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Abstract 

We analyze the transient behavior of stochastic fluid flow models in which the input and output rates are controlled by a 
finite homogeneous Markov process. Such models are used in asynchronous transfer mode (ATM) to evaluate the performance 
of fast packet switching and in manufacturing systems for the performance of producers and consumers coupled by a buffer. 
The transient analysis of such models has already been considered in earlier works and solutions have been obtained by the 
use of Laplace transform. We derive in this paper a new transient solution only based on recurrence relations. We show that 
this solution is particularly interesting for its numerical properties. The limiting behavior of the solution is also considered. 
We empirically show mat the algorithm for computing the transient solution can be stopped when some stationary behavior 
is detected. 0 1998 Elsevier Science B.V. 
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1. Introduction 

A stochastic fluid flow model describes the behavior of a fluid level in a storage device. The input and 
output rates are supposed to be controlled by a finite homogeneous Markov process. Such models are 
used in asynchronous transfer mode (ATM) to evaluate the performance of fast packet switching and in 

manufacturing systems for the performance of producers and consumers coupled by a buffer. There is a large 
number of papers dealing with the analysis of stochastic fluid flow models. Most of these papers consider 
such models in stationary regime. Anick et al. [l] and Kosten [6] analyzed the fluid model for several on-off 
input sources controlled by a two-state homogeneous Markov process. Mitra [7,8] generalizes this model 
by considering multiple on-off inputs and outputs. In [14] Stern and Elwalid considered such models for 
separable Markov modulated rate process which led to a solution of the equilibrium equations expressed 
as a sum of terms in Kronecker product form. In [4] Igelnik et al. derive a new approach, based on the use 
of interpolating polynomials, for the computation of the buffer overflow probability. An extensive list of 
references can be found in [ 12,131. 
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For what concerns the transient analysis stochastic fluid flow models controlled by a finite Markov 
process. Narayanan and Kulkarni [lo] derive explicit expressions for the Laplace transform of the joint 
distribution for the first time the buffer becomes empty and the state of the Markov process at that time. 
Guillemin et al. consider the unbuffered model in [3] and obtain a method to compute transient charac- 

teristics, such as the congestion period, with an unbounded number of exponential on-off sources. These 
results have been extended by Dupuis et al. in [2] to the case where the off periods are phase-type. 

The Laplace transform has been largely used to evaluate the transient behavior of fluid flow models. 
In [l 1) Ren and Kobayashi studied the transient distribution of the buffer content for exponential on-off 

sources of a single type. The same authors deal with the case of multiple types of inputs in [5]. These studies 
have been extended to the Markov modulated input rate model by Tanaka et al. in [ 151. 

In this paper, we consider a general stochastic fluid flow model in which the buffer is infinite and the 
input and output rates are controlled by a finite homogeneous Markov process. For this model we derive 
a new transient solution for the distribution of the buffer content. This solution does not make use of 
any transform, it is only based on simple recurrence relations which are particularly interesting for their 
numerical properties. The algorithm implementing this solution is very accurate since it uses essentially 
nonnegative numbers bounded by one and it gives results with an error tolerance that can be specified in 
advance. Furthermore, by considering the limiting behavior of the solution, we empirically show that the 
algorithm can be stopped when some stationary behavior is detected. 

The remainder of the paper is organized as follows. We describe in Section 2 the model and we present 
our new transient solution with some of its properties. In Section 3 we describe the algorithm implementing 
the solution. We empirically show in Section 4, through numerical examples, that the computation time of 
the solution can be considerably reduced by considering the limiting behavior of the solution. Section 5 is 
devoted to some conclusions. 

2. A new transient solution 

We describe in this section a general fluid model with an infinite buffer for which the input and output 

rates are controlled by a homogeneous Markov process X = {X, , s 2 0) on the finite state space S with 
infinitesimal generator A and initial probability distribution a. The number of states is denoted by (SJ . The 
amount of fluid in the buffer at time t is denoted by Qt and we suppose that Qu = 0. The pair (X,, Qr) 
forms a Markov process having a pair of discrete and continuous states. Let pi be the input rate and ci be 
the output rate when the Markov process X is in state i . We denote by di the effective input rate of state i , 

that is di = pi - CL. Let m + 1, m < ) SJ, be the number of distinct values among all the effective rates di . 

These m + 1 distinct effective rates are denoted by ru, ~1, . . . , rm and ordered as follows 

r, > r-,-l > .+a > ru > 0 1 t-,-l > ... > rl > t-0, 

where u is the index of the smallest positive effective rate. The state space S of the process X can then be 
divided into m + 1 disjoint subsets B, , B,_ 1, . . . , Bo where Bi is composed by the states i of S having 
the same effective rate ri, that is Bi = {j E Sldj = ri }. We will denote by ) Bi ) the cardinal of subset Bi . 

