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OCCUPATION TIMES IN MARKOV PROCESSES
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ABSTRACT

In a homogeneous finite-state Markov process, we consider the occupation
times, that is, the times spent by the process in given subsets of the state
space during a finite interval of time. We first derive the distribution of the
occupation time of one subset and then we generalize that result to the joint
distribution of occupation times of different subsets of the state space by the
use of order statistics from the uniform distribution. Next, we consider the
distribution of weighted sums of occupation times. We obtain forward and
backward equations describing the behavior of these weighted sums and we
show how these lead to simple expressions for that distribution.

1 INTRODUCTION

Let X = {X,,u > 0} be a homogeneous Markov process with finite state space
S. The occupation time of a subset U C S over [0,¢) is defined as the random

variable
¢
Wt =/0 l{xuey}du,

where 1y = 1, if condition ¢ holds and 0 otherwise. That random variable

has drawn much attention as it is also known as the interval availability in
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reliability and dependability theory. In [2] an expression for the distribution
of W; was obtained using uniform order statistics on [0,¢). From a computa-
tional point of view that expression is very interesting; various methods were
developed to compute it even in the case of denumerable state spaces (see [2],
[10], [8], [9] and the references therein).

We first recall how the joint distribution of the pair (W, X,;) was obtained
in [2] by using the forward and backward equations associated with the uni-
formized Markov chain of the process X. We then generalize that result to
the joint distribution of W}, ..., W™, X,, where W} is the occupation time of
a subset B; over the interval [0,t). Finally, we consider a weighted sum of

occupation times, that is the random variable Y; defined by

t
Y= [ p(X)du,

where for each ¢ € S, p(¢) is a nonnegative constant. The quantity Y; aris-
es in the performability analysis in reliability and dependability theory (see
[3], [5] and the references therein). Here we derive backward and forward
equations describing the behavior of the joint distribution of (V;, X;). These
partial differential equations are then solved. We show that they lead to simple
expressions for the joint distribution of (V;, X;).

The remainder of the paper is organized as follows. In the next section, we
consider the joint distribution of uniform order statistics and the joint condi-
tional distribution of the jumps in a Poisson process and we recall how they
are related. In Section 3, we consider the case m = 1, to obtain the distribu-
tion of occupation time for a discrete time Markov chain. That distribution,
combined with the results of Section 2, leads to a simple expression for the
joint distribution of the pair (W;, X;). In Section 4, the results of Section 3 are
generalized to the case m > 1. Finally, Section 5 deals with the distribution

of the pair (¥;, Xt).
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2 ORDER STATISTICS

2.1 The Uniform Distribution

We consider the order statistics of uniform random variables on [0, t). Formally,

let X3, X, ..., X, be niid. uniform random variables on [0, ¢). If the random
variables X, X,, ..., X, are rearranged in ascending order of magnitude and
written as

Xy £ X £ < Xy,

we call X(;) the ith order statistic, : = 1,2,...,n.
Let F,(z) be the distribution of X(;). We know that (see for instance [1]),
for z € (0,1),

n n T ) T n—1t
ro=etiosa =) 07w
i=r \ 1
In [1] it is shown that the joint density of X(,), X(,41), - - - X(ty+ig4--+14) 18
given, for 1l <k <n, 1 <L+b+ -+ <n{;>1),andz; < x5 < -+ < 2y
(Ii € (O)t))’ by
Guitay ol (CL‘l, T azk) =

\ (1)k <x1)l1—-l <.’L’2 _ ml)lz—l (-rk _ Ik—l)lk_l (1 3 ﬂ)n‘([1+12"‘+lk)
T\ \% t t £ _

=Dz — D)1~ D (n— (b + g+ Ig))!

Furthermore, if for fixed 1 <k <mnand 1 < lj+l+-- -+l <n(l; > 1), we
define Y1 = X,y and Y; = X ip440) — Xty +to4-41,_,) for £ =2,.. .k, then
the joint density function of ¥7,Y3,...,Ys is givén, for0 < s1+89+-+s; <t
(s: € (0,2)), by

h/ll,lz,...,lk (sla 8204, sk) = Qi la, g (Sla 81+ 82,...,81+ + Sk),

that is,



10: 01 23 March 2009

Downl oaded By: [Ms Inria Rocquencourt] At:

482 ‘ SERICOLA

Ptz (81,82, -+, S) =

n' (l>k (ﬂ)ll—l <S2>lz-—1 (Sk)lk—l (1 _ 81 +82+,,,+sk>n—(h+l2---+lk)
A\t t t t t _

(ll - 1)'(12 - 1)' v (lk - 1)'(77, b (ll + 12 et lk))‘

In particular, for £ = n, we get the joint density function of the spacings

Y, = X(l), Yo = X(g)-X(U, ce Y, = X(n)'—X(n_l), denoted by h(ﬂ?l, To,... ,:'L‘n)

by setting [y =ly =--- =1, = 1 in the preceding expression, that is
| n
T Yast
h(.’El,.’L‘z,...,l'n): t i=1

0 otherwise.

By writing Y, 41 = t — X(5), this also determines the (degenerate) joint density
of Y1,Ya,...,Y,, Y, on the set

n+l1
;>0 (i=1,...,n,n+1) > zi=t
=1

The joint distribution Hy, 4,40, (51,82, ..., %) of Y1, Y},, ..., Y, is given in

the following lemma.

Lemma 2.1 For1 <k <n, 1 <h+lh+ -+ <n({;>1),and0 <
S1+ 8+ + s <t (s; € (0,t)), we have that

Hll,lz,...,lk(sl’ 527 AR S}C) =

n! (ﬁ)h (2)1‘2 (_S_Ii)ik (1 _ 31+ 82+ - +Sk)“_(i1+i2"'+ik)
Y — t t t |

ilig! - ipl(n = (i + g - + 1))

1y 2,02 2 e,k 2 g,

i1 +iz+-Fig <n
Proof. It suffices to show that

k
a Hll,lz,...,lk (Sla 82,4, Sk) _ h (S s s )
= Tty .00 1,925+ .y 9k )
05,089+ -+ I3y, DRtk AT TEr

To simplify notation, we define

(51>i1 89 i2 S\ . S1+ 8+ -+ 8k n—(i1+iz+ig)
gtistseose _ \ (?) - (T) < — t )

