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Scope and purpose

The advent of fault-tolerant computing systems has led to increased interest in analytic techniques for
prediction of dependability measures such as the availability over a given period. Interval availability is
defined by the fraction of time during which a system is in operation over a finite observation period. By
modeling the system behaviour by a Markov process, we transform the problem of evaluating dependability
cumulative measures into the computation of the cumulative measures on a Markov process. In this note we
are interested in the expected interval availability. Generally, we are faced with the problem of the execution
time, especially when the Markov model is stiff, i.e., when we have a highly available system. This note
proposes a new technique which deals efficiently with such a class of processes.

Abstract

Interval availability is a dependability measure defined by the fraction of time during which a system
is in operation over a finite observation period. The system is assumed to be modeled by a finite
Markov process. Because the computation of the distribution of this random variable is very expensive, it is
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common to compute only its expectation. In this note, we propose a new algorithm to compute the
expected interval availability and we compare it with respect to the standard uniformization technique
from an execution time point of view. This new method is particularly interesting if the Markov chain
is stiff.

Moreover, a new algorithm for the stationarity detection is proposed in order to avoid excessive
computation. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the dependability analysis of repairable computing systems, there is an increasing interest in
evaluating cumulative measures such as the availability over a given period. This note deals with
the computation of the interval availability which is defined by the fraction of time during which
a system is in operation over a finite observation period. For a general presentation of the interest
of such a subject, we refer to [1—6].

In this note we develop a new method to compute the expectation of the interval availability.
It is based on the technique of the uniformized power [7]. The interest of this new approach is
that it will save computation time if the state space is not too large and the mission time is
long; especially, if the Markov chain is stiff. Moreover, a new algorithm for the stationarity
detection is proposed in order to avoid excessive computation. While the previous stationary
detection methods are based on heuristics [8], our algorithm is based on a theorem which bounds
the error.

The remainder of the note is organized as follows. In the following section, we present our
approach based on the uniformized power technique. In Section 3, we give a formal criterion for
stationarity detection and the corresponding algorithm. Section 4 is devoted to a numerical
illustration of the proposed algorithm and a comparison of the computation time of our method
with respect to standard uniformization technique.

2. Expected interval availability analysis

Consider a system modeled by a continuous-time homogeneous Markov process, say
X"MX

t
, t*0N, defined over a finite state space denoted by S and with cardinality M, infinitesimal

generator A and initial probability distribution a. The set S is partitioned into two disjoint subsets
denoted by º and D, containing, respectively, the up states and down states. The transition
probability matrix at time t is denoted by P(t), which is the exponential of the matrix At. Let ı

U
be

the column vector such that its ith entry is equal to 1 if i3º and 0 if i3D. We then have the Point
Availability PA»(s)

PA»(s)"P(X
s
3º)"aP(s) ı

U
"aeAsı

U
.
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The Standard Uniformization approach (SU) [9, 6] allows to obtain the expected interval avail-
ability over (0, t) as

E[IA»(t)]"
1
t P

t

0

PA»(s) ds"
`=
+
n/0

p(n, vt)
1

n#1
n
+
k/0

aPkı
U
, (1)

where p(n, vt)"e~vt(vntn/n!), v*maxM!a
ii
, i3SN, P"I#A/v, and I is the identity matrix.

Let e be a given error tolerance, we can write

E[IA»(t)]"
N
+
n/0

p (n, vt)
1

n#1
n
+
k/0

aPkı
U
#e(N), (2)

where e(N))e if N is chosen such that 1!+N
n/0

p(n, vt))e.
For large values of t, the computation of formula (2) is expensive when the product vt is large

since N is always greater than vt.
In order to present our approach based on the Uniformized Power technique (UP) [7], we first

define the stochastic matrix C(t)"(c
ij
(t)) as C (t)"(1/t) :t

0
P(s) ds. Let m3N and t

0
'0 such that

t
0
"t/2m .
By a recurrence relation, we will obtain C (t) by starting from C (t

0
) and finally compute

E[IA»(t)] as E[IA»(t)]"aC(t) ı
U
.