For a fixed t > 0, the random variable Qt takes its values in the interval [0, rtt]. For t > 0, the 
distribution of Qr has m - u + 1 jumps at positive values and one jump at point 0 corresponding to the case 
where the buffer is empty at time t . The jumps at the m - u + 1 positive values correspond to the case where 
the Markov process X remains during the whole interval [0, t] in the different subsets B,, flu+1 , . . . , Bm, 
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provided that the initial probabilities of these subsets are positive. These jump, probabilities are then given, 
forj=u,u+l,..., m,by 

Pr{Xt = i, Qt = rjt} = ~~~ eABjBj”li ifi E Bj, 

where Anj ~~ is the sub-infinitesimal generator of dimension 1 Bj 1 obtained from A by considering only 
the internal transitions of the subset Bj and ~~~ is the subvector of dimension 1 Bj 1 obtained from the row 
vector a! by considering the initial probabilities of the subset Bi . The vector li is the column vector whose 

i th entry is 1 and the others 0, its dimension being given by the context (I Bj I in this relation). 
The jump at point 0 is not so easy to obtain since the process X can eventually visit all the subsets Bi 

before the buffer becomes empty at time t. 
Let Fi(t, x) = Pr(X, = i, Qt > x}. We then have the following partial differential equation, see for 

instance [ 151: 

aFiG, x> = _d, a6 0, x> 
at 

1 ax + c Fr(t, x)A@, 9. 
I-6.S 

(1) 

We denote by P the transition probability matrix of the uniformized Markov chain associated to X and 
by h the uniformization rate which verifies h > max(-A(i, i), i E S). The matrix P is then related to 
A by P = I + A/h, where I denotes the identity matrix. In the following, to simplify notation, we will 

consider X as the uniformized process. For every i, j = 0, . . . , m, we denote by ~~~~~ the submatrix 

of P containing the transition probabilities from states of Bi to states of Bj and for 12 > 1 we denote 
by (aPpn)B(i) the subvector of the row vector aPn containing the entries corresponding to the subset 

Bi . 
The main result of this paper, which is the distribution of the pair (X,, Qt) is given by the following 

theorem. 

Theorem 1. For every i E S, we have 

(2) 

where xj = (x - r&t)/(rj - ‘j+_])t ifx E [r,f_lt, rjt),for j = U, u + 1, . . . , m, with r,?_l = 0f0r j = u 

and r? 
J-1 

= rj_1 for j > u. The coeficients bjj) (n, k) are given by the following recursive expressions on 

the row vectors bg)(n, k) = (bj’)(n, k))itB,forO F 1 5 m and u 5 j 5 m. 

l forjIlIm: 

l for n > 0: b$‘(n, 0) = (a,Pn)g, and bg)(n, 0) = bf,-‘)(n, n)for j > u, 
l for1 ‘kin: 

bkjl’(n, k) = 
rj-r‘t m 

J-1 r’-ri bg)(n,k-1)+ + ~b~)(n-l,k-l)Pnjn,, 
rl - rJ+ll rl -rj_l i=O 

0 forOil j-1: 

l for n > 0: bg’(n, n) = 0~~ and b$)(n, n) = b,, (j+‘)(n, 0) for j < m, 
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0 fur0 5 k 5 It - 1: 

+ 

b;)(& k) = ‘j-l - rl rj-rf m 
J-1 

rj - rl 
b$n,k+l)+ 

rj - rl c b$n - 1, k)P&& 
i=O 

Proof. See Appendix A. 0 

Formula (2) is particularly interesting from a computational point of view. Indeed, for every j = U, . . . , m 

andx E [rJtlf, rjt) we havexj E [O, 11, 

05 
t-1 - rj 

=l- 
Yj -r+ 

J-1 

rl - rJtl rl - rJ’_, 
5 1 forZ= j,...,m, 

and 

Oir~t-rr=l_I’-ljf-l 
< 1 forZ=O,..., j-l. 

rj - r-1 rj - r-1 - 

Itistheneasytocheckthatforeveryi ES, j =U,...,m,n rOandk=O,...,nwehave@)(,,k) E 
[O, 11. Moreover the error truncation of the series in (2) can be determined in advance. These properties are 
very important for what concerns the numerical stability of the computation. 

