OCCUPATION TIMES IN MARKOV PROCESSES

Bruno Sericola
IRISA - INRIA
Campus de Beaulieu
35042 Rennes Cedex, France

Abstract

In a homogeneous finite-state Markov process, we consider the occupation times, that is, the times spent by the process in given subsets of the state space during a finite interval of time. We first derive the distribution of the occupation time of one subset and then we generalize that result to the joint distribution of occupation times of different subsets of the state space by the use of order statistics from the uniform distribution. Next, we consider the distribution of weighted sums of occupation times. We obtain forward and backward equations describing the behavior of these weighted sums and we show how these lead to simple expressions for that distribution.

1 INTRODUCTION

Let $X=\left\{X_{u}, u \geq 0\right\}$ be a homogeneous Markov process with finite state space S. The occupation time of a subset $U \subset S$ over $[0, t)$ is defined as the random variable

$$
W_{t}=\int_{0}^{t} 1_{\left\{X_{u} \in U\right\}} d u
$$

where $1_{\{c\}}=1$, if condition c holds and 0 otherwise. That random variable has drawn much attention as it is also known as the interval availability in
reliability and dependability theory. In [2] an expression for the distribution of W_{t} was obtained using uniform order statistics on $[0, t)$. From a computational point of view that expression is very interesting; various methods were developed to compute it even in the case of denumerable state spaces (see [2], $[10],[8],[9]$ and the references therein).

We first recall how the joint distribution of the pair (W_{t}, X_{t}) was obtained in [2] by using the forward and backward equations associated with the uniformized Markov chain of the process X. We then generalize that result to the joint distribution of $W_{t}^{1}, \ldots, W_{t}^{m}, X_{t}$, where W_{t}^{i} is the occupation time of a subset B_{i} over the interval $[0, t)$. Finally, we consider a weighted sum of occupation times, that is the random variable Y_{t} defined by

$$
Y_{t}=\int_{0}^{t} \rho\left(X_{u}\right) d u
$$

where for each $i \in S, \rho(i)$ is a nonnegative constant. The quantity Y_{t} arises in the performability analysis in reliability and dependability theory (see [3], [5] and the references therein). Here we derive backward and forward equations describing the behavior of the joint distribution of $\left(Y_{t}, X_{t}\right)$. These partial differential equations are then solved. We show that they lead to simple expressions for the joint distribution of $\left(Y_{t}, X_{t}\right)$.

The remainder of the paper is organized as follows. In the next section, we consider the joint distribution of uniform order statistics and the joint conditional distribution of the jumps in a Poisson process and we recall how they are related. In Section 3, we consider the case $m=1$, to obtain the distribution of occupation time for a discrete time Markov chain. That distribution, combined with the results of Section 2, leads to a simple expression for the joint distribution of the pair $\left(W_{t}, X_{t}\right)$. In Section 4, the results of Section 3 are generalized to the case $m>1$. Finally, Section 5 deals with the distribution of the pair $\left(Y_{t}, X_{t}\right)$.

2 ORDER STATISTICS

2.1 The Uniform Distribution

We consider the order statistics of uniform random variables on $[0, t)$. Formally, let $X_{1}, X_{2}, \ldots, X_{n}$ be n i.i.d. uniform random variables on $[0, t)$. If the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are rearranged in ascending order of magnitude and written as

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

we call $X_{(i)}$ the i th order statistic, $i=1,2, \ldots, n$.
Let $F_{r}(x)$ be the distribution of $X_{(r)}$. We know that (see for instance [1]), for $x \in(0, t)$,

$$
\begin{equation*}
F_{r}(x)=\mathbb{P}\left\{X_{(r)} \leq x\right\}=\sum_{i=r}^{n}\binom{n}{i}\left(\frac{x}{t}\right)^{i}\left(1-\frac{x}{t}\right)^{n-i} \tag{1}
\end{equation*}
$$

In [1] it is shown that the joint density of $X_{\left(l_{1}\right)}, X_{\left(l_{1}+l_{2}\right)}, \ldots, X_{\left(l_{1}+l_{2}+\cdots+l_{k}\right)}$ is given, for $1 \leq k \leq n, 1 \leq l_{1}+l_{2}+\cdots+l_{k} \leq n\left(l_{i} \geq 1\right)$, and $x_{1} \leq x_{2} \leq \cdots \leq x_{k}$ $\left(x_{i} \in(0, t)\right)$, by
$g_{l_{1}, l_{2}, \ldots, l_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=$

$$
\frac{n!\left(\frac{1}{t}\right)^{k}\left(\frac{x_{1}}{t}\right)^{l_{1}-1}\left(\frac{x_{2}-x_{1}}{t}\right)^{l_{2}-1} \cdots\left(\frac{x_{k}-x_{k-1}}{t}\right)^{l_{k}-1}\left(1-\frac{x_{k}}{t}\right)^{n-\left(l_{1}+l_{2} \cdots+l_{k}\right)}}{\left(l_{1}-1\right)!\left(l_{2}-1\right)!\cdots\left(l_{k}-1\right)!\left(n-\left(l_{1}+l_{2} \cdots+l_{k}\right)\right)!}
$$

Furthermore, if for fixed $1 \leq k \leq n$ and $1 \leq l_{1}+l_{2}+\cdots+l_{k} \leq n\left(l_{i} \geq 1\right)$, we define $Y_{1}=X_{\left(l_{1}\right)}$ and $Y_{i}=X_{\left(l_{1}+l_{2}+\cdots+l_{i}\right)}-X_{\left(l_{1}+l_{2}+\cdots+l_{i-1}\right)}$ for $i=2, \ldots, k$, then the joint density function of $Y_{1}, Y_{2}, \ldots, Y_{k}$ is given, for $0<s_{1}+s_{2}+\cdots+s_{k}<t$ $\left(s_{i} \in(0, t)\right)$, by

$$
h_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)=g_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{1}+s_{2}, \ldots, s_{1}+\cdots+s_{k}\right)
$$

that is,

$$
\begin{aligned}
& h_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)= \\
& \frac{n!\left(\frac{1}{t}\right)^{k}\left(\frac{s_{1}}{t}\right)^{l_{1}-1}\left(\frac{s_{2}}{t}\right)^{l_{2}-1} \cdots\left(\frac{s_{k}}{t}\right)^{l_{k}-1}\left(1-\frac{s_{1}+s_{2}+\cdots+s_{k}}{t}\right)^{n-\left(l_{1}+l_{2} \cdots+l_{k}\right)}}{\left(l_{1}-1\right)!\left(l_{2}-1\right)!\cdots\left(l_{k}-1\right)!\left(n-\left(l_{1}+l_{2} \cdots+l_{k}\right)\right)!}
\end{aligned}
$$

In particular, for $k=n$, we get the joint density function of the spacings $Y_{1}=X_{(1)}, Y_{2}=X_{(2)}-X_{(1)}, \ldots, Y_{n}=X_{(n)}-X_{(n-1)}$, denoted by $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by setting $l_{1}=l_{2}=\cdots=l_{n}=1$ in the preceding expression, that is

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{cl}
\frac{n!}{t^{n}} & \text { if } \sum_{i=1}^{n} x_{i} \leq t \\
0 & \text { otherwise }
\end{array}\right.
$$

By writing $Y_{n+1}=t-X_{(n)}$, this also determines the (degenerate) joint density of $Y_{1}, Y_{2}, \ldots, Y_{n}, Y_{n+1}$ on the set

$$
x_{i} \geq 0 \quad(i=1, \ldots, n, n+1) \quad \sum_{i=1}^{n+1} x_{i}=t
$$

The joint distribution $H_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ of $Y_{l_{1}}, Y_{l_{2}}, \ldots, Y_{l_{k}}$ is given in the following lemma.

Lemma 2.1 For $1 \leq k \leq n, 1 \leq l_{1}+l_{2}+\cdots+l_{k} \leq n\left(l_{i} \geq 1\right)$, and $0<$ $s_{1}+s_{2}+\cdots+s_{k}<t\left(s_{i} \in(0, t)\right)$, we have that $H_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)=$

$$
\sum_{>l_{2}} \frac{n!\left(\frac{s_{1}}{t}\right)^{i_{1}}\left(\frac{s_{2}}{t}\right)^{i_{2}} \cdots\left(\frac{s_{k}}{t}\right)^{i_{k}}\left(1-\frac{s_{1}+s_{2}+\cdots+s_{k}}{t}\right)^{n-\left(i_{1}+i_{2} \cdots+i_{k}\right)}}{i_{1}!i_{2}!\cdots i_{k}!\left(n-\left(i_{1}+i_{2} \cdots+i_{k}\right)\right)!} .
$$

$i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k} \geq l_{k}$,

$$
i_{1}+i_{2}+\cdots+i_{k} \leq n
$$

Proof. It suffices to show that

$$
\frac{\partial^{k} H_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)}{\partial s_{1} \partial s_{2} \cdots \partial s_{k}}=h_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)
$$

To simplify notation, we define

$$
\theta_{n ; i_{1}, i_{2}, \ldots, i_{k}}^{t ; s_{1}, s_{2}, \ldots, s_{k}}=\frac{\left(\frac{s_{1}}{t}\right)^{i_{1}}\left(\frac{s_{2}}{t}\right)^{i_{2}} \cdots\left(\frac{s_{k}}{t}\right)^{i_{k}}\left(1-\frac{s_{1}+s_{2}+\cdots+s_{k}}{t}\right)^{n-\left(i_{1}+i_{2} \cdots+i_{k}\right)}}{i_{1}!i_{2}!\cdots i_{k}!\left(n-\left(i_{1}+i_{2} \cdots+i_{k}\right)\right)!}
$$

We obtain

$$
\begin{aligned}
& \frac{\partial H_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)}{\partial s_{k}}=\frac{n!}{t} \quad \sum_{i} \quad \theta_{n ; i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
& i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k} \geq l_{k}, \\
& i_{1}+i_{2}+\cdots+i_{k} \leq n \\
& -\frac{n!}{t} \sum_{i_{1}>l_{1}, i_{2} \geq l_{2}, i_{k} \geq l_{k}} \quad \theta_{n-1 ; i_{1}, i_{2}, \ldots, i_{k}}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
& i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k} \geq l_{k}, \\
& i_{1}+i_{2}+\cdots+i_{k} \leq n-1 \\
& =\frac{n!}{t} \quad \sum \quad \theta_{n-1 ; i_{1}, i_{2}, \ldots, i_{k}}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
& i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k-1} \geq l_{k-1}, i_{k} \geq l_{k}-1, \\
& i_{1}+i_{2}+\cdots+i_{k} \leq n-1 \\
& -\frac{n!}{t} \sum_{i_{1}} \quad \theta_{n-1 ; i_{1}, i_{2}, \ldots, i_{k}}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
& i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k} \geq l_{k}, \\
& i_{1}+i_{2}+\cdots+i_{k} \leq n-1 \\
& =\frac{n!}{t} \sum_{i_{1} \geq l_{1}, i_{2} \geq l_{2}, \ldots, i_{k-1} \geq l_{k-1},} \theta_{n-1 ; i_{1}, i_{2}, \ldots, i_{k-1}, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}}, \\
& i_{1}+i_{2}+\cdots+i_{k-1} \leq n-1
\end{aligned}
$$

where the second equality is obtained by the change of variable $i_{k} \longrightarrow i_{k}+1$. By successively iterating the same argument with respect to variables s_{k-1}, \ldots, s_{2}, we obtain

$$
\frac{\partial^{k-1} H_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)}{\partial s_{k} \partial s_{k-1} \cdots \partial s_{2}}=\frac{n!}{t^{k-1}} \sum_{i_{1}=l_{1}}^{n-k+1} \theta_{n-k+1 ; i_{1}, l_{2}-1, \ldots, l_{k-1}-1, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}}
$$

and finally,

$$
\begin{aligned}
&\left.\frac{\partial^{k} H_{l_{1}, l_{2}, \ldots, l_{k}}}{\partial s_{k} \cdots \partial s_{2} \partial s_{1}}, \ldots, s_{k}\right) \\
&=\frac{n!}{t^{k}} \sum_{i_{1}=l_{1}}^{n-k+1} \theta_{n-k+1 ; i_{1}-1, l_{2}-1, \ldots, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}}-\frac{n!}{t^{k}} \sum_{i_{1}=l_{1}}^{n-k} \theta_{n-k ; i_{1}, l_{2}-1, \ldots, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
&=\frac{n!}{t^{k}} \sum_{i_{1}=l_{1}-1}^{n-k} \theta_{n-k ; i_{1}, l_{2}-1, \ldots, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}}-\frac{n!}{t^{k}} \sum_{i_{1}=l_{1}}^{n-k} \theta_{n-k ; i_{1}, l_{2}-1, \ldots, l_{k}-1}^{t ; s_{1}, s_{2}, \ldots, s_{k}} \\
&=\frac{n!}{t^{k}}{\underset{n-k, l_{1}-1, l_{2}-1, \ldots, l_{k}-1}{t ; s_{1}, s_{2}, \ldots, s_{k}}}=h_{l_{1}, l_{2}, \ldots, l_{k}}\left(s_{1}, s_{2}, \ldots, s_{k}\right)
\end{aligned}
$$

where the second equality is obtained by the change of variable $i_{1} \longrightarrow i_{1}+1$.