For that, we first construct a recurrence relation between C (2l`1t
0
) and C (2lt

0
). For all integer

l*0, we have

C(2l`1t
0
)"

1
2l`1t

0
P

2l`1t0

0

P(s) ds"
1

2l`1t
0
CP

2lt0

0

P (s) ds#P
2l`1t0

2lt0

P(s) dsD
"

1
2 CC (2lt

0
)#

1
2lt

0

P(t
0
)2l P

2lt0

0

P(s) dsD
"C

P(t
0
)2l
#I

2 D C(2lt
0
) (3)

The matrices P(t
0
) and C(t

0
) verify (see Eq. (1))

P (t
0
)"

`=
+
n/0

p(n, vt
0
) Pn and C (t

0
)"

`=
+
n/0

p (n, vt
0
)

1
n#1

n
+
k/0

Pk.

We consider the classical E ) E
=

norm which is defined, for a square matrix H"(h
ij
) of order M as

EHE
=
"max1)i)M +M

j/1
Dh

ij
D. For fixed values of t

0
and N

0
, we define e"1!+N0

n/0
p (n, vt

0
),

P* (l)"
1

(1!e
0
)2l A

NÒ+
n/0

p(n, vt
0
) PnB

2l

and C* (0)"
1

1!e
0

NÒ+
n/0

p (n, vt
0
)

1
n#1

n
+
k/0

Pk,

and recursively for all integers l*0,

C*(l#1)"C
P*(l)#I

2 DC*(l).

The following lemma gives a useful error bound.
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Lemma 2.1. For every integer l*0,

EP(2lt
0
)!P*(l)E

=
)2l`1e

0
and EC(2lt

0
)!C*(l)E

=
)2l`1e

0

Proof. See [10]. h

The choice of vt
0

in ]0, 1[ implies that p(n, vt
0
) decreases when n increases. Because the time

complexity of the UP method is O(N
0
#m) (M3#M2), the chosen values of N

0
and m are those

that minimize N
0
#m. Experimentally, we have found that taking m as the first integer such that

vt
0
"vt/2m)0.1 gives the lowest value of N

0
#m while keeping N

0
(10 and e

0
)e

0
where e

0
is

the machine epsilon.

3. Stationarity detection

Let the vector n"(n
j
) denote the stationary probability distribution of the Markov process X.

This vector verifies nA"0, nP"n and so for every l*0, nP*(l)"n. It follows that if we define
s(l)"min

i|S
+

j|U
p*
ij
(l) and S (l)"max

i|S
+

j|U
p*
ij
(l), we have

s(l))+
j|U

n
j
)S (l)

It is easy to show that the sequence s(l) increases with respect to l and the sequence S (l) decreases
with respect to l. The following results give a criterion to stop the computation when the stationary
behaviour is reached. For every l*0, we define h (l)"aC*(l)ı

U
and for k)m,

h*(k)"
1

2m~k
h (k)#A1!

1
2m~kB

S (k)#s(k)
2

.

Theorem 3.1. ¸et e
s
'0 and k(m such that S (k)!s(k))e

s
we then have

Dh(m)!h* (k) D)A1!
1

2m~kB
e
s
2

.

Proof. See [10]. h

Corollary 3.2. ¸et e
s
'0 and k)m such that S(k)!s(k))e

s
. ¼e then have

DE[IA»(t)]!h*(k)D)2m`1e
0
#A1!

1
2m~kB

e
s
2

. (4)

Proof. We have DE[IA»(t)]!h*(k)D)DE[IA»(t)]!h (m)D#Dh (m)!h*(k)D and the result
follows using Lemma 2.1 and Theorem 3.1. h

We now present the algorithm to compute the point availability at time t and the expected
interval availability over (0, t). For every l*0, we define the column vector u

l
"C*(l)ı

U
. In the
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algorithm, the value of e
s
is fixed to 2m~2e

0
. The user can give another value of e

s
.

input: t
output: PA»(t), E[IA»(t)]
Compute m"minMk/vt/2k)0.1N, t

0
"t/2m, and e

s
such that e

s
"2m~2e

0
Compute N

0
such that e

0
)e

0
, P*(0), u

0
, s(0) and S (0)

k"0
while (k(m) and (S (k)!s(k)'e

s
) do

k"k#1

u
k
"C

P*(k!1)#I
2 D u

k~1

h(k)"au
k

P*(k)"P*(k!1)P*(k!1)
Compute s (k) and S (k)

endwhile
if k"m then

E[IA»(t)]"h(m)$2m`1e
0

PA»(t)"aP*(m)ı
U
$2m`1e

0
s(m))PA»(#R)"E[IA»(#R)])S (m)

endif
if S (k)!s(k))e

s
then

E[IA»(t)]"h* (k)$(2m`1e
0
#(1!(1/2m~k))(e

s
/2))