For a given error tolerance E, we define integer N as 

I 
n 

N=min nE.N Ce- 
At w’ 

- >I-& . 

i=o i! - 
1 

We then get, for every i E S, 

Fi(t, X) = 5 eeAf F 2 (i) ,$(I - Xj)“-kbjj)(?Z, k) + f?(N), 

tl=O ’ k=O 

where the rest of the series e(N) satisfies e(N) ( E. 

The main computational effort is due to the computation of the bg) (n, k) given in Theorem 1. To 
illustrate the recurrence relation, we proceed as done in [9] for the performability computation. For each 
j =u,..., m, we define a partition of the state space S as 

Uj=BmU...UBj and llj=Bj-1U***UBo, 

and denoting by T the transpose operator, we also define the following column vectors: 

buj (n, k) = (b;; (n, k), . . . , bz (n, k))T 

bDj (n, k) = (b& (n, k), . . . , bf;(n, k))T. 

With this notation, Fig. 1 illustrates the sequence of computations (drawn only for n = 0, 1,2,3) that have 

to be done in order to evaluate the bg)(n, k)‘s. The upper (resp. lower) part of cell (n, k) in triangle j 
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j=u u<j<m 

Fig. 1. In cell (n. k) the vectors bu, (n, k) and bDj (n, k). 

j=m 

k-l k k+l 

Fig. 2. Computation of cell (n, k). 

contains the vector buj (n, k) (resp. bDj (n, ii)). The computation is done in a line by line manner over all 
the triangles following the arrows in Fig. 1. Note that the upper part of the diagonal of each triangle of cells 
is reported in the upper part of the first column of the next one and the lower part of the first column of each 
triangle of cells is reported in the lower part of the diagonal of the previous triangle of cells. The starting 
points are given, for j = U, . . . , m and for every IZ > 0, by 

buj (030) = (a~, 9 * * * 9 aBj jTv bDj CO,‘> = (0Ej-l) . . . , OB,)~, 

and 

bv, (n, 0) = ((arpn)~,) , . ‘1 (a’n)Bi)T, b, h n) = (OB,,,_~ 3 . . . ,OIQ)~. 

The way in which the computation of each cell (n, k) is performed is shown in Fig. 2. It is now easy 
to evaluate the complexity of this method. The computation of one cell consists essentially in a vector 
matrix product. If d denotes the maximum number of nonzero entries in each column of the matrix P, the 
computationalcomplexity of acellis O(d ISI). Therearem-u+l triangles eachcontaining (N+l)(N+2)/2 
cells. The computational complexity of our method is then O(dlSl (m - u + l)N*/2). We see from Figs. 2 
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and 1 that it is sufficient to store two rows of cells in order to compute the ,!‘I (n, k). Thus the storage 
complexity of our method is O((m - u + l)NISI). 

3. Stationarity detection 

We empirically show in this section that the algorithm described above can be stopped when the stationary 
behavior of the model is detected. 

Let us denote by n the stationary distribution of the Markov process X. We suppose that the stability 
condition is satisfied, that is 

CisSPini < 1 

’ = CicSCini ’ 

where p is the traffic intensity, so that the limiting behavior exists. 
With this assumption, we have for every j = u, . . . , m, 

lim Pr(Qt > rjt) = 0. 
t+cc 

From relation (2), we have for every j = u, . . . , m, and x E [rjtl t, rjt) 

Co 

WQt > xl = c e 
-_lf (AtY n 12 

n=O 
7 

cc > 
$(l - xj)“-kb(j)(,, k), 

’ k=O 
k 

where xj is as in Theorem 1 and 

b(j)(n, k) = c b!j’(n, k). 
ieS 

The following theorem gives an upper bound of the by’@, k). If u and w are two vectors having the 
same dimension, the notation r~ 5 w means that the inequality stands for each of their entry, that is Vi 5 wi 
for every i . 

Theorem 2. For every n > 0, for every j = u, . . . , m, for every 0 5 k ( n andfor every 0 5 1 5 m, we 
have 

b 
Ci) 
B/ (ntk) I (c@)B~. (3) 

Proof. See Appendix B. 0 

Using this theorem, we easily verify that b(j) (n, k) 5 1. 

Theorem3. Foreveryn 2 1,forever-y j =u,..., m andfor every 1 i k i n, we have 

bg)(n, 0) 5 bg-‘)(n, n) for j > u, 

b;‘(n k) +(n, k - 1) t 

Proof. See Appendix C. 0 

(4) 

(5) 
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This theorem shows that for fixed n and i E S, the sequences bi”(n, k) and b(j)@, k) are wide-sense 

decreasing in both j and k. It follows that b(j)@, k) can be interpreted as the complementary distribution 
function of a discrete random variable which is the discrete version of Qt. For this discrete random variable, 
the integer n represents the number of transitions over the interval (0, t) for the uniformized Markov chain 

of X. Thus we conjecture that the limits lim,,, b(j)@, k) exist and in this case we must have necessarily 

lim b(‘) (n, n) = 0 and 
n+cc 

n%mb(i)(,,O) = 0 for j > 24 + 1. 

