + SI ,  < t  (si  E (0,  t ) ) ,  we thus get 

3 DISTRIBUTION OF OCCUPATION TIMES 

Let X  = { X u , u  > 0 )  be a homogeneous Markov process with finite state 

space S. The process X  is characterized by its infinitesimal generator A  and 

its initial probability distribution a. We denote by Z  = {Z,, n > 0 )  the 

uniformized Markov chain [7] associated to the Markov process X ,  with the 

same initial distribution a.  Its transition probability matrix P is related to 

the matrix A  by the relation P = I + A/X, where I is the identity matrix 

and X satisfies X 2 max{-Ai,,, i E S ) .  The rate X is the rate of the Poisson 

process {Nu ,  u  > 0 ) ,  independent of Z ,  that counts the number of transitions 

of process {ZN,,  u  > 0 )  over [0, t ) .  It is well-known that the processes { Z N u )  

and X  are stochastically equivalent. We consider a partition S  = U U D, 

U n D  = 8, of the state space S  and we study the occupation time in the 

subset U .  

3.1 The Discrete Time Case 

For the Markov chain Z = { Z n , n  > 01, the random variable Vn is the total 
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486 SERICOLA 

number of states of U  visited during the n first transitions of 2, that  is 

The following theorem gives the backward equations for the behavior of the pair 

(V,, 2,). For every i E S ,  the notation Pi denotes the conditional probability 

given that Zo = i ,  that is Pi{ . )  = P { .  I Zo = 2 ) .  

Theorem 3.1 For n 2 1, and 1  5 k 5 n, we have that 

for i E U ,  Pj{Vn 5 k, Z,, = j )  = CP~,I IPI{V, -~  5 k - 1,Zn-1 = j ) ,  
1ES 

for i E D, IPi{Vn 5 k, Zn = j )  = C Pj,1P1{Vn-1 5 k ,  Zn-1 = j ) .  
1ES 

Proof. By using the Markov property and the homogeneity of Z ,  we get that 

The following theorem gives the forward equations for the probabilities 

associated with the pair (Vn, 2,). 

Theorem 3.2 For n > 1, and 1  5 k 5 n, we have that 

for j E U ,  IPi{Vn 5 k ,Zn  = j )  = x P i { V n - l  5 k -  1,ZnP1 =l )P l , j ,  
~ E S  

for j E D, Pi{Vn 5 k,  Zn = j )  = IPi{Vn-l 5 k ,  ZnP1 = l ) f l , j  
1ES 

Proof. By the same arguments, we get that  

We thus obtain the desired relation by conditioning on Zo 
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OCCUPATION TIMES IN MARKOV PROCESSES 487 

For n  2 0,  and k  2 0, we introduce the matrix F(n,  k)  = { F t j ( n ,  k ) )  

defined by 

Fi,j(n,  k )  = IP{V, 5 k,  2, = j I Zo = 2 ) .  

The results of Theorems 3.1 and 3.2 can be easily expressed in matrix notation. 

We decompose the matrices P and F(n,  k )  with respect to the partition {U, D) 

p =  (2; ::) and i ( n k )  = Fu(n, k )  F u D ( ~ ,  k )  
F D U ( ~ ,  k )  F D ( ~ ,  k ,  

The result of Theorem 3.1 can now be written as 

In the same way, Theorem 3.2 can be written as 

The initial conditions are 

Note that for all k  > n  + 1 ,  F(n ,  k)  = Pn. 
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488 SERICOLA 

3.2 The Continuous Time Case 

We consider the Markov process X  = { X t ,  t > 0 )  and the occupation time W t  

of the subset U in [0, t ) ,  that is 

t 

Wt = 1 ~ { x , E u $ ~ .  

That random variable represents the time spent by the process X  in the subset 

U during the interval [0, t ) .  The joint distribution of the pair ( W t ,  X t )  is given 

by the following theorem. 