2.2 The Poisson Process

Let $\left\{N_{t}, t \in \mathbb{R}\right\}$ be a Poisson process of rate λ and $T_{0}, T_{0}+T_{1}, \ldots, T_{0}+T_{1}+$ $\cdots+T_{n-1}$, be the first n instants of jumps of $\left\{N_{t}\right\}$ in $[0, t)$. It is well-known, see [4], that the density of the conditional distribution of $T_{0}, T_{1}, \ldots, T_{n-1}$, given $\left\{N_{t}=n\right\}$ is

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left\{\begin{array}{cl}
\frac{n!}{t^{n}} & \text { if } \sum_{i=0}^{n-1} x_{i} \leq t \\
0 & \text { otherwise }
\end{array}\right.
$$

That is also, as seen in the previous subsection, the joint density of the order statistics from the uniform distribution on $(0, t)$.

If we write $T_{n}=t-\left(T_{0}+T_{1}+\cdots+T_{n-1}\right)$, this also determines the (degenerate) joint density function of $T_{0}, T_{1}, \ldots, T_{n-1}, T_{n}$ on the set

$$
x_{i} \geq 0 \quad(i=0, \ldots, n-1, n) \quad \sum_{i=0}^{n} x_{i}=t
$$

The symmetric role of the variables $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$ shows that the random variables $T_{0}, T_{1}, \ldots, T_{n-1}$ are exchangeable. It follows from relation (1) that, for $1 \leq l \leq n,\left\{i_{1}, \cdots, i_{l}\right\} \subset\{0,1, \ldots, n\}$, and $s \in(0, t)$, we have

$$
\begin{align*}
\mathbb{P}\left\{T_{i_{1}}+\cdots+T_{i_{1}} \leq s \mid N_{t}=n\right\} & =\mathbb{P}\left\{T_{0}+\cdots+T_{l-1} \leq s \mid N_{t}=n\right\} \\
& =\mathbb{P}\left\{X_{(l)} \leq s\right\} \\
& =\sum_{k=1}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \tag{2}
\end{align*}
$$

More generally, let k be an integer such that $1 \leq k \leq n$ and let $l_{1}, l_{2}, \ldots, l_{k}$ be integers such that $1 \leq l_{1}+l_{2}+\cdots+l_{k} \leq n\left(l_{i} \geq 1\right)$. For any subset $\left\{i_{1}, i_{2}, \ldots, i_{l_{1}+l_{2}+\cdots+l_{k}}\right\}$ of $\{0,1, \ldots, n-1, n\}$, the vectors

$$
\left(\sum_{j=1}^{l_{1}} T_{i_{j}}, \sum_{j=l_{1}+1}^{l_{1}+l_{2}} T_{i_{j}}, \ldots, \sum_{j=l_{1}+l_{2}+\cdots+l_{k-1}+1}^{l_{1}+l_{2}+\cdots+l_{k}} T_{i_{j}}\right)
$$

and

$$
\left(\sum_{j=0}^{l_{1}-1} T_{j}, \sum_{j=l_{1}}^{l_{1}+l_{2}-1} T_{j}, \ldots, \sum_{j=l_{1}+l_{2}+\cdots+l_{k-1}}^{l_{1}+l_{2}+\cdots+l_{k}-1} T_{j}\right)
$$

have the same conditional distribution given that $N_{t}=n$. By lemma 2.1, for $0<s_{1}+s_{2}+\cdots+s_{k}<t\left(s_{i} \in(0, t)\right)$, we thus get

$$
\begin{align*}
& \mathbb{P}\left\{\sum_{j=1}^{l_{1}} T_{j} \leq s_{1}, \sum_{j=l_{1}+1}^{l_{1}+l_{2}} T_{j} \leq s_{2}, \ldots, \sum_{j=l_{1}+l_{2}+\cdots+l_{k-1}+1}^{l_{1}+l_{2}+\cdots+l_{k}} T_{j} \leq s_{k} \mid N_{t}=n\right\}= \\
& \\
& \sum_{\substack{ }}^{n!\left(\frac{s_{1}}{t}\right)^{i_{1}}\left(\frac{s_{2}}{t}\right)^{i_{2}} \cdots\left(\frac{s_{k}}{t}\right)^{i_{k}}\left(1-\frac{s_{1}+s_{2}+\cdots+s_{k}}{t}\right)^{n-\left(i_{1}+i_{2} \cdots+i_{k}\right)}} \\
& i_{1}!i_{2}!\cdots i_{k}!\left(n-\left(i_{1}+i_{2} \cdots+i_{k}\right)\right)! \tag{3}
\end{align*} .
$$

3 DISTRIBUTION OF OCCUPATION TIMES

Let $X=\left\{X_{u}, u \geq 0\right\}$ be a homogeneous Markov process with finite state space S. The process X is characterized by its infinitesimal generator A and its initial probability distribution α. We denote by $Z=\left\{Z_{n}, n \geq 0\right\}$ the uniformized Markov chain [7] associated to the Markov process X, with the same initial distribution α. Its transition probability matrix P is related to the matrix A by the relation $P=I+A / \lambda$, where I is the identity matrix and λ satisfies $\lambda \geq \max \left\{-A_{i, i}, i \in S\right\}$. The rate λ is the rate of the Poisson process $\left\{N_{u}, u \geq 0\right\}$, independent of Z, that counts the number of transitions of process $\left\{Z_{N_{u}}, u \geq 0\right\}$ over $[0, t)$. It is well-known that the processes $\left\{Z_{N_{u}}\right\}$ and X are stochastically equivalent. We consider a partition $S=U \cup D$, $U \cap D=\emptyset$, of the state space S and we study the occupation time in the subset U.

3.1 The Discrete Time Case

For the Markov chain $Z=\left\{Z_{n}, n \geq 0\right\}$, the random variable V_{n} is the total
number of states of U visited during the n first transitions of Z, that is

$$
V_{n}=\sum_{k=0}^{n} 1_{\left\{Z_{k} \in U\right\}}
$$

The following theorem gives the backward equations for the behavior of the pair $\left(V_{n}, Z_{n}\right)$. For every $i \in S$, the notation \mathbb{P}_{i} denotes the conditional probability given that $Z_{0}=i$, that is $\mathbb{P}_{i}\{\}=.\mathbb{P}\left\{. \mid Z_{0}=i\right\}$.

Theorem 3.1 For $n \geq 1$, and $1 \leq k \leq n$, we have that

$$
\begin{aligned}
& \text { for } i \in U, \mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j\right\}=\sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{V_{n-1} \leq k-1, Z_{n-1}=j\right\} \\
& \text { for } i \in D, \mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j\right\}=\sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{V_{n-1} \leq k, Z_{n-1}=j\right\}
\end{aligned}
$$

Proof. By using the Markov property and the homogeneity of Z, we get that

$$
\begin{aligned}
\mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j\right\} & =\sum_{l \in S} P_{i, l} \mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j \mid Z_{1}=l\right\} \\
& =\sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{V_{n-1} \leq k-1_{\{i \in U\}}, Z_{n-1}=j\right\}
\end{aligned}
$$

The following theorem gives the forward equations for the probabilities associated with the pair $\left(V_{n}, Z_{n}\right)$.

Theorem 3.2 For $n \geq 1$, and $1 \leq k \leq n$, we have that

$$
\begin{aligned}
& \text { for } j \in U, \mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j\right\}=\sum_{l \in S} \mathbb{P}_{i}\left\{V_{n-1} \leq k-1, Z_{n-1}=l\right\} P_{l, j} \\
& \text { for } j \in D, \mathbb{P}_{i}\left\{V_{n} \leq k, Z_{n}=j\right\}=\sum_{l \in S} \mathbb{P}_{i}\left\{V_{n-1} \leq k, Z_{n-1}=l\right\} P_{l, j}
\end{aligned}
$$

Proof. By the same arguments, we get that

$$
\begin{aligned}
\mathbb{P} & \left\{V_{n} \leq k, Z_{n}=j, Z_{0}=i\right\}=\mathbb{P}\left\{V_{n-1} \leq k-1_{\{j \in U\}}, Z_{n}=j, Z_{0}=i\right\} \\
& =\sum_{l \in S} \mathbb{P}\left\{V_{n-1} \leq k-1_{\{j \in U\}}, Z_{n}=j, Z_{n-1}=l, Z_{0}=i\right\} \\
& =\sum_{l \in S} \mathbb{P}\left\{V_{n-1} \leq k-1_{\{j \in U\}}, Z_{0}=i \mid Z_{n-1}=l\right\} \mathbb{P}\left\{Z_{n}=j, Z_{n-1}=l\right\} \\
& =\sum_{l \in S} \mathbb{P}\left\{V_{n-1} \leq k-1_{\{j \in U\}}, Z_{n-1}=l, Z_{0}=i\right\} P_{l, j}
\end{aligned}
$$

We thus obtain the desired relation by conditioning on Z_{0}.