T2tk 111790 - - zk'(n - (il +ige- 4+ Z)c))'
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We obtain

aHll,lz,.‘.,lk(Sla 82,4y Sk)
8sk

483
n!
jatl Z 9”1,52, 2S5k
¢ nji1,82,0 ik — 1,0k — 1
iy > lyyi2 2 oy ik 2 Uk,
i1+i2+ -+ <n
!
_E Z 9“1.82,
t n— lzl,zz, ol
i > ie 2,00 2 U,
G142+ +ixg<n-1
!
7_7'_' Z 9'381,82, 8
¢ n— lzmzy ik
i1 2 b2 202, ik 2 k-1t 2 e — 1,
i1 +i2+ - +ipg<n—1
!
_n Z gListsa,s
¢ n— 111,12, ke
By 2 iz 2 a0t 2 U,
ip+idz+r+ S<n—1
|
n: Z 0“1,52, 8
t n—1;11,d2,.. ylk L1
iy 2 h,i2 21,00 ik 2 by,

1tiz+ o tie-1 Sn-—1

where the second equality is obtained by the change of variable i, — ix+1. By

successively iterating the same argument with respect to variables s;_j, ..

we obtain

k—1
0 Hll,lz,‘..,lk(sly 82, ..

n—k+1

Bskask_l ce 882
and finally,
akHll,lg,..‘,lk(Sla 852504, Sk)

sg)  n! "
) — 181,82, 8k
T k-1 Z 9"—k+1;i1,lz—

1, lg—1—-10 -1
1=l

Bsk ce 882881
t n—k+1 | n—k
_ Z Qs 8.3 _n Z gLis152:5%
- tk n—k+1;i1~1,la—1,..,0x—1 tk n—kii1,lo—1,..,0t—1
1=l 1=l
n—k n—k
— _n_' Z ;81,52,...,5¢ n! Z ti51,82,..5k
Ttk n—kii1la— n—k;i1,lz—1,.,lk—1
1=l —-1 =0
— _gt;sl,szn--,sk
- tk n—k;il1i—1,l2—1,..,lk-1
= h’l1,lz,---,lk (81, 89,.. ., Sk),

-5 82,
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where the second equality is obtained by the change of variable iy — ¢; + 1.

2.2 The Poisson Process

Let {N;,t € R} be a Poisson process of rate A and Ty, To + T, ..., To + T1 +
++«+Tn_1, be the first n instants of jumps of {V;} in [0, ¢). It is well-known, see
[4], that the density of the conditional distribution of Ty, Ty, ..., Ts-1, given
{Ny=n}is
n! n-l
— if Y oa <t
f(xO»Ilw--,xn—l): ¢ i=0
0 otherwise.
That is also, as seen in the previous subsection, the joint density of the order
statistics from the uniform distribution on (0,).
If we write T, =t — (To + T1 + - - + Ty—1), this also determines the (de-

generate) joint density function of Ty, Ty, ..., Tn-1, T, on the set

;20 (i=0,...,n—-1,n) Y z;=t

1=0
The symmetric role of the variables xq, 1, ..., 2n_1, Zn shows that the random
variables Ty, T4, ..., Tn_1 are exchangeable. It follows from relation (1) that,

for1 <l<m, {i, -4} C{0,1,...,n}, and s € (0,%), we have

P{T;, +--+T, <s|Ny=n} = P{To+ - +T1 <s|Ne=n}
= ]P{XU)SS}

5O e

More generally, let k be an integer such that 1 < k < nandlet l;,l3,...,1
be integers such that 1 < Iy +lo + -+ + Iy < n (; > 1). For any subset
{ir, 92, -« o, Gy ptpetie } Of {0,1,...,n = 1,n}, the vectors

1y I1+12 ly+lo+ -+l
> Ty 2 Ty 2 T
Jj=1

J=li+1 J=litlat+ o1+l
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and

Jj=h J=lh+l+ -y

h-1  l+l-1 L+l —1
YT Y T > 0T
i=0

have the same conditional distribution given that N; = n. By lemma 2.1, for

0<sy+83+ -+ s <t (s €(0,t)), we thus get

5 11+ li+la+-+l
P{ T;<s1, Y, Tj<sy,..., > T; <s | Ny=n}=
j=1 j=li+1 g=li+lato e +1

n! (il_)h (ﬂ)” - <S_k)ik (1 _ 8§17+ 82+ + Sk)n_(i1+i2"'+ik)
>t t t t |

it ikl(n = (4 + 4 + ik))!

i1 > lydg 2 g, 00k 2 b,
i+ +ig<n

3)

3 DISTRIBUTION OF OCCUPATION TIMES

Let X = {X,,u > 0} be a homogeneous Markov process with finite state
space S. The process X is characterized by its infinitesimal generator A and
its initial probability distribution o. We denote by Z = {Z,,n > 0} the
uniformized Markov chain [7] associated to the Markov process X, with the
same initial distribution «. Its transition probability matrix P is related to
the matrix A by the relation P = I + A/A, where I is the identity matrix
and ) satisfies A > max{—A;,;, ¢ € S}. The rate X is the rate of the Poisson
process {N,,u > 0}, independent of Z, that counts the number of transitions
of process {Zy,,u > 0} over [0,¢). It is well-known that the processes {Zy,}
and X are stochastically equivalent. We consider a partition S = U U D,
UND =, of the state space S and we study the occupation time in the
subset U.

3.1 The Discrete Time Case

For the Markov chain Z = {Z,,n > 0}, the random variable V, is the total
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number of states of U visited during the n first transitions of Z, that is
n
Vn = Z 1{ZkeU}
k=0
The following theorem gives the backward equations for the behavior of the pair

(Va, Zy). For every i € S, the notation P; denotes the conditional probability
given that Z, =1, that is P;{.} = P{. | Zp = i}.

Theorem 3.1 Forn > 1, and 1 < k < n, we have that

fori e U, P{Vo <k, Zp =3} =3 PuP{Vie1 <k —1,Z,_ = j},
les

forie D, ]Pi{vn <k Zp= .7} = ZH,lPl{Vn—l <k, Zn :]}
les

Proof. By using the Markov property and the homogeneity of Z, we get that

Pi{Va <k Zn=3} = Y PP{Va<k Zy=3|2Z =1}
les

= ZIDi,l]Pl{Vn—l <k- l{iEU}s Zpo1 = ]}
les

|
The following theorem gives the forward equations for the probabilities

associated with the pair (V,, Z,,).