Theorem 3.3 For every i ,  j  E S ,  for t > 0, and s  E [0, t ) ,  we have that 

P{Wt 5 s , X t  = j I Xo = i) 

Proof. For s  < t ,  we have that 

x IPi{Wt < s ,  Nt = n ,  Zn = j )  since { X t )  and { Z N t )  are equivalent 
n=O 

The fourth and sixth equalities follow from the independence of the processes 

{ Z n )  and { N t )  and the fact that Xo = Zo. The last equality follows from the 
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OCCUPATION TIMES IN MARKOV PROCESSES 489 

fact that if 1 = n + 1, we trivially have that Vn = n + 1 and Nt = n imply that 

Wt = t .  We so get P{Wt 5 s I Vn = n + 1, Zn = j ,  Nt = n )  = 0, since s < t .  

Let us consider now the expression Pi{Wt 5 s I Vn = 1, Zn = j, Nt = n).  For 

fixed i, j  E S and 0 5 1 5 n ,  we define the set 

and we denote by j the random vector (20,  . . . , Z n ) .  We then have 

iPi{Wt 5 s ( Vn = l , Z n  = j ,Nt = n )  

where the last equality follows from the independence of (2,) and {N,). We 

denote by To, To +TI ,  . . ., To + Tl + . . a + TnP1, the first n instants of jumps of 

the Poisson process {Nt) over [0, t )  and we set Tn = t - (To + TI + . . . + Tn-1). 

Then, 

where the distinct indices i l ,  . . . , il E { O , 1 ,  . . . , n)  correspond to the 1 entries 

of z  ̂ that are in U and the last equality is due to the independence of the 

processes (2,) and {Nt). For 1 = 0, we obtain the correct result, which is 

equal to 1 by using the convention c:( ...) = 0 if a > b. From relation (2) we 

get, for 1 = 0,. . . , n ,  
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Again, the convention c:( ...) = 0 for a > b allows us to cover the cases 1 = 0 

and 1 = n  + 1. Finally, we obtain that 

Pi{Wt 5 s I Vn = l , Z n  = j , N t  = n )  

That is, since P{Nt = n )  = e-x t (~ t )n /n ! ,  

P { W t < s , X t = j I X ~ = i )  

n-k k 

n=O k=O 1=0 

4 JOINT DISTRIBUTION OF OCCUPATION TIMES 

Next, we partition the state space S into m + 1 subsets Bo, B1, . . . , Bm 

4.1 The Discrete Time Case 

We consider the random variables V," defined by 

The next theorem gives the backward equation for the joint distribution of the 

V: and 2,. 
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OCCUPATION TIMES IN MARKOV PROCESSES 49 1 

Proof. By K and i we denote the vectors (V,', . . . , VT) and (k1, . . . , km) 

respectively and by ei, i = 1, . . . , m, the unit row vector of dimension m whose 

ith entry is 1. The proof follows the same steps as that of Theorem 3.1. We 

have 

The theorem that follows gives the forward equation for the joint distribu- 

tion of the V,Z and 2,. 

Theorem 4.2 F o r r =  l,...,m, n > 1, and0 5 kl,...,krn I n  (k, 2 I), we 

1ES 

for j E BO, IP~{v: 5 kl, . . . , Vz 5 k,, Zn = j )  = 

Proof. Using the notation of the proof of Theorem 4.1, we follow the same 

steps as in Theorem 3.2. We have that 
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492 SERICOLA 

By conditioning on Zo, we obtain the desired relation. 

By F ( n ,  k l ,  . . . , k,), for n 2 0 and k, 2 0, we denote the matrix with ( 2 ,  j) 

entry 

Fi , j (n ,  k l ,  . . . , km)  = IP{V,' 5 k l ,  . . . , V," 5 km, Zn = j 1 Zo = i). 

The results of Theorems 4.1 and 4.2 can be conveniently expressed in matrix 

notation. We first decompose the matrices P and F ( n ,  k l ,  . . . , k,) with respect 

to the partition {Bo, B 1 , .  . . , B,) of the state space S as 

The result of Theorem 4.1 can then be written as 

The initial conditions are given by 

Note that in the case k l+.  ..+km > n+l, with ki _< n, for i = 1 , .  . . , m, the m- 

dimensional joint distribution of V,', . . . , V," can be expressed as a combination 

of the h-dimensional joint distributions of the V,i for h = 1 , .  . . , m - 1. That 

observation is based on the following general result. 

