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DISTRIBUTION OF BUSY PERIOD IN
STOCHASTIC FLUID MODELS*

Nelly Barbot,1 Bruno Sericola,1 and Miklós Telek2

1IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
2Department of Telecommunication, Technical University of Budapest,

1521 Budapest, Hungary

ABSTRACT

We consider the busy period in a stochastic fluid flow model with infinite

buffer where the input and output rates are controlled by a finite homogeneous

Markov process. We derive an explicit expression for the distribution of the

busy period and we obtain an algorithm to compute it which exhibits nice

numerical properties.

Key Words: Stochastic fluid model; Busy period; Markov process;

Numerical analysis

1. INTRODUCTION

Stochastic fluid models (SFM) are widely applied to capture the queueing

behaviour of packet switched networks with large buffers (1). An SFM is

composed by a buffer and a background process that modulates the rate of the fluid

accumulation in the buffer. The modulating process is commonly assumed to be a

continuous time Markov chain (CTMC).

The transient analysis of SFMs, i.e., the analysis of fluid distribution in the

buffer at time t, is a complex and computationally intensive task. The cardinality
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of the problem is characterized by the number of states of the modulating process.

The majority of the published analysis approaches requires the spectral

decomposition of a matrix of size of the state space (2,3). The applicability of

this approach is limited by the computational complexity and potential numerical

instability due to close eigenvalues. In some special cases it is possible to obtain an

analytical solution exploiting the special behaviour of the modulating process (4).

For general modulating processes a numerically stable recursive method was

proposed in (5). There are other important transient measures of SFMs that are

considered in the literature. The importance of the distribution of the busy period1

was introduced in (6), where a SFM with two priorities is studied. In the

considered model, the higher priority stream occupies the server capacity as long

as there is “high priority fluid” in the buffer and the low priority stream gets

service only when there is no high priority fluid in the buffer. The low priority

stream is served with server vacation, where the server vacation is the busy period

of the high priority stream.

In this paper we provide a stable numerical method to evaluate the

distribution of the busy period in SFMs with infinite capacity. The remainder of

the paper is organized as follows. Section 2 provides the proposed numerical

procedure, while Section 3 introduces a numerical example.

2. STOCHASTIC FLUID MODELS

Let {Z(t ), t $ 0} be an irreducible CTMC on a finite state space S with

generator A ¼ ½aij� and let ai ¼ 2aii: We denote by p ¼ ðpiÞ the stationary

distribution of {Z(t )}. Whenever the CTMC stays in state i, the fluid level of the

buffer is increasing at rate di. di is often referred to as the drift or the effective rate

of state i. When di , 0 it means that the fluid level is decreasing in the buffer. Of

course, the fluid level cannot decrease below 0. Q(t ) denotes the level of fluid in

the buffer at time t. The dynamics of the fluid level process {Q(t ), t $ 0} can be

described as follows:

dQðtÞ

dt
¼ dZðtÞ when QðtÞ . 0;

dQðtÞ

dt
¼ maxðdZðtÞ; 0Þ when QðtÞ ¼ 0:

1This measure is referred to as first passage time in (6), but we follow a different naming convention,

because the analysis of the first passage time to a general fluid level is a more complicated problem

than the analysis of the first passage time to empty buffer.

BARBOT, SERICOLA, AND TELEK408

D
ow

nl
oa

de
d 

by
 [

In
ri

a 
R

oc
qu

en
co

ur
t]

 a
t 0

0:
48

 2
1 

O
ct

ob
er

 2
01

1 



ORDER                        REPRINTS

2.1 Analysis of Busy Period

A busy period is the period of time while the buffer contains a positive

amount of fluid (Fig. 1). The very first busy period differs from the consecutive

ones because the buffer is empty and the drift is positive at the beginning of all

busy periods except the first one. The first busy period, starting from time 0, can

have positive fluid level and/or negative drift at its beginning. Without loss of

generality we devote attention only to the first busy period in this paper. The length

of further busy periods can be obtained as the special case when the initial fluid

level is 0 and the drift is positive. The random time T is defined by

T ¼ inf{t . 0jQðtÞ ¼ 0}:

The distribution of the random time T conditioned on the initial fluid level and on

the initial state Z(0) is defined as:

Fiðt; xÞ ¼ PrðT # tjZð0Þ ¼ i;Qð0Þ ¼ xÞ:

By the given model definition T ¼ 0 if Qð0Þ ¼ 0 and di # 0; otherwise PrðT 2

0Þ ¼ 0: We assume that the stability condition,
P

j[Sdjpj , 0; is satisfied, so that

the random time T is finite a.s.

