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Abstract—We consider in this paper an important Quality of
Experience (QoE) indicator in cellular networks that is reneging
of users due to impatience. We specifically consider a cell under
heavy load conditions, modeled as a multiclass Processor Sharing
system, and compute the reneging probability by using a fluid
limit analysis. In order to enhance the user QoE, we propose
a radio resource allocation control scheme that minimizes the
global reneging rates. This control scheme is based on the α-
fair scheduling framework and adapts the scheduler parameter
depending on the traffic load. While the proposed scheme is
simple, our results show that it achieves important performance
gains.

I. INTRODUCTION

Impatience of users when using an Internet service has a

major impact on the quality of experience, especially via an

access through a cellular network with scarce radio resources.

In fact, impatience is negative for the user, who is not satisfied

by the quality of service offered by the network, as well as

the network itself, since radio resources are consumed for

transporting data which will eventually not be exploited by

the end user. Impatience is due to many factors related to

the performance of servers, customer devices, etc., but also to

bandwidth sharing in the network. In this paper, we focus on

impatience caused by the network.

From a mathematical point of view, impatience has been

investigated for many years in the queuing literature. In

Stanford [1], see also [2], a new version of the Erlang loss

formula has been derived taking into account user impatience,

resulting in the so-called Erlang-I formula, where I stands

for impatience; other works call it the Erlang-A formula, A

standing for abandonment [3] (see also [4] for FIFO queues

with abandonment and references therein). This formula is

applicable for the case of streaming-like flows where the

service duration is independent of the quantity of resources

obtained by the user, unlike our present case of data traffic

where service duration depends on the quantity of resources

obtained by the user. In [5], [6], impatience has been studied

for flows with heavy tailed distributions sharing a common

resource according to the processor sharing discipline.

Impatience has been modeled in [7] by using the deter-

ministic service curves approach. The authors of that paper

also reported on empirical works showing evidence for user

impatience; this phenomenon may cause up to 20% of aborted

traffic with respect to the total amount of carried data traffic.

Data traffic at the flow level has been modeled in [8], where

impatience of users is studied under overload conditions.

While impatience can be seen as a negative phenomenon, it

can also be used as a lever to discourage customers when the

system becomes too much overloaded. This can be achieved

in cellular networks by modulating the capacity available to

customers being at a certain distance of the antenna. This

general idea can be applied in several manners and can be

viewed as a network optimization mechanism. In this paper,

we reuse the general framework of α-fair scheduler in order

to perform this control. This has the advantage of being

easy to implement in realistic settings as α-fair schedulers

(and especially Proportional Fair (PF)) are widely adopted

in cellular networks. This also reduces the dimension of our

problem as it narrows the optimization problem to the tuning

of a single parameter α.

In order to achieve this goal, we first derive a model for

reneging probabilities under a general α-fair scheduler. In

particular, we consider a heavy load regime and develop a fluid

flow analysis of impatience in cellular networks. This choice is

motivated by the fact that impatience is a notable phenomenon

under heavy traffic conditions. In this framework, we notably

establish a fixed point formulation for the computation of the

reneging probability and introduce a new metric, namely QoE

perturbation, expressing how much a particular flow impacts

the reneging probability in the system. We then use this QoE

perturbation metric to design a new radio resource manage-

ment scheme that controls the parameter of the scheduler in

order to reduce the global reneging in the system. For instance,

recognizing that customers far from the base station degrade

the global performance of the system, impatience and α-fair

scheduling can be used to discourage those customers and in

some sense to perform an implicit admission control in order

to optimize the use of radio resources.

The organization of this paper is as follows: In Section II,

we introduce the model for describing a cell of a cellular

network accounting for impatience of customers. The reneging

probability is computed in Section III. A scaled version of

the model is developed in Section IV. The new controlling

scheme is introduced in Section V. Some concluding remarks

are presented in Section VI. Some technical results are proved

in Appendices.



II. MODEL DESCRIPTION

A. Model without impatience

We consider one cell of a 3G or 4G cellular network.

Because of wave propagation and interference, the capacity

decreases when one moves away from the base station. The

cell can be represented as a concatenation of concentric rings

so that the cell can be viewed as a multi-class system where

users at different positions belong to the different classes. The

number of classes corresponds to the number of rings (radio

conditions) K; class k ∈ {1, . . . ,K} is characterized by a

service capacity ck (c1 > c2 > . . . > cK) and has a weight in

the total traffic demand equal to pk such that
∑K

k=1 pk = 1.

The state of the system is defined by n = (n1, . . . , nK), where

nk is the number of active users in region k. The quantity

|n| = n1 + . . .+ nK is the overall number of active users in

the cell.