For $n \geq 0$, and $k \geq 0$, we introduce the matrix $F(n, k)=\left\{F_{i, j}(n, k)\right\}$ defined by

$$
F_{i, j}(n, k)=\mathbb{P}\left\{V_{n} \leq k, Z_{n}=j \mid Z_{0}=i\right\} .
$$

The results of Theorems 3.1 and 3.2 can be easily expressed in matrix notation. We decompose the matrices P and $F(n, k)$ with respect to the partition $\{U, D\}$ as

$$
P=\left(\begin{array}{cc}
P_{U} & P_{U D} \\
P_{D U} & P_{D}
\end{array}\right) \quad \text { and } \quad F(n, k)=\left(\begin{array}{cc}
F_{U}(n, k) & F_{U D}(n, k) \\
F_{D U}(n, k) & F_{D}(n, k)
\end{array}\right)
$$

The result of Theorem 3.1 can now be written as

$$
\begin{aligned}
& \left(\begin{array}{ll}
F_{U}(n, k) & F_{U D}(n, k)
\end{array}\right)=\left(\begin{array}{ll}
P_{U} & P_{U D}
\end{array}\right) F(n-1, k-1) \\
& \left(\begin{array}{ll}
F_{D U}(n, k) & F_{D}(n, k)
\end{array}\right)=\left(\begin{array}{ll}
P_{D U} & P_{D}
\end{array}\right) F(n-1, k)
\end{aligned}
$$

or

$$
F(n, k)=\left(\begin{array}{cc}
P_{U} & P_{U D} \\
0 & 0
\end{array}\right) F(n-1, k-1)+\left(\begin{array}{cc}
0 & 0 \\
P_{D U} & P_{D}
\end{array}\right) F(n-1, k)
$$

In the same way, Theorem 3.2 can be written as

$$
\begin{aligned}
& \binom{F_{U}(n, k)}{F_{D U}(n, k)}=F(n-1, k-1)\binom{P_{U}}{P_{D U}} \\
& \binom{F_{U D}(n, k)}{F_{D}(n, k)}=F(n-1, k)\binom{P_{U D}}{P_{D}}
\end{aligned}
$$

or

$$
F(n, k)=F(n-1, k-1)\left(\begin{array}{cc}
P_{U} & 0 \\
P_{D U} & 0
\end{array}\right)+F(n-1, k)\left(\begin{array}{cc}
0 & P_{U D} \\
0 & P_{D}
\end{array}\right)
$$

The initial conditions are

$$
F(n, 0)=\left(\begin{array}{cc}
0 & 0 \\
0 & \left(P_{D}\right)^{n}
\end{array}\right), \text { for } n \geq 0
$$

Note that for all $k \geq n+1, F(n, k)=P^{n}$.

3.2 The Continuous Time Case

We consider the Markov process $X=\left\{X_{t}, t \geq 0\right\}$ and the occupation time W_{t} of the subset U in $[0, t)$, that is

$$
W_{t}=\int_{0}^{t} 1_{\left\{X_{u} \in U\right\}} d u
$$

That random variable represents the time spent by the process X in the subset U during the interval $[0, t)$. The joint distribution of the pair $\left(W_{t}, X_{t}\right)$ is given by the following theorem.

Theorem 3.3 For every $i, j \in S$, for $t>0$, and $s \in[0, t)$, we have that $\mathbb{P}\left\{W_{t} \leq s, X_{t}=j \mid X_{0}=i\right\}$

$$
\begin{equation*}
=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \mathbb{P}\left\{V_{n} \leq k, Z_{n}=j \mid Z_{0}=i\right\} \tag{4}
\end{equation*}
$$

Proof. For $s<t$, we have that

$$
\begin{aligned}
& \mathbb{P}\left\{W_{t} \leq s, X_{t}=j \mid X_{0}=i\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{W_{t} \leq s, N_{t}=n, X_{t}=j\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{W_{t} \leq s, N_{t}=n, Z_{n}=j\right\} \text { since }\left\{X_{t}\right\} \text { and }\left\{Z_{N_{t}}\right\} \text { are equivalent } \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{N_{t}=n\right\} \mathbb{P}_{i}\left\{W_{t} \leq s, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \mathbb{P}_{i}\left\{W_{t} \leq s, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \sum_{l=0}^{n+1} \mathbb{P}_{i}\left\{W_{t} \leq s, V_{n}=l, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \sum_{l=0}^{n+1} \mathbb{P}_{i}\left\{V_{n}=l, Z_{n}=j\right\} \mathbb{P}_{i}\left\{W_{t} \leq s \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \sum_{l=0}^{n} \mathbb{P}_{i}\left\{V_{n}=l, Z_{n}=j\right\} \mathbb{P}_{i}\left\{W_{t} \leq s \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\} .
\end{aligned}
$$

The fourth and sixth equalities follow from the independence of the processes $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$ and the fact that $X_{0}=Z_{0}$. The last equality follows from the
fact that if $l=n+1$, we trivially have that $V_{n}=n+1$ and $N_{t}=n$ imply that $W_{t}=t$. We so get $\mathbb{P}\left\{W_{t} \leq s \mid V_{n}=n+1, Z_{n}=j, N_{t}=n\right\}=0$, since $s<t$. Let us consider now the expression $\mathbb{P}_{i}\left\{W_{t} \leq s \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\}$. For fixed $i, j \in S$ and $0 \leq l \leq n$, we define the set

$$
G_{l, n}^{i, j}=\left\{\begin{array}{l|l}
\hat{z}=\left(i, z_{1}, \ldots, z_{n-1}, j\right) \in S^{n+1} & \begin{array}{l}
l \text { entries of } \widehat{z} \text { are in } U \text { and } \\
n+1-l \text { entries of } \widehat{z} \text { are in } D
\end{array}
\end{array}\right\}
$$

and we denote by \hat{Z} the random vector $\left(Z_{0}, \ldots, Z_{n}\right)$. We then have

$$
\begin{aligned}
& \mathbb{P}_{i}\left\{W_{t} \leq s \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\} \\
& =\sum_{\widehat{z} \in G_{l, n}^{i, j}} \mathbb{P}\left\{W_{t} \leq s \mid \hat{Z}=\hat{z}, V_{n}=l, N_{t}=n\right\} \mathbb{P}_{i}\left\{\hat{Z}=\hat{z} \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\} \\
& =\sum_{\widehat{z} \in G_{l, n}^{i, j}} \mathbb{P}\left\{W_{t} \leq s \mid \hat{Z}=\hat{z}, V_{n}=l, N_{t}=n\right\} \mathbb{P}_{i}\left\{\hat{Z}=\widehat{z} \mid V_{n}=l, Z_{n}=j\right\},
\end{aligned}
$$

where the last equality follows from the independence of $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$. We denote by $T_{0}, T_{0}+T_{1}, \ldots, T_{0}+T_{1}+\cdots+T_{n-1}$, the first n instants of jumps of the Poisson process $\left\{N_{t}\right\}$ over $[0, t)$ and we set $T_{n}=t-\left(T_{0}+T_{1}+\cdots+T_{n-1}\right)$. Then,

$$
\begin{aligned}
\mathbb{P}\left\{W_{t} \leq s \mid \hat{Z}=\widehat{z}, V_{n}=l, N_{t}=n\right\} & =\mathbb{P}\left\{\sum_{j=1}^{l} T_{i_{j}} \leq s \mid \hat{Z}=\hat{z}, V_{n}=l, N_{t}=n\right\} \\
& =\mathbb{P}\left\{\sum_{j=1}^{l} T_{i_{j}} \leq s \mid N_{t}=n\right\}
\end{aligned}
$$

where the distinct indices $i_{1}, \ldots, i_{l} \in\{0,1, \ldots, n\}$ correspond to the l entries of \widehat{z} that are in U and the last equality is due to the independence of the processes $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$. For $l=0$, we obtain the correct result, which is equal to 1 by using the convention $\sum_{a}^{b}(\ldots)=0$ if $a>b$. From relation (2) we get, for $l=0, \ldots, n$,

$$
\begin{aligned}
\mathbb{P}\left\{T_{i_{1}}+\cdots+T_{i_{l}} \leq s \mid N_{t}=n\right\} & =\mathbb{P}\left\{T_{0}+\cdots+T_{l-1} \leq s \mid N_{t}=n\right\} \\
& =\sum_{k=l}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}
\end{aligned}
$$

Again, the convention $\sum_{a}^{b}(\ldots)=0$ for $a>b$ allows us to cover the cases $l=0$ and $l=n+1$. Finally, we obtain that

$$
\begin{aligned}
& \mathbb{P}_{i}\left\{W_{t} \leq s \mid V_{n}=l, Z_{n}=j, N_{t}=n\right\} \\
& =\sum_{\widehat{z} \in G_{l, n}^{i, j}} \sum_{k=l}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \mathbb{P}\left\{\hat{Z}=\widehat{z} \mid V_{n}=l, Z_{n}=j, Z_{0}=i\right\} \\
& =\sum_{k=l}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}
\end{aligned}
$$

That is, since $\mathbb{P}\left\{N_{t}=n\right\}=e^{-\lambda t}(\lambda t)^{n} / n!$,

$$
\begin{aligned}
& \mathbb{P}\left\{W_{t} \leq s, X_{t}=j \mid X_{0}=i\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{l=0}^{n} \sum_{k=l}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \mathbb{P}\left\{V_{n}=l, Z_{n}=j \mid Z_{0}=i\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \sum_{l=0}^{k} \mathbb{P}\left\{V_{n}=l, Z_{n}=j \mid Z_{0}=i\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k} \mathbb{P}\left\{V_{n} \leq k, Z_{n}=j \mid Z_{0}=i\right\}
\end{aligned}
$$

4 JOINT DISTRIBUTION OF OCCUPATION TIMES

Next, we partition the state space S into $m+1$ subsets $B_{0}, B_{1}, \ldots, B_{m}$.

4.1 The Discrete Time Case

We consider the random variables V_{n}^{i} defined by

$$
V_{n}^{i}=\sum_{k=0}^{n} 1_{\left\{Z_{k} \in B_{i}\right\}}
$$

The next theorem gives the backward equation for the joint distribution of the V_{n}^{i} and Z_{n}.

Theorem 4.1 For $r=1, \ldots, m, n \geq 1$, and $0 \leq k_{1}, \ldots, k_{m} \leq n\left(k_{r} \geq 1\right)$, we have

$$
\begin{aligned}
& \text { for } i \in B_{r}, \mathbb{P}_{i}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{r} \leq k_{r}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j\right\}= \\
& \sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{V_{n-1}^{1} \leq k_{1}, \ldots, V_{n-1}^{r} \leq k_{r}-1, \ldots, V_{n-1}^{m} \leq k_{m}, Z_{n-1}=j\right\},
\end{aligned}
$$

for $i \in B_{0}, \mathbb{P}_{i}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j\right\}=$

$$
\sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{V_{n-1}^{1} \leq k_{1}, \ldots, V_{n-1}^{m} \leq k_{m}, Z_{n-1}=j\right\} .
$$

Proof. By $\widehat{V_{n}}$ and \hat{k} we denote the vectors $\left(V_{n}^{1}, \ldots, V_{n}^{m}\right)$ and $\left(k_{1}, \ldots, k_{m}\right)$ respectively and by $e_{i}, i=1, \ldots, m$, the unit row vector of dimension m whose i th entry is 1 . The proof follows the same steps as that of Theorem 3.1. We have

$$
\begin{aligned}
\mathbb{P}\left\{\widehat{V_{n}} \leq \hat{k}, Z_{n}=j \mid Z_{0}=i\right\} & =\sum_{l \in S} P_{i, l} \mathbb{P}_{i}\left\{\widehat{V_{n}} \leq \widehat{k}, Z_{n}=j \mid Z_{1}=l\right\} \\
& =\sum_{l \in S} P_{i, l} \mathbb{P}_{l}\left\{\widehat{V_{n-1}} \leq \widehat{k}-e_{r} 1_{\left\{i \in B_{r}\right\}}, Z_{n-1}=j\right\} .
\end{aligned}
$$

The theorem that follows gives the forward equation for the joint distribution of the V_{n}^{i} and Z_{n}.