Theorem 3.2 Forn > 1, and 1 < k < n, we have that

forj €U, P{Va <k, Z, =4} =) P{Voo1 <k=-1,Z,.y =1}Py,
les

forje D, P{V, <k Z,=3}= Z]Pi{vn—l < k,Zn_1=1}P;.
les

Proof. By the same arguments, we get that

]P{‘/n S kan =ja ZO = 2} = P{Vn—l S k - 1{jEU)7Zn =j) ZO = 2}

- Z]P{Vn—l S k — 1{jEU}7 Zn = j, Zn—l = l,Zo = Z}

leS

= PV <k~ ljeny Zo =1 | Zny = JP{Z = j, Zuy =1}
les

= Z]P{Vn—l <k —1gevy, Zno1 =1, 2y = i} Py
les

We thus obtain the desired relation by conditioning on Z,. [ |
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For n > 0, and k > 0, we introduce the matrix F(n,k) = {F,;(n,k)}
defined by
Fijn k) =P{Va <k, Zn =5 | Zo = 1}.
The results of Theorems 3.1 and 3.2 can be easily expressed in matrix notation.

We decompose the matrices P and F(n, k) with respect to the partition {U, D}

as

P=( Py PUD) and F(n,k)z( Fy(n, k) FUD(n’k))'
Ppy Pp Fpy(n,k) Fp(n,k)

The result of Theorem 3.1 can now be written as
(Fotmky Fontnk) ) = (Po Puo )P =1,k -1)

(FDU(nak) FD(n,k)) = (PDU Pp )F("—l’k)

or

Py Pyp 0 0
F(n,k) = Fin-1,k-1)+ F(n-1,k).
0 0 Ppy Pp

In the same way, Theorem 3.2 can be written as

( Fun. k) ) F(n—l,k—l)( P )

FDU(TL, k) PDU
Fyp(n, k) — F(n—1.k) Pyp
FD(n,k) , PD

F(n,k)=F(n—1,k—1)( P O)+F(n—1,k)(0 PUD).

or

The initial conditions are
0 0
F(n,0) = , forn > 0.
0 (Pp)"
Note that for all k > n+ 1, F(n, k) = P".
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3.2 The Continuous Time Case

We consider the Markov process X = {X;,t > 0} and the occupation time W,
of the subset U in [0, t), that is

t
Wt=/0 1{XueU}dU-

That random variable represents the time spent by the process X in the subset
U during the interval [0,¢). The joint distribution of the pair (W,, X;) is given

by the following theorem.

Theorem 3.3 For everyi,j € S, fort >0, and s € [0,t), we have that
P{W; <s, Xy =j| Xo =1}

— i )" i (”) (;)k (1 _ ;)n—k]P{Vn <k Zn=7|2Z0 =i} (4)

Proof. For s < t, we have that
P{W,<s,X:=j|Xo =1}

= Zpi{WtS-Sth:naXt:j}

n=0

= Z P{W,<s,N,=n,Z, =j} since {X;} and {Zy,} are equivalent
n=0

= Z PN =n}P{W, < s,Z, =) | Ny=n}
n=0

= ZIP{Ntzn}IPZ{Wt SS,ZnZ_]‘Nt:TZ}
n=0
oo n+1

= Y P{Ny=n}> Pi{W,<s,Vo=1,Z, =35 | Ny=n}
n=0 =0
o) n+1

= Z]P{Nt :n}Z]Pi{Vn =1,Z,=}P;{W, <s|Vo=1,Z,=3j Ny =n}
n=0 1=0

= ZP{Nt =n}zPi{Vn =1,Z, =j}P{W, < s | Va =1,Z, = j, Ny = n}.
n=0 =0

The fourth and sixth equalities follow from the independence of the processes

{Zn} and {N;} and the fact that Xy = Z;. The last equality follows from the
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fact that if { = n + 1, we trivially have that V,, = n+ 1 and V; = n imply that
W,=1t Wesoget P{W,<s|Vo=n+1,2Z,=735 N, =n}=0,since s <t
Let us consider now the expression P,{W; < s |V, =1,Z, = j,Ny = n}. For
fixed 4,7 € S and 0 <[ < n, we define the set

[ entries of Z are in U and
n+1— [ entries of Z are in D

45— (; ; n+1
Gl,n - {Z - (lazh'"vzn—la.)) € S

and we denote by Z the random vector (Z, ..., Z,). We then have
P{W, <s|Vo=1,2,=4Ne=n}
= S PW:<s|Z=5Va=l,Ny=n}P{Z=2|V,=1,Z,=j,N,=n}
zeay,
= N PWi<s|Z=3Va=,Ny=n}P{Z =2|V,u =12, =},
z€Gyl
where the last equality follows from the independence of {Z,} and {N,}. We
denote by Ty, Ty + Ty, ..., To +T1 + - - - + Ty _;, the first n instants of jumps of
the Poisson process {/NV;} over [0,t) and weset T, =t — (To + Ty + -+ Tn-1).
Then,

]
P{W,<s|Z=%V,=l,N,=n} = P} T, <s|Z=%V,=1,N,=n}

=1
!
= IP{ZTij < s | Ny =n},
j=1
where the distinct indices 41,...,4 € {0,1,...,n} correspond to the [ entries

of Z that are in U and the last equality is due to the independence of the
processes {Z,} and {N,;}. For | = 0, we obtain the correct result, which is
equal to 1 by using the convention Y°(...) = 0 if a > b. From relation (2) we

get, for 1 =0,...,n,

P{T, + - +T, <s|Ny=n} = P{Tp+ - +T_, <s| N, =n}

-2 e
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Again, the convention 3%(...) = 0 for @ > b allows us to cover the cases I = 0
and [ = n + 1. Finally, we obtain that
IP'L'{Wt <s l Vn = l)Zn =j,Nt = n}

S ({ [ONEE R CHRENERS

(=97

That is, since P{N, = n} = e""(\t)"/n!,
P{W, < s, Xy =7 | Xo =1}

- ie-m(/\t)" Z":z": (n) (;)k (1 - §>"_k]f>{vn = 1,2, =] | Zo =i}

- 26_»(*7:!)"’; (:) (;)k <1 - ;)"_kélp{v,, = 1,2, =7 | Zo =i}
_ ie_»(i:!)"ki (:) (;)k (1 - %)"_klp{vn <k Zy=3| 2 =i}

4 JOINT DISTRIBUTION OF OCCUPATION TIMES

Next, we partition the state space S into m + 1 subsets By, By, ..., Bm.