A Round Robin scheduling scheme shares the bandwidth

equally between customers: If there are nk active customers

in class k for k = 1, . . . ,K , then the server rate for a customer

of class k is equal to ck/|n|. Beyond Round Robin, certain

scheduling algorithms maximize the so-called α-fair utility

function defined by

U =





∑|n|
i=1 log(d+ ri), α = 1,

∑|n|
i=1

(ri+d)1−α

1−α
α 6= 1.

for some d > 0, where ri is the mean rate for user i estimated

over a given time interval. The scheduling algorithm maxi-

mizing this utility function is referred to as α-fair scheduling

algorithm. The case α = 1 is known as Proportional Fair

sharing algorithm that is often implemented in base stations.

To compare the α-fair scheduling algorithm with the Round

Robin algorithm, we can introduce the concept of scheduling

gain defined for class k customers as the ratio of the rate

allocation rk,α under the α-fair scheduling algorithm to the

rate allocation under Round Robin. This gain depends on

the number of customers in the system and is denoted by

Gk(n, α); this means that the throughput achieved by users in

ring k when there are n active users in the cell is given by

ckGk(n, α)/|n|.
Taking into account this gain, we develop in this paper a

performance model for general values of the gain, i.e., when

the gain depends on the detailed number of users in the cell.

However, it has been shown in various situations that the gain

for each zone largely depends on the total number of users |n|
and not on the detailed positions of users and that this becomes

more obvious asymptotically, i.e. when |n| becomes very large

[9], [10]. We thus develop in Section IV a scaled version of

the model in overload situations taking into consideration this

asymptotic value of the gain.

We assume that users present in the cell download data, thus

giving rise to data flows (typically TCP connections). In the

following, we assume that flows appear according to a Poisson

process with rate λ and we set λk = λpk. We further assume

that the volume σ of flows is exponentially distributed with

mean E(σ). In the following we set

µk(n, α) = Gk(n, α)ck/E(σ),

which is the service rate of a class k flow for a gain Gk(n, α).
Owing to the Markovian assumptions, the row vector n(t) =

(n1(t), . . . , nK(t)) describing the number of the customers in

the various rings of the cell at time t is a Markov process. The

generator R of this process is an infinite matrix with non null

components given by

r(n,n + ek) = λpk and r(n,n − ek) =
nkµk(n, α)

|n| ,

where ek is the vector with all components equal to 0 except

the kth one equal to 1. Furthermore, we set

r(n,n) = −λ−
K∑

k=1

nkµk(n, α)

|n| .

Unless all the parameters µk(n, α) do not depend on n and

k, there is no product form for the steady state probability

of the system. The invariant probability Π when it exists

satisfies ΠR = 0 together with the normalizing condition∑
n∈NK Π(n) = 1.

B. Modeling impatience

We assume that users may abort their ongoing transmission

if their download time is too long. We specifically assume

that users in class k renege if their download is not completed

after a period of time exponentially distributed with parameter

γk. In the following, we assume that 0 < γk < µk(α) for

k = 1, . . . ,K and for all α > 0, where µk(α) is the minimal

service rate over all values of n. This assumption means that

a user is ready to wait more than if he were alone in the cell

and served according to the worst scheduling discipline.

The process (n(t)) describing the number of customers in

the system is still a Markov process thanks to the exponential

assumptions. The corresponding generator Q is an infinite ma-

trix whose non null transition rates are given for k = 1, . . . ,K
by

q(n,n+ek) = λpk, and q(n,n−ek) =
nkµk(n, α)

|n| +nkγk,

Furthermore, we set

q(n,n) = −λ−
K∑

k=1

nkµk(n, α)

|n| −
K∑

k=1

nkγk.

We introduce, for every n ∈ N, the set Sn = {n ∈ NK :

|n| = n}. The cardinality of set Sn is |Sn| =
(

n+ k − 1
n

)
.

The matrix Q can be decomposed as

Q =




C0 A0

B1 C1 A1

B2 C2 A2

. . .


 (1)

with matrices An, Bn, and Cn being defined as follows:



• The non-null entries of matrix An are defined for n ≥ 0
and n = (n1, . . . , nK) ∈ Sn by

an(n,n+ ek) = λpk = λk

for k = 1, . . . ,K;

• The non-null entries of matrix Bn are defined for n ≥ 1
and n = (n1, . . . , nK) ∈ Sn by

bn(n,n− ek) =
nkµk(n, α)

|n| + nkγk

for k = 1, . . . ,K;

• The non-null entries of matrix Cn are defined for n ≥ 0
and n = (n1, . . . , nK) ∈ Sn by

cn(n,n) = −λ−
K∑

k=1

nk

(
µk(n, α)

|n| + γk

)
.

We assume that there exist a positive constants µ∗ and µ∗ such

that

µ∗ ≤ µk(n, α) ≤ µ∗ (2)

for all k = 1, . . . ,K , α > 0 and n ∈ NK , so that the service

rate for customers does not become arbitrarily small or large.