For any random variables U l ,  . . . , Urn and any event A, we have 

P{Ul 5 a . , Um _< xm,  A) = C ( - I ) " - ' ~ ' ~ ' I P { U ~  5 21; 1 E E ,  A) 
E C { l ,  ..., m} 

+ ( - l ) "P{Ul  > X I , .  . . ,Urn > xm,  A) ,  ( 5 )  
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OCCUPATION TIMES IN MARKOV PROCESSES 493 

where the inclusion is strict, that is E # (1 , .  . . , m), and where, for conve- 

nience, we set P{Ul 5 zl;  1 E 0, A )  = iP{A). For the random variables V;, 

so, in that case, we get the desired result, 

{ 5 , Z = j) = C (- l )m-iEI+lIPi{~~ < k l ;  1 E E, Zn = j ) .  (6) 
Ec{l,.-,m} 

4.2 The Continuous Time Case 

We consider the random variables W:, i = 1 , .  . . , m, defined by 

whose joint distribution with Xt  is given in the next theorem. 

Theorem 4.3 For every i, j E S, for every t > 0 ,  and sl, . . . , s, E [0, t )  such 

that sl + s 2  + . . . + S, < t ,  we have 

P { W ~  5 s l , . .  . ,  Wtm 5 s m , X t  = j I XO = i )  = 

where 

Proof. We define the vectors a = (W:, . . . , W p ) ,  = (V:, . . . , VF) and 

5 = (sl, . . . , s,). Inequality between vectors means component-wise inequality. 

For n > 0, we define the set En by 

- 
En = { E  = (11, 12, .  . . , 1,) E INm 1 l1 + 12 + . . . + 1, I n).  
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SERICOLA 

We have that 

w 
= I P i { R  5 2, Nt = n ,  Zn = j }  since { X t )  and { Z N ~ }  are equivalent 

The fourth and last equalities follow from the independence of the processes 

(2 , )  and { N t )  and the fact that  Xo = Zo. In the fifth equality, the summation 

in rshould be over En+1 but i t  can be restricted to En. If 11+12+. . .+Im = n + l ,  

then E = r and Nt = n imply that V,' + + V," = n  + 1 and so that  

n )  = 0. Now consider the expression pi{% < D I = < Zn = j, Nt = n) .  
.-. 

For 1 = ( 1 1 ,  12,. . . ,l,) E En, and i , j  E 

and we denote the random vector (20, 

I P i { R  5 $ 1  % = r l Z n  = j , N t  = n) 

, we define the set 

l 1  entries of 2 are in B1, . . . , 

1, entries of 2 are in Bm and 

n  + 1 - (11 + . + 1,) are in Bo 

. , 2,) by 2. We have that  
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OCCUPATION TIMES IN MARKOV PROCESSES 495 

where the last equality follows from the independence of the processes (2,) 

and {Nt). It follows that 

where 

Again using the independence of {Zn) and {Nt} and relation (3),  we obtain 

Note that if one of the lils is zero, the corresponding entry of the vector p(0 
becomes zero and the preceding formula still holds. Indeed, suppose for sim- 

plicity that I, = 0, then 

Note also that if all the li's are zero, all the entries of p(f) are zero and the 

formula still holds since 

Putting these results together, we obtain - A A 

Pi{Wt < $ 1  Vn = l ,Zn  = j , N t  = n)  
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496 SERICOLA 

and so, 

I P { ~ <  ?,xt = j I XO = i }  

a 

From relation (7) the distribution IPi{W,' 5 s l ,  . . . , W," 5 s,, Xt = j }  is 

differentiable with respect to t and also with respect to sl, 3 2 , .  . . , S, for t > 0, 

sl , . . .  ,s, E (O,t), a n d s l + . . . + s ,  E ( 0 , t ) .  Moreover, ifsl+s2+..-+s,  2 t ,  

then trivially 

so that relation (6) applies by replacing the V," and the kl by the W; and the 

sl respectively. 

