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Summary & Conclusions - Interval availability is a depen- 
dability measure defmed as the fraction of time during which a 
system is in operation over a f h t e  observation period. Usually, 
for computing systems, the models used to evaluate interval 
availability distribution are Markov models. Numerous papers us- 
ing these models have been published, and only complex numerical 
methods have been proposed as solutions to this problem even in 
simple cases such as the 2-state Markov model. This paper pro- 
poses a new way to compute this distribution when the model is 
a 2-state semi-Markov process in which the holding times have an 
exponential distribution for the operational state and a phase-type 
distribution for the non-operational one. 

The main contribution of this paper is to defme a new 
algorithm to compute the interval availability distribution for 
systems having only one operational state. The computational com- 
plexity depends weakly on the number of states of the system, and 
sometimes it can deal also with infinite state spaces. Moreover, sim- 
ple closed expressions of this distribution are shown when repair 
periods are of the Erlang type with eventually absorbing states. 

1. INTRODUCTION 

Interval availability is important, especially for dependable 
computer systems. The papers on this topic give complex 
numerical solutions even for simple cases, eg, for a 2-state 
Markov model. The problem for a general Markov model is 
described by a linear hyperbolic system of partial differential 
equations in [l], and it is solved by explicit finite-difference 
methods in [2]. A uniformizution' method that bounds the 
errors caused by truncation of an infinite series during the 
computation was proposed in [3]; this method was developed 
further in [4] to obtain a closed-form expression. Another 
technique [5] is based on numerical inversion of Laplace 
transforms. 

'Appendix A S  briefly explains unijormization. 

 his paper proposes a new algorithm (IAD-SU)* to com- 
pute the interval availability distribution for a 2-state semi-Markov 
model in which failures have an exponential distribution and 
repairs have a phase-type distribution. This measure can be in- 
terpreted as the fraction of time during the interval (0,t) , spent 
by a Markov process in its initial state. IAD-SU is derived from 
the work in [4], which is reviewed in section 2. Section 3 applies 
IAD-SU to the 2-state semi-Markov model. Section 4 considers 
particular cases of phase-type repairs such as exponential & Erlang 
repair. Section 5 gives 2 applications of IAD-SU: 1) A critical 
system with n components fails if any component fails. 2) The 
classical M/M/ 1 queueing system for which we compute the frac- 
tion of time in which the server is busy (system workload) during 
a given time-interval. Application #2 is interesting since the state 
space of the system is infinite. 

Acronyms 
IAD interval availability distribution 
IAD-SU interval availability distribution - Sericola unifor- 

mizution (algorithm). 

Notation 
X continuous-time homogeneous Markov process 
X, 
E 
CY 

A infinitesimal generator of X 
Y uniformizution rate of X 
P transition probability matrix of the uniformized Markov 

chain associated with X 
B, L [subset, number] of operational (up) states 
B' subset of non-operational (down) states 
aB, C Y ~ C  subvectors of CY associated with partition {B, B'} of E 
PE, PBp ,  PBcB, PE. submatrices of P associated with partition 

state of X at time t 
finite state space of X 
initial probability distribution of X 

{B,BC}  of E 
P E ,  for j=1; PBB~*P~F~*PBCB, for j > I .  
S(True) = 1, S(Fa1se) = 0 
interval of time 
set of integers ( u , u + l ,  ..., b} 
cumulative amount of operational time during (0,t ) , 
a r.v. 
interval availability over (0 , t ) .  a r.v. 
column vector of 1 's; dimension is ( n  + 1 ) . L 
number of visits to the states of B during the first n 
transitions of the uniformized Markov chain associated 
with X, a r.v. 

'Editors' note: We have assigned this acronym IAD-SU (interval 
availability distribution - Sericola uniformization) for simple, clear, 
unique reference to the concept. 
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P ( n )  
H ( n )  
C,  N 

I 

(n+ 1 )  .L row vector 
square [ (n + 1) -L] x[  ( n +  1 )  -L] matrix 
integers used in truncation for uniformizafion, 0 < C 
I N  
{ 1 1 ,  ..., 1 m }  - I is usually constrained 

m 

j = l  
m 

j =  1 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear o f  each issue. All proofs are in the 
appendix. 