4.1 The Discrete Time Case

We consider the random variables V! defined by

Vni = Z l{ZlcEBi}‘
k=0

The next theorem gives the backward equation for the joint distribution of the

Vi and Z,.
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Theorem 4.1 Forr=1,....m,n>1,and0< ky,....kn, <n (k; > 1), we
have
fori€ B,, P{V} <ki,..., V] <k, . .\ V] <kmZn=j}=

ZPi,lPl{Vl—l S kla N '7V1:‘—1 S kr - 17' . 'vvnnll S kTmZn—l = ]})
le§
fOTiGBo, lPl{an Skl,...,VnmSkm,anj}‘—:

Z Pi,lIPl{an_l S kla cry Vn"11 S kma Zn—l = .7}
les

Proof. By V, and k we denote the vectors (V;},..., V") and (ki,...,km)
respectively and by e;, i = 1,...,m, the unit row vector of dimension m whose

ith entry is 1. The proof follows the same steps as that of Theorem 3.1. We

have
P{Vha <k Zn=jlZo=i} = S PP{Va<k Zn=3|Z=1}
leS
= ZPz‘,lIPz{V::1 <k- erl{ieB,}, Zn-1 =171}
leS
|

The theorem that follows gives the forward equation for the joint distribu-

tion of the V! and Z,.

Theorem 4.2 Forr=1,....m,n>1, and 0 < ky,... , kn <n (k, 2 1), we
have
forj € By, PV < ki, VI <hyyoo VI < liny Zn = j} =
ZIPZ-{V,II_1 <k ..o VI <k =1,V <kp Znoy =1},
les

forjeBO) P’L{an Sklvyvylnskmvzn:]}z

Z]P,{an_l S kl, .. '7V7:711 S kmyzn—l = l}}Dl,j.
les

Proof. Using the notation of the proof of Theorem 4.1, we follow the same

steps as in Theorem 3.2. We have that
P{‘//:z <k, Zn=342Z0=1}= ]P{V{n-:l <k- erlijeB,}, Zn = J, Zo = i}

= ZP{V:; <k- erl(jeB.}s Zn = J, Zn1 = 1, Zp = i}
I
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= SP{Vioi<k-elgen) Zo=i|Zn1=}P{Zy =}, Zn1 =1}

les
= Y PVaii <k —elyjeny, Zn1 =1, % = i}P,;.
leS
By conditioning on Zj, we obtain the desired relation. [ |

By F(n,ky,...,kn), for n > 0 and k, > 0, we denote the matrix with (i, 5)

entry
}«“,-,,-(n,/cl,...,lcm)=]P{Vn1 <k, ...,V <kmZn=3|2Zy =1}

The results of Theorems 4.1 and 4.2 can be conveniently expressed in matrix
notation. We first decompose the matrices P and F'(n, ky,. .., k) with respect

to the partition {By, B, ..., By} of the state space S as

P = {PBTB'I}OST,'ISWZ and F(?‘L,kl, Cey km) = {FB,-B;,(TL’ kl, e "km)}OSr,hsm'

The result of Theorem 4.1 can then be written as

m
FBTBh(n, kl, .. .,km) = EPBTB;FBlBh(n - 1,](71, . .,kr - l{r;éo}, o .,km),
=0

and that of Theorem 3.2 as

FB,Bh(n, kl, e .,km) = ZFBrBl(n - l,k‘l,.. .,kh et l{h#O}y---)km)PB[Bh'
=0

The initial conditions are given by

0 0
F(n,0,...,0) = , for n > 0.
0 (PBuBo)n

Note that in the case k1+- - -+k,, > n+1, with k; <n,fori=1,...,m, the m-
dimensional joint distribution of V!, ... V™ can be expressed as a combination
of the h-dimensional joint distributions of the V! for A= 1,...,m — 1. That

observation is based on the following general result.

For any random variables Ui, ..., U,, and any event A, we have
P{i <oy, ., Up S 2, A = Y (=)™ EHIP{U, < 251 € E, A}
Ec({1,..m}

+ (—l)mP{Ul > 21, ...,Up > .Tm,A}, (5)
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where the inclusion is strict, that is E # {1,...,m}, and where, for conve-

nience, we set P{U; < z;;1 € 0, A} = P{A}. For the random variables V;,
P{V!>k,..,V*">knZn=3j|Zo=1}=0, fki+--+kp2n+1,
so, in that case, we get the desired result,

PV, <k Zo=j}= 3 (-1)™EMPLVI<k;le E,Z,=j}. (6)
Ec{l,.,m}

4.2 The Continuous Time Case

We consider the random variables Wi i=1,...,m, defined by
, t
th = /0 1{X,.EB,-}dU,
whose joint distribution with X, is given in the next theorem.

Theorem 4.3 For everyi,j € S, for everyt > 0, and s1,...,5m € [0,t) such
that 81+ 59 + - -+ + 8, < t, we have ‘
P{W!<s1,....W'<spXe=7|Xo=1}=

}00: At
e~
n=0

At)" : .
O S g n PAVE S by VP Sk Zo= ) ()
k1 20,..., km 20,
k14 +hm<n

where
(3_1)’“ (fz)’“ . (S_k)'“'" (1- 2kt sm)"—<’°1+"'+’°m>
gt;sl,sz,m,sm — t t t i
ik k2 km kilka! - km(n — (k1 + kv + k)

Proof. We define the vectors W, = (W}, ..., W/™), V, = (VL...,V™), and
§=(s,...,5n). Inequality between vectors means component-wise inequality.

For n > 0, we define the set E, by

En={Z=(ll,l2,...,lm)eNmIll+12+...+lmsn}_
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We have that
P{W, <5 X,=j| Xo=1}

n=0
[o.=]
= Z P{W, < 3§ N, =n,Z,=j} since {X;} and {Zn,} are equivalent
n°=00 N
= Y P{N;=n}P{W, <5 Z,=j| Ny =n}
n=0
= Y P{N,=n}P{W, <5 Z,=j| Ny =n}
n=0
=3P {Nt_n}ZIP{Wt<s Vo=1,Z,=j| N, =n}
n=0 ek,
w o~
= Z]P{Nt—-n} Y PV =120 = )W <5 | Vo =1, 2y =, Ny = n}.