Theorem 4.2 For $r=1, \ldots, m, n \geq 1$, and $0 \leq k_{1}, \ldots, k_{m} \leq n\left(k_{r} \geq 1\right)$, we have

$$
\begin{aligned}
& \text { for } j \in B_{r}, \mathbb{P}_{i}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{r} \leq k_{r}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j\right\}= \\
& \quad \sum_{l \in S} \mathbb{P}_{i}\left\{V_{n-1}^{1} \leq k_{1}, \ldots, V_{n-1}^{r} \leq k_{r}-1, \ldots, V_{n-1}^{m} \leq k_{m}, Z_{n-1}=l\right\} P_{l, j},
\end{aligned}
$$

for $j \in B_{0}, \mathbb{P}_{i}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j\right\}=$

$$
\sum_{l \in S} \mathbb{P}_{i}\left\{V_{n-1}^{1} \leq k_{1}, \ldots, V_{n-1}^{m} \leq k_{m}, Z_{n-1}=l\right\} P_{l, j} .
$$

Proof. Using the notation of the proof of Theorem 4.1, we follow the same steps as in Theorem 3.2. We have that

$$
\begin{aligned}
& \mathbb{P}\left\{\widehat{V_{n}} \leq \widehat{k}, Z_{n}=j, Z_{0}=i\right\}=\mathbb{P}\left\{\widehat{V_{n-1}} \leq \widehat{k}-e_{r} 1_{\left\{j \in B_{r}\right\}}, Z_{n}=j, Z_{0}=i\right\} \\
& =\sum_{l \in S} \mathbb{P}\left\{\widehat{V_{n-1}} \leq \widehat{k}-e_{r} 1_{\left\{j \in B_{r}\right\}}, Z_{n}=j, Z_{n-1}=l, Z_{0}=i\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l \in S} \mathbb{P}\left\{\widehat{V_{n-1}} \leq \widehat{k}-e_{r} 1_{\left\{j \in B_{r}\right\}}, Z_{0}=i \mid Z_{n-1}=l\right\} \mathbb{P}\left\{Z_{n}=j, Z_{n-1}=l\right\} \\
& =\sum_{l \in S} \mathbb{P}\left\{\widehat{V_{n-1}} \leq \widehat{k}-e_{r} 1_{\left\{j \in B_{r}\right\}}, Z_{n-1}=l, Z_{0}=i\right\} P_{l, j}
\end{aligned}
$$

By conditioning on Z_{0}, we obtain the desired relation.
By $F\left(n, k_{1}, \ldots, k_{m}\right)$, for $n \geq 0$ and $k_{r} \geq 0$, we denote the matrix with (i, j) entry

$$
F_{i, j}\left(n, k_{1}, \ldots, k_{m}\right)=\mathbb{P}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j \mid Z_{0}=i\right\}
$$

The results of Theorems 4.1 and 4.2 can be conveniently expressed in matrix notation. We first decompose the matrices P and $F\left(n, k_{1}, \ldots, k_{m}\right)$ with respect to the partition $\left\{B_{0}, B_{1}, \ldots, B_{m}\right\}$ of the state space S as
$P=\left\{P_{B_{r} B_{h}}\right\}_{0 \leq r, h \leq m}$ and $F\left(n, k_{1}, \ldots, k_{m}\right)=\left\{F_{B_{r} B_{h}}\left(n, k_{1}, \ldots, k_{m}\right)\right\}_{0 \leq r, h \leq m}$.
The result of Theorem 4.1 can then be written as

$$
F_{B_{r} B_{h}}\left(n, k_{1}, \ldots, k_{m}\right)=\sum_{l=0}^{m} P_{B_{r} B_{l}} F_{B_{l} B_{h}}\left(n-1, k_{1}, \ldots, k_{r}-1_{\{r \neq 0\}}, \ldots, k_{m}\right),
$$

and that of Theorem 3.2 as

$$
F_{B_{r} B_{h}}\left(n, k_{1}, \ldots, k_{m}\right)=\sum_{l=0}^{m} F_{B_{r} B_{l}}\left(n-1, k_{1}, \ldots, k_{h}-1_{\{h \neq 0\}}, \ldots, k_{m}\right) P_{B_{l} B_{h}}
$$

The initial conditions are given by

$$
F(n, 0, \ldots, 0)=\left(\begin{array}{cc}
0 & 0 \\
0 & \left(P_{B_{0} B_{0}}\right)^{n}
\end{array}\right), \text { for } n \geq 0
$$

Note that in the case $k_{1}+\cdots+k_{m} \geq n+1$, with $k_{i} \leq n$, for $i=1, \ldots, m$, the m dimensional joint distribution of $V_{n}^{1}, \ldots, V_{n}^{m}$ can be expressed as a combination of the h-dimensional joint distributions of the V_{n}^{i} for $h=1, \ldots, m-1$. That observation is based on the following general result.

For any random variables U_{1}, \ldots, U_{m} and any event A, we have

$$
\begin{aligned}
\mathbb{P}\left\{U_{1} \leq x_{1}, \ldots, U_{m} \leq x_{m}, A\right\}= & \sum_{E \subset\{1, \ldots, m\}}(-1)^{m-|E|+1} \mathbb{P}\left\{U_{l} \leq x_{l} ; l \in E, A\right\} \\
& +(-1)^{m} \mathbb{P}\left\{U_{1}>x_{1}, \ldots, U_{m}>x_{m}, A\right\},
\end{aligned}
$$

where the inclusion is strict, that is $E \neq\{1, \ldots, m\}$, and where, for convenience, we set $\mathbb{P}\left\{U_{l} \leq x_{l} ; l \in \emptyset, A\right\}=\mathbb{P}\{A\}$. For the random variables V_{n}^{i},

$$
\mathbb{P}\left\{V_{n}^{1}>k_{1}, \ldots, V_{n}^{m}>k_{m}, Z_{n}=j \mid Z_{0}=i\right\}=0, \text { if } k_{1}+\cdots+k_{m} \geq n+1
$$

so, in that case, we get the desired result,

$$
\begin{equation*}
\mathbb{P}_{i}\left\{\widehat{V_{n}} \leq \widehat{k}, Z_{n}=j\right\}=\sum_{E \subset\{1, \ldots, m\}}(-1)^{m-|E|+1} \mathbb{P}_{i}\left\{V_{n}^{l} \leq k_{l} ; l \in E, Z_{n}=j\right\} \tag{6}
\end{equation*}
$$

4.2 The Continuous Time Case

We consider the random variables $W_{t}^{i}, i=1, \ldots, m$, defined by

$$
W_{t}^{i}=\int_{0}^{t} 1_{\left\{X_{u} \in B_{i}\right\}} d u
$$

whose joint distribution with X_{t} is given in the next theorem.

Theorem 4.3 For every $i, j \in S$, for every $t>0$, and $s_{1}, \ldots, s_{m} \in[0, t)$ such that $s_{1}+s_{2}+\cdots+s_{m}<t$, we have
$\mathbb{P}\left\{W_{t}^{1} \leq s_{1}, \ldots, W_{t}^{m} \leq s_{m}, X_{t}=j \mid X_{0}=i\right\}=$

$$
\begin{equation*}
\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{\substack{k_{1} \geq 0, \ldots, k_{m} \geq 0, k_{1}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t_{1}, s_{1}, s_{2}, \ldots, s_{m}} \mathbb{P}_{i}\left\{V_{n}^{1} \leq k_{1}, \ldots, V_{n}^{m} \leq k_{m}, Z_{n}=j\right\} \tag{7}
\end{equation*}
$$

where

$$
\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}}=\frac{\left(\frac{s_{1}}{t}\right)^{k_{1}}\left(\frac{s_{2}}{t}\right)^{k_{2}} \cdots\left(\frac{s_{k}}{t}\right)^{k_{m}}\left(1-\frac{s_{1}+\cdots+s_{m}}{t}\right)^{n-\left(k_{1}+\cdots+k_{m}\right)}}{k_{1}!k_{2}!\cdots k_{m}!\left(n-\left(k_{1}+k_{2} \cdots+k_{m}\right)\right)!}
$$

Proof. We define the vectors $\widehat{W_{t}}=\left(W_{t}^{1}, \ldots, W_{t}^{m}\right), \widehat{V_{n}}=\left(V_{n}^{1}, \ldots, V_{n}^{m}\right)$, and $\widehat{s}=\left(s_{1}, \ldots, s_{m}\right)$. Inequality between vectors means component-wise inequality. For $n \geq 0$, we define the set E_{n} by

$$
E_{n}=\left\{\hat{l}=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}^{m} \mid l_{1}+l_{2}+\cdots+l_{m} \leq n\right\}
$$

We have that

$$
\begin{aligned}
& \mathbb{P}\left\{\widehat{W_{t}} \leq \widehat{s}, X_{t}=j \mid X_{0}=i\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s}, N_{t}=n, X_{t}=j\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s}, N_{t}=n, Z_{n}=j\right\} \text { since }\left\{X_{t}\right\} \text { and }\left\{Z_{N_{t}}\right\} \text { are equivalent } \\
= & \sum_{n=0}^{\infty} \mathbb{P}_{i}\left\{N_{t}=n\right\} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s}, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s}, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \sum_{\hat{l} \in E_{n}} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s}, \widehat{V_{n}}=\hat{l}, Z_{n}=j \mid N_{t}=n\right\} \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left\{N_{t}=n\right\} \sum_{\widehat{l} \in E_{n}} \mathbb{P}_{i}\left\{\widehat{V_{n}}=\widehat{l}, Z_{n}=j\right\} \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s} \mid \widehat{V_{n}}=\widehat{l}, Z_{n}=j, N_{t}=n\right\} .
\end{aligned}
$$

The fourth and last equalities follow from the independence of the processes $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$ and the fact that $X_{0}=Z_{0}$. In the fifth equality, the summation in \hat{l} should be over E_{n+1} but it can be restricted to E_{n}. If $l_{1}+l_{2}+\cdots+l_{m}=n+1$, then $\widehat{V}_{n}=\hat{l}$ and $N_{t}=n$ imply that $V_{n}^{1}+\cdots+V_{n}^{m}=n+1$ and so that $W_{t}^{1}+\cdots+W_{t}^{m}=t$. As $s_{1}+\cdots+s_{m}<t$ that implies $\mathbb{P}\left\{\widehat{W_{t}} \leq \widehat{s} \mid \widehat{V_{n}}=\hat{l}, N_{t}=\right.$ $n\}=0$. Now consider the expression $\mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j, N_{t}=n\right\}$. For $\hat{l}=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in E_{n}$, and $i, j \in S$, we define the set

$$
G_{\hat{l}, n}^{i, j}=\left\{\begin{array}{l|l}
\widehat{z}=\left(i, z_{1}, \ldots, z_{n-1}, j\right) \in S^{n+1} & \begin{array}{l}
l_{1} \text { entries of } \hat{z} \text { are in } B_{1}, \ldots \\
l_{m} \text { entries of } \hat{z} \text { are in } B_{m} \text { and } \\
n+1-\left(l_{1}+\cdots+l_{m}\right) \text { are in } B_{0}
\end{array}
\end{array}\right\}
$$

and we denote the random vector $\left(Z_{0}, \ldots, Z_{n}\right)$ by \hat{Z}. We have that

$$
\begin{aligned}
& \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \hat{s} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j, N_{t}=n\right\} \\
= & \sum_{\widehat{z} \in G_{\widehat{i, n}}^{i, j}} \mathbb{P}\left\{\widehat{W_{t}} \leq \hat{s} \mid \widehat{Z}=\widehat{z}, \widehat{V_{n}}=\widehat{l}, N_{t}=n\right\} \mathbb{P}_{i}\left\{\widehat{Z}=\widehat{z} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j, N_{t}=n\right\} \\
= & \sum_{\widehat{z} \in G_{\widehat{l}, n}^{i, j}} \mathbb{P}\left\{\widehat{W_{t}} \leq \hat{s} \mid \hat{Z}=\widehat{z}, \widehat{V_{n}}=\widehat{l}, N_{t}=n\right\} \mathbb{P}_{i}\left\{\hat{Z}=\widehat{z} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j\right\}
\end{aligned}
$$

where the last equality follows from the independence of the processes $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$. It follows that

$$
\mathbb{P}\left\{\widehat{W_{t}} \leq \widehat{s} \mid \widehat{Z}=\widehat{z}, \widehat{V_{n}}=\hat{l}, N_{t}=n\right\}=\mathbb{P}\left\{\hat{T}(\hat{l}) \leq \widehat{s} \mid \hat{Z}=\widehat{z}, \widehat{V_{n}}=\hat{l}, N_{t}=n\right\}
$$

where

$$
\widehat{T}(\widehat{l})=\left(\sum_{j=1}^{l_{1}} T_{i_{j}}, \sum_{j=l_{1}+1}^{l_{1}+l_{2}} T_{i_{j}}, \ldots, \sum_{j=l_{1}+l_{2}+\cdots+l_{m-1}+1}^{l_{1}+l_{2}+\cdots+l_{m}} T_{i_{j}}\right)
$$