Under the above assumption, the number of customers in the

system is less than the number of customers in an M/M/∞
with arrival rate λ and service rate γ = min1≤k≤K γk. This

implies that the system under consideration is stable even

if ρ > 1. There hence exists a unique invariant probability

distribution given by the row vector (π(n),n ∈ NK) which

satisfies

πQ = 0 and
∑

n∈NK

π(n) = 1. (3)

III. PROBABILITY OF RENEGING

Let Pk(n) be the probability that a customer of class k
reneges while there are nℓ customers of class ℓ = 1, . . . ,K
in the system upon its arrival so that n = (n1, . . . , nK). By

using the memoryless property of the exponential distribution,

we can easily prove the following result.

Lemma 1: The probabilities Pk(n) for n ∈ NK satisfy the

recurrence relations

Pk(n) =
γk

Λk(n)
+

K∑

ℓ=1

λpℓ
Λk(n)

Pk(n+ eℓ)

+

K∑

ℓ=1

1

Λk(n)

(
nℓµℓ(n+ ek, α)

|n|+ 1
+ nℓγℓ

)
Pk(n− eℓ), (4)

where

Λk(n) = λ+

K∑

ℓ=1

(nℓ + δk,ℓ)µℓ(n+ ek, α)

|n|+ 1
+

K∑

ℓ=1

(nℓ+δk,ℓ)γℓ

with δk,ℓ denoting the Kronecker symbol.

Recurrence relation (4) can be rewritten in matrix form as

(I−Mk)Pk = γkuk, (5)

where I is the identity matrix, Pk (resp. uk) is the column

vector with components equal to Pk(n) (resp. 1/Λk(n)), n ∈
N

K , and the matrix Mk is given by

Mk =




0 Ak,0

Bk,1 0 Ak,1

Bk,2 0 Ak,2

. . .


 (6)

with matrices Ak,n and Bk,n being defined as follows:

• The non-null entries of matrix Ak,n are defined for n ≥ 0
and n = (n1, . . . , nK) ∈ Sn by

ak,n(n,n+ ej) =
λpj

Λk(n)
;

• The non-null entries of matrix Bk,n are defined for n ≥ 0
and n = (n1, . . . , nK) ∈ Sn by

bk,n(n,n− ej) =
1

Λk(n)

(
njµj(n+ ek, α)

|n|+ 1
+ njγj

)
.

The reneging probability Pk that a class k customer reneges

is eventually given by

Pk = π.Pk =
∑

n∈NK

π(n)Pk(n), (7)

where π is the row vector satisfying Equation (3).

In spite of the fact that the infinite norm of matrix Mk is

equal to 1, we can show that under Assumption (2) the solution

to Equation (5) is given by

Pk = γk

∞∑

r=0

(Mk)
r
uk. (8)

In spite of the above explicit representation of the reneging

probability, Equation (5) may be very difficult to solve since

we have to deal with the infinite block matrix Mk, we develop

in the next section an approximating model when the load

ρ > 1. For impatience, this case is the most interesting as

many customers may renege; impatience has less impact when

ρ < 1. Note that the case ρ ∼ 1 requires a more detailed

analysis as it involves intricate heavy traffic limit theorems.

IV. SCALING MODEL

Throughout this section, we assume that ρ > 1. This implies

that the number of customers in the system becomes very

large. In that case, the gain Gk(n, α) tends to a limit Gk(α)
for all k = 1, . . . ,K [9], [10]. (Some numerical examples are

given in the next sections to support this assumption.) Hence,

under the assumption ρ > 1, the service rate of customers

of class k is denoted by µ̄k(α) which depends only on the

parameter α of the α-fair scheduling algorithm.

Let us introduce the notation

Ck(n(t))
def.
=

nk(t)

n1(t) + · · ·+ nK(t)
,

where n(t) = (n1(t), . . . , nK(t)) is the number of customers

in the various rings of the cell at time t. Additionally, let us

recall that due to impatience, a class k customer leaves the

system at rate γk > 0.



For ξ > 0, let Nξ(dt) denote a Poisson process on R+ with

rate ξ and (Nξ,i(dt)) is an i.i.d. sequence of such processes.

All Poisson processes are assumed to be independent.

Provided that n(t) is not 0, the process (n(t)) can be

expressed as the solution of the following SDE (Stochastic

Differential Equation)

dnk(t) = Nλk
(dt)−Nµ̄k(α)Ck(n(t−))(dt)

−
nk(t−)∑

i=1

Nγk,i(dt) (9)

with initial condition (nk(0)) for k = 1, . . . ,K .