0 P ,  P2 P3 P4 ... P n - ,  P ,  

0 0 P ,  P2 P3 ... Pn-2 Pn-l 

0 0 0 P ,  P2 ... Pn-3 Pn-2 

0 0 0 0 P ,  ... Pn-4 Pn-3 

0 0 0 0 0 ... P1 P2 

0 0 0 0 0 ... 0 P1 

L o  0 0 0 0 ... 0 0 

H ( 0 )  = 0 

This theoretical result is used for a numerical algorithm. 
The Sf {NB(n) }  is [4]: 

Pr{NB(n) > k }  = P ( n ) . H ( n ) k . l B ( n ) ,  for o 5 k I n. 
2. INTERVAL AVAILABILITY DISTRIBUTION 

Consider a continuous-time homogeneous Markov process, 
X = {X,, f l o } ,  over a finite state space E. 

IAV(t) O ( t ) / l  

3. A 2-STATE SEMI-MARKOV MODEL 

Assumptions 

1. The operational (up) state has exponential holding times. 
2. The non-operational (down) state has phase-type holding 

times. 4 

The infinitesimal generator A of X verifies A ( i , i )  = 
- Cjz i  A ( i j ) .  The transition probability matrix of the unifor- 
mized Markov chain associated with X [6] verifies: 

Nomenclature 

Entry: component (of a vector). 

P = I + A / v  

v 2 max( - A ( i , i ) ,  i E E ) .  

Decompose P & Q with respect to { B , B C } .  

pBBc PBC I 

This structure is equivalent to the Markov process depicted in 
section 2 with only 1 operational state, viz, with subset B reduced 
to 1 state. The formula for Cdf{O( t )}  can be simplified since 
the Pj,  j 2 1, are now reduced to real numbers, verifying 0 
5 Pj I 1 .  

3.1 Derivation of Simpler Expression for P ( n )  . H ( n ) k . l B ( n )  

For a fixed n 1 0 and 0 I k I n,  

a! = ((YBp U S c )  x n , k  E H ( n ) k * l B ( n ) .  (3-1) 

The main in 14] is Cdf{o(t)J ’ (O < ‘)’ For convenience, the first entry is denoted by X , J ( O )  and its 
+ W  n last entry by Xn,k(n).  To simplify the notation, let: 

Pr{O(t) I s} = 1 - poim(n;v.t). binm(k;s/t,n) 
n = O  k=O Xn,k(m) E 0, for m > n. 

Since H ( 0 )  = 0 and H(0)’ = 1 ,  we have as first values (in 
the xn,k sequence): 

0 ( n ) H (  n ) * 1B (n 

0 ( n ) E (QB, Q B C  * PBCB, Q B C  * PE< ’PBCB, . . . , Q B C  * P ~ F  

P(0) = ~ ~ , ~ ( i )  = 1, i=O, l ;  
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x1,1(0) = Pl, Xl,l(l) = 0. E ' ,  the remainder of the series e'(N) verifies: 

Then, 

xn,k+l = H(n)'Xn,k 

03 n 

e' (N) = poim(n;v.t). binm(k;u,n) ' y n , k  

n=N+1 k = O  

n I poifc(N+l; v - t ) .  
X,,k+l(i) = P j ' x n , k ( j + i ) ,  foro  5 i I n. (3-2) 

Theorem 3.1 is the main result of this paper. 

j =  1 The integer Nis chosen such that poifc(N+ 1;v.t) I E ' .  Thus, 

- E '  I Pr{IAV(t) I U} - [ 1 - 
N 

poim(n;v r )  Reorem 3.1. For all n, n 2 0; for all k ,  0 I k I n; 
n = O  for all i, 0 I i I n: 

n 1 

(3-3) . 
k=O 

(3-6) 

Theorem 3.1 implies the relation (s < t): a. yn,o = 1 ,  for n L 0; 
m n 

Pr(O(t)  I s} = 1 - poim(n;v.t). binm(k;s/r,n) 
n=O k = O  

n 

' b ( i )  . X n , k ( i ) .  (3-4) 
i = O  

In practice, the initial system-state is operational (aB = 1); 
thus p = (1,O )..., 0). 