Theorem 1. Fi(t,x ) satisfies the backward differential equation

›Fiðt; xÞ

›t
2 di

›Fiðt; xÞ

›x
¼

k[S

X
aikFkðt; xÞ if x . 0 ð1Þ

Figure 1. Busy periods of a stochastic fluid model.
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with initial conditions

Fiðt; 0Þ ¼ 1 if t $ 0 and di # 0;

Fið0; xÞ ¼ 0 if x . 0;

Fið0; 0Þ ¼ 0 if di . 0:

Proof. As it is provided in (6), the backward argument that describes the

evolution of the process is:

Fiðt; xÞ ¼ ð1 2 aiDÞFiðt 2 D; x 1 diDÞ1
k[S;k–i

X
aikDFkðt 2 D; x 1 diDÞ

1 oðDÞ;

which gives the theorem by algebraic manipulations and letting D ! 0: A

Let jSj be the number of states in S and let m 1 1;m , jSj be the number of

distinct values among all the effective rates di. These m 1 1 distinct effective rates

are denoted by r0; r1;…; rm and ordered as follows

rm . rm21 . … . rv $ 0 . rv21 . … . r1 . r0;

where v is the number of negative effective rates. The state space S of the process

{Z (t )} can then be divided into m 1 1 disjoint subsets Bm;Bm21;…;B0 where Bi

is composed by the states i of S having the same effective rate ri, that is Bi ¼

{j [ Sjdj ¼ ri}: jBij denotes the cardinality of subset Bi.

If v ¼ 0 the buffer never becomes empty after time 0, so we have T ¼ 1:
Thus, we suppose without loss of generality that v $ 1:

With this notation, we have, with probability 1,

T [

[v21

j¼0

2
x

rj

;2
x

r1j11

" !
if x . 0;

½0;1Þ if x ¼ 0;

8>><
>>:

where r1j11 ¼ rj11 for j ¼ 0;…; v 2 2 and r1j11 ¼ 0 for j ¼ v 2 1; so that

2x=r1v ¼ 11:
For x . 0; the distribution of T has v jumps at points 2x/rj for j ¼

0;…; v 2 1: If x ¼ 0; the distribution of T has only one jump at point 0. For x . 0;
the jump at point 2x/rj corresponds to a sojourn of the Markov process {Z(t )} in

the subset Bj that starts at time 0 and ends after time 2x/rj (Fig. 2). These jumps are
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given for x . 0 and j ¼ 0;…; v 2 1 by

Pr T ¼ 2
x

rj

jZð0Þ ¼ i;Qð0Þ ¼ x


 �
¼

hBj
ðiÞ e

2ABjBj
x
rj 1Bj

if i [ Bj;

0 otherwise;

8<
: ð2Þ

where ABjBj
is the sub-infinitesimial generator of dimension jBjj obtained from A

by considering only the internal transitions of the subset Bj, 1Bj
is the column

vector of dimension jBjj with all its entries equal to 1 and hBj
ðiÞ is the row vector of

dimension jBjj with entry i equal to 1 and all other entries equal to 0.

Let P be the transition probability matrix of the uniformized Markov chain

associated to {Z(t )} and by l the uniformization rate which verifies l $

maxðai; i [ SÞ: The matrix P is then related to A by P ¼ I 1 A=l; where I denotes

the identity matrix. In the following, to simplify notation, we will consider {Z(t )}

as the uniformized process. For every i; j ¼ 0;…;m; we denote by PBiBj
the

submatrix of P containing the transition probabilities from states of Bi to states of

Bj.

The distribution of the first time the buffer becomes empty, T, is given in the

following theorem that applies the same approach as in (5). The notation 0Bl
stands

for the null column vector of dimension jBlj.

Theorem 2. For every i [ S and x . 0; we have

Fiðt; xÞ ¼
X1
n¼0

e2lt ðltÞn

n!