A. Scaled Version

In order to qualitatively analyze the system, we consider

a scaling similar to the one used in Gromoll et al. [11] for a

processor-sharing queue with impatience with a single class of

jobs but with general assumptions on the distribution of service

duration and impatience. The average impatience of jobs is

assumed to be of the order of a large factor N as follows:

the parameters γk is replaced with γk/N . The corresponding

Markov process will be denoted by (nN (t)). The SDE (9)

then reads

dnN
k (t) = Nλk

(dt)−Nµ̄k(α)Ck(nN (t−))(dt)

−
nN
k (t−)∑

i=1

N γk
N

,i(dt).

Denote by n̄N
k (t) = 1

N
nN
k (Nt) the corresponding fluid scaling

of the process. By integrating the above SDE, n̄N
k (t) can be

expressed as, for 1 ≤ k ≤ K ,

n̄N
k (t) = n̄N

k (0) + λkt−
∫ t

0

µ̄k(α)n̄
N
k (u)

n̄N
1 (u) + · · ·+ n̄N

K(u)
du

− γk

∫ t

0

n̄N
k (u) du+MN

k (t), (10)

for t < TN
0

def.
= inf{s ≥ 0 : n̄N (s) = 0}, where M

N(t) =
(MN

k (t)) is a martingale whose predictable increasing process

is given by

〈
MN

k

〉
(t) =

1

N

(
λkt+

∫ t

0

µ̄k(α)n̄
N
k (u)

n̄N
1 (u) + · · ·+ n̄N

K(u)
du

+γk

∫ t

0

n̄N
k (u) du

)
.

See Ethier and Kurtz [12] for example.

B. Convergence results

Assume that the initial conditions are such that (n̄N (0))
converges to a non-zero vector ℓ(0) = (ℓk(0)).

We first state two technical lemmas, their proofs are given

in Appendix.

Lemma 2: The martingale (MN(t)) converges in distribu-

tion to 0 for the uniform convergence on compact sets when

N tends to infinity.

Lemma 3: The process (nN (t)) is tight.

By using the above lemmas, we can now show that the

system does not empty.

Lemma 4: Under the condition ρ > 1, the hitting time of

0 by process (n̄N (t)) converges in distribution to infinity, i.e.

for any t > 0, limN→+∞ P
(
TN
0 < t

)
= 0.

Proof: Introduce the process (ñN (t)) such that ñN (t) =∑K
k=1 n

N
k (t)/µ̄k(α). We have

dñN (t) = (ρ− 1) dt−
N∑

k=1

γk
nN
k (t)

µ̄k(α)
dt+

K∑

k=1

dMN
k (t)

µ̄k(α)
.

Hence,

dñN (t) ≥ (ρ− 1) dt− γ∗
N∑

k=1

nN
k (t)

µ̄k(α)
dt+

K∑

k=1

dMN
k (t)

µ̄k(α)
.

where γ∗ = max1≤k≤K γk. The process (nN (t)) is tight and

the martingale term in the right hand side of the above equation

vanishes when N tends to infinity. It follows that for any

limiting process (ñ(t)) of the sequence (ñN (t)) as N → ∞
dñ(t) ≥ (ρ− 1) dt− γ∗ñ(t)dt.

This implies that ñ(t) ≥ ň(t) for all t ≥ 0 where ň(t) satisfies

dň(t) = (ρ − 1) dt − γ∗ň(t) dt with ň(0) = ñ(0). Since

ň(t) > 0 for all t ≥ 0, the result follows.

We can now state the main result of this section.

Theorem 1 (Fluid Limits): If nN (0)/N converges to a non-

zero limit (ℓk(0)), then the process (nN (Nt)/N) converges in

distribution to (ℓk(t)), the solution to the differential equation

ℓ̇k(t) = λk −
µ̄k(α)ℓk(t)

ℓ1(t) + · · ·+ ℓK(t)
− γkℓk(t) (11)

with the prescribed initial condition (ℓk(0)).
Proof: We know from Lemma 3 that the process (nN (t))

is tight. By using again Relation (19), it is not difficult to show

that if (ℓ(t)) = (ℓk(t)) is a limiting point of (n̄N (t)) then

necessarily

ℓk(t) = ℓk(0) + λkt−
∫ t

0

µ̄k(α)ℓk(u)

ℓ1(u) + · · ·+ ℓK(u)
du

− γk

∫ t

0

ℓk(u) du, (12)

consequently such a limit is unique.

As an easy consequence of the above result, we have the

convergence of distributions.