Eq (3-4) reduces to: 

n - k + l  

b. Yn,k  = P j ' Y n - j . k - 1 ,  for II 2 1, 1 I k I n. 4 

j=l 

Figure 1 illustrates the recursion to compute the real 
numbers Yn,k  in corollary 3.1; for instance, y 6 . 4  = P1 .y5,3 + 
P 2  * y 4 , 3  + P 3  * y 3 , 3 .  The Yn,k  is represented as the (n,k)-entry of 
a (N + 1)-dimensioned lower triangular matrix. The Cis introduc- 
ed to perform another truncation over index k;  see lemma 3.1. 

The IAD (0 I U < 1) is: 

W n 

Pr{IAV(t) I U} = 1 - poim(n;v.t). binm(k;u,n) 
n-0 k = O  

@ n , k ( z ) ;  
n2  

(3-5) 

+ 

(This notation simplifies the following presentation.) 
To compute the Cdf{IAV(t)}, evaluate the Y n , k  for 

n =O,. . . ,N and k=O,.  . . ,n where N, the truncation step of the 
infinite series, is chosen such that for a given error tolerance 

Lemma 3.1 induces an order relation between the real 
numbers Y n , k ;  this order relation determines C (see figure 1) 
for which a truncation over index k is feasible. 
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&“a 3.1. For every n 2 0 and 0 I k 5 n, - - t )  .binm(k;u,n) 

c ,  Y n , k + l  yn .k;  

d- Y n , k  Y n + l , k .  

Lema 3. helps to show that when k becomes large enough 

IAD-SU for computing N & C is similar to the method 
in [3]. The main advantage of IAD-SU is that it stores only 
scalars ( Y n , k ) .  The algorithm in [3] requires storage of N vec- 
tors of dimension ‘cardinality of the state space of the Markov 

IAD-SU does require computing the P i ,  j = 1,. . . ,N, 
however, this can be done recursively in the following way. 

( k  > C )  , the values of y n , k  can become very small. Formally Process’, even if the Of Operatiod is reduced to ’. 
- 

N n 

poim(n;v.t) - binm(k;u,n) ‘ Y n , k  

n = O  k=O 

N N  

= poim(n;v.t) -binm(k;u,n) * y n  ,k Define the row vectors: 
k=O n = k  

C N  Qj P B B c . P 4 T 2 ,  for j 2 2. Then, 

so only 1 supplementary vector is needed to store the successive 
values of Qj. N N  

e’’ ( N , c )  = poim(n;v.t) .binm(k;u,n) ’ y n , k  

k = C + 1  n = k  

N n 4. ERLANG PHASE-TYPE REPAIR 
= poim(n;v-t). binm(k;U,n)-y,,k 

n = C + 1  k = C  + 1  This section considers 2 phase-type repairs for which a sim- 
N ple closed expression for IAD can be obtained using (3-5). 

5 poim(n;v.t).yn,c+l - by lemma 3.1-c 
n=C+1 4.1 Irreducible Case 

That is, when computing the Y n , k ,  we try to find a c such that 
for a given error tolerance E ” ,  we have 

The computation is made column by column as shown in 
figure 1. For each column k ,  compute Y N , k ,  using corollary 
3. l-b, and test its value with respect to E ” . If Y N , k  5 E ” , then 
take C = k -  1; else compute the other elements of column k ,  

If such a C does not exist, then C=N and e”  ( N ,  C) =O; 
that is Y N -  l , k ,  y N - 2 , k ~  . . . Y k , k ,  and restart by computing h , k +  1. 

the global error is E ’ . 

Assumptions 

1. The model is a 2-state semi-Markov process. 
2. The holding times in state 1 follow an exponential law 

with rate A. 
3. The holding times in state 2 follow an Erlang law with 

r stages and parameter p. 
4. The system starts in state 1 (the unique operational state). 

It then reaches state 2 after a failure, comes back to state 1 after 
repair, etc. 

5 .  x I p. 

Using this last truncation, compute, 

1 - poim(n;v.t) .binm(k;u,n) -yn  , k .  (3-9) Markov process. 

If E becomes the global error tolerance (E = E ’  + E ” ) ,  then 
from (3-6) - (3-8), 

- E I Pr{IAV(t) I U} - 

C N  This semi-Markov process is equivalent to the following 

k=O n = k  

C N  

1 - poim(n;v 
k = O  n = k  
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aA { i j  E [O;k]Ii+j = k, i + ( r + l ) - j  5 n} 

or, 

Assumption 4.2 Absorbing Case 

Notation Assumptions 

r 
k* gilb[(n - k) /r] 
k** gilb[n/(r+ l ) ] .  