Again using the independence of $\left\{Z_{n}\right\}$ and $\left\{N_{t}\right\}$ and relation (3), we obtain

$$
\mathbb{P}\left\{\widehat{T}(\hat{l}) \leq \hat{s} \mid \hat{Z}=\hat{z}, \widehat{V_{n}}=\hat{l}, N_{t}=n\right\}=\begin{aligned}
& \mathbb{P}\left\{\hat{T}(\hat{l}) \leq \hat{s} \mid N_{t}=n\right\} \\
& = \\
& \sum_{\substack{k_{1} \geq l_{1}, k_{2} \geq l_{2}, \ldots, k_{m} \geq l_{m}, k_{1}+k_{2}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{m}, \ldots, \ldots, s_{m}} .
\end{aligned}
$$

Note that if one of the l_{i} 's is zero, the corresponding entry of the vector $\hat{T}(\widehat{l})$ becomes zero and the preceding formula still holds. Indeed, suppose for simplicity that $l_{m}=0$, then

$$
\begin{aligned}
& \sum_{k_{1} \geq l_{1}, \ldots, k_{m} \geq 0,} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}}=\sum_{k_{1} \geq l_{1}, \ldots, k_{m-1} \geq l_{m-1},} n!\sum_{k_{m}=0}^{n-\left(k_{1}+\cdots+k_{m-1}\right)} \theta_{n ; k_{1}, \ldots, k_{m}}^{t i s_{1}, \ldots, s_{m}} \\
& k_{1}+\cdots+k_{m} \leq n \\
& =\sum_{\substack{k_{1} \geq l_{1}, \ldots, k_{m-1} \geq l_{m-1}, k_{1}+\cdots+k_{m-1} \leq n}} n!\theta_{n ; k_{1}, \ldots, k_{m-1}}^{t_{i, s_{1}, \ldots, s_{m-1}} .}
\end{aligned}
$$

Note also that if all the l_{i} 's are zero, all the entries of $\widehat{T}(\widehat{l})$ are zero and the formula still holds since

$$
\sum_{\substack{k_{1} \geq 0, k_{2} \geq 0, \ldots, k_{m} \geq 0, k_{1}+k_{2}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}}=1 .
$$

Putting these results together, we obtain

$$
\begin{aligned}
& \mathbb{P}_{i}\left\{\widehat{W_{t}} \leq \widehat{s} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j, N_{t}=n\right\} \\
& =\sum_{\substack{\widehat{z} \in G_{\hat{l}, n}^{i, j}}} \sum_{\substack{k_{1} \geq l_{1}, k_{2} \geq l_{2}, \ldots, k_{m} \geq l_{m}, k_{1}+k_{2}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}} \mathbb{P}_{i}\left\{\widehat{Z}=\widehat{z} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{k_{1} \geq l_{1}, k_{2} \geq l_{2}, \ldots, k_{m} \geq l_{m}, k_{1}+k_{2}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}} \sum_{\hat{z} \in G_{\hat{i}, n}^{i, j}} \mathbb{P}_{i}\left\{\hat{Z}=\widehat{z} \mid \widehat{V_{n}}=\hat{l}, Z_{n}=j\right\} \\
& =\sum_{\substack{ \\
k_{1} \geq l_{1}, k_{2} \geq l_{2}, \ldots, k_{m} \geq l_{m}, k_{1}+k_{2}+\cdots+k_{m} \leq n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m},}^{t ; s_{1}, s_{2}, \ldots, s_{m}},
\end{aligned}
$$

and so,

$$
\begin{aligned}
& \mathbb{P}\left\{\widehat{W_{t}} \leq \widehat{s}, X_{t}=j \mid X_{0}=i\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{\hat{l} \in E_{n}} \sum_{k_{1} \geq l_{1}, k_{2} \geq l_{2}, \ldots, k_{m} \geq l_{m},} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t_{i}, s_{1}, s_{2}, \ldots, s_{m}} \mathbb{P}_{i}\left\{\widehat{V}_{n}=\hat{l}, Z_{n}=j\right\} \\
& k_{1}+k_{2}+\cdots+k_{m} \leq n \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{\widehat{k} \in E_{n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{\theta_{i}^{t ; s_{1}, s_{2}, \ldots, s_{m}}} \sum_{\substack{l_{1} \geq k_{1}, l_{2} \geq k_{2}, \ldots, l_{m} \geq k_{m}, l_{1}+l_{2}+\cdots+l_{m} \leq n}} \mathbb{P}_{i}\left\{\widehat{V_{n}}=\hat{l}, Z_{n}=j\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{\widehat{k} \in E_{n}} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}} \mathbb{P}\left\{\widehat{V_{n}} \leq \widehat{l}\right\} \\
& =\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k_{1} \geq 0, k_{2} \geq 0, \ldots, k_{m} \geq 0,} n!\theta_{n ; k_{1}, k_{2}, \ldots, k_{m}}^{t ; s_{1}, s_{2}, \ldots, s_{m}} \mathbb{P}_{i}\left\{\widehat{V}_{n} \leq \hat{l}, Z_{n}=j\right\} . \\
& k_{1}+k_{2}+\cdots+k_{m} \leq n
\end{aligned}
$$

From relation (7) the distribution $\mathbb{P}_{i}\left\{W_{t}^{1} \leq s_{1}, \ldots, W_{t}^{m} \leq s_{m}, X_{t}=j\right\}$ is differentiable with respect to t and also with respect to $s_{1}, s_{2}, \ldots, s_{m}$ for $t>0$, $s_{1}, \ldots, s_{m} \in(0, t)$, and $s_{1}+\cdots+s_{m} \in(0, t)$. Moreover, if $s_{1}+s_{2}+\cdots+s_{m} \geq t$, then trivially

$$
\mathbb{P}\left\{W_{t}^{1}>s_{1}, \ldots, W_{t}^{m}>s_{m}, X_{t}=j \mid X_{0}=i\right\}=0
$$

so that relation (6) applies by replacing the V_{n}^{l} and the k_{l} by the W_{t}^{l} and the s_{l} respectively.

5 WEIGHTED SUMS OF OCCUPATION TIMES

A constant performance level or reward rate $\rho(i)$ is associated with each state
i of S. We consider the random variable Y_{t} defined by

$$
Y_{t}=\int_{0}^{t} \rho\left(X_{u}\right) d u
$$

We denote by $m+1$ the number of distinct rewards and their values by

$$
r_{0}<r_{1}<\cdots<r_{m-1}<r_{m} .
$$

We then have $Y_{t} \in\left[r_{0} t, r_{m} t\right]$ with probability one. Without loss of generality, we may set $r_{0}=0$. That can be easily done by considering the random variable $Y_{t}-r_{0} t$ instead of Y_{t} and the reward rates $r_{i}-r_{0}$ instead of r_{i}. As in Section 4, the state space S is partitioned into subsets B_{0}, \ldots, B_{m}. The subset B_{l} contains the states with reward rate r_{l}, that is $B_{l}=\left\{i \in S \mid \rho(i)=r_{l}\right\}$. With this notation,

$$
\begin{equation*}
Y_{t}=\sum_{l=1}^{m} r_{l} \int_{0}^{t} 1_{\left\{X_{u} \in B_{l}\right\}} d u=\sum_{l=1}^{m} r_{l} W_{t}^{l} . \tag{8}
\end{equation*}
$$

As the distribution of each W_{t}^{t} has at most two jumps at 0 and t, the distribution of Y_{t} has at most $m+1$ jumps at the points $r_{0} t=0, r_{1} t, \ldots$, $r_{m} t$. For $t>0$, the jump at point $x=r_{l} t$ is equal to the probability that the process X, starting in subset B_{l}, stays in the subset B_{l} during all of $[0, t)$, that is

$$
\mathbb{P}\left\{Y_{t}=r_{t} t\right\}=\alpha_{B_{l}} e^{A_{B_{l} B_{l}} t_{\mathbb{1}_{l}}} \text { for } t>0,
$$

where $\mathbb{1}_{B_{l}}$ is the column vector of dimension $\left|B_{l}\right|$ with all components equal to 1. For every $i, j \in S$, and $t>0$, we define the functions $F_{i, j}(t, x)$ by

$$
F_{i, j}(t, x)=\mathbb{P}\left\{Y_{t}>x, X_{t}=j \mid X_{0}=i\right\},
$$

and we introduce the matrix $F(t, x)=\left\{F_{i, j}(t, x)\right\}$. Using the partition B_{m}, B_{m-1}, \ldots, B_{0}, the matrices A, P, and $F(t, x)$ can be written as
$A=\left\{A_{B_{u} B_{v}}\right\}_{0 \leq u, v \leq m} ; P=\left\{P_{B_{u} B_{v}}\right\}_{0 \leq u, v \leq m} ; F(t, x)=\left\{F_{B_{u} B_{v}}(t, x)\right\}_{0 \leq u, v \leq m}$.
Note that for $t>0$, and $0 \leq l \leq m$,

$$
\mathbb{P}\left\{Y_{t}=r_{l} t, X_{t}=j \mid X_{0}=i\right\}=\left\{\begin{array}{cl}
\left(e^{A_{B_{l} B_{l}} t}\right)_{i, j} & \text { if } i, j \in B_{l} \\
0 & \text { otherwise }
\end{array}\right.
$$

that is

$$
\begin{equation*}
\mathbb{P}\left\{Y_{t}=r_{l} t, X_{t}=j \mid X_{0}=i\right\}=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}\left(P_{B_{l} B_{l}}\right)_{i, j}^{n} 1_{\left\{i, j \in B_{l}\right\}} \tag{9}
\end{equation*}
$$

The distribution $F_{i, j}(t, x)$ can be obtained from relation (8), using the joint distribution of the W_{t}^{l} obtained in Section 4.2. From relation (7), $F_{i, j}(t, x)$ is differentiable with respect to x and t in the domain

$$
E=\left\{(t, x) ; t>0 \text { and } x \in \bigcup_{l=1}^{m}\left(r_{l-1} t, r_{l} t\right)\right\}
$$

The initial conditions are given, for $t>0$, by

$$
F_{i, j}(t, 0)=\mathbb{P}\left\{X_{t}=j \mid X_{0}=i\right\}-\mathbb{P}\left\{Y_{t}=0, X_{t}=j \mid X_{0}=i\right\},
$$

that is, in matrix notation,

$$
F_{B_{u} B_{v}}(t, 0)=\left(e^{A t}\right)_{B_{u} B_{v}}-e^{A_{B_{0} B_{0} t}} 1_{\{u=v=0\}}
$$

which can also be written as

$$
\begin{equation*}
F_{B_{u} B_{v}}(t, 0)=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}\left[\left(P^{n}\right)_{B_{u} B_{v}}-\left(P_{B_{0} B_{0}}\right)^{n} 1_{\{u=v=0\}}\right] \tag{10}
\end{equation*}
$$

5.1 Backward and Forward Equations

In what follows, we derive backward and forward equations satisfied by the distribution of the pair $\left(Y_{t}, X_{t}\right)$. First, we recall some well-known and useful results in the following lemma. Remember that $\{N(t)\}$ is a Poisson process of rate λ, independent of the Markov chain Z. We denote by $N(t, t+s)$ the number of transitions during the interval $[t, t+s)$.