Corollary 1: If ρ > 1 and (nN
k (∞)) denotes a random

variable with the same distribution as the invariant probability

of (nN
k (t)) then for the convergence in distribution

lim
N→+∞

(
nN
k (∞)

N

)
= (ℓk),

from Equation (11), one gets that, for 1 ≤ k ≤ K ,

ℓk =
λkS

µ̄k(α) + γkS
, (13)



where S = ℓ1 + · · ·+ ℓK is the unique non-negative solution

to the equation

K∑

k=1

λk

µ̄k(α) + γkS
= 1. (14)

The reneging probability for class k customers is then

approximated by the quantity

P̃k =
γkS

µ̄k(α) + γkS
. (15)

The global reneging probability is thus computed by:

P̃ =

K∑

k=1

λk

Λ
P̃k =

S

Λ

K∑

k=1

λkγk
µ̄k(α) + γkS

(16)

where Λ =
∑K

k=1 λk. It is worth noting that when γk does

not depend on k (say, γk = γ0 for k = 1, . . . ,K with some

constant γ0 > 0), the reneging probabilities do not depend on

γ0 but only on the quantity γ0S, which itself does not depend

on γ0 (see Equation (14)).

We can further prove the following result for second order

asymptotics, whose proof is given in Appendix A.

Theorem 2: If the sequence
(
(nN

k (0)−Nℓk(0))/
√
N
)

converges as N tends to infinity to (δk), then the se-

quence
(
(nN

k (Nt)−Nℓk(t))/
√
N
)

converges in distribution

to (Zk(t)), the solution to the following SDE

dZk(t) =

√
2λk − ℓ̇k(t) dBk(t)

−Zk(t)

(
γk +

µ̄k(α)∑K
i=1 ℓi(t)

)
dt+

µ̄k(α)ℓk(t)∑K
i=1 ℓi(t)

K∑

i=1

Zi(t) dt,

such that (Zk(0)) = (δk), where (Bk(t)) is a standard K-

dimensional Brownian motion and (ℓk(t)) is the solution to

the differential equation (11) with initial condition (ℓk(0)).
A numerical validation of the above results for K = 2

can be found in [13], where the fluid limits (15) and the

Gaussian behavior described in Theorem 2 are compared

against numerical results obtained by solving Equation (7)

and simulation results. These numerical results show good

agreement with the above theoretical approximation.

In the following, we exploit the fluid limits to investigate

how the utilization of the cell can be optimized in the presence

of impatient customers, those at the border of the cell being

much more impatient than those at the core, thus causing more

waste of resources.

V. CONTROLLING THE SCHEDULER PARAMETER

A. Illustration of the scheduler gains

We begin by illustrating the scheduler gains for different

values of α. Several papers in the literature modeled these

scheduler gains. For instance, [14] proposed a general frame-

work for computing the scheduler gain for α = 1 and this

framework has been generalized in [9] for α > 0. In [10],

the authors proposed a fast statistical method based on kernel

density estimation to evaluate scheduling gains for realistic

physical layer models, including the impact of advanced

receivers. In particular, it has been shown in these papers that

the scheduler gain mainly depends on the total number of

active users in the cell, and not on their exact distribution

over the different radio conditions. In this paper, we use the

framework proposed in [9] and compute the scheduler gains

for different values of α.

Figure 1 illustrates the average gain of the proportional fair

scheduler for a 3G system where the radio conditions of users

are classified into two classes: Cell edge users characterized

by an average Signal to Interference Ratio (SINR) equal to

16 dB and cell center users characterized by an average SINR

equal to 24 dB. It can be observed that the scheduler gain

increases with the number of users, until reaching a saturation

value when the number of users is large. Furthermore, the gain

in cell edge is larger than the gain in cell center; this is due to

the fact that the physical throughput is saturated (limited by

a maximal modulation and coding rate) and that cell center

users are close to this saturation value.
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Fig. 1. Scheduler gain for cell edge and cell center users for a proportional
fair scheduler.

We now move to the illustration of the impact of α on the

scheduler gain. We illustrate in Figure 2 the case of two active

users and show the scheduler gain for cell edge and cell center

users for different values of α. It can be observed that a small

α gives a large gain (> 1) to cell center users and a negative

gain (< 1) to cell edge users; as the scheduler tends to be

more opportunistic1. For α > 1, cell edge users are privileged

as the tendency is to enhance fairness.

B. Impact of the scheduler parameter on the reneging proba-

bilities

In order to illustrate the impact of the scheduler on the

reneging probabilities, we consider the cases of the Round

Robin scheduler, the Proportional Fair scheduler (α=1), a

scheduler with α=0.5 and a scheduler with α=2. We consider a

1It is worth noting that the case α = 0 does not correspond to a blocking
of cell edge users even if their throughput is largely reduced. Indeed, the
presence of fast fading randomizes the radio conditions and makes cell edge
users sometimes in relatively good conditions.
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Fig. 2. Scheduler gain for cell edge and cell center users for different values
of α when there are two users in the cell.

system with λ1 = λ2 and that is characterized by round robin

service rates given by µ1 = 1 and µ2 = 0.5. The parameters

γ1 and γ2 are taken equal so that the reneging probability does

not depend on their value.