Apply (3-5); choose v = p  which leads to: 

1. The system has 3 states. 
2. One state is absorbing, such that it can be completely 

down either after an operational period (with probability, 
1 -pl)  or after an unsuccessful repair period (with probability, 

number of Erlang stages 

l-Pr+I).  
3.  h I p. 4 P ,  = 1 - Alp, Pz = ... = P, = 0, P,+,  = Alp; Pi = 0, 

P ' p T + l  

f o r j  2 r+2.  

This gives, if p = P1 and q = 1 - p ,  

We then obtain the following Markov process in which the 
two up arrows (without destination) are to the absorbing state. 

1 - 

State 1 (initial state) is the unique operational state. Apply (3-5). 
We choose v = p and have: 

aB E [O;k]Ik + r . j  I n} 
P, = 1 - Alp, P2 = ... = P, = 0, P,+,  = h*p ,  

-pr+,/p; Pi = 0 for every j 2 r+2.  
yn,k  = binf(min(k*,k); q,k) 

Notation 
For fixed values of r 2 1 and n 2 0 - 

k, for 0 I k I k** c k*, fork** < k I n 
min(k*, k) = 

This leads to the closed expression: 

m 

P Pl 
4 pr+ 1. 

We obtain (4-1) even though q does not have the same value; 
herep+q # 1. If p ,  = P , + ~  = 1, we obtain (4-1). 

4.3 Discussion 

Pr{IAV(t) I U} = 1 - poim(n;p.t).binf(k**; u,n) In these two examples, the computation can be performed 
f l = O  simply by truncating the infinite series as in (3-6). 

W n 

- poim(n;p.t)- binm(k; u,n).binf(k*; q,k) 
n =  I k = k" + 1 5. APPLICATIONS 

(4-1) 5.1 A Critical System 

The exponential repair case ( r  = 1 ) reduces to: Assumptions 

n = O  

binf(gilb(n/2 ); u,n). 

W 

- poim(n;p-t). e binm(k; u,n) 

e binf (n - k; q,k). 

f l = l  k=gilb(nR) + 1 

1. A hardware system has n components, and is l-out-of- 

2. Component failures are mutually s-independent . 
3. Repair times are s-independent of component lives. 
4. Maintenance policy is unrestricted, ie, the number of 

repairmen available is equal to the number of system 
components. 

n:G (series). 

5. hi I pi. 
6. Xi = i/lOOO hours; pi = p = llhour. 4 
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Notation All these values have been computed using E =  lo-? 

n number of components in the system 
i component index, i = 1, ... , n 
Xi S(component i is up) 
X ( xl,. . . ,xn ) : binary vector 
Ai transition rate matrix for component i 
hi, pi [failure, repair] rate of component i 
I,,, m-dimensional identity matrix 
IIp, C, implies the [product, sum] over p from 1 to n 
3Z set of non-negative integers. 

These assumptions lead to a Markov model in which the number 
of system states be M = 2”. Any system state can be 
represented by x. The only operational state is ( 1 , .  . . , l ) .  The 
transition rate matrix A ( n )  of the system can be easily generated 
using Kronecker algebra as follows. 

-xi xi 

A ( 1 )  = AI, 

A ( n )  = A ( n - l ) @ A ,  = 

A ( n - 1 )  - X,-In-, 

Pn.In-1 

for n L 2 .  

The unifonnization rate is: 

v = P b ) .  

P 

All the repair rate’s being equal does not simplify the IAD com- 
putation. Figure 2 shows Pr{IAV (t) > 0.9} vs time for several 
values of n.  

P(/,4V(L) > 0.9) 
1 

0.98 

0.96 

0.94 

0.92 
0.9 

0.88 

O.R6 

0.84 

0.82 

0.8 I I I I I I 

0 20 40 60 80 100 
t (in hours) 

Figure 2. Pr{lAV(t) > 0.9) vs Time 
[n = 7(1)10]. 

Thus, for n I 10, Pr{IAV(r) > 0.9} - 1 as r - W. 

System reliability is: 

~ ( t )  = Pr{IAV(t) = 1 )  = exp(- x p - r ) .  (5-1) 
P 

For example, for t > 60 hours, figure 2 shows that such a 
system with n=7 components, is available at least 90% of the 
time with probability > 0.97.  In contrast, R ( t )  of the 
7-component system < 0.19. 