The stationarity detection consists in stopping the computation of the numbers by) (n, k) when the values 

d@)(n, 0) = Ib(‘)(n, 0) - @)(n - 1, O)l, b(‘)(n, n) and b(j)(,, 0), j > u + 1, are sufficiently small. This 

can be done as follows. 
Consider the integer N defined in Section 2. We define the integer NU as 

N, = min{n 1 1 5 n < N and d@)(n, 0) ( &/3 and b@)(n, n) 5 s/3} 

andforj=u+l,..., m, we define the integers Nj as 

Nj = min{n 1 1 5 IZ < N and b(j)(n, 0) 5 E}. 

When Nj does not exist, we set Nj = N. If all the Nj are equal to N, we obtain the exact solution 

described in Section 2. 
The approximation made here consists in considering that for n > N,, we have lb@)@, k)- 

lim n+co b@)(n, k)l 5 &/3 fork = 0, . . . , NUandb(U)(n,NU)(r/3andthatforeveryj=u+1,...,m 
and for II 2 Nj, we have b(j)(,, 0) ( E. 

In practice, we often observe that for II 2 Nj, the sequence b(j) (n, k) are wide-sense monotone, so the 

approximation is justified. 
From Theorem 3, we can easily check that we have 

N, 5 N,_l 5 ... 5 N,, 

so, when, for j > u + 1, the integer Nj is reached, we stop the computation over triangle j (see Fig. 1) and 
we set bDj_, (Nj + 1, Nj + 1) = 0. The computation then continues over triangles U, u + 1, . , . , j - 1. 

We then have for j > u + 1 and x E [rj-It, rjt), 

WQr > xl = c e 
n=O 

n-kb(i)(tt, k) + e(Nj), 

where the rest of series e(Nj) satisfies under the approximation hypothesis 

e(Nj) = E 
n=Nj+l 

eC”F 2 (i) ~f(l - xj)“vkb(j)(n, k) 

. k=O 
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For j = u and x E [0, rut), we get 

n-kbqNu, k) + e(N,). 

The second sum which is infinite can be easily expressed as a finite one; we then obtain 

where the rest of series e(N,) verifies 

&l - xu)n-k(b(u)(n, k) - b@)(N,, k)) 

&l - nJn-kb(u)(n, k). 

Under our approximation hypothesis, we get for n 2 Nu : 

lb@)@, k) - b(*)(N,, k)l 5 2~/3 fork 5 N, 

and b@)(n, k) 5 b@)(n, N,) 5 c/3 fork 2 Nu + 1. It follows that we finally obtain le(N,)I 5 E. 
The complexity of this approximation is now a function of the truncation integers Ni. The number of 

cells that must be computed in triangles i is equal to (Ni + l)(Ni + 2)/2. So as for the exact algorithm, 
we easily obtain the computational complexity of the approximation which is O(dlSl Cr!“=, NF/2). By 
comparing the computational complexities of the exact and of the approximation method, we see that, the 

approximation, if sufficiently accurate, must be used for large values of m. We will see in the next section 
that the values of the Ni can be very small with respect to N with a very high accuracy for the results 
obtained by the approximation. 

4. Numerical examples 

We present here some numerical results to illustrate our new solution technique and the approximation 
based on the stationarity detection. 

We consider m statistically independent and identical on-off sources. For each source, we assume that 
the on periods and the off periods form an alternating renewal process and their durations are exponentially 
distributed with mean /?-’ and y -’ , respectively. When a source is in the state on, it generates packets (or 
cells in the ATM terminology) at rate 0. We denote by C the multiplexer’s output link capacity. Let X, 
be the number of sources in the state on at time S. The process X = {X, , s 2 0} is then a homogeneous 
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Markov process over the state space S = {0, 1, . . . , m}. Its infinitesimal generator A is a tridiagonal matrix 
whose entries are A(i, i - 1) = i/l for i = 1, . . . , m, A(i, i + 1) = (m - i)y for i = 0,. . . , m - 1, and 

so A(i, i) = -ifi - (m - i)y for i = 0, . . . , m. For each i E S, we have pi = i0 and ci = C. The traffic 

intensity p is then 

We fix 6’ = 1, /? = 1 and C = 0.8. This gives u = 1 and so the number of triangles that we have to 
consider is equal to m. We consider various values of the number m of sources and of the off rate y or of the 
traffic intensity p. The error tolerance is fixed to E = 10m5. Figs. 3-6 have been obtained using the exact 
algorithm and Fig. 7 has been obtained using the approximation method detecting the stationary behavior 

of the model. 
Fig. 3 shows the complementary distribution of the buffer content at time t for various values of t . There 

are two input sources, the traffic intensity is p = 5/6 and both sources are initially in the off state. It can 
be noted that both distributions for t = 100 and t = 200 are very near to each other, which means that the 
stationary regime seems to be reached. 

