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Interval Availab ility  Analysis Using Denumerable 
Markov Processes: Application  to Mu ltiprocessor 

Subject to Breakdowns and Repa ir 
Gerard0 Rubino and  Bruno Sericola 

Abstiact-Interval availability is a dependability measure de- 
fined by the fraction of thne during which a system is operational 
over a finite observation period. The computation of its distribu- 
tion allows the user to ensure that the probability that its system 
will achieve a given availability level is high enough. 

The system is assumed to be modeled as a Markov process 
with countable state space. We  propose a new algorithm to 
compute the interval availability distribution. One of its main 
advantages is that, in some cases, it applies even to infinite state 
spaces. This is useful, for instance, in case of models taking 
into account contention with unbounded buffers. This important 
feature is illustrated on models of multiprocessor systems subject 
to breakdowns and repair. When the model is finite, we show 
through a numerical example that the new technique can perform 
very well. 

Index Terms- Denumerable Markov processes, dependability 
prediction, interval availability distribution, repairable computer 
systems, transient analysis, queues with breakdowns, uniformiza- 
tion. 

I. INT~~~DuCTI~N 

I N the dependabil i ty analysis of repairable comput ing sys- 
tems, there is an  increasing interest in evaluating cumulative 

measures,  in particular, the availability over a  given period. 
In highly available systems, steady state measures can be  
very poor, even  if the mission time is not small. The  use  of 
expectat ions also suffers from similar drawbacks.  Considering, 
for instance, critical applications, it is crucial for the user 
to ensure that the probability that its system will achieve a  
given availability level is high enough.  This paper  deals with 
the computat ion of the distribution of the interval availability 
which is def ined by  the fraction of time during which a  system 
is in operat ion over a  finite observat ion period. 

Formally, the system is modeled by  a  Markov process 
whose state space is divided into the subset  of up  states 
and  the subset  of down states. The  interval availability over 
(0, t) is then the fraction of the interval (0, t) dur ing which 
the process is in the up  states. This random variable has  
been  studied in previous papers  as  for instance in [l] where 
its distribution is calculated recursively by  discretizing the 
observat ion period (0, t). However,  no  error bounds  were 
found for this approximation method. In [2], a  particular 
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algorithm has  been  developed in the case where the two 
sequences  of sojourn times in the up  and  down states are 
independent  one  by  one  and  of each  other. It is moreover  
shown in [2] that this property can directly be  checked on  the 
transition rate matrix of the process. In [3] a  method based  
on  the uniformization technique is proposed.  The  algorithm 
is interesting because it has  good  numerical propert ies and,  
moreover,  it allows the user to perform the computat ion with 
an  error as  small as  desired. Improvements of this approach 
have  been  developed in [4]. 

In this paper  we develop a  new algorithm to compute the 
interval availability distribution, based  on  the uniformization 
technique and  on  the results obtained in [3] and  [4]. Its space 
complexity depends  strongly on  the number  of operational 
states. This is of interest especially when  this number  is small 
with respect to the size of the whole state space.  Another 
important characteristic of the new algorithm is that it applies 
for a  large class of processes with an  infinite state space 
provided that either the number  of up  states or the number  
of down states is finite. 

The  remainder of the paper  is organized as  follows. In the 
following section, we descr ibe Algorithm II of [4], which is the 
basis of the new proposed method. In Section III, we  present 
the new algorithm, we illustrate its per formance through a  
finite state space example and  we compare it with Algorithm 
II of [4]. In Section IV, a  generic example of mult iprocessor 
systems subject to breakdowns and  repair is used  to show the 
ability of the new algorithm to deal with infinite state spaces.  
Numerical results are also provided. Section V proposes some 
conclusions. 

II. INTERVAL AVAILABILITY DISTRIBUTION COMPUTATION 

Consider a  continuous-t ime homogeneous  Markov process 
X = {X,, t 2  0}, over a  finite state space denoted by  S, The  
states of S are divided into two disjoint subsets: U, the set of 
the operational or up  states and  D, the set of the unoperat ional 
or down states. W e  assume that the system, modeled by  such a  
process, is considered during a  finite interval of time denoted 
by  (0, t). The interval availability over (0, t), that is, the 
fraction of time the system is in operat ion during (0, t), is 
def ined by  

IAV(t) =  1  
t 

t o  l{X,EU}~% s 
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where lt,.) is equal  to 1  if condit ion c is true and  0  otherwise. 
The  process X is, as  usual, g iven by  its infinitesimal gener-  
ator, denoted by  A, in which the ith diagonal entry A(i, i) 
verifies A(i, i) =  - Cjzi A(i, j) and  by  its initial probability 
distribution a. 