If n= 10 and r > 100 hours, the system is available at least 
90% of the time with probability = 0.92;  while the reliability 
< 0.005. 

5.2 Busy Fraction Time of the Server for M / M / l  Queue 

Assumptions 

service rate p. 

of customers waiting, including the one being served. 

1. The queueing system is M/M/1 with arrival rate X and 

2. State i ,  i E 3Z, of the system represents the number 

3. The initial state is 0. 4 

Notation 

BPS(t) busy percent of server during (0,t); a r.v. 
IPS ( t )  percent of time during (0,t) that the server is idle. 

The non-zero entries of the infinitesimal generator A of the cor- 
responding Markov process X = {X,, r L O }  are: 

A(0,O) = - A  

A ( i , i - 1 )  = p , A ( i , i )  = - ( X + p ) , A ( i , i + l )  = X,fori L 1 .  

BPS(t) = ( l / t ) .  S(X, 2 1) dr. s1 

51 
BPS(t) is also called ‘system workload’. 

IPS(t) = ( l / t ) .  S(x, = 0 )  ds. 

BPS(t) + IPS(t) = 1 .  

Pr{BPS(t) > x }  = Pr{IPS(r) I 1 - x } ,  for 0 < x < 1 .  

The transition probability matrix P of the uniformized Markov 
chain associated with X with respect to the rate Y = A + p 
verifies: 
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Let, 

B = { 0 } ,  B" = { i  E X l i  L l } ,  

p = X l ( X  + p ) ,  q = 1-p. 

Then, 

P ~ B  = (q ,  0, 0, ... ), and 
the non-zero entries of matrix PE, are: 

It is well-known that the steady-state workload of the 
MIMI1 queueing system is: 

Ip ,  for X e p 

1, otherwise 
BPS(m) = 

Figure 3 shows this limiting behavior. For example, for A =  1 ,  

Pr{workload > 95%) = 0 .28 ,  f o r t  E (0, l oo ) ,  

Pr{workload > 95%) = 1 ,  f o r t  E (0, 00). 

APPENDIX 
P B c ( i , i - l )  = q,  and P B , ( i , i + l )  = p ,  for i L 1 .  

The Cdf{IPS (t)} or Sf{BPS (t)} is given by (3-8) with an er- 
ror less than E: 

Pr{BPS(t) > x }  = Pr{IPS(t) I 1-x} 

C N  
= 1 - p o h ( n ;  (X+p)-t).binm(k;l - x , n )  ' Y n , k ;  

the N & C are as in section 3 .  The values of Y n , k  are (for n L 
0) : 

k=O n = k  

1 ,  fo rk  = 0 

n-k+l 
pj'y,,-j,k-l, for 1 I k 4 n. 

j=l  

Yn,k = 

So, we need only the values of Pj to compute Sf{BPS(t)}. 
These values are given by lemma 5.1. 

Lemma 5 .1 .  Pl = q,  and for all j L 1 

PZj+, = 0. 

A.l Proof of Theorem 3.1 

For n=O, the result is trivial. 
The proof can be made by induction on integer k, for fixed- 

For k=O,  we obtain ~ , , ~ ( i )  = 1 for every i, 0 I i I 

For k = l ,  we obtain for 0 I i I n-1, 

integer n 2 1 .  

n which is in accord with (3-1).  

Alternatively, (3-2) gives, 

Eq (A-a) & (A-b) are the same using the convention that 
x n , k ( m )  

Let the result be true for integers 0, 1 , . . . ,k < n; then com- 
pute x,,k+ ( i )  using (3-2) for every i ,  0 I i I n: 

0 for every m > n. 

The Pi can be easily computed recursively. Figure 3 shows the h = l  

probability that the server is occupied for at least 95% of the 
time, as a function of the X (0 I X I 2 )  and t (0 5 t I 100); 

n 

= ph . ( 1 )  
the service rate p = 1.0. h= 1 03 

= Ph'@n,k(l);  (A-1 1 
h = l  03 

Q3 = {Z1,Z2, ..., ln E [O;k]le,,,(Z) = k, i+h+02:n(Z) 

2 
5 I n}. 