Xn

k¼0

n

k

 !
pk

j ð1 2 pjÞ
n2kb

ðjÞ
i ðn; kÞ; ð3Þ

Figure 2. Paths corresponding to the jumps of Fi(t,x ).
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where j ¼ 0; 1;…; v 2 1 is such that

t [ 2
x

rj

;2
x

r1j11

" !
:

Then

pj ¼
x 1 rjt

ðrj 2 r1j11Þl
:

The coefficients b
ð jÞ
i ðn; kÞ are given by the following recursive expressions on the

column vectors b
ð jÞ
Bl
ðn; kÞ ¼ ðb

ð jÞ
i ðn; kÞÞi[Bl

for 0 # l # m and 0 # j # v 2 1;

for j 1 1 # l # m :

for n $ 0 : bð0Þ
Bl
ðn; 0Þ ¼ 0Bl

and b
ðjÞ
Bl
ðn; 0Þ ¼ b

ðj21Þ
Bl

ðn; nÞ for j . 0;
for 1 # k # n :

b
ðjÞ
Bl
ðn; kÞ ¼

rl 2 r1j11

rl 2 rj

b
ðjÞ
Bl
ðn; k 2 1Þ

1
r1j11 2 rj

rl 2 rj

Xm

i¼0

PBlBi
b
ðjÞ
Bi
ðn 2 1; k 2 1Þ;

for 0 # l # j :

for n $ 0 : bðv21Þ
Bl

ðn; nÞ ¼ 1Bl
and b

ðjÞ
Bl
ðn; nÞ ¼ b

ðj11Þ
Bl

ðn; 0Þ for j , v 2 1;
for 0 # k # n 2 1 :

b
ðjÞ
Bl
ðn; kÞ ¼

rj 2 rl

r1j11 2 rl

b
ðjÞ
Bl
ðn; k 1 1Þ

1
r1j11 2 rj

r1j11 2 rl

Xm

i¼0

PBlBi
b
ðjÞ
Bi
ðn 2 1; kÞ:

Proof. See Appendix A. A

The special case when the initial fluid level is 0 (i.e. Qð0Þ ¼ 0Þ is considered

in the following corollary.

Corollary 3. For v ¼ 1 and for every i [ S; we have

Fiðt; 0Þ ¼
X1
n¼0

e2lt ðltÞn

n!
biðn; nÞ; ð4Þ

where the coefficients biðn; kÞ are given by the following recursive expressions on

the column vectors bBl
ðn; kÞ for 0 # l # m;
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ORDER                        REPRINTS

for v # l # m :

for n $ 0 : bBl
ðn; 0Þ ¼ 0Bl

;
for 1 # k # n :

bBl
ðn; kÞ ¼

rl

rl 2 rv21

bBl
ðn; k 2 1Þ

1
2rv21

rl 2 rv21

Xm

i¼0

PBlBi
bBi

ðn 2 1; k 2 1Þ; ð5Þ

for 0 # l # v 2 1 :

for n $ 0 : bBl
ðn; nÞ ¼ 1Bl

;
for 0 # k # n 2 1 :

bBl
ðn; kÞ ¼

rl 2 rv21

rl

bBl
ðn; k 1 1Þ

1
rv21

rl

Xm

i¼0

PBlBi
bBi

ðn 2 1; kÞ: ð6Þ

Proof. When x ¼ 0 we have T [ ½0;11Þ: This corresponds to the case j ¼

v 2 1 in Theorem 2. By taking x ¼ 0 and j ¼ v 2 1 in equation (3) we get relation

(4) since in this case pj ¼ 1: The recurrence relations satisfied by the bBl
ðn; kÞ are

then easily obtained by taking j ¼ v 2 1 in the recurrence relations of Theorem

2. A

Note that the relations (5) and (6) are convex combinations of vectors since

we have

0 #
rl

rl 2 rv21

¼ 1 2
2rv21

rl 2 rv21

# 1; for v # l # m;

and

0 #
rl 2 rv21

rl

¼ 1 2
rv21

rl

# 1; for 0 # l # v 2 1:

2.2 Properties of the Numerical Procedure

In practical applications the analysis of busy period with initially empty

buffer and only one negative drift ðv ¼ 1Þ is much more common. Fortunately,

both the computational complexity and the memory requirement of the numerical

method based on Corollary 3 are significantly less in this case. The computational

complexity of the analysis procedure of this particular case can be further reduced

using the results provided in the following theorem.
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Theorem 4. The bBl
ðn; kÞ vectors piecewise satisfy the following inequalities:

(a) 0Bl
# bBl

ðn; kÞ # 1Bl
for 0 # l # m; n $ 0; 0 # k # n;

(b) bBl
ðn; kÞ # bBl

ðn 1 1; k 1 1Þ for 0 # l # m; n $ 0; 0 # k # n;
(c) bBl

ðn; kÞ $ bBl
ðn 1 1; kÞ for 0 # l # m; n $ 0; 0 # k # n;

(d) bBl
ðn; kÞ # bBl

ðn; k 1 1Þ for 0 # l # m; n $ 0; 0 # k , n;
(e) bBl

ðn; kÞ $ bBl
ðn 1 1; k 2 1Þ for 0 # l # m; n $ 0; 1 # k # n;

(f) limn !1bBl
ðn; nÞ ¼ 1Bl

for 0 # l # m:

Proof. See Appendix B. A

The computation of the bi (n,k ) can be illustrated using Fig. 3. In this figure,

we represent the bi(n,k ) using column vectors b2ðn; kÞ ¼ ðbBl
ðn; kÞÞ0#l#v21 and

b1ðn; kÞ ¼ ðbBl
ðn; kÞÞv#l#m and we show graphically the relations (5) and (6) used

for the computation of b+(n,k ) and b2(n,k ).

Suppose, without any loss of generality, that the initial state i is fixed. For a

given error tolerance 1, we define integer N 0 as

N 0 ¼ min n [ N ð1 2 biðn; nÞÞ 1 2
Xn

r¼0

e2lt ðltÞr

r!

 !
# 1














( )
:

Note that the value of N 0 will be known only a posteriori since it depends on

the bi (n,k ). An upper bound of N 0, available a priori, that is before the

computation of the bi(n,k ), is the classical truncation step of the Poisson series

Figure 3. Computation of the bi(n,k ).
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given by

N ¼ min n [ N 1 2
Xn

r¼0

e2lt ðltÞr

r!

 !
# 1














( )
: ð7Þ

From Theorem 4, inequality (a), we obtain N 0 # N: Using the truncation step

N0, we get

Fiðt; 0Þ ¼ 1 2
XN 0

n¼0

e2lt ðltÞn

n!
1
XN 0

n¼0

e2lt ðltÞn

n!
biðn; nÞ2 eðN 0Þ;

where the rest of the series e(N 0) satisfies

eðN 0Þ ¼
X1

n¼N 011

e2lt ðltÞn

n!
ð1 2 biðn; nÞÞ

# ð1 2 biðN
0;N 0ÞÞ 1 2

XN 0

n¼0

e2lt ðltÞn

n!

 !
# 1:

Another way to reduce the computational complexity is to avoid the

calculation of the vectors bBl
(n,k ) when all of their components are less than or

equal to a given value 1 0. It is easy to check based on expression (5) that if the

vectors bBi
ðn; k 2 1Þ and bBl

ðn 2 1; k 2 1Þ have all their entries less than or equal

to 1 0 then the vector bBl
ðn; kÞ has also all its entries less than or equal to 1 0. The

same result holds for the appropriate terms in expression (6). This property is due

to the fact that both expressions (5) and (6) are convex combinations of vectors.

This property together with Theorem 4 suggest us to further reduce the

computation of bBl
ðn; kÞ vectors. More precisely, let us define, for a given value of

10 the integers N0, N1,… and N00 as

N0 ¼ min{1 # n # N 00 2 1jb½0�Bl
ðn; 0Þ # 101Bl

for l ¼ 0;…; v 2 1}; ð8Þ

for h $ 1;

Nh ¼ min{Nh21 1 1 # n # N 00 2 1jb½h�Bl
ðn; hÞ # 101Bl

for l

¼ 0;…; v 2 1}; ð9Þ

and, for the fixed initial state i,

N 00 ¼ min n [ N 1 2 b½H11�
i ðn; nÞ

� �
1 2

Xn

r¼0

e2lt ðltÞr

r!

 !