Let us  denote by  2  the uniformized Markov chain with 
respect to the uniformization rate X and  by  P its transition 
probability matrix [5]. The  uniformization rate X verifies X 2  
sup(-A(i, i), i E S) and  P is related to A by P = I + A//\, 
where I denotes the identity matrix. W e  decompose P and  the 
initial probability (row) vector LY with respect to the partition 
{U, D} of S as  

It has  been  shown in [4] that for every p  <  1, we have  

P(IAV(t) > p) = E e-‘@$ 2 c$p"q"-"Yn,k (1) 
n=O k=O 

where q = 1  - p  and  Yn,k is the probability that the 
uniformized Markov chain 2  visits more than Ic states of U 
during the first n  transitions. Let Y:k (resp. Ynyk, Y$J be  
the column vector such that its ith entry, i E S (resp. i E U, 
i E D), is the probability that 2  visits more than k states of U 
during the first n  transitions, given that the initial state is i. W e  
have  Y,,k =  QY,“~. Vectors Y,“l, and  Y,“l, can  be  computed 
using the following recurrence relations [4]: 

and  

ynfk = pDUy,u_l,k + pDy,“_,,k (2) 

with initial condit ions Ynuo = lT and  YoDo = OT, where lT 
(resp. OT) denotes a  column vector with each  entry equal  to 1  
(resp. to 0), oT  denot ing the t ranspose operator. From relation 
(l), the computat ion proceeds as  follows. It is shown in [4, 
Section 41  that if Ht,p is def ined by  

N-C’ C’+k 

Ht,p = c c ,+t@$&,kqn-kYn,k 

k=O n=k 

N-C”-1 N  

f c c ep”t@$c~pkq”-kyn,k, _, (3) 

k=N-CT’+1 n=k 

then 0  5  P(IAV(t) <  p) -Ht,p 5 E, where, for a  given 
specif ied error tolerance E, integers N, C’, and  C” are chosen 
as 

0 G  N 
0 0 

J 
G  = N  - C” 

C’ C’ 

N N 

(a) (b) 
Fig. 1. (a) Algorithm A. In cell (n, k):Ynfk. (b) Algorithm B. In cell 

(n,k):z;k. 

2 e-‘sI < 4 (W’” E . 
k=O 

The general  computat ional scheme of the Yn,k’s is shown 
in Fig. I(a), where we indicate in gray the cells that are 
effectively filled. The  contents of cell in row n  and  column 
k is vector Yzk. This algorithm is now called Algorithm A. 
When  C” does  not exist, we can define C” = -1 and  still use  
relation (3). In this case the error tolerance ~/4 in the definition 
of C’ can be  replaced by  e/2. Following the recurrence relation 
(2), the computat ion can be  made  in a  column by column 
manner  so that we only need  to store C’ + 1  vectors with 
dimension equal  to the number  of states of process X, as  
shown in Fig. l(a). 

III. A NEW ALGORITHM 

The new algorithm, denoted Algorithm B in the sequel,  
also computes the Y,,k’s numbers  but in a  different way. 
W e  assume first, for simplicity, that the system starts in an  
operational state, that is we suppose that oUIT = 1. The  
general  case is detailed in Appendix A. W ith this assumption, 
we have,  for every n  2  0  and  0  5  Ic 5  n, Yn,k =  a”Ynuk. 
Relations (2) can  be  partially solved to get 