5 WEIGHTED SUMS OF OCCUPATION TIMES 

A constant performance level or reward rate p ( i )  is associated with each state 
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OCCUPATION TIMES IN MARKOV PROCESSES 

i of S. 'We consider the random variable I( defined by 

We denote by m + 1 the number of distinct rewards and their values by 

We then have Yt E [rot, rmt] with probability one. Without loss of generality, 

we may set ro = 0. That can be easily done by considering the random 

variable Yt - rot  instead of Yt and the reward rates ri - ro instead of ri. As in 

Section 4, the state space S is partitioned into subsets go,. . . , B,. The subset 

B1 contains the states with reward rate rl, that is Bl = {i E Slp(i) = r l) .  With 

this notation, 

As the distribution of each W; has a t  most two jumps at  0 and t ,  the 

distribution of Yt has at  most m + 1 jumps at  the points rot  = 0, r l t ,  . . . , 

r,t. For t > 0, the jump at  point x = r l t  is equal to the probability that the 

process X, starting in subset B1, stays in the subset Bl during all of [0, t),  that 

is 

IP{I( = r l t)  = oB,eABIBltlB, for t > 0, 

where lBl is the column vector of dimension lBll with a11 components equal to 

1. For every i ,  j E S, and t > 0, we define the functions Fij( t ,  x) by 

Fi,j(t, X) = IP{I( > X,  Xt = j 1 Xo = i ) ,  

and we introduce the matrix F ( t ,  x)  = {Fi,j(t, x)). Using the partition B,, 

Bm-l, . . ., Bo, the matrices A, P, and F ( t , x )  can be written as 

Note that fo r t  > 0, and 0 5 15 m, 

( e A ~ l ~ l t ) i , j  if i, j E B1, 
P{I( = r l t ,X t  = j I XO = i )  = 

otherwise, 
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that is 

The distribution Fi,J(t, x)  can be obtained from relation (8), using the joint 

distribution of the W: obtained in Section 4.2. From relation (7), Fi4(t, x)  is 

differentiable with respect to x and t in the domain 

m 

E = { ( t ,  x )  ; t > 0 and x E U ( r l P l t ,  r l t ) ) .  
1=1 

The initial conditions are given, for t > 0, by 

Fi,j(t,O) = P{Xt = j I Xo = i )  - P{Y, = 0, Xt  = j 1 Xo = i ) ,  

that is, in matrix notation, 

which can also be written as 

00 

FB,,B~ (t, 0) = e-yw [(pn)BuB. - (~BoBo)~l{u=u=O~] (lo) 
n=O n ! 

5.1 Backward and Forward Equations 

In what follows, we derive backward and forward equations satisfied by the 

distribution of the pair (Y,, X t ) .  First, we recall some well-known and useful 

results in the following lemma. Remember that {N(t)} is a Poisson process 

of rate A, independent of the Markov chain 2. We denote by N ( t ,  t + s) the 

number of transitions during the interval [ t ,  t + s ) .  

Lemma 5.1 

P{N( t ,  t + s) = 0 I Xt = j) = e- AS (11) 
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The following theorem establishes the forward equation for the pair (Y,, X,). 

Theorem 5.2 F o r t  > 0, i, j E S, 1 < h 5 m, and x E ( ~ ~ - ~ t , r ~ t ) ,  we have 

Proof. By conditioning on the number of transitions in [t, t + s), we have 

We separately consider these three terms. For the first term, since Xt+, = j 

and N(t ,  t + s)  = 0 is equivalent to Xt = j and N( t ,  t + s) = 0, we have 

= Pi{&+, > x I Xt = j ,  N(t ,  t + s) = O)!Pi{Xt = j, N(t ,  t + s) = 0) 

= IP,{Y, > x - p(j)s I Xt  = j, N(t ,  t + s) = O)Pi{Xt = j, N(t ,  t + s)  = 0) 

= Pi{X > x - p(j)s I X t  = j)Pi{Xt = j, N( t , t  + s)  = 0) 

= I P , { X > x - p ( j ) s , X t = j ) l P i { N ( t , t + s ) = O I X t = j )  

= P{N(t, t + s) = 0 ] Xt = j)Fi,j(t, x - p(j)s) 

- - e - A ~ ~ .  
%,, (4 x - p(j)s) 

= (1 - Xs)Fi,j(t, x - p(j)s) + o(s). 
The second equality follows from the fact that, if Xt = j and N(t ,  t+s )  = 0, we 

have &+, = & + p(j)s .  The third and fifth follow from the Markov property, 

and the sixth from relation (11). For the second term denoted by G(s), we 

define 

We then have 
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Let us define p,in = min{p(i)) and p,,, = max{p(i)). 