leE,
The fourth and last equalities follow from the independence of the processes
{Z,} and {N,} and the fact that X, = Z,. In the fifth equality, the summation
in I should be over E, .1 but it can be restricted to E,,. If [y +lo+- - -+l = n+1,
then V, = [ and N, = n imply that V! + ...+ V™ = n + 1 and so that
Wh+. .4+ WP =t Ass;+---+sn, <tthat implies IP{VV: <3| V.=IN,=
n} = 0. Now consider the expression ]Pi{m <5 V.=12,=7jN, = n}.
Forl = (li,l,...,lm) € Ey, and 4,7 € S, we define the set

[, entries of Z are in By, ...,
G;Afl =¢2=({,21,...,2n-1,7) € S | I, entries of 7 are in B,, and ,
n+l-(1+-+1y,) arein By

and we denote the random vector (Zy, ..., Z,) by Z. We have that
P{W,<5|Va=1,2,=j,N, =n}

I
=
——
=
A
[v)
N
!
W)
=~
I
3
I
S
I:a
,-A,
II
=
fl
N
Il
fod
Z
]
3
"yt
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where the last equality follows from the independence of the processes {Z,}

and {N:}. It follows that

-~ o~~~ -~

P{W,<5|Z=3V,=[,N,=n}=P{T()<5|Z=3%V,=1,N,=n},

L1+l L+la4+im
=(ZTZJ’ Z T;J""’ Z T’J)

j=li+1 j=hi+la+FHlm_1+1
Again using the independence of {Z,} and {N:} and relation (3), we obtain

P{T)<8|2=2V,=LN,=n} = P{T() <3| N, =n}
= Z n1GBES1S2raSm

niki,ka,.nkm
k1 2 li,ks 2 {2,.. . km 2 Im,
ki+ke+ - +km<n

Note that if one of the I;’s is zero, the corresponding entry of the vector T(l)
becomes zero and the preceding formula still holds. Indeed, suppose for sim-

plicity that [,, = 0, then
n—{k1+-+km-1)
> i = > nto 3
k1211, km 20, k12, ket 2 e, km=0
ki+- - +km<n ki+:+km-1<n

—_ 19815 Sm~1
- Z n!6, nik1,enkmet”
k1211, km—1 2 lm—1,
k14 +kn-1<n

o~

Note also that if all the [;’s are zero, all the entries of T(I) are zero and the
formula still holds since
)Y e = 1
k1 20,k220,...,km 20,
ki+ka+  +km<n

Putting these results together, we obtain
P,{W,<§|Vo,=1,2Z, =74, Ny=n}
2 prenydm 7 = ;
= 2 )Y g P2 = 2| Vo =1, 2, = j}
ZEGY by >like 2ok 2 b,
ki+ke+ o +km<n
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_ £i81,82,..18m (7 =3/ =T —
- 3 g S P{Z=2|V =12, =}
ky > lka 2 l2, .k > U, zeG
ki+ka+ - +kn<n
_ 19ti81,82,--8m
= > LA

k12 h,k2 202, km 2 m,
ki+ka+-+km<n

]P{WS§X ]IXQ—Z}

- (/\ ) 1 t;51,52,...,8m _ T s
= Z e Z Z e ko Fd { =1,Z, = j}

— n! .
n=0 1€Bn ky >l k2 2 12, hm 2 b,
ki+kz+ - +km<n
> —At (’\t>n £:81,82,..,8m T ——
= Z € Y Z R0k, Ko Z Pi{Va =12, = j}
n=0 ™ feEn b> ke 2 ke, lm > km,

htl++ln<n

= S e s g p(T < 1)
n PN

nik1,k2,.. km

- —At(’\t)n £;81,82,..8m
= Y e > AL " Pi{Vn <1, Z, = j}.
k12 0,k220,...,km 20,
ki +ka+ - +km<n

|

From relation (7) the distribution P;{W} < s1,..., W™ < 5, Xy = j} is
differentiable with respect to ¢t and also with respect to si,s2,...,8m fort > 0,
S1,.-.,5m € (0,t), and s+ - -+ 8, € (0,t). Moreover, if s;+52+-++8m > ¢,

then trivially
P{W}!>s,...,W"> s, X, =7 | Xo=1} =0,

so that relation (6) applies by replacing the V! and the k; by the W} and the

s) respectively.

5 WEIGHTED SUMS OF OCCUPATION TIMES

A constant performance level or reward rate p(1) is associated with each state
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i of S. We consider the random variable Y; defined by
Y, = fot p(Xy)du.
We denote by m + 1 the number of distinct rewards and their values by
P < < o < Tel < T

We then have Y; € [rgt, 7nt] with probability one. Without loss of generality,
we may set 7y = 0. That can be easily done by considering the random
variable Y, — rot instead of Y; and the reward rates r; — ry instead of r;. Asin
Section 4, the state space S is partitioned into subsets By, ..., Bn. The subset
B contains the states with reward rate r;, that is B, = {i € S|p(¢) = r}. With
this notation,
m ¢ m
Yi= ,Z_:ITI/O lix,eBydu = ;Tthl~ (8)
As the distribution of each W/ has at most two jumps at 0 and ¢, the
distribution of Y; has at most m + 1 jumps at the points 7ot = 0, 7it, ...,
rmt. For t > 0, the jump at point = it is equal to the probability that the
process X, starting in subset By, stays in the subset B; during all of [0, ), that
is
P{Y, = nit} = ap,e?2'1p, for t >0,
where 1p, is the column vector of dimension |B;| with all components equal to

1. For every i,j € S, and t > 0, we define the functions F;;(t,z) by
Fij(t,z) =P{Y; >z, Xy =j | Xo =1},

and we introduce the matrix F(¢,z) = {F;;(¢t,z)}. Using the partition By,

Bm_1, ..., By, the matrices A, P, and F(¢,z) can be written as
A= {Ap,s, }ogu,ugm ; P={Pg,s, }ogu,ugm i F(t,z) = {Fg,s, (tv'r)}ogu,vSm'

Note that for ¢ > 0, and 0 <! < m,

ABBt . -
etmB’), ;. ifi,j € By,
P{Y,=nt, X, =j | Xo=i} = ( v

0 otherwise,
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that is

. . x —At (/\t)n n
P{Yi,=nt, X, =j|Xo=13}=) e — (Ps,B,)i 1 5eB))- (9)

n=0

The distribution Fj;(¢,z) can be obtained from relation (8), using the joint
distribution of the W} obtained in Section 4.2. From relation (7), F; ;(t, ) is

differentiable with respect to x and ¢ in the domain
m
E={(t,z); t>0and z € {J(r_1t,mt)}.
=1
The initial conditions are given, for ¢ > 0, by
that is, in matrix notation,

Fg,p,(t,0) = (e*)p,B, — €205 ] (4= y=0},

which can also be written as

(At)"
!