 # 1

( )
; ð10Þ

where,
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(1) for 0 # l # m; 0 # n # N0; and 0 # k # n :

b½0�Bl
ðn; kÞ ¼ bBl

ðn; kÞ;

(2) for h $ 1; 0 # l # m and h # k # Nh21 :

b½h�Bl
ðNh21; kÞ ¼ b½h21�

Bl
ðNh21; kÞ;

(3) for h $ 1 and 0 # l # m :

for v # l # m;Nh21 1 1 # n and h 1 1 # k # n :

b½h�Bi
ðn; hÞ ¼ 0Bl

;

b½h�Bl
ðn; kÞ ¼

rl

rl 2 rv21

b½h�
Bl
ðn; k 2 1Þ

1
2rv21

rl 2 rv21

Xm

i¼0

PBlBi
b½h�Bi

ðn 2 1; k 2 1Þ;

for 0 # l # v 2 1;Nh21 1 1 # n and h # k # n 2 1 :

b½h�Bl
ðn; nÞ ¼ 1Bl

b½h�Bl
ðn; kÞ ¼

rl 2 rv21

rl

b½h�
Bl
ðn; k 1 1Þ1

rv21

rl

Xm

i¼0

PBlBi
b½h�

Bi
ðn 2 1; kÞ;

(4) the index of the greatest considered Nh is

H ¼ max{hjNh # N 00 2 1}:

In the above list, Item (1) represents the initialization step for h ¼ 0; and

Item (2) for h $ 1: Item (3) provides the application of (5) and (6) and the

approximation of the negligible vectors. The proposed numerical procedure

calculates b½h�Bl
ðn; kÞ instead of bBl

(n,k ) for Nh21 , n # Nh with an initial value

provided for b½h�Bl
ðNh21; kÞ by Item 2). Finally, Item (4) defines the greatest level of

reduction used in the numerical method. Note that N 0 as well as Nhð0 # 1 # HÞ

and H are obtained during the execution of the numerical procedure (a posteriori).

This is how the mutually dependence in the definition of N 00 and H is resolved. By
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the definition of Nh, we have h 1 1 # Nh # N 00 2 1; so

H # N 00 2 2: ð11Þ

All these mechanisms are illustrated in Fig. 4, where H ¼ 3: In this figure,

we represent the initial conditions for vectors b2(n,k ) and b+(n,k ) described in

Fig. 3. The vector 1 means that we have b½h�2 ðn; nÞ ¼ 12 and 10 means that

b½h�
2 ðNh;hÞ # 1012 by definition of Nh. We obtain, in particular, from relation (5),

that

b½h11�
1 ðNh 1 1; h 1 1Þ # 1011

and so, to avoid its computation we set b½h11�
1 ðNh 1 1; h 1 1Þ ¼ 01 and we also set

b½h11�
1 ðn; h 1 1Þ ¼ 01 for n $ Nh 1 2: The cells in gray, in Fig. 4, are not

calculated. Let us now evaluate the error introduced by the use of the b½h�
Bl
ðn; kÞ

instead of the bBl
ðn; kÞ: It is easy to check that Theorem 4 is still valid for all the

b½h�
Bl
ðn; kÞ; h ¼ 0;…;H 1 1: It follows in particular that the integer N 00 exists.

Moreover, for h $ 1; n $ Nh21 1 1; h # k # n; and l ¼ 0;…;m; we have

b½h�Bl
ðn; kÞ # b½h21�

Bl
ðn; kÞ

since we start the computation of the b½h�
Bl
ðn; kÞ when b½h21�

Bl
ðNh21; h 2 1Þ # 1 0 for

l ¼ 0;…; v 2 1; and we set b½h�Bl
ðNh21 1 1; hÞ ¼ 0 for l ¼ v;…;m: Based on these

remarks, it can be easily checked by induction that for every i [ S; n $ 0; 0 #

Figure 4. In gray, the cells (n,k ) that are not computed.
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k # n; and h ¼ 1;…;H 1 1; we have

0 # b½h21�
i ðn; kÞ2 b½h�

i ðn; kÞ # 10: ð12Þ

In order to simplify writing, we define N21 ¼ 21 and NH11 ¼ N 00: The

quantity that is really computed is Fi(t ) which is given by

~FiðtÞ ¼ 1 2
XN 00

n¼0

e2lt ðltÞn

n!
1
XH11

h¼0

XNh

n¼Nh2111

e2lt ðltÞn

n!
b½h�i ðn; nÞ:

Let us denote by E the error so obtained. We have

E ¼ Fiðt; 0Þ2 ~FiðtÞ

¼
X1

n¼N 0011

e2lt ðltÞn

n!
ð1 2 biðn; nÞÞ2

XH11

h¼0

XNh

n¼Nh2111

e2lt ðltÞn

n!
ðbiðn; nÞ

2 b½h�i ðn; nÞÞ:

We denote respectively by e1 (N 00) and e2 (N 00) the first and second terms of

the right hand side. From Theorem 4, (12) and (10), we have that

0 # e1ðN
00Þ ¼

X1
n¼N 0011

e2lt ðltÞn

n!
ð1 2 biðn; nÞÞ

# ð1 2 biðN
00;N 00ÞÞ 1 2

XN 00

n¼0

e2lt ðltÞn

n!