Figure 3 shows the impact of the scheduler configuration

on the global reneging probability. It can be observed that all

the α-fair schedulers achieve considerable gains over round

robin. On the other hand, the scheduler parameter α has a

significant impact on the performance and has to be considered

in network control. Note that, for this specific configuration, a

proportional fair scheduler gives the best performance; this is

not however the case in general as we will show in the next

sections.
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Fig. 3. Average reneging probabilities for different scheduler configurations
(Round Robin, Proportional fair, α = 0.5 and α = 2.

C. QoE perturbation metric and the impact of the scheduler

parameter

Before moving to the optimization of α and to give more

insights about the impact of the scheduler on the QoE, we

introduce a new metric that is relative to the perturbation in

QoE caused by a communication.

QoE perturbation is related to the impact of the presence of

a given flow on the QoE of other users. In this paper, we define

the QoE perturbation induced by a customer of class k as the

derivative of the global reneging rate with respect to λk (the

shadow cost of a class k user). By using the approximation

of the previous section, we then define the QoE perturbation

function for class k users as follows:

Γ̃k(λ1, ..., λK) = ∂R̃ /∂λk,

where the global impatience rate is defined by the following

formula when all the parameters γk are equal to some γ0

R̃(λ1, ..., λK) =

K∑

j=1

λjP̃j(λ1, ..., λK) = γ0S(λ1, ..., λK).

In the general case of K radio conditions, it is sufficient to

derive the fixed point equation (14) in order to obtain the QoE

perturbation metric:

Γ̃k(λ1, ..., λK) =
∂R̃

∂λk

=


(µ̄k + γ0S)

K∑

j=1

λj

(µ̄j + γ0S)2




−1

(17)

Note that this QoE perturbation metric depends only on the

value γ0S that is independent from the impatience rate γ0 (see

the fixed point equation (14)).

Figures 4 show the QoE perturbation metrics for different

schedulers (α =0.5, 1 and 2) for cell edge and cell center

users, respectively. By privileging cell edge users, a scheduler

with α < 1 increases the impact of cell edge users on the

overall QoE, while a more opportunistic scheduler (α > 1)

makes cell center users contribute more to QoE perturbation.

D. Optimal scheduler configuration

We now propose a framework for controlling the impatience

of users. The objective is to tune α in order to minimize the

global reneging rate R̃(λ1, ..., λK , α) = γ0S(λ1, ..., λK , α).
For each network and traffic configuration, the objective is

to find α∗ that satisfies:

α∗ = argminαS(λ1, ..., λK , α) (18)

Figure 5 shows the optimal scheduler parameter that mini-

mizes the overall reneging rate, for three network configura-

tions that correspond to the balance between good and bad

radio conditions in the cell. It can be observed that, when

the weights of users with good and bad radio conditions are

equivalent, the PF scheduler is the optimal one as it achieves

the lowest reneging rate. In that figure, λc (resp. λe) denotes

the arrival rate of users at the center (resp. the edge) of the

cell.

However, when radio conditions in the cell tend to be biased

towards low SINRs (λc/λe < 1), a large α is optimal as it

privileges cell edges and vice versa. The gain of this optimal

scheme compared to a classical PF scheduler is illustrated in

Figure 6 that shows a reduction in the reneging rate of up to

50%.

To conclude this section, let us mention that we have

performed simulations for underload conditions. We have
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Fig. 4. QoE perturbation metric for users for different scheduler parameters
(Proportional fair, α = 0.5 and α = 2).

observed that the modulation of the parameter α has much

less impact on the reneging probabilities than in the case of

overload. This is why the proposed scheme is well adapted to

manage the cell under overload conditions.

VI. CONCLUSION

By using a fluid limit approximation, we have studied

in this paper the reneging probability of customers sharing

the radio resources of a cell in a cellular network under

different scheduling disciplines. We show that under heavy

load conditions the reneging probability can easily be derived

by using a simple fixed point equation.

In addition, we have introduced a QoE perturbation metric

corresponding to the impact that a particular communication

class has on the QoE of other users. We then used this

analytical framework in order to devise a radio resource

management scheme that minimizes reneging by controlling

the scheduler parameter and show that important performance

gains can be achieved. By using a factor impacting QoE, we

can thus perform some kind of admission control without

using explicit signalling between the user and the network.
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Fig. 5. Optimal scheduler parameter for different traffic loads.
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Fig. 6. Gain on the reneging rate when implementing the optimal scheduler
parameter compared to a classical PF scheduler.

The choice of the optimal fairness parameter moreover does

not depend on the impatience rate if this last factor is identical

for all users, which seems to be a reasonable assumption.

Concerning statistical assumptions, it should be noted that,

due to the processor-sharing discipline the hypothesis of

exponential service distribution has some impact on the results

obtained in the paper. See Jean-Marie and Robert [15] for

example. Further investigations are required in this domain.