and 

Using the Markov property, 

We thus obtain 

where U k , j ( ~ )  = p{Xt+, = j ,  N ( t ,  t + s)  = 1 I Xt  = k). From relation (12), 

so we obtain 

For the third term, we have by relation (13),  

Combining the three terms, we obtain 

If now s tends to 0, we get 
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Since P = I + AIX, we obtain that 

Corollary 5.3 For t > 0, 0 5 p 5 m, i E B,, j E S ,  1 5 h 5 m, and 

x E (rh-lt, ~ h t ) ,  we have 

Proof. Consider equation (14) and the functions pij defined by 

Differentiating with respect to u yields 

which, by (14) and the relation A = - X ( I  - P), gives 

Integrating that expression between 0 and t gives 

Finally, we have pi,j(0) = Fi,j(t, x) and 

We next derive the backward equation for the evolution of the pair (Y,, X t ) .  
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Theorem 5.4 For t  > 0, 0 5 p _< m, i  E B,, j  E S ,  1 5 h 5 rn, and 

x  E ( ~ h - l t ,  ~ h t ) ,  

Proof. Let TI be the sojourn time in the initial state. We have 

If u  > t  and Xo = i ,  we have Yt = p(i)t = rpt and P I X t  = j I Tl = u ,  Xo = 

i )  = 1, if i  = j  and 0 otherwise. Moreover, as r,t > x  is equivalent t o  rpt > rht, 

that is h 5 p, we obtain 

Now, 

P { Y , > x , X t = j I T ~ = u , X ~ = i )  

For the second factor in the summand, we have that  

For the first factor, TI  = u  and Xo = i  imply Y, = p(i)u, so that 
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where the second equality follows from the Markov property and the third by 

homogeneity. Combining these results, we obtain relation (16). 

Corollary 5.5 For t > 0, i , j  E S ,  1 5 h < m and x E (rh-lt ,  rht) we have 

Proof. Consider equation (16) with i E Bpl 0 L: p L: m and j E S .  Differen- 

tiating Fij(t, x)  with respect to t, we obtain 

Next, differentiating Fi j ( t ,  x) with respect to x, we get 

Consider the functions Q k j  and pk,j defined by 

Note that $, , j ( t )  = l ~ h 5 , ~ l ~ i = j } ,  so (16) can be written as 

Differentiating I + ! I ~ , ~  with respect to u,  we get 

We thus obtain 
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where the second equality is obtained by integration by parts and the third 

follows from relation (18). rn 
Let D be the diagonal matrix with the reward rates p ( i )  on the diagonal and 

F ( t ,  x )  the matrix {Fi,j(t, x ) ) .  In matrix notation, the forward and backward 

equations ( 1 4 )  and (17) become 

and 

These are hyperbolic partial differential equations having a unique solution 

on the domain E with the initial condition given by relation ( lo) ,  see for 

instance [6]. 

5.2 Solutions 

The solution to equation (19) is given by the following theorem: 

Theorem 5.6 For every t  > 0 ,  and x E [rh-ltl rht) ,  for 1 5 h 5 m ,  

x  - rh-lt 
where ah = and the matrices ~ ( ~ ) ( n ,  k )  = (c&)& (n,  k ) ) o  5u,v5m 

(rh - rh-l)t 
are given b y  the recurrence relations 

f o r O < u < m ,  a n d h < v < m :  
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Proof. For t  > 0, and x E (rhWlt,  rht ) ,  1 5 h 5 m ,  we write the solution of 

equation (19) as 

and we establish the relations that  the matrices d h ) ( n ,  k )  must satisfy. So, 

and 

Since A = -/\(I - P ) ,  we obtain F ( t ,  x ) A  = -XF(t, x )  + XF(t, x )P ,  that  is, 

It follows that  if the matrices d h ) ( n ,  k )  satisfy 

d h ) ( n  + 1, k  + 1)[D - T ~ - ~ I ]  = d h ) ( n  + 1, k ) [ D  - rhI]  + (rh - T ~ - ~ ) c ( ~ ) ( T L ,  k ) p l  

(24) 

then equation (19) is satisfied. For every 1 5 h 5 m ,  and 0 < u 5 m ,  the 

recurrence relation (24) can also be written as follows: 

If h 5 v < m, then 
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and if 0 5 v 5 h - 1, then 