 !

# ð1 2 b½H11�
i ðN 00;N 00ÞÞ 1 2

XN 00

n¼0

e2lt ðltÞn

n!

 !
# 1:

For h ¼ 0; we have by definition =biðn; nÞ ¼ b½0�
i ðn; nÞ; and for h $ 1; we

have

0 # biðn; nÞ2 b½h�
i ðn; nÞ ¼

Xh

u¼1

ðb½u21�
i ðn; nÞ2 b½u�i ðn; nÞÞ # h1 0:
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ORDER                        REPRINTS

Thus, we get from inequalities (12) and (11),

0 , e2ðN
00Þ ¼

XH11

h¼1

XNh

n¼Nh2111

e2lt ðltÞn

n!
ðbiðn; nÞ2 b½h�i ðn; nÞÞ

# 1 0
XH11

h¼1

h
XNh

n¼Nh2111

e2lt ðltÞn

n!
# 10

XH11

h¼1

XNH11

n¼Nh2111

e2lt ðltÞn

n!
# ðH 1 1Þ1 0

# ðN 00 2 1Þ10 # ðN 2 1Þ10:

By choosing 1 0 ¼ 1=ðN 2 1Þ; where N is known a priori, we get 0 #

e1ðN
00Þ # 1 and 0 # e2ðN

00Þ # 1 so

jEj ¼ je1ðN
00Þ2 e2ðN

00Þj # 1:

The pseudocode of the algorithm is given in Table 1. In this algorithm, the

b½h�
Bl
ðn; kÞ are computed successively for the different values of h and are all stored

in the bBl
ðn; kÞ according to Fig. 4 and thanks to Item 2).

Remark. The truncation levels N, N0 and N00 are in fact functions of t. In

order to compute Fi(t,0) for several values of t, say t1 , 			 , tM; we only

Table 1. Algorithm for the Computation of the Busy Period Distribution

input: 1; i; t1 , 			 , tM:
output: ~FiðtjÞ; for j ¼ 1;…;M:
Compute N from relation (7) with t ¼ tM ;

N 00 ¼ N;

10 ¼ 1=ðN 2 1Þ;

for l ¼ 0 to v 2 1 do bBl
ð0; 0Þ ¼ 1Bl

; endfor

for l ¼ v to m do bBl
ð0; 0Þ ¼ 0Bl

; endfor

h ¼ 0;

for n ¼ 1 to N do

for l ¼ 0 to v 2 1 do bBl
ðn; nÞ ¼ 1Bl

; endfor

for k ¼ n 2 1 downto h do

for l ¼ 0 to v 2 1 do compute bBl
ðn; kÞ from relation (6); endfor

endfor

for l ¼ v to m do bBl
ðn; hÞ ¼ 0Bl

; endfor

for k ¼ h 1 1 to n do

for l ¼ v to m do compute bBl
ðn; kÞ from relation (5); endfor

endfor

if ðbBl
ðn; hÞ # 101Bl

;;l ¼ 0;…; v 2 1Þ then Nh ¼ n; h ¼ h 1 1; endif

if ðð1 2 biðn; nÞÞð1 2
Pn

r¼0e2ltM ððltMÞr=r!ÞÞ # 1Þ then N 00 ¼ n; break; endif

endfor

for j ¼ 1 to M do ~FiðtjÞ ¼ 1 2
PN 00

n¼0e2ltj ððltjÞ
n=n!Þ1

PN 00

n¼0e2ltj ððltjÞ
n=n!Þbiðn; nÞ;
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ORDER                        REPRINTS

need to determine these truncation levels for the highest value tM since the

rest of the Poisson series, which is used to bound the errors, is an increasing

function of t.