n-k+1 

y$ = c p jy,u_ j,k-1, 
j=l 

where the square matrices Pj’s, whose dimension is equal  
to the number  of operational states, are def ined by  PI = 
Pu and  Pj = P~DP&-~PDu for j >  2. A probabilistic 
interpretation of (4) is d iscussed in Appendix A. Using now 
relation (3), we see that the number  of Pj’s matrices involved 
in (4) is equal  to C’ + 1. This number  can be  reduced when  
the Markov process X is not absorbing in the following way. 
If X is not absorbing, the matrix CT=: Pj is stochastic. Let 
E’ > 0  and  let J be  the smallest integer not greater than 
C’+ 1  such that c,“=, Pj lT _>  (1 - E’) lT where an  inequality 
between vectors means  that the inequality holds for each  entry. 
Instead of comput ing the Yn,k ‘s numbers,  we will work with 
z n,k =  a”Zf,k where Zxk is the column vector def ined by  

min(J,n-k+l) 
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with initial condit ion 
be  written as  

Z[u = Ynyo = lT. Relation (3) can  then 

Ht,p = NC’ cs e-x’@+fpkqn-k~n,k 
k=O n=k 

n. 

Defining &,k = x,k - &,k, the value err verifies 

N-C’ C’+k 

err =  c c e-“t~C~p”$‘-“E~~k 
k=l n=J+k 

N-C”-1 

+ c 5 e-“t~&lkqn-kE,,~, (7) 

k=N-C’+1 n=Jfk 

The following lemma gives a  way to bound  the value err. It 
is proved in Appendix B. 

Lemma 3.1: For every n  2  1  and  1  5  Ic 5  n such that 
n - k  + 1  > J, we have En+ 2  Ice’. 

Using this lemma, we can then write from relation (7), 

N-C’ C’+k 

err <  E’ C k C e-*tQ.!JC,kpkqn-k 
k=l n=J+k 

N-C”-1 

f E’ C k 5 e-*tG?Jcfipkqn-k 

k=N-C’+l n=.J+k 

To have  err <  ~/6, it suffices to choose E’ such that 

I 

-1 

, 

the value of N being the same as for Algorithm A and  the 
values of C’ and  C” being computed with respect to c/6 
instead of c/4. Algorithm B consists then in comput ing the 
&&‘s numbers  using (5), in a  column by column manner  as  
shown in Fig. l(b). The  sum of the first two terms in the right 
hand  side of (6) gives P(IAV(t) >  p) with a  tolerance equal  
to E. 
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TABLE I 
COMPUTATION TIMES OF ALGORITHMS A AND B ON AN 
EXAMPLE (256 STATES WHERE 9 ARE OPERATIONAL) 

P P(IAV(100) > P) A B P(IAV(loo0) > P) A B 

0.990 0.9120 2~42 min 1~24 min 0.9989 2:OEhrs 255hr-s 

0.995 0.8159 1:48 min 0~48 min 0.9054 l:lbhrs 1:12hrs 

0.999 0.6685 054min Oz18min 0.1619 ti26hrs 0:llhrs 

A. Complexity Analysis 

Let us  denote by  M the total number  of states and  by  L 
the number  of operational states. The  space complexity of the 
new algorithm is bounded  by O(C’L2). This follows from the 
fact that we need  to store C’ + 1  vectors of dimension L plus 
J square matrices (the Pj’s) of dimension L x L, and  from 
the relationship J I C’ + 1. Of course, this can  be  reduced 
if sparse techniques are used.  

To  evaluate the time complexity, let us  consider first the 
computat ion of the Pj’s matrices. If n  is the number  of nonnul l  
e lements in P, assuming that each  matrix-matrix product when  
building the sequence needs  O(qL(M - L)), we obtain a  
total cost in O(vJL(M - L)), which can be  bounded  by 
O(vC’L(M - L)) since J 5  C’ + 1. The  rest of the cost 
is proport ional to the number  of cells to be  computed.  Using 
the relationships J 5  C’ + 1  and  C” < C’, we obtain a  cost 
in O(L2(NC’2/2 + (C’3  - C”3)/6)) for comput ing all the 
needed  cells. 

These results show first the interest of the new algorithm 
when  the number  L of up  states is small. Second,  we can 
observe that Algorithm B behaves  better if p is close to one:  
observe that C’ is O(Xtq) and  recall that q = 1  - p. 