Fig. 4 shows the complementary emptiness function Pr( Qt > 0) for 2,5 and 10 sources when the traffic 
intensity is p = 5/6 and all the input sources are initially in the off state. It can also be noted the convergence 
of the curves to the traffic intensity p. 

Fig. 5 is particularly interesting from a numerical point of view. The value of the time is fixed to t = 1, the 
number of input sources is m = 2 and the traffic intensity is p = 5/6. This figure shows the complementary 
distribution of Q 1 for different initial probability distributions, which correspond to the case where all the 
input sources are off, that is X0 = 0, the case where the input sources are in stationary regime, that is the 
distribution of X0 is n, and the case where all the input sources are on, that is X0 = 2. When X0 = 0, 
the distribution has only one jump at point 0 and it is not differentiable at point x = rl t = 0.2. When 

the distribution of X0 is n, we observe the three discontinuities at points x = 0, x = rr t = 0.2 and 

1 

4 6 
X 

Fig. 3. From bottom to the top, Pr( Qr > x) versus x for t = 10, 20,30,50, 100,200, X0 = 0, m = 2 and p = 5/6. 
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0.75 
0 20 40 60 80 100 

t 

Fig. 4. From bottom to the top, Pr{ Qt > 0) versus t for m = 2,5, 10, X0 = m and p = 5/6. 

x = r2t = 1.2. These two last discontinuities are easy to determine. For instance, we have Pr{ Qt = 0.2} = 
nl e-(B+v)’ = 4 e-1.5/9. The computation of Pr{ Ql > 0.2 - 10-16} - Pr{ Qt > 0.2) using our algorithm 
gives exactly this result, the precision obtained is greater than lo- lo The same observation holds at point . 

x = 1.2. Finally when X0 = 2, we observe the two jumps at points x = 0 and x = r2t = 1.2. As before, 
it is easy to check that, at point x = r2t = 1.2, the result obtained using our algorithm is highly accurate. 
We also observe that the distribution is not differentiable at point x = rt t = 0.2. 

Fig. 6 shows the complementary distribution of Q 1~ for various values of the traffic intensity p, including 
values greater than 1. The number of input sources is m = 2 and both sources are initially off. For instance, 
we have Pr{Qtm > 45) = 0.0001 for p = 1.25. 

Fig. 7 shows the complementary distribution of Qt for various values oft. The traffic intensity is p = 5/6, 
the number of input sources is m = 50 and all the sources are initially off. This figure has been obtained 
by using the approximation method based on the stationarity detection. For t = 10, we obtained for the 
different truncation steps N = 598, Ni = 51 - i for i = 5, . . . ,50, N4 = 374 and N3 = N2 = Nl = N. 
This shows the important gain in computational complexity obtained by the approximation method. To 
evaluate the accuracy of the approximation method, we have executed the exact algorithm with the same 
input parameters. We have observed that the greatest difference between the results of the two algorithms 
is equal to 2.2 x 10e6. This shows that our approximation method is highly accurate even for small values 

of t. For t > 10 we obtain, as expected, an accuracy still higher than for t = 10. 

5. Conclusion 

We developed a new transient solution of a fluid model with an input and output controlled by a homo- 
geneous Markov process. Our solution does not make use of any transform, as done in previous works. 

It is based on simple recurrence relations which are particularly interesting for their numerical properties. 
The algorithm implementing this solution is very accurate since it uses essentially nonnegative numbers 



0.8 

0.6 

0.4 

0.2 

0 

B. Sericola/Performance Evaluation 32 (I 998) 245-263 2.55 

_ - 

0 0.2 0.4 0.6 0.x 1 1.2 
X 

Fig. 5. From bottom to the top, Pr(Ql > n} versus x for X0 = 0, X0 - n and X0 = 2 when WI = 2 and p = 516. 