FBuBu(ta 0) = Z 6_'“
n=0 n

[(P")Bqu — (PoBo) Lu=v=0}] - (10)

5.1 Backward and Forward Equations

In what follows, we derive backward and forward equations satisfied by the
distribution of the pair (¥;, X;). First, we recall some well-known and useful
results in the following lemma. Remember that {N(¢)} is a Poisson process
of rate A, independent of the Markov chain Z. We denote by N(t,t + s) the

number of transitions during the interval [¢, ¢ + s).

Lemma 5.1

P{N(t,t+s)=0| X, =j}=¢e™™ (11)
P{Xuy, = 4, N(t,t +5) = 1| X, =i} = Pjhse™ (12)

P{N(t,t+5) > 2| Xo =1} = o(s). (13)
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The following theorem establishes the forward equation for the pair (¥}, X).

Theorem 5.2 Fort>0,4,7€ S,1<h<m, and z € (rp-1t,Tht), we have

6Fm»(t, 1‘) _

. BE-J(t,x

! + 2 Fi(t,2) Ags. (14)

kesS

Proof. By conditioning on the number of transitions in [¢,t + s), we have

Pi{Yits > 0, Xips =j} = Pi{Yi4s > 2, Xeps = j, N(t,t +5) = 0}
+ Pi{Yiss >z, Xpys = J, N(t,t +5) = 1}

+]Pi{}/f+s >x)Xt+5 =]yN(t1t+S) Z 2}

We separately consider these three terms. For the first term, since Xy, = J

and N(t,t+ s) = 0 is equivalent to X; = j and N(¢,t + s) = 0, we have
Pi{Yigs > 2, Xpis =, N(t,t+5) = 0} = Pi{Yy, > 2, Xy = 5, N(t, t +5) = 0}

= P{Yiys > | Xt =5 Nt t+s)=0}P{X, =4, N(tt+s) =0}

= P{Yi>z—p(f)s| Xe =7, Nt t+s)=0}P{X,=j N(t,t +s) =0}

= Pi{Yi >z —p(j)s | Xy = j}P{Xe = j, N(t,t +5) = 0}

= PV, > 12— p(j)s, Xy = j}P{N(t,t +5) = 0] X, = j}

= P{N(t,t+5)=0] X, = j}F,;(t,x - p(5)s)

= e NE(t - p(j)s)

= (1= )Ptz = p(j)s) + o(s).
The second equality follows from the fact that, if X; = j and N(¢,t+s) =0, we
have Yiys = Y, + p(7)s. The third and fifth follow from the Markov property,
and the sixth from relation (11). For the second term denoted by G(s), we
define

Gk(s)zlpi{}/t+8>z’Xt:k)Xt+3=jaN(t,t+3)=1}'

We then have
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G(s) Pi{Yeys > 7, Xpy = 5, N(t,t +5) = 1}

Y Ge(9)P{ X = k, Xpyy = 5, N(t,t +5) = 1}
keS

i

Let us define pyin = min{p(i)} and pmax = max{p(i)}.
As )/t + Pmin$ < )/H—s < Yt + Pmax$, We get

Pi{Y, > 2 — pmins | Xt = k, Xegs = J, N(t,t + 5) = 1} < Gi(s),
and
Gi(s) S P{Y: >z — pmaxs | Xe = k, Xp4s = J, N(t,t +5) = 1}.
Using the Markov property,
Pi{Y; > 2 — pmins | X¢ = k} < G(s) S P{Y: > & — pmaxs | Xy = k}.
We thus obtain

3" Fox(t, = prains)Usj(s) < G(s) £ D Fir(t, @ — pmaxs)Uk5(8),

kes kes
where Uy ;(s) = P{X¢ys = 7, N(t,t +5) = 1| X; = k}. From relation (12),
lim M = /\Pk,j,
s—0 S

so we obtain

lim Gls)

s—0 S

=AY Fi(t, z)Pe ;.
keS
For the third term, we have by relation (13),
Pi{K+3 >, Xt+s = j, N(t,t + S) Z 2} g IPZ{N(t,t+ 3) Z 2} = O(S).

Combining the three terms, we obtain

E:j(t + S,.Z') - E,j(tvx) — (1 — )‘S)Fji,j(tvx - p(])S) - E,j(t7$) + G(S) + 0(5)
s s s s
_ Fylt,z —p(g)s) = Fy(tz) oo o Gls) | o(s)
= . - ARtz —p(f)s) + ——+ —

If now s tends to 0, we get
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oF; ;(t, z) _ (j)aF;"j(t,I)
ot or

kes

Since P = I + A/, we obtain that

aE,J(tv x) _

. BF‘i,j(t,CL‘

) + Z E,k(t, .T)Ak,j.
keS

- /\Fm‘(t, .Z') + A Z E’k(t, x)P,mv.

501

Corollary 5.3 Fort > 0,0 < p<m,i € B,, 7€ 5,1 < h < m, and

x € (rp-1t, ht), we have

t
F(t,x) = Z/O Fii(t —u,z = p(f)u) Ae duPy; + e Mlipepyliizyy. (15)

keS

Proof. Consider equation (14) and the functions ; ; defined by

0ii(u) = Fij(t —u,z — p(jlu)e™™.

Differentiating with respect to u yields

OF; OF; .
Au | by , 1,7
5~ PU) Ee

‘P;g(u) =e

which, by (14) and the relation A = —A(I — P), gives

(t—u, z—p(j)u)~F; j(t—u, 2 ~p(5)u) e ™

o) = =3 Fip(t —u,z — p(jlu)Ar e ™ = F (t —u,z — p(j)u)re ™
kES
= - Z Fit—ux— p(j)u))\e_’\“Pk,j
kes

Integrating that expression between 0 and ¢ gives

t
C0ii(t) — i;(0) = — Z/ Fip(t —u,x — p(j)u)de M duPy ;.
kes 0

Finally, we have ; ;(0) = F;;(t,7) and

0ii(t) = Fi;(0,z = p(7)t)e ™ = e ML aopeco Liimi} = € Lingp}lizs)-

We next derive the backward equation for the evolution of the pair (¥}, Xt).
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Theorem 5.4 Fort > 0,0 <p<m,i1 € By, j€ S, 1< h<m, and