Lemma 5.1

$$
\begin{gather*}
\mathbb{P}\left\{N(t, t+s)=0 \mid X_{t}=j\right\}=e^{-\lambda s} \tag{11}\\
\mathbb{P}\left\{X_{t+s}=j, N(t, t+s)=1 \mid X_{t}=i\right\}=P_{i, j} \lambda s e^{-\lambda s} \tag{12}\\
\mathbb{P}\left\{N(t, t+s) \geq 2 \mid X_{0}=i\right\}=o(s) \tag{13}
\end{gather*}
$$

The following theorem establishes the forward equation for the pair $\left(Y_{t}, X_{t}\right)$.

Theorem 5.2 For $t>0, i, j \in S, 1 \leq h \leq m$, and $x \in\left(r_{h-1} t, r_{h} t\right)$, we have

$$
\begin{equation*}
\frac{\partial F_{i, j}(t, x)}{\partial t}=-\rho(j) \frac{\partial F_{i, j}(t, x)}{\partial x}+\sum_{k \in S} F_{i, k}(t, x) A_{k, j} \tag{14}
\end{equation*}
$$

Proof. By conditioning on the number of transitions in $[t, t+s)$, we have

$$
\begin{aligned}
\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j\right\}= & \mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s)=0\right\} \\
& +\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s)=1\right\} \\
& +\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s) \geq 2\right\}
\end{aligned}
$$

We separately consider these three terms. For the first term, since $X_{t+s}=j$ and $N(t, t+s)=0$ is equivalent to $X_{t}=j$ and $N(t, t+s)=0$, we have

$$
\begin{aligned}
& \mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s)=0\right\}=\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t}=j, N(t, t+s)=0\right\} \\
& \quad=\mathbb{P}_{i}\left\{Y_{t+s}>x \mid X_{t}=j, N(t, t+s)=0\right\} \mathbb{P}_{i}\left\{X_{t}=j, N(t, t+s)=0\right\} \\
& =\mathbb{P}_{i}\left\{Y_{t}>x-\rho(j) s \mid X_{t}=j, N(t, t+s)=0\right\} \mathbb{P}_{i}\left\{X_{t}=j, N(t, t+s)=0\right\} \\
& =\mathbb{P}_{i}\left\{Y_{t}>x-\rho(j) s \mid X_{t}=j\right\} \mathbb{P}_{i}\left\{X_{t}=j, N(t, t+s)=0\right\} \\
& =\mathbb{P}_{i}\left\{Y_{t}>x-\rho(j) s, X_{t}=j\right\} \mathbb{P}_{i}\left\{N(t, t+s)=0 \mid X_{t}=j\right\} \\
& =\mathbb{P}\left\{N(t, t+s)=0 \mid X_{t}=j\right\} F_{i, j}(t, x-\rho(j) s) \\
& =e^{-\lambda s} F_{i, j}(t, x-\rho(j) s) \\
& =(1-\lambda s) F_{i, j}(t, x-\rho(j) s)+o(s)
\end{aligned}
$$

The second equality follows from the fact that, if $X_{t}=j$ and $N(t, t+s)=0$, we have $Y_{t+s}=Y_{t}+\rho(j) s$. The third and fifth follow from the Markov property, and the sixth from relation (11). For the second term denoted by $G(s)$, we define

$$
G_{k}(s)=\mathbb{P}_{i}\left\{Y_{t+s}>x \mid X_{t}=k, X_{t+s}=j, N(t, t+s)=1\right\}
$$

We then have

$$
\begin{aligned}
G(s) & =\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s)=1\right\} \\
& =\sum_{k \in S} G_{k}(s) \mathbb{P}_{i}\left\{X_{t}=k, X_{t+s}=j, N(t, t+s)=1\right\}
\end{aligned}
$$

Let us define $\rho_{\text {min }}=\min \{\rho(i)\}$ and $\rho_{\max }=\max \{\rho(i)\}$.
As $Y_{t}+\rho_{\min } s \leq Y_{t+s} \leq Y_{t}+\rho_{\max } s$, we get

$$
\mathbb{P}_{i}\left\{Y_{t}>x-\rho_{\min } s \mid X_{t}=k, X_{t+s}=j, N(t, t+s)=1\right\} \leq G_{k}(s)
$$

and

$$
G_{k}(s) \leq \mathbb{P}_{i}\left\{Y_{t}>x-\rho_{\max } s \mid X_{t}=k, X_{t+s}=j, N(t, t+s)=1\right\}
$$

Using the Markov property,

$$
\mathbb{P}_{i}\left\{Y_{t}>x-\rho_{\min } s \mid X_{t}=k\right\} \leq G_{k}(s) \leq \mathbb{P}_{i}\left\{Y_{t}>x-\rho_{\max } s \mid X_{t}=k\right\}
$$

We thus obtain

$$
\sum_{k \in S} F_{i, k}\left(t, x-\rho_{\min } s\right) U_{k, j}(s) \leq G(s) \leq \sum_{k \in S} F_{i, k}\left(t, x-\rho_{\max } s\right) U_{k, j}(s)
$$

where $U_{k, j}(s)=\mathbb{P}\left\{X_{t+s}=j, N(t, t+s)=1 \mid X_{t}=k\right\}$. From relation (12),

$$
\lim _{s \rightarrow 0} \frac{U_{k, j}(s)}{s}=\lambda P_{k, j}
$$

so we obtain

$$
\lim _{s \rightarrow 0} \frac{G(s)}{s}=\lambda \sum_{k \in S} F_{i, k}(t, x) P_{k, j}
$$

For the third term, we have by relation (13),

$$
\mathbb{P}_{i}\left\{Y_{t+s}>x, X_{t+s}=j, N(t, t+s) \geq 2\right\} \leq \mathbb{P}_{i}\{N(t, t+s) \geq 2\}=o(s)
$$

Combining the three terms, we obtain

$$
\begin{gathered}
\frac{F_{i, j}(t+s, x)-F_{i, j}(t, x)}{s}=\frac{(1-\lambda s) F_{i, j}(t, x-\rho(j) s)-F_{i, j}(t, x)}{s}+\frac{G(s)}{s}+\frac{o(s)}{s} \\
=\frac{F_{i, j}(t, x-\rho(j) s)-F_{i, j}(t, x)}{s}-\lambda F_{i, j}(t, x-\rho(j) s)+\frac{G(s)}{s}+\frac{o(s)}{s}
\end{gathered}
$$

If now s tends to 0 , we get

$$
\frac{\partial F_{i, j}(t, x)}{\partial t}=-\rho(j) \frac{\partial F_{i, j}(t, x)}{\partial x}-\lambda F_{i, j}(t, x)+\lambda \sum_{k \in S} F_{i, k}(t, x) P_{k, j}
$$

Since $P=I+A / \lambda$, we obtain that

$$
\frac{\partial F_{i, j}(t, x)}{\partial t}=-\rho(j) \frac{\partial F_{i, j}(t, x)}{\partial x}+\sum_{k \in S} F_{i, k}(t, x) A_{k, j}
$$

Corollary 5.3 For $t>0,0 \leq p \leq m, i \in B_{p}, j \in S, 1 \leq h \leq m$, and $x \in\left(r_{h-1} t, r_{h} t\right)$, we have

$$
\begin{equation*}
F_{i, j}(t, x)=\sum_{k \in S} \int_{0}^{t} F_{i, k}(t-u, x-\rho(j) u) \lambda e^{-\lambda u} d u P_{k, j}+e^{-\lambda t} 1_{\{h \leq p\}} 1_{\{i=j\}} \tag{15}
\end{equation*}
$$

Proof. Consider equation (14) and the functions $\varphi_{i, j}$ defined by

$$
\varphi_{i, j}(u)=F_{i, j}(t-u, x-\rho(j) u) e^{-\lambda u}
$$

Differentiating with respect to u yields

$$
\varphi_{i, j}^{\prime}(u)=e^{-\lambda u}\left[-\frac{\partial F_{i, j}}{\partial t}-\rho(j) \frac{\partial F_{i, j}}{\partial x}\right](t-u, x-\rho(j) u)-F_{i, j}(t-u, x-\rho(j) u) \lambda e^{-\lambda u}
$$

which, by (14) and the relation $A=-\lambda(I-P)$, gives

$$
\begin{aligned}
\varphi_{i, j}^{\prime}(u) & =-\sum_{k \in S} F_{i, k}(t-u, x-\rho(j) u) A_{k, j} e^{-\lambda u}-F_{i, j}(t-u, x-\rho(j) u) \lambda e^{-\lambda u} \\
& =-\sum_{k \in S} F_{i, k}(t-u, x-\rho(j) u) \lambda e^{-\lambda u} P_{k, j}
\end{aligned}
$$

Integrating that expression between 0 and t gives

$$
\varphi_{i, j}(t)-\varphi_{i, j}(0)=-\sum_{k \in S} \int_{0}^{t} F_{i, k}(t-u, x-\rho(j) u) \lambda e^{-\lambda u} d u P_{k, j}
$$

Finally, we have $\varphi_{i, j}(0)=F_{i, j}(t, x)$ and

$$
\varphi_{i, j}(t)=F_{i, j}(0, x-\rho(j) t) e^{-\lambda t}=e^{-\lambda t} 1_{\{x-\rho(j) t<0\}} 1_{\{i=j\}}=e^{-\lambda t} 1_{\{h \leq p\}} 1_{\{i=j\}} .
$$

We next derive the backward equation for the evolution of the pair $\left(Y_{t}, X_{t}\right)$.