1 

0.8 

0.6 

0.4 

0.2 

0 

;(_I 
0 5 10 15 20 25 30 35 40 45 50 

x 

Fig. 6. From bottom to the top, Pr{ QIC_XJ > x} versus x for p = 0.75, 1, 1.25, 1 S, m = 2 and x0 = 0. 

bounded by one and it gives results with an error tolerance that can be specified in advance. We also 
developed an approximation method based on the detection of the stationary regime of the model. It has 
been shown through numerical examples that, as the exact method, this approximation method is highly 
accurate. Moreover its computational time can be very low with respect to the exact method. 
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0.8 

0.6 

0 5 10 15 20 25 
X 

Fig. 7. From bottom to the top, Pr{ Qt > x) versus x for t = 10,20,50,80, 100, 150,200 when X0 = 0, m = 50 and 
p = 516. 

Appendix A. Proof of Theorem 1 

Fort > Oandx E (r,t,t,rjt),forj = u,u+l, . . . . m, we write the solution of Eq. (1) for every i E S, 

as 

and we determine the relations that must be satisfied by the coefficients b!‘)(,, k). We have 

aFi(tf X) h O” 
at 

= -hFi (t, X) + 
‘j - r+ c xj(l -Xj)n-k 

I-1 n=O 

x [rjby)(n + 1, k) - rf ,_lb”‘(n + 1, k + l)l, 

and 

x[b!i)(n+l,k+l)-b~i)(n+l k)] 1 I 7 . 

Using the uniformization technique, we have 

c F,(t, x)A(r, i) = --hFi(t, x) + A c F,(t, x)P(r, i), 
rd rd 



B. Sericola /Pegormance Evaluation 32 (I 998) 245-263 257 

that is, 

C Fr (t, X 

rES 

)A@, i> 

= -hFi (t, X) + J. E e-” F f: (z> xj(l - xj)n-k C b!j)(n, k)P(r, i). 

n=O . k=O r&T 

It follows that if the b!‘)(rz, k) are such that 

(di - rT_l)bjj’(, + 1,k + 1) + (7j - di)b(j)(n + l,k) = (Yj - rjf_l)Cb!j)(TZ,k)P(r, i) (A.1) 
rd 

then Eq. (1) is satisfied. 
The recurrence relation (A. 1) can also be written as follows, for j = u, . . . , m. 
Fori E BoU..*UBj_l, 

@)(n - 1, k)P(r, i) 

andfori E Bj U...UBm, 

b!+z; k) = 
di - rj 

di - ri’_l 
b!j)(n, k - 1) + p 15’ xb!j)(n - 1, k - l)P(r, i). 

I J-1 rd 

Using matrix and vector notation, we get for j = u, . . . , m 

h;)(n, k) = b;.‘(n - 1, k - l)Ps;~/ 

forO(Z(j-land 

bb&k) = ‘ci -r$,(sJ;)(n,k+ 1) + rj -& 
rj - rl 

r 
j 

_ rl k’E)(n - l,k)PgiB/ 
i=O 

forj 51 sm. 
To get the initial conditions for the bj”)(n, k), we consider the jumps of Fi(t, x). 
Fort >Oandi E B,U...UB,,wehave 

Fi(t, 0) = Pr{Xt = i} = E e-” y(oP”)(i), 

n=O 

where (a P”)(i) denotes the ith entry of the row vector a Pn. It follows that 

b!“)(n 0) = (aPn)(i), I ’ 

that is 

b@)(n 0) = (aP”) 4 ’ 4 foru 51 sm. 
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Fort > Oandu 5 j irn - 1 andi $ Bj,wehave 

Fi(t, Yjt) = lim Fi(t,X), 
X2'jt 

since i $ Bj means that there is no jump at point x = rj t. It follows that 

bij+‘)(,, 0) = bjj’(n, n) if i 6 Bj, 

that is 

bg+l)(n, 0) = bg)(n, n) for E # j. 

This can also be written as 

b~‘(n, 0) = b;-‘) (n,n) foru <j (1 (m, 

(j) b,l @L n> = b,, (j+l)(,, 0) for 0 5 1 5 j - 1 < m - 1. 

Finally, for t > 0 and i q! Bm, we have 

0 = Fi(t, r,t) = lim Fi(t,X). 
xAr,t 

It follows that him)@, n) = 0, that is 

bg)(n,n)=O forOiIFm-1. 

The proof is now complete. 

Appendix B. Proof of Theorem 2 

The proof is made by successive inductions using the relations described in Theorem 1. 
Step 0. For it = 0 and for every j = U, . . . , m, we have 

bg’(O, 0) = OBl for051 5 j-l, bg)(O,O)=aBl forjsEIm. 

So relation (3) is satisfied for IZ = 0. 
Step 1. Suppose relation (3) is satisfied for integer II - 1 and let us prove that it is true for integer n > 1. 