1) Numerical Examples: Let us  consider the hardware sys- 
tem, descr ibed in [4], which consists of n identical components  
behaving independently,  with failure rate equal  to 0.01 and  
repair rate equal  to 1. W e  assume that the maintainance policy 
is unrestricted. This leads to a  Markov model  with M = 2” 
states. The  system operates on  a  “k out of n” basis, that is, 
the system is up  when  at least Ic components  are up. W e  
note that the state space can be  reduced to n  +  1  states; 
here, it is not simplified for testing purposes.  W e  compute 
the probability of achieving an  availability of at least p, that 
is P(IAV(t) >  p),.for different values of the parameters p 
and  t. The chosen global error E is equal  to 0.00001.  Table I 
shows the computat ion times of Algorithms A and  B in the 
case of n = 8  and  Ic =  7, for p = 0.990,0.995,0.999 and  
for t = 100, lOOO. This leads to a  Markov process with 256  
states, 9  of them being operational. The  programs were run 
on  a  Sun 4150.  

IV. MULTIPROCESSOR SYSTEMS 
In this section, we illustrate the application of Algorithm B 

to an  infinite model. W e  consider a  system where K identical 
parallel processors serve a  common,  unbounded  job queue.  
The  processors break down from time to time, and  return to 
an  operational state after being repaired. When  operational, 
each  processor serves jobs one  at a  time and  each  job is 
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Fig. 2. Partition of the state space and transitions between states. 

allowed to occupy at most one  operational processor at a  time. 
It is assumed that the evolution of the system is modeled 
by  an  irreducible Markov process X with state space S = 
(0, 1, . . .} x  (0, 1, . . , K}. The  system is in state (i, j) E S 
when  there are i jobs (including the jobs being in the servers) 
and  j operational processors. The  evolution of X proceeds 
according to the following set of possible transition rates: 

[a] (i,.j)%)(i +  1, j) [b] (i +  1, .i)‘“ti’(i,.i) 

[cl (4.i) 6”-;J’(i,j _  1) [d] (i, j - l)‘(y)& j) 

[el (i + l,j + 1) “F)(i,j) [fj (i,j)“%;i’(i +  1,j +  1). 

A transition of type [a] (resp. [b]) represents a  job arrival 
(resp. a  job departure). Transit ions of types [cl, [e] (resp. [d], 
[fJ) represent the breakdown (resp. the repair) of a  processor.  
This enables the considerat ion of models with and  without 
loss of jobs. The  purpose of the analysis is to determine 
the distribution of the percentage of time over the interval 
(0, t) during which there are no  jobs in the waiting room 
of the queue.  Let us  define the partition (Bk, k >  0) of 
the state space S as follows. For 0  <  Ic 5  K, we define 
Bk = {(k - i, K - i),O 5  i 5  Ic} and  for k 2  K + 1, we 
define Bk = {(lc - i, K - i),O 5  i <  K}. This partition 
of the state space and  the transitions between the states are 
illustrated in Fig. 2. 

Now, let us  take as  subset  of operational states U = 
lJf==, Bk, and  then as  subset  of down states D = Use’+, Bk. 
To use the uniformization technique to evaluate the distri- 
but ion of IAV(t), we need  to assume that the infinitesimal 
generator  A of process X is uniformly bounded.  This as- 
sumption is not a  practical restriction and  can be  expressed 
as: sup{-A( u, ‘u. , u  E S} <  cc. This value will be  taken ) 
as the uniformization rate X. Clearly, the results in [3] and  
[4] cannot  apply here since the submatr ices PTJO, PO, and  
Pou are infinite. The  number  of states in subset  U is equal  
to (K + 2)(K + 1)/2 and  the number  of states in subset  D 

is infinite. Algorithm B can apply if the square matrices Pj, 
j 2  1, which are of dimension (K + 2)(K + 1)/2, can  be  
computed.  