Theorem 5.4 For $t>0,0 \leq p \leq m, i \in B_{p}, j \in S, 1 \leq h \leq m$, and $x \in\left(r_{h-1} t, r_{h} t\right)$,

$$
\begin{equation*}
F_{i, j}(t, x)=\sum_{k \in S} P_{i, k} \int_{0}^{t} F_{k, j}(t-u, x-\rho(i) u) \lambda e^{-\lambda u} d u+e^{-\lambda t} 1_{\{h \leq p\}} 1_{\{i=j\}} \tag{16}
\end{equation*}
$$

Proof. Let T_{1} be the sojourn time in the initial state. We have

$$
F_{i, j}(t, x)=\int_{0}^{\infty} \mathbb{P}\left\{Y_{t}>x, X_{t}=j \mid T_{1}=u, X_{0}=i\right\} \lambda e^{-\lambda u} d u
$$

If $u \geq t$ and $X_{0}=i$, we have $Y_{t}=\rho(i) t=r_{p} t$ and $\mathbb{P}\left\{X_{t}=j \mid T_{1}=u, X_{0}=\right.$ $i\}=1$, if $i=j$ and 0 otherwise. Moreover, as $r_{p} t>x$ is equivalent to $r_{p} t \geq r_{h} t$, that is $h \leq p$, we obtain

$$
F_{i, j}(t, x)=\int_{0}^{t} \mathbb{P}\left\{Y_{t}>x, X_{t}=j \mid T_{1}=u, X_{0}=i\right\} \lambda e^{-\lambda u} d u+e^{-\lambda t} 1_{\{h \leq p\}} 1_{\{i=j\}}
$$

Now,

$$
\begin{aligned}
& \mathbb{P}\left\{Y_{t}>x, X_{t}=j \mid T_{1}=u, X_{0}=i\right\} \\
& =\sum_{k \in S} \mathbb{P}\left\{Y_{t}>x, X_{t}=j \mid X_{u}=k, T_{1}=u, X_{0}=i\right\} \mathbb{P}\left\{X_{u}=k \mid T_{1}=u, X_{0}=i\right\}
\end{aligned}
$$

For the second factor in the summand, we have that

$$
\begin{aligned}
\mathbb{P}\left\{X_{u}=k \mid T_{1}=u, X_{0}=i\right\} & =\mathbb{P}\left\{X_{T_{1}}=k \mid T_{1}=u, X_{0}=i\right\} \\
& =\mathbb{P}\left\{Z_{1}=k \mid T_{1}=u, Z_{0}=i\right\} \\
& =P_{i, k}
\end{aligned}
$$

For the first factor, $T_{1}=u$ and $X_{0}=i$ imply $Y_{u}=\rho(i) u$, so that

$$
\begin{aligned}
\mathbb{P}\left\{Y_{t}>\right. & \left.x, X_{t}=j \mid X_{u}=k, T_{1}=u, X_{0}=i\right\} \\
& =\mathbb{P}\left\{\int_{u}^{t} \rho\left(X_{v}\right) d v>x-\rho(i) u, X_{t}=j \mid X_{u}=k, T_{1}=u, X_{0}=i\right\} \\
& =\mathbb{P}\left\{\int_{u}^{t} \rho\left(X_{v}\right) d v>x-\rho(i) u, X_{t}=j \mid X_{u}=k\right\} \\
& =\mathbb{P}\left\{Y_{t-u}>x-\rho(i) u, X_{t-u}=j \mid X_{0}=k\right\} \\
& =F_{k, j}(t-u, x-\rho(i) u)
\end{aligned}
$$

where the second equality follows from the Markov property and the third by homogeneity. Combining these results, we obtain relation (16).

Corollary 5.5 For $t>0, i, j \in S, 1 \leq h \leq m$ and $x \in\left(r_{h-1} t, r_{h} t\right)$ we have

$$
\begin{equation*}
\frac{\partial F_{i, j}(t, x)}{\partial t}=-\rho(i) \frac{\partial F_{i, j}(t, x)}{\partial x}+\sum_{k \in S} A_{i, k} F_{k, j}(t, x) \tag{17}
\end{equation*}
$$

Proof. Consider equation (16) with $i \in B_{p}, 0 \leq p \leq m$ and $j \in S$. Differentiating $F_{i, j}(t, x)$ with respect to t, we obtain

$$
\begin{aligned}
\frac{\partial F_{i, j}(t, x)}{\partial t}= & \sum_{k \in S} P_{i, k} \int_{0}^{t} \frac{\partial F_{k, j}(t-u, x-\rho(i) u)}{\partial t} \lambda e^{-\lambda u} d u \\
& +\sum_{k \in S} P_{i, k} F_{k, j}(0, x-\rho(i) t) \lambda e^{-\lambda t}-\lambda e^{-\lambda t} 1_{\{h \leq p\}} 1_{\{i=j\}}
\end{aligned}
$$

Next, differentiating $F_{i, j}(t, x)$ with respect to x, we get

$$
\frac{\partial F_{i, j}(t, x)}{\partial x}=\sum_{k \in S} P_{i, k} \int_{0}^{t} \frac{\partial F_{k, j}(t-u, x-\rho(i) u)}{\partial x} \lambda e^{-\lambda u} d u
$$

Consider the functions $\psi_{k, j}$ and $\varphi_{k, j}$ defined by

$$
\psi_{k, j}(u)=F_{k, j}(t-u, x-\rho(i) u), \quad \text { and } \quad \varphi_{k, j}(u)=\psi_{k, j}(u) e^{-\lambda u}
$$

Note that $\psi_{i, j}(t)=1_{\{h \leq p\}} 1_{\{i=j\}}$, so (16) can be written as

$$
\begin{equation*}
\varphi_{i, j}(0)=\lambda \sum_{k \in S} P_{i, k} \int_{0}^{t} \varphi_{k, j}(u) d u+\varphi_{i, j}(t) \tag{18}
\end{equation*}
$$

Differentiating $\psi_{k, j}$ with respect to u, we get

$$
\psi_{k, j}^{\prime}(u)=-\frac{\partial F_{k, j}(t-u, x-\rho(i) u)}{\partial t}-\rho(i) \frac{\partial F_{k, j}(t-u, x-\rho(i) u)}{\partial x}
$$

We thus obtain

$$
\begin{aligned}
\frac{\partial F_{i, j}(t, x)}{\partial t}+\rho(i) \frac{\partial F_{i, j}(t, x)}{\partial x} & =\lambda \sum_{k \in S} P_{i, k}\left[\varphi_{k, j}(t)-\int_{0}^{t} \psi_{k, j}^{\prime}(u) e^{-\lambda u} d u\right]-\lambda \varphi_{i, j}(t) \\
& =\lambda \sum_{k \in S} P_{i, k} \varphi_{k, j}(0)-\lambda^{2} \int_{0}^{t} \varphi_{k, j}(u) d u-\lambda \varphi_{i, j}(t) \\
& =\lambda \sum_{k \in S} P_{i, k} \varphi_{k, j}(0)-\lambda \varphi_{i, j}(0) \\
& =\lambda \sum_{k \in S} P_{i, k} F_{k, j}(t, x)-\lambda F_{i, j}(t, x)
\end{aligned}
$$

$$
=\sum_{k \in S} A_{i, k} F_{k, j}(t, x)
$$

where the second equality is obtained by integration by parts and the third follows from relation (18).

Let D be the diagonal matrix with the reward rates $\rho(i)$ on the diagonal and $F(t, x)$ the matrix $\left\{F_{i, j}(t, x)\right\}$. In matrix notation, the forward and backward equations (14) and (17) become

$$
\begin{equation*}
\frac{\partial F(t, x)}{\partial t}=-\frac{\partial F(t, x)}{\partial x} D+F(t, x) A \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F(t, x)}{\partial t}=-D \frac{\partial F(t, x)}{\partial x}+A F(t, x) \tag{20}
\end{equation*}
$$

These are hyperbolic partial differential equations having a unique solution on the domain E with the initial condition given by relation (10), see for instance [6].

5.2 Solutions

The solution to equation (19) is given by the following theorem:

Theorem 5.6 For every $t>0$, and $x \in\left[r_{h-1} t, r_{h} t\right)$, for $1 \leq h \leq m$,

$$
\begin{equation*}
F(t, x)=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} x_{h}^{k}\left(1-x_{h}\right)^{n-k} C^{(h)}(n, k) \tag{21}
\end{equation*}
$$

where $x_{h}=\frac{x-r_{h-1} t}{\left(r_{h}-r_{h-1}\right) t}$ and the matrices $C^{(h)}(n, k)=\left(C_{B_{u} B_{v}}^{(h)}(n, k)\right)_{0 \leq u, v \leq m}$ are given by the recurrence relations
for $0 \leq u \leq m$, and $h \leq v \leq m$;

$$
\text { for } n \geq 0: C_{B_{u} B_{v}}^{(1)}(n, 0)=\left(P^{n}\right)_{B_{u} B_{v}}, C_{B_{u} B_{v}}^{(h)}(n, 0)=C_{B_{u} B_{v}}^{(h-1)}(n, n), \text { for } h>1
$$

for $1 \leq k \leq n$:
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{v}-r_{h}}{r_{v}-r_{h-1}} C_{B_{u} B_{v}}^{(h)}(n, k-1)+\frac{r_{h}-r_{h-1}}{r_{v}-r_{h-1}} \sum_{w=0}^{m} C_{B_{u} B_{w}}^{(h)}(n-1, k-1) P_{B_{w} B_{v}}$,
for $0 \leq u \leq m$, and $0 \leq v \leq h-1$:
for $n \geq 0: C_{B_{u} B_{v}}^{(m)}(n, n)=0_{B_{u} B_{v}}, C_{B_{u} B_{v}}^{(h)}(n, n)=C_{B_{u} B_{v}}^{(h+1)}(n, 0)$, for $h<m$,
for $0 \leq k \leq n-1$:
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{h-1}-r_{v}}{r_{h}-r_{v}} C_{B_{u} B_{v}}^{(h)}(n, k+1)+\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}} \sum_{w=0}^{m} C_{B_{u} B_{w}}^{(h)}(n-1, k) P_{B_{w} B_{v}}$.

Proof. For $t>0$, and $x \in\left(r_{h-1} t, r_{h} t\right), 1 \leq h \leq m$, we write the solution of equation (19) as

$$
F(t, x)=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} x_{h}^{k}\left(1-x_{k}\right)^{n-k} C^{(h)}(n, k)
$$

and we establish the relations that the matrices $C^{(h)}(n, k)$ must satisfy. So,

$$
\begin{aligned}
\frac{\partial F(t, x)}{\partial t}=-\lambda F(t, x)+\frac{\lambda}{r_{h}-r_{h-1}} & \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} x_{h}^{k}\left(1-x_{h}\right)^{n-k} \\
\times & {\left[r_{h} C^{(h)}(n+1, k)-r_{h-1} C^{(h)}(n+1, k+1)\right], }
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial F(t, x)}{\partial x}=\frac{\lambda}{r_{h}-r_{h-1}} \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} x_{h}^{k}\left(1-x_{h}\right)^{n-k} \\
& \times\left[C^{(h)}(n+1, k+1)-C^{(h)}(n+1, k)\right]
\end{aligned}
$$

Since $A=-\lambda(I-P)$, we obtain $F(t, x) A=-\lambda F(t, x)+\lambda F(t, x) P$, that is,

$$
F(t, x) A=-\lambda F(t, x)+\lambda \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \sum_{k=0}^{n}\binom{n}{k} x_{h}^{k}\left(1-x_{h}\right)^{n-k} C^{(h)}(n, k) P
$$

It follows that if the matrices $C^{(h)}(n, k)$ satisfy
$C^{(h)}(n+1, k+1)\left[D-r_{h-1} I\right]=C^{(h)}(n+1, k)\left[D-r_{h} I\right]+\left(r_{h}-r_{h-1}\right) C^{(h)}(n, k) P$,
then equation (19) is satisfied. For every $1 \leq h \leq m$, and $0 \leq u \leq m$, the recurrence relation (24) can also be written as follows:

If $h \leq v \leq m$, then
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{v}-r_{h}}{r_{v}-r_{h-1}} C_{B_{u} B_{v}}^{(h)}(n, k-1)+\frac{r_{h}-r_{h-1}}{r_{v}-r_{h-1}} \sum_{w=0}^{m} C_{B_{u} B_{w}}^{(h)}(n-1, k-1) P_{B_{w} B_{v}}$, and if $0 \leq v \leq h-1$, then
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{h-1}-r_{v}}{r_{h}-r_{v}} C_{B_{u} B_{v}}^{(h)}(n, k+1)+\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}} \sum_{w=0}^{m} C_{B_{u} B_{w}}^{(h)}(n-1, k) P_{B_{w} B_{v}}$.
To get the initial conditions for the $C^{(h)}(n, k)$, we consider the jumps of $F(t, x)$. We first consider the jump at $x=r_{0} t=0$. For $t>0$, at $x=0$, that is, for $h=1$, relation (21) yields that

$$
F(t, 0)=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} C^{(\mathbf{1})}(n, 0)
$$