T e (’I‘h_lt, Tht),

t
Fjtz) =3 B,k/O Fioj(t —u,z = p()u)re ™ du + e M ngpy =gy (16)

keS

Proof. Let T} be the sojourn time in the initial state. We have
Fi4(t @) :/ P{Y;>z,Xi=7|Th =u,Xo= i})\e—mdu.
0

Ifu>tand Xo =i, we have Y, = p(i)t = rpt and P{X; =j | Ty = u, Xo =
i} = 1,if s = j and 0 otherwise. Moreover, as rpt > x is equivalent to rpt > 7t,

that is A < p, we obtain
t

F;,j(t,;];) = / IP{Y,; >, X =7 ’ T =u, Xy = i})\e_’\"du + e_/\tl{hgp}]-{izj)'
0

Now,

P{Y;>z,X; =7 | Th =u,Xo =1}

= Z]P{Y; >IL‘,Xt=jIXu=k,T1 =U,X0:Z}P{Xu:le1 =U,X0=i}.
kesS

For the second factor in the summand, we have that

]P{XUIk‘ITl:’lL,Xg:i} = ]P{XTl-:k‘lT1=u,Xo=i}
= IP{lek|T1=u,Zo=z}
= Py

For the first factor, 7} = u and X, = ¢ imply Y, = p(¢)u, so that
]P{Yt >1‘,Xt :j I Xu = k7Tl ’:U!XO :2}

t
- ]P{/u o(Xo)dv > = — p(i)u, Xe = 5 | Xo = k, T = u, Xo = i}

t
= P{[ p(X,)dv >z - p(i)u, Xe = j | Xu = k)
= P{Yt_u >T— p(i)u,Xt_u =7 f Xo = k}

= F;(t —u,z - p(i)u),
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where the second equality follows from the Markov property and the third by

homogeneity. Combining these results, we obtain relation (16). »

Corollary 5.5 Fort>0,4,j€ 5,1 <h <m and z € (rh_1t,74t) we have
— = () —2 A Fy it ). 17
o p(3) o +kezs & Fe 5t ) (17)
Proof. Consider equation (16) with i € B,, 0 < p < m and j € S. Differen-

tiating F; ;(t, z) with respect to ¢, we obtain

t (t — — oli
OF; ;(t,x) - Y P, / OFi(t —u,x p(z)u)/\e_mdu
ot kes 0 ot
+ Z Pk F (0,2 — P(i)t)/\e_At - )\G—All{hgp}l{izg‘}
kes

Next, differentiating F; ;(¢, z) with respect to z, we get

. :
6‘F,J (t, ) - R / OF ;(t p(z)u)/\e"\“du.
kes

Consider the functions ¢ ; and ¢ ; defined by
Vri(u) = Fij{t —u,z — p(d)u),  and ¢ ;(u) = vr(u)e .

Note that 1;;(t) = 1{p<p)l{i=j}, s0 (16) can be written as
21 (0) = A Pas [ )i +015(0) (18)
kes

Differentiating ¢, ; with respect to u, we get

_OF(t~ w2 —p(i)u) ol OF ;(t — u,z — p(i)u)

!
wk,j(u) 3t (2) .
We thus obtain
GFij(t,:r) _8Fij(t,l‘) [ ¢ [ —Au )
OFist2) | iy25thT) _ 35 p o) = [ (we ™ du| — it
L pli) = 3 P [peslt) | v eus(t)
i
= A Pirow,;(0) — /\2/0 i (w)du — Ap; (t)
kes
= A Pwri(0) — Aoy (0)
kes

= A Z R,ka,j(t, l‘) - /\Fi’]‘(t, .I')
kes
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> AiFr(t, ),
kes
where the second equality is obtained by integration by parts and the third
follows from relation (18). [ ]
Let D be the diagonal matrix with the reward rates p(7) on the diagonal and
F(t,z) the matrix {F;;(¢,z)}. In matrix notation, the forward and backward

equations (14) and (17) become

OF(t,z) _ OF(tz)
Eraa p D + F(t,z)A, (19)
and
OF(t,x) _  OF(t =)
e D———am + AF(t, ). (20)

These are hyperbolic partial differential equations having a unique solution
on the domain F with the initial condition given by relation (10), see for

instance [6)].

5.2 Solutions

The solution to equation (19) is given by the following theorem:

Theorem 5.6 For everyt > 0, and & € [rp-1t,7ht), for 1 <h < m,

Flt,o) = 3 e A0 5~ ( ") oh(1—zp)"*CW(n k), (21)

- Th_lt

(Th — Th=1)t
are given by the recurrence relations

where ), = and the matrices C™(n, k) = (Cg:)Bu (n, k))o

<u,v<m

foro<u<m,andh <v<m:

forn>0: Cg‘?Bv (n,0) = (P")B.B.) Cg?BU (n,0) = C'g:_;u)(n,n), for h > 1,

for1<k<n:
c® Tv 7T o) (g k1) AL k-1
BB, (N, k)= e CBuBy (n, e th WZOC (n—1, )Pp., B,

(22)
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foro<u<m,and0<v<h-1:

forn>0: Cgf‘),gv (n,n) = 0p,p,, C,(;L)Bv(n,n) = C(’izlv)(n,O), for h < m,
for0<k<n-1:

Chlpu (k) = T2 PO (k1) 4 TZIZC L,k)Ps,5.:
(23)

w=0

Proof. Fort > 0, and = € (rp_1t,74t), 1 < h < m, we write the solution of

equation (19) as

F(t,$)=i - 3 ( ) (1 —zp)" *FCM(n, k),

n=0 k=0

and we establish the relations that the matrices C")(n, k) must satisfy. So,

OF(t, ) A W Ot L (L -k
=-AF(t,z)+ ——— ) ¢ (1 — )"
ot ( ) Th — Th=1 nZ:%) n! kZ;% k h( h)
X [rhC(h)(n +1,k) — ThtCP (0 + 1,k + 1)] ,

and

OF (t,x) A W Ot AN (AL T n—k

= e zi(l —x
Jz Th — Thei nz;; n! ,g) k al n)

x [CW(n+1,k+1) - CW(n+1,k)].

Since A = —A(I — P), we obtain F(t,z)A = —=AF(t,z) + AF(t, z)P, that is,

S LN B n—k o~ (h
Flt,z)A=-AF(t,z)+ 2> e > ( )xh(l—xh) C™(n, k)P.