A. Computation of the Matrices PJ 

From the partition (Bk, Ic 2  0) of the state space S, the 
infinitesimal generator  A of X becomes a  block tridiagonal 
matrix. For every nonnegat ive integers k and  m, let &,, 
(resp. Pk,,) be  the block corresponding to transition rates 
(resp. transition probabilities) from subset  Bk to subset  B,. 
It follows (see Fig. 2) that the only nonzero blocks are blocks 
Ao,o, AOJ, &k-l, &,k, and Ak,k+l for k  2 1. Obviously, 
matrix P has the same structure. Recall that matrices Pj, 
j 2  1, are def ined by  PI = PU and  Pj = PuDPL-~PDLI, for 
j 2  2. Now, since the only nonzero block of matrix POD (resp. 
matrix POU) is block PK,K+~ (resp. block PK+~,K), matrices 

0  0  
Pj can be  written as  Pj = o Fj 

( ) 
, for j 2  2, where the 

matrices Fj are of dimension K + 1, for every j >  2. To  
compute matrices Fj, for every j 2  2, we proceed as follows. 
Since PD is a  block tridiagonal matrix, for every integer j >  1  
the matrix PA, for which we denote by  Pfi the square block 
of dimension K + 1  corresponding to transitions from subset  
BE to subset  B,, Cd is such that the blocks PK+k,K+j+m and  
P~z!&+~,~+~ are equal  to 0  for every m  2 k + 1. This is 
because the jth power  G  2  1) of any  tridiagonal matrix is a  
(2j +  l)-diagonal matrix (i.e., having 2j +  1  diagonals). W e  
then have  

b-2) 
Fj =PK,K~~PK~~,K~~PK+~,K, f0r.i > 2. 

Writing now Pi =  PD PA-‘, we get the following recurrence: 
for every j 2  1  and  2  5  i 5  j, 

pm 
-PK+~,K+IP$T:!K+~ ~PK+I,K+~P$~~,)K+~ K+l,K+l - 
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pm 
- PK+i,K+i-1p~~~~~1~Kfl K+z,K+l - 

f PK+i,K+i@&~~+1 

+ PK+i,K+i+lp~~t~l K+l 

p(3) 
K+j+l,K+l = ~K+j+l,K+&~;)+~’ 

+ pK+j+l,K+,+l&;l~ K+l 37 

For j >  1  and  1  5  i <  j, let H,(j) be  the square matrix of 
dimension K + 1  def ined by  

H(j) = pm 2 K+z,K+I~K+LK. 

The previous recurrence becomes,  for every j 2  1  and  
2 I i I j, 

H(.i) = p (j-1) 
1 K+l,K+lH1 + PK+I,K+&-~) 

H!j) = p K+i,K+i-1 H”-‘) f P G-1) 
z  2-l K+~,K+& 

+ PK+’ K+-+&‘;~) 

H(j) 
3+1 

= P~+j+::~(+iHji”) + P~+j+l,~+j+lHp!<‘) 

with initial condit ions Hi’) = PK+~,K and  H, (‘I =  0. Finally, 
we obtain Fj = PK,K+~H~-~) for j 2  2. To  compute the 
distribution of IAV( t) using Algorithm B, we have  first to 
compute matrices F2, . . . , FJ, where integer J is given in the 
description of that algorithm. 

V. APPLICATION AND NUMERICAL RESULTS 

To illustrate the obtained results, let us  consider a  M/M/K 
queue  with arrival rate /3 and  service rate ,u. Each server 
breaks down with constant rate S and  is repaired, assuming 
there is only one  repairman, with constant rate y. W e  assume 
that when  a  processor breaks down, the job (if any)  that was 
being processed by  this processor is not lost. This application 
leads to the following values of the general  rates introduced 
in the previous section. For every (i, j) E S, ,8(i, j) =  p, 
p(i,j) =  (i +  1)~ if i +  1  5  j and  J’,U otherwise, S(i,j) =  jS, 
$i,j) =  y and  v(i,j) =  q(i,j) =  0. 

Let us  relax in this Appendix the assumption that the 
Markov process X has  its initial probability restricted to the 
operational states. W e  ment ioned in Section III that relation 
(2) leads to Y,“l, =  Cy$” PjYnupj,k-l. This relation can 
also be  derived’from renewal arguments.  Note first that entry 
(i, h) of matrix Pj is the probability that the next visited state 
of U after j transitions will be  state h, given that the initial 
state is i E U (note that PI = Pu). Relation (4) is obtained 
by  condit ioning on  the next visited state of U. 