It follows from (10) that for $0 \leq u, v \leq m$,

$$
\begin{equation*}
C_{B_{u} B_{v}}^{(1)}(n, 0)=\left(P^{n}\right)_{B_{u} B_{v}}-\left(P_{B_{0} B_{0}}\right)^{n} 1_{\{u=v=0\}} \tag{25}
\end{equation*}
$$

In particular, that implies that for every $0 \leq u \leq m$,

$$
C_{B_{u} B_{v}}^{(1)}(n, 0)=\left(P^{n}\right)_{B_{u} B_{v}}, \text { for } 1 \leq v \leq m
$$

Next, we consider the jumps at $x=r_{h} t, 1 \leq h \leq m-1$. For $t>0,1 \leq h \leq$ $m-1$, and $i, j \in S$, we have that

$$
F_{i, j}\left(t, r_{h} t\right)=\lim _{x \leq r_{h} t} F_{i, j}(t, x)-\mathbb{P}\left\{Y_{t}=r_{h} t, X_{t}=j \mid X_{0}=i\right\}
$$

From (21) and (9), we obtain

$$
\begin{equation*}
C_{B_{u} B_{v}}^{(h+1)}(n, 0)=C_{B_{u} B_{v}}^{(h)}(n, n)-\left(P_{B_{h} B_{h}}\right)^{n} 1_{\{u=v=h\}} \tag{26}
\end{equation*}
$$

In particular, that implies that for every $0 \leq u \leq m$,

$$
C_{B_{u} B_{v}}^{(h)}(n, 0)=C_{B_{u} B_{v}}^{(h-1)}(n, n), \text { for } 1<h \leq v \leq m
$$

and

$$
C_{B_{u} B_{v}}^{(h)}(n, n)=C_{B_{u} B_{v}}^{(h+1)}(n, 0), \text { for } 0 \leq v \leq h-1<m-1
$$

Finally, we consider the jump at $x=r_{m} t$, that is, for $h=m$. For $t>0$,

$$
0=F_{i, j}\left(t, r_{m} t\right)=\lim _{x \hookrightarrow r_{m} t} F_{i, j}(t, x)-\mathbb{P}\left\{Y_{t}=r_{m} t, X_{t}=j \mid X_{0}=i\right\}
$$

which, as in the preceding case, leads to

$$
\begin{equation*}
C_{B_{u} B_{v}}^{(m)}(n, n)=\left(P_{B_{m} B_{m}}\right)^{n} 1_{\{u=v=m\}} . \tag{27}
\end{equation*}
$$

That implies that for every $0 \leq u \leq m$,

$$
C_{B_{u} B_{v}}^{(m)}(n, n)=0, \text { for } 0 \leq v \leq m-1
$$

Corollary 5.7 For $1 \leq h \leq m, n \geq 0$, and $0 \leq k \leq n$, the matrices $C^{(h)}(n, k)=\left(C_{B_{u} B_{v}}^{(h)}(n, k)\right)_{0 \leq u, v \leq m}$ satisfy the following recurrence relations for $h \leq u \leq m$, and $0 \leq v \leq m$:
for $n \geq 0: C_{B_{u} B_{v}}^{(1)}(n, 0)=\left(P^{n}\right)_{B_{u} B_{v}}, C_{B_{u} B_{v}}^{(h)}(n, 0)=C_{B_{u} B_{v}}^{(h-1)}(n, n)$, for $h>1$,
for $1 \leq k \leq n$:
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{u}-r_{h}}{r_{u}-r_{h-1}} C_{B_{u} B_{v}}^{(h)}(n, k-1)+\frac{r_{h}-r_{h-1}}{r_{u}-r_{h-1}} \sum_{w=0}^{m} P_{B_{u} B_{w}} C_{B_{w} B_{v}}^{(h)}(n-1, k-1)$,
for $0 \leq u \leq h-1$, and $0 \leq v \leq m:$
for $n \geq 0: C_{B_{u} B_{v}}^{(m)}(n, n)=0_{B_{u} B_{v}}, C_{B_{u} B_{v}}^{(h)}(n, n)=C_{B_{u} B_{v}}^{(h+1)}(n, 0)$, for $h<m$,
for $0 \leq k \leq n-1$:
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{h-1}-r_{u}}{r_{h}-r_{u}} C_{B_{u} B_{v}}^{(h)}(n, k+1)+\frac{r_{h}-r_{h-1}}{r_{h}-r_{u}} \sum_{w=0}^{m} P_{B_{u} B_{w}} C_{B_{w} B_{v}}^{(h)}(n-1, k)$.
Proof. The proof is the same as that of Theorem 5.6 using equations (20) and (21). We thus obtain that the matrices $C^{(h)}(n, k)$ satisfy the relation $\left[D-r_{h-1} I\right] C^{(h)}(n+1, k+1)=\left[D-r_{h} I\right] C^{(h)}(n+1, k)+\left(r_{h}-r_{h-1}\right) P C^{(h)}(n, k)$.

For every $1 \leq h \leq m$, and $0 \leq v \leq m$, the relation (28) may also be written as follows:

If $h \leq u \leq m$, then
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{u}-r_{h}}{r_{u}-r_{h-1}} C_{B_{u} B_{v}}^{(h)}(n, k-1)+\frac{r_{h}-r_{h-1}}{r_{u}-r_{h-1}} \sum_{w=0}^{m} P_{B_{u} B_{w}} C_{B_{w} B_{v}}^{(h)}(n-1, k-1)$,
and if $0 \leq u \leq h-1$, then
$C_{B_{u} B_{v}}^{(h)}(n, k)=\frac{r_{h-1}-r_{u}}{r_{h}-r_{u}} C_{B_{u} B_{v}}^{(h)}(n, k+1)+\frac{r_{h}-r_{h-1}}{r_{h}-r_{u}} \sum_{w=0}^{m} P_{B_{u} B_{w}} C_{B_{w} B_{v}}^{(h)}(n-1, k)$.
As in the proof of Theorem 5.6, we consider the jumps of $F(t, x)$. Relation (25) implies that, for every $0 \leq v \leq m$,

$$
C_{B_{u} B_{v}}^{(1)}(n, 0)=\left(P^{n}\right)_{B_{u} B_{v}}, \text { for } 1 \leq u \leq m
$$

Relation (26) implies that, for every $0 \leq v \leq m$,

$$
C_{B_{u} B_{v}}^{(h)}(n, 0)=C_{B_{u} B_{v}}^{(h-1)}(n, n), \text { for } 1<h \leq u \leq m
$$

and

$$
C_{B_{u} B_{v}}^{(h)}(n, n)=C_{B_{u} B_{v}}^{(h+1)}(n, 0), \text { for } 0 \leq u \leq h-1<m-1 .
$$

Finally, (27) implies that, for every $0 \leq v \leq m$,

$$
C_{B_{u} B_{v}}^{(m)}(n, n)=0, \text { for } 0 \leq u \leq m-1
$$

The following corollary gives an upper bound for the matrices $C^{(h)}(n, k)$. If M and K are square matrices of the same dimension, the notation $M \leq K$ means element-wise inequality.

Corollary 5.8 For every $n \geq 0,0 \leq k \leq n$, and $1 \leq h \leq m$,

$$
0 \leq C^{(h)}(n, k) \leq P^{n}
$$

Proof. The proof is by a two-stage induction; first over n, then, for fixed n, over k, by using the recurrence relation in Theorem 5.6 , or equivalently in Corollary 5.7. The result clearly holds for $n=0$. Note that in (22), that is,
for $h \leq v$, we have

$$
0 \leq \frac{r_{v}-r_{h}}{r_{v}-r_{h-1}}=1-\frac{r_{h}-r_{h-1}}{r_{v}-r_{h-1}} \leq 1
$$

and in (23), that is, for $v \leq h-1$, we have

$$
0 \leq \frac{r_{h-1}-r_{v}}{r_{h}-r_{v}}=1-\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}} \leq 1
$$

Consider first the case $v \leq h-1$. The result holds for the pair (n, n), since $C_{B_{u} B_{v}}^{(m)}(n, n)=0$. Suppose the result holds for $n-1$ and for the pair $(n, k+1)$, then from (23), we get $C_{B_{u} B_{v}}^{(h)}(n, k) \geq 0$, and

$$
\begin{aligned}
C_{B_{u} B_{v}}^{(h)}(n, k) & =\frac{r_{h-1}-r_{v}}{r_{h}-r_{v}} C_{B_{u} B_{v}}^{(h)}(n, k+1)+\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}} \sum_{w=0}^{m} C_{B_{u} B_{w}}^{(h)}(n-1, k) P_{B_{w} B_{v}} \\
& \leq \frac{r_{h-1}-r_{v}}{r_{h}-r_{v}}\left(P^{n}\right)_{B_{u} B_{v}}+\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}} \sum_{w=0}^{m}\left(P^{n-1}\right)_{B_{u} B_{w}} P_{B_{w} B_{v}} \\
& =\frac{r_{h-1}-r_{v}}{r_{h}-r_{v}}\left(P^{n}\right)_{B_{u} B_{v}}+\frac{r_{h}-r_{h-1}}{r_{h}-r_{v}}\left(P^{n}\right)_{B_{u} B_{v}} \\
& =\left(P^{n}\right)_{B_{u} B_{v}}
\end{aligned}
$$

The same argument is used in the case $h \leq v$ from relation (22). Moreover, the relations

$$
C_{B_{u} B_{v}}^{(h)}(n, 0)=C_{B_{u} B_{v}}^{(h-1)}(n, n), \text { for } 1<h \leq v \leq m
$$

and

$$
C_{B_{u} B_{v}}^{(h)}(n, n)=C_{B_{u} B_{v}}^{(h+1)}(n, 0), \text { for } 0 \leq v \leq h-1<m-1,
$$

are used to account for both cases $v \leq h-1$ and $h \leq v$.
In numerical procedures, that result is particularly useful in avoiding overflow problems.

References

[1] H. A. David. Order statistics. John Wiley \& sons, Inc., New York London - Sidney - Toronto, 1981.
[2] E. de Souza e Silva and H. R. Gail. Calculating cumulative operational time distributions of repairable computer systems. IEEE Trans. Computers, 35, April 1986.
[3] E. de Souza e Silva and H. R. Gail. An algorithm to calculate transient distributions of cumulative rate and impulse based reward. Communications in Statistics - Stochastic Models, 14(3), 1998.
[4] S. Karlin and H. W. Taylor. A second course in stochastic processes. Academic Press, New York - San Francisco - London, 1981.
[5] H. Nabli and B. Sericola. Performability analysis: A new algorithm. IEEE Trans. Computers, 45(4), April 1996.
[6] I. G. Petrovsky. Lectures on partial differential equations. Interscience publishers, New York, 1962.
[7] S.M. Ross. Stochastic Processes. John Wiley and Sons, 1983.
[8] G. Rubino and B. Sericola. Interval availability distribution computation. In 23th IEEE International Symposium on Fault Tolerant Computing (FTCS'23), Toulouse, France, June 1993.
[9] G. Rubino and B. Sericola. Interval availability analysis using denumerable Markov processes. Application to multiprocessor subject to breakdowns and repair. IEEE Trans. Computers. Special Issue on FaultTolerant Computing, 44(2), February 1995.
[10] B. Sericola. Closed-form solution for the distribution of the total time spent in a subset of states of a homogeneous markov process during a finite observation period. J. Appl. Prob., 27, 1990.

Received:
Revised:
9/10/2000
Accepted:
9/14/2000