To get the initial conditions for the d h ) ( n ,  k), we consider the jumps of 

F ( t ,  x) .  We first consider the jump at  x = rot = 0. For t > 0, at  x = 0, that 

is, for h = 1, relation (21) yields that 

It follows from (10) that for 0 < u, v < m, 

In particular, that implies that for every 0 5 u 5 m,  

Next, we consider the jumps at  x = rht ,  1 < h 5 m - 1. For t > 0, 1 < h 5 

m -  1, and i , j  E S, we have that 

Fid(t1 rht)  = lim Fi f ( t ,  x) - P{K = rht ,  Xt  = j ( Xo = i) 
2 A r h t  

From (21) and (9), we obtain 

In particular, that implies that for every 0 5 u 5 m, 

and 

( h + l )  ~ F : ~ , ( n , n )  = C ,"," (n,O), for 0 5 v 5 h -  1 < m - 1. 

Finally, we consider the jump at  x = r,t, that is, for h = m. For t > 0, 
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0 = F i j ( t ,  rm t )  = lim Fij(t, x) - IP{x = rmt,  X t  = j I X o  = i), 
z&rmt 

which, as in the preceding case, leads to 

That implies that for every 0 < u < m, 

Corollary 5.7 For 1 5 h 5 m, n > 0 ,  and 0 5 k < n, the matrices 

C ( h ) ( n ,  k )  = (cFB. (n,  k))05u,u5m satisfy the following recurrence relations 

f o r h < u < m ,  a n d O < v < m :  

Proof. The proof is the same as that of Theorem 5.6 using equations (20)  

and (21) .  We thus obtain that the matrices d h ) ( n ,  k )  satisfy the relation 

[ D - T ~ - ~ I ] C ( ~ ) ( ~ + ~ ,  k + 1 )  = [ D - r h I ] ~ ( ~ ) ( n + l ,  ~ ) + ( T ~ - T ~ - ~ ) P C ( ~ ) ( ~ ,  k ) .  

(28)  

For every 1 5 h < m, and 0 < v 5 m, the relation (28)  may also be written 

as follows: 
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If h 5 u 5 m,  then 

m 
Tu - Th C F B u  (n, k-I)+ 

Th - Th-1 c p B "  (n,  k)= (h) C PB,B~CB~B,  (n-1, k-l) ,  
Tu - Th-1 Tu - Th-1 w=,-, 

and if 0 5 u 5 h -  1, then 

As in the proof of Theorem 5.6, we consider the jumps of F ( t ,  x). Relation (25) 

implies that, for every 0 < v < m, 

Relation (26) implies that, for every 0 5 v 5 m, 

and 

(h+l )  (h) ( n , n )  =CBuBr(n,O),  for 0 5 u 5 h -  1 < m -  1. CB, B* 

Finally, (27) implies that, for every 0 5 v < m, 

The following corollary gives an upper bound for the matrices d h ) ( n ,  k) .  

If M and K are square matrices of the same dimension, the notation M 5 K 

means element-wise inequality. 

Corollary 5.8 For every n 2 0, 0 5 k 5 n, and 1 5 h < 'm,  

Proof. The proof is by a two-stage induction; first over n,  then, for fixed 

n,  over k, by using the recurrence relation in Theorem 5.6, or equivalently in 

Corollary 5.7. The result clearly holds for n = 0. Note that in (22), that is, 
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for h 5 v, we have 

and in (23), that is, for v 5 h - 1, we have 

Consider first the case v 5 h - 1. The result holds for the pair (n,  n) ,  since 

~L;b"(n, n) = 0. Suppose the result holds for n - 1 and for the pair (n, k + l ) ,  

then from (23), we get ~ g ) ~ ~ ( n ,  k) > 0, and 

m 
Th-1 - T u  (h) Th - Th-1 

C B ~  B" (n,  ~c + 1) + C c!/B, (n - 1, ~)PB,B. 
Th - Tu Th - Tu w=o 

The same argument is used in the case h 5 v from relation (22). Moreover, 

the relations 

and 

(h) (h+ l )  CBuBv(n,n)  = CBuB, (n, 0), for 0 5 v 5 h - 1 < m - 1, 

are used to account for both cases v 5 h - 1 and h 5 v. 

In numerical procedures, that result is particularly useful in avoiding over- 

flow problems. 
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