PA»(t)"(S(k)#s (k))/2$(e
s
/2)

E[IA»(#R)]"PA»(#R)"(S(k)#s(k))/2$(e
s
/2)

endif

Let K be the final value of k in the algorithm (K)m). For a given value of t, the UP method
requires (N

0
#K) matrix—matrix products and (N

0
#K) matrix—vector products in order to

compute h* (K). The time complexity of this method is O ((N
0
#K) (M3#M2)). The time complex-

ity of the SU method is O (Nb) where b is the number of non-null entries in A and N is the
truncation step (see Eq. (2)). So, the ratio of time complexities is

R"

(N
0
#K) (M3#M2)

Nb
, N'vt

It is clear that the UP method is faster than the SU method (R(1) for large values of t
corresponding to stiff Markov models and for moderated size of the cardinality M of the state
space.

4. Numerical illustration

We present in this section a numerical illustration of our algorithm. The model used here is
a system with n components [11]. Assume that the system components are binary, i.e. assume they
have only two states, ‘‘down’’ and ‘‘up’’. Then the number of system states is M"2n. We assume
that system components fail independently, that repair times are stochastically independent of
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Fig. 1. Evolution of S(l )!s (l ) as function of l.

component lives and that maintenance policy is either unrestricted (there are as many available
repairmen as system components) or such that repairs in progress are independent of each other. If
we consider the model as a reliability model, we assume system components are all repairable and
separately maintained. Let j

i
and k

i
be, respectively, the failure and the repair rate of component i,

i"1, 2, n. We assume that the system is down as soon as more than one component is down. So
we have n#1 operational states. For our experiments, we suppose j

i
"j and k

i
"k for all i.

Therefore, the formal expression of E[IA»(t)] is given by

E[IA»(t)]"
1
t P

t

0

[(a
0
(s))n#n (a

0
(s))n~1a

1
(s)] ds,

where

a
0
(s)"

k
j#k

#A
j

j#kB e~(j`k)s and a
1
(s)"

j
j#k

!A
j

j#kB e~(j`k)s .

This formal expression allows us to use the Maple package in order to compute the reference
numerical values of E[IA»(t)]. For the experimentations, the parameter values have been set to
n"4, j"10~3, and k"1. This algorithm has been run on a SUN4 workstation in double
precision arithmetic (e

0
+10~16) for t"100]2i, i"0, 1, 2, 20. For these 21 values of t, N

0
stays

constant (N
0
"9). When t is evaluated from 100]2i to 100]2i`1, the value of vt

0
remains

constant (vt
0
"9.765]10~2) and m is increased by one. The real error is always lower than its

theoretical bound.
For the same example, Fig. 1 shows the evolution of S (l)!s(l) for t"100]220 as function of l.

The values of l changes from 1 to 10 because the stationarity is detected at t
d
"12.5"29t

0
(e
s
"231]10~16+2.15]10~7).
However, the user can run computations for values of t such that the stationarity is detected for

k smaller than m. For example, if we consider the same model, the value of K corresponding to
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Fig. 2. CPU times function of the component number n for t"105.

m"30 (t"13107200) is equal to 10. In order to compare the time complexity of the UP and SU
methods, we fix a value of t and give the CPU time as a function of the component number n, with
j"10~8, k"1, and t"105. Fig. 2 shows the CPU times required by the SU and UP method in
such a case.

For the SU method, we have used e"10~13. Let us remark that in this example, the UP method
remains faster than the SU method as long as the CPU time is lower than 3 h. Moreover, if t is very
large, because of the detection of the stationarity by our method, the UP method remains faster
than the SU method even for M of the order of 103. In fact, in such a case, the SU method has
a prohibitive CPU time. For this example, if t was changed from 105 to 108, then the UP method
would take the same CPU time (because K would not change) while the SU method would require
a CPU time roughly 1000 times longer.
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