Letu 5 j (m. 
Step 1.1. We first consider the case where 0 5 I 5 j - 1. 

l For j = m we have from Theorem 1, 

l bg)(n, n) = 0~~ 5 (aP)iq 

l Suppose that b@) B. (n, k + 1) 5 (cvP)B, for integer k 5 n - 1. Then 

b(“)@ k) = ‘:-I 
rm 

- r1 bLy)@, k + 1) + rm - ‘m-l 
& ’ - r1 rm 

_:, $L;+rz - 1, ~)~‘B~LI~ 
i=O 



B. Sericola/Performance Evaluation 32 (I 998) 245-263 259 

So the relation is satisfied for IZ > 0, for j = m, for 0 5 k 5 n, and for 0 5 1 5 m - 1. 
l Suppose now that the relation is satisfied for integer j + 1, j 5 m - 1. 

Using Theorem 1, we have: 

0 b$n, n) = b& (j+l)(,, 0) 5 (aPQ1. 

l Suppose that bi/‘(n, k + 1) 5 (a Pn)~l for integer k 5 n - 1. Then 

r? 
b$rz, k) = ‘--I -‘“b(j)(, k+l)+ 

rj-r+ m 
J-1 

rj - rl B1 ’ rj - r-1 c 
bg)(n - 1, k)PBiBl 

i=O 

+ 
( rj-1 - f-1 rj-rTt m 
- 

rj - rl 
(CtPn)~l + r, _:7’ C(~pN-‘)BiPBiB~ 

J i=O 

+ 
= ‘j-1 - ri rj -r+ 

rj - rl 
(ap’)Bl + r, -Jr;’ @pn)& 

J 

= (C#)&. 

So the relation is satisfied for n 2 0, for j = u, . . . , m,forO~k~n,andforO~2i j-l. 

Step 1.2. In the same way, we now consider the case where j 5 1 5 m. 
l For j = u we have from Theorem 1: 

a b;‘( II, 0) = (aPn)&. 

l Suppose that bgl (m)(n, k - 1) 5 (cxP~)B[ for integer k 2 1. Then 

b$n, k) = _ rl-rubg)(~,k- l)+ 25bg’(” - l,k- ~)PB~B/ 
rl r1 i&l 

( I’((YP”)B, + : $((*Pnel)Bi PBiBl - 
rl 1=0 

= =(a?)& + :(,P”)& 
= (C&B,. 

So the relation is satisfied for n > 0, for j = u, for 0 ( k 5 n, and for u 5 I 5 m. 
l Suppose now that the relation is satisfied for integer j - 1, j > u + 1. 

Using Theorem 1, we have: 

l bljlil)(n, 0) = b,! (j-l$z, n) 5 (cYP”)&. 
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l Suppose that bil)(rz, k - 1) 5 (~!P)B~ for integer k > 1. Then 

b;)(n, k) = rl-rj b(Bjl)(,,k_l)+ri-rj-l 
rl - rj_1 

rl _ rj_1 -&f,, - 1, k - W’B~B~ 
1=0 

= Q - rj (apn)Bl + ‘j - rj-l (apn)B1 

t-1 - rj-1 t-1 - Yj-1 

= (fe)&. 

So the relation is satisfied for n 3 0, for j = u, . . . , m, for0 I k I n, and for j 5 1 5 m, which completes 

the proof. 

Appendix C. Proof of Theorem 3 

The proof of relation (4) is immediate since, for j > u, we have 

bi’(n, 0) = bjii;-l)(nj n) - aL3_i p;;i_l~j_,lB,i_, l{l=j-113 

where 11~) = 1 if condition c is satisfied and 0 otherwise. The proof of relation (5) is made by successive 

inductions using the relations described in Theorem 1, Note that from Theorem 1, bx’ (n , k) is a convex 

combination of two terms. It follows that 

bg)(n, k) 5 b$n, k - 1) + &;.‘(n - 1, k - l)PBiBl 5 b;)(n, k) 5 b;)(n, k - 1) 
i=O 

for j 5 1 I m and 

forOII-5 j-l. 
Step 0. We prove the relation for n = 1. For n = 1, j = u and u 5 1 5 m we have from Theorem 2 

b@)(l, 1) 5 (a!P)B Bl 1 = bE)(l 0) > . 

Suppose that the relation is satisfied at level j - 1, j < m. Then for j 5 1 I m, we have from Theorem 1 

and using the equivalence above 

So the relation is satisfied for n = 1 and j 5 1 5 m. 
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Forn=l,j=mandOil~m-lwehave 

h$y)(l, 1) = 0 5 @#y)(l 0) 3 . 