3. NUMERICAL EXAMPLE

The distribution of the busy period and its dependence on the initial state of

the busy period are analyzed in this section. The considered fluid process is

generated by m identical on-off sources whose on and off periods are

exponentially distributed with parameters b and g, respectively. The sources

generate fluid at rate u during their on period, and do not generate any fluid during

their off period. The fluid generated by the sources is driven to an infinite buffer

whose exit rate is c. In this case the Markov chain that determines the fluid

accumulation has m 1 1 states. Assuming the states are numbered from 0 to m

according to the number of on sources ðZðtÞ ¼ on-sources) the drift of state i is

iu2 c: Since the busy ratio of a source is g=ðg1 bÞ the utilization of the fluid

system is

r ¼
umg

cðg1 bÞ
:

Figure 5 depicts the distribution of the busy period of the fluid system with

the following set of parameters: m ¼ 4; b ¼ 1; g ¼ 0:2; u ¼ 1; c ¼ 0:8ð ! r ¼

0:833333Þ; Qð0Þ ¼ 0; and 1 ¼ 1025: The upper line represents the case when the

initial state at the beginning of the busy period is the one with minimal on sources

(i.e., Zð0Þ ¼ min{ijiu2 c . 0}Þ; which is Zð0Þ ¼ 1; while the lower line

Figure 5. Distribution of the busy period with different initial states.
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ORDER                        REPRINTS

represents the case when all the sources are in the on state at the beginning of the

busy period, i.e., Zð0Þ ¼ m:
To evaluate the benefit of the numerical procedure based on Theorem 4 the

same fluid model with identical on-off sources is evaluated with Zð0Þ ¼ m: The

obtained uniformization rate is l ¼ 4 and the maximal time at which the

distribution is evaluated is t ¼ 100 (i.e., lt ¼ 400Þ:
With these parameters the truncation of the randomization method with

respect to 1 is at N ¼ 488 and the value of N 0 truncation is obtained at 470.

The computational cost of an iteration cycle reduces significantly when the

procedure using the truncation steps Nh is used. With this procedure, we get

N 00 ¼ 470; H ¼ 160: Some of the values of the Nh are: N0 ¼ 80; N1 ¼ 88; N50 ¼

243; N100 ¼ 352; N150 ¼ 450 and the last one is N160 ¼ 469: The number of cells

whose calculation is avoided is equal to
PH

h¼0ðN 2 NhÞ ¼ 27512: This number

represents approximately 25% of the total number of cells, which is ðN 00 1 1Þ 


ðN 00 1 2Þ=2 ¼ 111156:

APPENDIX A: PROOF OF THEOREM 2

For x . 0 and t2 2 x
rj
; x

r1
j11

� �
for j ¼ 0; 1;…; v 2 1; we write the solution of

equation (1) for every i2S; as

Fiðt; xÞ ¼
X1
n¼0

e2lt ðltÞn

n!

Xn

k¼0

n

k

 !
pk

j ð1 2 pjÞ
n2kb

ðjÞ
i ðn; kÞ;

and we determine the relations that must be satisfied by the b
ðjÞ
i ðn; kÞ: We then have

›Fiðt; xÞ

›t
¼ 2 lFiðt; xÞ

1 e2lt ›

›t

X1
n¼1

l
rj2r1

j11

� �n

n!

Xn

k¼0

n

k

 !
ðx 1 rjtÞ

kð2x 2 r1j11tÞn2kb
ðjÞ
i ðn; kÞ

2
64

3
75

¼ 2 lFiðt; xÞ1 e2lt

2
664X

1

n¼1

l
rj2r1

j11

� �n

n!

Xn

k¼1

k
n

k

 !


 ðx 1 rjtÞ
k21ð2x 2 r1j11tÞn2krjb

ðjÞ
i ðn; kÞ

2
X1
n¼1

l
rj2r1

j11

� �n

n!

Xn21

k¼0

ðn 2 kÞ
n

k

 !
ðx 1 rjtÞ

kð2x 2 r1j11tÞn2k21r1j11b
ðjÞ
i ðn; kÞ

3
775
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ORDER                        REPRINTS

which leads to

›Fiðt; xÞ

›t
¼ 2lFiðt; xÞ1

l

rj 2 r1j11

X1
n¼0

e2lt ðltÞn

n!