APPENDIX

FIRST ORDER

Proof of Lemma 2: Let

SN (t) = sup
0≤s≤t

(
K∑

k=1

n̄N
k (s)

µ̄k(α)

)

then, with Relation (10), one obtains

SN(t) ≤ SN(0) + (ρ+ 1)t+ γ∗

∫ t

0

SN(u) du

+ sup
0≤s≤t

(
K∑

k=1

MN
k (s)

µ̄k(α)

)
,



where γ∗ = max1≤k≤K γk. Doob’s Inequality subsequently

gives the relation

E(SN (t)) ≤ E(SN (0)) + (ρ+ 1)t+ γ∗

∫ t

0

E(SN (u)) du

+
2

N

((
K∑

k=1

(
λk

µ̄k(α)2
+ sup

k

1

µ̄k(α)

))
t

+γ∗

∫ t

0

E(SN (u)) du

)
.

From Gronwall’s Inequality, one derives the relation

E(SN (t)) ≤
(
E(SN (0)) +

KN
1

KN
2

)
exp (K2t) , (19)

with

KN
1 = ρ+ 1 +

2

N

K∑

k=1

(
λk

µ̄k(α)2
+ sup

k

1

µ̄k(α)

)
,

KN
2 =

N + 2

N
γ∗.

In particular, by using again Doob’s Inequality and the expres-

sion for
〈
MN

k

〉
(t), for η > 0,

P

(
sup

0≤s≤t

|MN
k (s)| ≥ η

)

≤ 1

Nη2

(
(λk + µ̄k(α)) t+ γ∗µ̄k(α)

∫ t

0

E(SN (u)) du

)
.

The uniform boundedness in N implied by Relation (19)

shows therefore that the sequence of martingales (MN (t))
converges in distribution to 0 for the uniform convergence on

compact sets.

Proof of Lemma 3: The modulus of continuity of process

(n̄N
k (t)) is defined as

ωn̄N
k
(δ) = sup

0≤s,s′≤t

|s−s′|≤δ

∣∣n̄N
k (s)− n̄N

k (s′)
∣∣ .

For η > 0, choose δ such that η > 4δmaxk(λk, µ̄k(α))

P(ωn̄N
k
(δ) ≥ η) ≤ P

(
sup
s,s′≤t

|MN
k (s)−MN

k (s′)| ≥ η/4

)

+P


 sup

0≤s≤s′≤t

|s−s′|≤δ

γ∗

∫ s′

s

n̄N
k (u) du ≥ η/4


 .

Because of the convergence of the martingales, the first term

of the right-hand side of this inequality converges to 0 when N
gets large. The last term of the right-hand side can be bounded

as follows

P


 sup

0≤s≤s′≤t
|s−s′|≤δ

γ∗

∫ s′

s

n̄N
k (u) du ≥ η/4




≤ P

(
SN(t) ≥ η

4γ∗µ̄1δ

)
≤ 4γ∗µ̄1δ

η
E(SN (t))

The sequence E(SN (t)) being bounded by Relation (19) this

expression can be made arbitrarily small with a convenient δ.

One concludes that the sequence (nN
k (t)) is tight.

SECOND ORDER

Define

n̂N
k (t) =

nN
k (Nt)−Nℓk(t)√

N
,

The stochastic differential equations (10) and ordinary differ-

ential equation (12) give the relation

n̂N
k (t) = n̂N

k (0)− γk

∫ t

0

n̂N
k (u) du+ M̂N

k (t)

−
√
Nµ̄k(α)

∫ t

0

(
nN
k (Nu)

|nN (Nu)| −
ℓk(u)∑K
j=1 ℓj(u)

)
du (20)

where the process (M̂N
k (t)) is the martingale (MN

k (t)/
√
N)

whose predictable increasing process is given by

〈
M̂N

k

〉
(t)

= λkt+

∫ t

0

µ̄k(α)n̄
N
k (u)

∑K
j=1 n̄

N (u)
du+ γk

∫ t

0

n̄N
k (u) du.

A. Convergence of the martingale

The convergence in distribution of (n̄N
k (t)) to (ℓk(t)) shows

that the processes
(〈

M̂N
k

〉
(t)
)

converges in distribution to

λkt+

∫ t

0

µ̄k(α)ℓk∑K
j=1 ℓj(u)

du + γk

∫ t

0

ℓk(u) du =

2λkt+ ℓk(0)− ℓk(t).

For 1 ≤ k 6= k′ ≤ K , one has
〈
M̂N

k , M̂N
k′

〉
(t) = 0,

consequently Theorem 1.4, page 339 of Ethier and Kurtz [12]

shows that, for the convergence in distribution,

lim
N→+∞

(
M̂N

k (t), 1 ≤ k ≤ K
)
=

(∫ t

0

√
2λk − ℓ̇k(u) dBk(u), 1 ≤ k ≤ K

)

where (Bk(t)), 1 ≤ k ≤ K are independent standard

Brownian motions.