!
n o\ k

n=0

It follows that if the matrices C*)(n, k) satisfy

CMW(n+1,k+1)[D—ry_1I] = C®(n+1,k)[D —rpI) + (15 = 75_1)CP(n, k) P,

(24)
then equation (19) is satisfied. For every 1 < h < m, and 0 < u < m, the
recurrence relation (24) can also be written as follows:

If h <v<m, then
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Py (n, k)=t O (n, k1) ‘Zc“‘) (n—1,k—1)Ps,p,,

Ty — Th-1 Ty = Th=1 =0

and if 0 < v < h—1, then

CHp (n,k) = T’;_-l;r’"'ic,gu (n,k+1) + 2Tl Z CPp (n—1,k)Pg,s,.
h — Ty
To get the initial conditions for the C(")(n, k), we consider the jumps of
F(t,z). We first consider the jump at x = 7ot = 0. For t > 0, at z = 0, that
is, for h = 1, relation (21) yields that

> __M /\t

Z e CW(n,0).
It follows from (10) that for 0 < u,v < m,
CH)p, (1,0) = (P") 5,5, — (Phoso)" L {u=v=0} (25)

In particular, that implies that for every 0 < u < m,
01(;33”(”, 0)=(P")B,B,, for 1 <v<m.

Next, we consider the jumps at z = rpt, 1 < h<m-—-1. Fort>0,1<h <

m—1,and i,j € S, we have that

F;(t,rat) = hm Fi;it,z) - P{Yi =rpt, Xe = j | Xo =1}

e-Ssrpt
From (21) and (9), we obtain

Ch.5)(n,0) = Cpp, (n.1) ~ (Pa,5,)" L{u=u=). (26)
In particular, that implies that for every 0 < u < m,

C’g:‘) (n,0) = C(h 1)( ,n), forl<h<v<m,

and

C(B’?Bu(n’n) = Cg:_glu)(nao)w for 0 S v < h—1l<m-—1.

Finally, we consider the jump at x = r,t, that is, for A =m. For t > 0,
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0=F;(t,rnt) = l<im Fij(t,e) -P{Yi=rnt, Xe =7 | Xo =1},

T—rmt

which, as in the preceding case, leads to
Che, (1) = (Poy5n)"Lfumvmm). (27)
That implies that for every 0 < u < m,
CB Bv(n,n) =0, for0<v<m-1.
[ ]

Corollary 5.7 For 1 < h < m, n > 0, and 0 < k < n, the matrices
CM(n, k) = (C BB, (T k))0<u <m satisfy the following recurrence relations

forh<u<m,and0<v<m:
fornZO:C(l) n,0) = (P")g, B, c n,0) = C(h Y o(n,n), for h > 1,
B, B, u iy By, By

for1<k<n:

Tu T
o, (n, k=1)+ LTI SN p O (-1, k1),

c (n,k
B”( ) Ty — Th—1 Ty — Th=1 =0

for0<u<h-1,and0<v<m:
forn>0:CY% (n,n) = 0p,5,, CPp. (n,n) = C,(Bh"]}lv( ,0), for h <m,

for0<k<n-1:

_ m

Chlp, (n k) = B O), (m k1) + = 3 Pa,5, CB)p, (0= 1,)
Th — Ty Th — Ty w=0

Proof. The proof is the same as that of Theorem 5.6 using equations (20)

and (21). We thus obtain that the matrices C(*)(n, k) satisfy the relation

[D=rho JJICM (n+1,k+1) = [D=rpI]CP (n+1,k) + (T4 — 1) PCP (n, k).
(28)
For every 1 < h < m, and 0 < v < m, the relation (28) may also be written

as follows:
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If h<u<m,then

—T‘—CB 5, (n, k—1)+ 2=t Z Pp,5,CY) 5, (n—1,k=1),

u — Th-1 Tu = Th—1 4o

C Bv(n k)
andif 0 <4 < h -1, then
Th—

vo®, (n,k+1)+ 22 Z Pp.p,C¥p (n—1,E).

c n, k =1 T
BuBU( ) Th — Ty Th = Tu y=p

As in the proof of Theorem 5.6, we consider the jumps of F(¢, z). Relation (25)

implies that, for every 0 < v < m,
g (n,0) = (P")g,5,, for 1 <u<m.
Relation (26) implies that, for every 0 < v < m,
Cg? (n,0) = C(h 1( ,n), for 1 <h <u<m,

and

Clp (n,n) = C3)(n,0), for 0<u<h-1<m—1.
Finally, (27) implies that, for every 0 < v < m,
Cg:};v(n,n) =0, for0<u<m-1
|

The following corollary gives an upper bound for the matrices C(")(n, k).
If M and K are square matrices of the same dimension, the notation M < K

means element-wise inequality.
Corollary 5.8 Foreveryn > 0,0<k<n,and1 < h<'m,
0< CM®(n k) < P

Proof. The proof is by a two-stage induction; first over n, then, for fixed
n, over k, by using the recurrence relation in Theorem 5.6, or equivalently in

Corollary 5.7. The result clearly holds for n = 0. Note that in (22), that is,
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for h < v, we have

Ty — Th Th — Th-1
OS—“_U — =1- Slv
Ty = Th-1 Ty = Th—1

and in (23), that is, for v < h — 1, we have

Tho1 — T Th — The
OSL__’Lzl_-h___h_lgl.
Th — Ty Th — Ty

Consider first the case v < A — 1. The result holds for the pair (n,n), since
Cg%v(n, n) = 0. Suppose the result holds for n — 1 and for the pair (n,k +1),
then from (23), we get Cg?Bu(n, k) > 0, and

T — Tho
Cg?B,,("» k)z—:.‘__-"cgl)B (n ok +1)+ —__h—l Z C(f;) (n —1,k)Ps,B,
h 7"’U Th /rv w=0
Th—-1 — Ty n Th — Th-1 n—
< 7’1—_—T*(P )B.B, T g ZO(P ')B.B. P8, B,
v w=
Theo1 — T Th — The
= M__(pn)Bqu + _"__"_i(pn)Bqu
Th — Ty Th — Ty
= (Pn)Bqu'

The same argument is used in the case h < v from relation (22). Moreover,

the relations

CB Bv(n 0) = c- 1)(n,n), forl<h<wv<m,

and
CPg. (n,n) = CY)(n,0), for 0<v<h—1<m—1,
are used to account for both cases v < h ~1 and A < v. [ 4

In numerical procedures, that result is particularly useful in avoiding over-

flow problems.
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