Suppose that the relation is satisfied at level j + 1, j > u. Then for 0 _( 1 e j - 1, we have from 
Theorem 1 and using the equivalence above 

b(,io(l, 0) _ )p&)(1 1) = rj - 5:l 
rj - rl [ 

&$?(O. O)PBiBl - bki,)(l, 1) 
I 

i=O 1 >rj-rc, g [ igf”(o, O)P&B, - bg+“(l. 0) 3 0. 
rj - r-1 

i=O 1 
So the relation is satisfied for n = 1 and 0 5 1 5 j - 1. 

Step 1. Suppose relation (5) is satisfied for integer n - 1 and let us prove that it is true for integer n, 
n > 2.Letu 5 j sm. 

step 1.1. We first consider the case where 0 5 E 5 j - 1. 
For j = m we have from Theorem 1: 

0 h;)( n, n) = OB, I b$y)(n, n - 1). 

l Suppose that b ;‘( n,k+l)>b~)(n,k+2)forintegerk~n-2.Then 

b;)(n, k) - bg)(n, k + 1) 

r+ m-l 
= 

rm 
_I:’ [b~)(n, k + 1) - bg)(n, k + 31 

+ + 
rm - rm-l 

rm - rl 
&$)(n - 1, k) - b~)(n - 1, k + l)]PeiB,, I 
i=O 

which shows that bg)(n, k) - bg)(n, k + 1) 1 0. 
Sotherelationissatisfiedforn~l,forj=m,forl~k~n,andforO~1~m-1. 

Suppose now that the relation is satisfied at level j + 1, j 5 m - 1. 
l Using Theorem 1, we have 

hg(n, II - 1) - b$z, n) = “,_‘:,’ ~~~)(n-l,n-l)-b~)(n,n) 
.I [ i=O 1 

Yj -r? 
> J-1 m 
- 

rj - i-1 
[ 

c 
b;+‘)(n - 1,O) - b;+‘)(n. 0) 

i=O 1 
l Suppose that byl)(n, k + 1) 2 btl’(n, k + 2) for integer k 5 n - 2. Then, 

hx)(n, k) - b;)(n, k + 1) 
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+ 
= rj-1 - rl 

Yj - rl 
[b;)(n, k + 1) - b(j)(n k + 2)] 4 ’ 

+ ‘-j -“I =&l&n - 1, k) - @(n - 1, k + l)]PBjB1, 
Yj - rl 

i=O 

which shows that bg’(n, k) - bg)(n, k + 1) > 0. 

So the relation is satisfied for n L 1, for j = u, . . . ,m,forlikin,andforO~II j-l. 

Step 1.2. In the same way, we now consider the case where j 5 1 5 m. 
For j = 1~ we have from Theorem 3: 

0 q(n, 0) = (a!PQ/ 1 h$z. 1). 

l Suppose that bg)(n, k - 2) - h$,‘(n, k - 1) 2 0, for integer k > 2. Then 

bCu)(n k - 1) - b;)(n, k) Bi ’ 

= y[b;‘(q k - 2) - h$n, k - l)] 

+~~,bku’(n-l,k-2)-h~.‘(,l-l,k-l)]P~,~~. 
r=O 

which shows that bg)(n, k - 1) - hg)(~ k) 1 0. 
So the relation is satisfied for n > 1, for j = u, for 1 5 k 5 n, and for u 5 1 5 m. 

Suppose now that the relation is satisfied for integer j - 1, j 2 u + 1. 
l Using Theorem 1, we have 

bgy(n, 0) - bqz 1) Bl ’ 

Yj - Yj-1 

= 

t-1 - rj_1 
[ 

b~)(n,O)-~h~.)(n-l,O)PBj& 
i=O 1 > ?-j - rj-’ b;-‘)(n, ?Z) - &g-‘)(n - 1, n - l)PB,& > 0. 

r-1 - 'j-1 
i=O 1 

l Suppose that bx)(n, k - 2) - by,)(n, k - 1) > 0, for integer k 3 2. Then, 

b;)(n, k - 1) - b(j)@ k) 4 ’ 

r1 - rj = 
rl - rj’- l 

[b;)(n, k - 2) - @(n, k - l)] 

+ “-‘:_I .&$‘(n- l,k-2) -b$)(n- l,k- l)]PBiBr, 
4 - ‘j-1 i=O 

I 

which shows that bg)(n, k - 1) - bg)(n, k) 3 0. 
So the relation is satisfied for IZ 2 1, for j = u, . . . , m, for 1 5 k I n, and for j I: I ( m, which 

completes the proof. 
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