B. Tightness

Fix some T > 0. The integrand of the last term of the

right-hand side of Equation (20) is

nN
k (Nu)

|nN (t)| − ℓk(u)∑K
j=1 ℓj(u)

=

n̂N
k (Nu)/

√
N + ℓk(u)∑K

k=1 n̂
N
k (Nu)/

√
N +

∑K
j=1 ℓj(u)

− ℓk(u)∑K
j=1 ℓj(u)

=
1√
N

(
n̂N
k (u)

∑K
j=1 ℓk(u)− ℓj(u)

∑K
j=1 n̂

N
j (u)

)

∑K
j=1 n

N
j (u)

∑K
j=1 ℓj(u)

.



Equation (20) becomes

n̂N
k (t) = n̂N

k (0)− γk

∫ t

0

n̂N
k (u) du+ M̂N

k (t)

− µ̄k(α)

∫ t

0

(∑K
j=1 n̂

N
k (u)ℓj(u)− ℓk(u)n̂

N
j (u)

)

∑K
j=1 n

N
j (u)

∑K
j=1 ℓj(u)

du. (21)

The convergence results obtained for the fluid limit show

that the sequence of processes
(∑K

k=1 n
N
k (t)

)
converges in

distribution to the process
(∑K

k=1 ℓk(t)
)

. The assumptions on

ρ and on the initial state imply that t 7→∑K
k=1 ℓk(t) is lower

bounded by some α > 0. In particular for any ε > 0, there

exists some N0 such that if N ≥ N0 and

AN
def.
=

{
inf

0≤t≤T

K∑

k=1

nN
k (t) ≥ α

2

}
,

then P(Ac
N ) ≥ 1− ε.

If a = (ak) ∈ RK and (H(t)) = (Hk(t)) is some locally

bounded function with values in RK , one denotes

a∗ = max
1≤k≤K

|ak| and H∗
t = sup

0≤s≤t

|H(s)∗| .

On the set AN , one has, for 0 ≤ t ≤ T ,

n̂N∗
t ≤ n̂N∗

0 + M̂N∗
T +

(
γ∗ +

8Kµ̄(α)∗ℓ∗T
α2

)∫ t

0

n̂N∗
s ds,

Gronwall’s Inequality gives

n̂N∗
t ≤

(
n̂N∗
0 + M̂N∗

T

)
exp

((
γ∗ +

8Kµ̄(α)∗ℓ∗T
α2

)
t

)
,

since P(AN ) ≤ ε and the sequence (M̂N∗
T ) is converging in

distribution, one gets that there exists some C1 > 0 such that

P

(
n̂N∗
T ≥ C1

)
≤ 2ε. (22)

Let

WH(δ) = max
1≤k≤K

sup
0≤s,t≤T
|s−t|≤δ

|Hk(s)−Hk(t)|.

From Relation (21), one gets that, for η > 0 and δ > 0,

P (Wn̂N (δ) > η) ≤
P

(
γ∗δn̂N∗

T ≥ η

3

)
+P

(
W

M̂N (δ) >
η

3

)

+P

(
δ

(
γ∗ +

8Kµ̄(α)∗ℓ∗T
α2

)
n̂N∗
T ≥ η

3

)
.

By tightness of the sequence of processes (M̂N
k (t)), one can

find a δ0 > 0 and N1 ≥ N0 such that if N ≥ N1 and δ < δ0,

then

P

(
W

M̂N (δ) >
η

3

)
≤ ε.

If one takes

δ1 < min

(
δ0,

η

3C1γ∗
,

η

3C1

(
γ∗ +

8Kµ̄(α)∗ℓ∗T
α2

)−1
)
,

from Relation (22), one gets that, for δ < δ1 and N ≥ N1,

P (Wn̂N (δ) > η) ≤ 5ε.

From Theorem 15.5, page 127 of Billingsley [16], one gets

that the sequence of processes
(
n̂N
k (t), 1 ≤ k ≤ K

)
is tight

and that any of its limiting points is a continuous process.

C. Proof of the theorem

If (Z(t)) = (Zk(t), 1 ≤ k ≤ K) is a limiting point of the

sequence
(
n̂N
k (t), 1 ≤ k ≤ K

)
,

Relation (21) gives that it must satisfy the relation

Zk(t) = δk

− γk

∫ t

0

Zk(u) du+

∫ t

0

√
2λk − ℓ̇k(u) dBk(u)

−
∫ t

0

µ̄k(α)
(∑K

j=1 Zk(u)ℓj(u)− ℓk(u)Zj(u)
)

(∑K
j=1 ℓj(u)

)2 du.

The uniqueness of such a process (Z(t)) (as the solution of a

classical SDE) concludes the proof of the result.
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