In the sum, change lh - / h  + 1. 
Figure 3. Pr{BPS(t) > 95%) vs h & t Q3 
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The l h  can start with 0 since all the corresponding terms will 
be 0; thus, 

The r.h.s of the previous equation can be decomposed into two 

term 2, 1, = k +  1 implies that all the other Zi are 0. Therefore, 
terms: 1) in which l h  E [O;k], and 2) in which l h  = k +  1. In 

n n 

In the first term, replace t91:n(Z) by k +  1; in the second term 
replace lh by k +  1; then, 

The relation between disjoint sets is: 

{11, ..., fn E [O;k+l]le,,,(f) = k + l ,  i+02:n(Z) I n} 

U ( U ~ = l { Z 1  ,..., 1, E [O;k]If,=O fo rp#h ,  

f h =  k + l ,  i + 0 2 : , ( f )  I n } ) .  

Thus, from k + l  - k, we obtain (3-3). Q. E. D. 

A.2 Proof of Corollary 3.1 

Relation #a is easily deduced from theorem 3.1. 
Relation #b can be proved using (A-1), which can be writ- 

ten for integers n 2 1, 1 < k I n and i=O as: 

- 

, 
h = l  Q8 into BCl& =1} 

IEEE TRANSACITONS ON RELIABILITY, VOL. 43, NO. 2, 1994 JUNE 

The conditions { O 1 . . , , ( f )  = k- l} and {020(Z) I n-h} imp- 
ly that k-1 I n-h, ie, h I n-k+ l .  So, if h > n - k + l ,  
then the terms in the Ens sum of (A-2) are all 0. Therefore, 

n - k + l  

Yn ,k  = p h '  @ n , k - l ( f ) .  64-3) 
h = l  Q8 

In the second sum of (A-3), since the integer n - h + 1 verifies 
that 1 I n - h  + 1 5 n, then the condition, 

{ f 1 2 : n ( Z )  I n-h} implies that, 

Eq (A-3) then becomes, 

Using theorem 3.1, we obtain, 

n - k + l  

Y n , k  = P h ' Y n - h , k - 1 .  
h = l  

Q. E. D. 

A . 3  Proof of Lemma 3.1 

Since Yn,k  = Pr{NB(n) > k}, then lemma 3.1-c is 

BydefinitionofNB(n), wehaveNB(n) I N B ( n + l ) .  It 
evident. 

follows that NB(n) > k implies NB(n + 1)  > k;  thus, 

This proves lemma 3,l-d. Q. E. D. 

A.4 Proof of Lemma 5.1 

It is clear that P1 = q since P I  = PB 
F o r j  1 2, 

which can be interpreted as, 

Pj = p.Pr{reaching state 0 after exactly j -2  transitions into 
B'&= 1) .  

This last probability is clearly 0 when j is odd. It follows that 
for all j 2 1, P2j+l  = 0. Furthermore, for every j 1 1, 

P2j = p Pr { reaching state 0 after exactly 2 (j - 1) transitions 
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which is also 

Pzj = p.Pr{‘number of customers served in a busy period’ 

= j}.  

It is well known [7] that Pr{servingj customers in a busy period} 
is: 

It follows, therefore, that, for every j 2 1, 

Q. E. D. 

A.5 Explanation of Uniformization 

When studying the transient behavior of a Markov pro- 
cess (continuous time Markov chain), the solution to the Chapp- 
man forward/backward differential equations follows a matrix 
exponential, exp(A - t )  , yielding the ‘‘transition functions’ ’ - 
analogous to the 1-step transition matrix for discrete-time chains. 
Generally, computation of the transition functions must be ap- 
proached numerically, eg, eigen-analysis to compute exp(A- t ) .  
However, it is possible to trade a complicated Markov process 
for one of simpler structure but of the same probability law. 
This simpler process is such that the subordinate point process 
(times between jumps) is Poisson (instead of the complicated 
non-renewal subordinate point process of the original continuous 
chain - an amazing result) and thus is independent of the im- 
bedded (discrete) Markov chain governing state transitions. 

Unifonnization is the well-known technique for creating 
this simpler Markov process. An advantage in numerical com- 
putations is sometimes gained by appealing to the properties 
of Poisson processes and the straightforward computations re- 
quired to study the transient behavior of the (discrete) imbedded 

chain. 
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