In the same way, (2) leads, for Y,“li, to Y,“l, =  n  k ’ > u  Li ; ,DFhil pD- ’ 
PDU Ynu-j,k, and  so, since Yn,k =  ff Y, k n  k, we get 

Fig. 3  shows the probability that the percentage of time 
during which there is no  job waiting in the queue  is greater 
than 0.99, with an  error tolerance E = 0.00001,  as  a  function 
of the number  of processors. The  arrival rate is /? =  2.0. For 
each  processor,  the service rate is ,u =  1.0, the failure rate 
6  =  0 .0001 and  the repair rate is y =  0.1. 

j=k 

It is interesting to note the important difference in the results 
for 5  and  6  processors when  t =  100:  dur ing the interval 
(0, loo), the queue  will be  empty more than 99% of the time 
with probability 0 .2538 for 5  processors and  with probability 
0 .7924 for 6  processors. 

where the vectors C$ are def ined by  a?  = ~8’ and  for h 2 
2, a; = aDP;-2PDu . When  the number  of operational states 
is close to the total number  of states, the computat ion of the 
distribution of IAV( t) can  be  performed using the random 
variable D(t) which denotes the percentage of unoperat ional 
time during (O,t), since we have  IAV(t) +  D(t) =  1, that 
is, for every t > 0, for every p  ~]0,1[, P(IAV(t) >  p) =  
P(D(t) < q) = 1  - P(D(t) > q). The matrices involved 
in the computat ion of the distribution of D(t) are obtained 
by  a  permutat ion of the role of subsets U and  D and  of the 
role of parameters p  and  q. It follows that for infinite states 
models, the interval availability distribution can be  computed 
when  the number  of down states is finite if the corresponding 
matrices Pj (PI = PD and  Pj = PD~P$-~ POD, j > 2) can 
be  computed.  

VI. CONCLUSION 

The contribution of this paper  is to provide a  new algorithm 
to compute the interval availability distribution for Markov 
processes. A main feature of the algorithm is that it applies not 
only for finite models but also when  the state space is infinite, 
if at least one  of the two involved subsets of states (opera- 
tional and  unoperat ional) is finite and  when  the infinitesimal 

0.6 

0 
1 2 3 4 5 6 7 6 9 10 

K 

Fig. 3. P(IA\‘(t) >  0.99) as a  function of the number  li of processors. 

generator  of the process is uniformizable and  block tridiagonal. 
The  method is also shown to be  computationally interesting 
for finite state models when  the number  of operational states 
(resp. nonoperat ional  states) is small (resp. large, see  Appendix 
A) compared to the total number  of states. For instance, it can  
be  very efficient if we  consider phase  type repair since in that 
case the number  of nonoperat ional  states can be  large. 

APPENDIX A 
GENERAL INITIAL PROBABILITY DISTRIBUTION 
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APPENDIX B 
PROOF OF LEMMA 3.1 

Let Ey, be the difference Ynuk - Zz,k and define QJ  = 
c,“=, Pj. We then have E,+ =’ aUEzk. Let us first prove 
that for TZ 2 1 and 1 5 k 5 n such that n - k  + 1 > J, 
we have Er, 5 C~~~(QJ)“E~-~+~ 1. Note that Ez, = 
C,“=J,l Pjl’T, and so we have Exl 5 Ez+l 1. The proof is 
made by recurrence over the index k. For k g 1, the relation 
holds since its right hand side is equal to E$. Suppose the 
relation true until step k - 1. Since n - k + 1 > J, we have, 
using the recurrence hypothesis, 

n-k+1 

En”,k - -6 pjE,u_j,k-1 + c pjy,u_j,k-1 
j=l j=J+1 

5 -& PjE,u_i,k-l + “-2’ PjlT 
j=l j=J+l 

= c PjE:--j,k-l + E:-k+l,l 

Since c,“=, Pj = QJ, we obtain 

k-2 

E,U,k 5 QJ c(QJ)“E,si_k+,,, + E:-k,,,, 
l=O 

k-l 

= ~(Q.d”E:-,+,,I. 
l=O 

Now, since n - k  + 1 > J, we have Ez-k+l 1 = 

I;$,‘: PjlT 5 ~‘1~. So, for every n 2 1 and 1 < i < n - 

such that n. - k + 1 > J, we get 
k-l 

E n,k = Q ‘E:,, I 8 C(QJ)“I~E’ 5 kd, 
l=O 

which ends the proof. 
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