Xn

k¼0

n

k

 !
pk

j ð1 2 pjÞ
n2k


 ðrjb
ðjÞ
i ðn 1 1; k 1 1Þ2 r1j11b

ðjÞ
i ðn 1 1; kÞÞ:

In the same way, we have

›Fiðt; xÞ

›x
¼

l

rj 2 r1j11

X1
n¼0

e2lt ðltÞn

n!

Xn

k¼0

n

k

 !
pk

j ð1 2 pjÞ
n2k


 ðb
ðjÞ
i ðn 1 1; k 1 1Þ2 b

ðjÞ
i ðn 1 1; kÞÞ:

Using the uniformization technique, we have

r[S

X
airFrðt; xÞ ¼ 2lFiðt; xÞ1 l

r[S

X
pirFrðt; xÞ:

It follows that if the b
ðjÞ
i ðn; kÞ are such that

ðrj 2 diÞb
ðjÞ
i ðn 1 1; k 1 1Þ1 ðdi 2 r1j11Þb

ðjÞ
i ðn 1 1; kÞ

¼ ðrj 2 r1j11Þ
r[S

X
pirb

ðjÞ
r ðn; kÞ ð13Þ

then equation (1) is satisfied.

The recurrence relation (13) can also be written as follows, for j ¼

0;…; v 2 1:
For i [ Bj11 < 			< Bm;

b
ðjÞ
i ðn; kÞ ¼

di 2 r1j11

di 2 rj

b
ðjÞ
i ðn; k 2 1Þ1

r1j11 2 rj

di 2 rj r[S

X
pirb

ðjÞ
r ðn 2 1; k 2 1Þ;

and for i [ B0 < 			< Bj;

b
ðjÞ
i ðn; kÞ ¼

rj 2 di

r1j11 2 di

b
ðjÞ
i ðn; k 1 1Þ1

r1j11 2 rj

r1j11 2 di r[S

X
pirb

ðjÞ
r ðn 2 1; kÞ:

Using matrix and vector notations, we get for j ¼ 0;…; v 2 1 and
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ORDER                        REPRINTS

for j 1 1 # l # m :

b
ðjÞ
Bl
ðn; kÞ ¼

rl 2 r1j11

rl 2 rj

b
ðjÞ
Bl
ðn; k 2 1Þ

1
r1j11 2 rj

rl 2 rj

Xm

i¼0

PBlBi
b
ðjÞ
Bi
ðn 2 1; k 2 1Þ;

for 0 # l # j :

b
ðjÞ
Bl
ðn; kÞ ¼

rj 2 rl

r1j11 2 rl

b
ðjÞ
Bl
ðn; k 1 1Þ

1
r1j11 2 rj

r1j11 2 rl

Xm

i¼0

PBlBi
b
ðjÞ
Bi
ðn 2 1; kÞ:

To get the initial conditions for the b
ðjÞ
i ðn; kÞ; we consider the jumps of Fi(t,x )

given by relation (2) in which we write

e
2ABjBj

x
rj ¼

X1
n¼0

e
l x

rj

2l x
rj

� �n

n!
Pn

BjBj
:

For every j ¼ 0; 1;…; v 2 1 we have pj ¼ 0 when t ¼ 2x=rj and pj ! 1

when t ! 2 x=r1j11; t , 2x=r1j11; and so

Fi 2
x

rj

; x


 �
¼
X1
n¼0

e
l x

rj

2l x
rj

� �n

n!
b
ðjÞ
i ðn; 0Þ

and, for j , v 2 1;

t ! 2x
rj11

;t, x
rj11

lim Fiðt; xÞ ¼
X1
n¼0

e
l x

rj11

2l x
rj11

� �n

n!
b
ðjÞ
i ðn; nÞ:

For j ¼ 0; we get from relation (2),

bð0Þi ðn; 0Þ ¼
hB0

ðiÞPn
B0B0

1B0
if i [ B0;

0 otherwise:

(
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ORDER                        REPRINTS

For j ¼ 1;…; v 2 1; we get

Fi 2
x

rj

; x


 �
¼

t !2x
rj
;t,2x

rj

lim Fiðt; xÞ1 hBj
ðiÞe

2ABjBj
x
rj if i [ Bj;

t !2x
rj
;t,2x

rj

lim Fiðt; xÞ otherwise:

8>>><
>>>:

From relation (2) it follows that

b
ðjÞ
i ðn; 0Þ ¼

b
ðj21Þ
i ðn; nÞ1 hBj

ðiÞPn
BjBj

1Bj
if i [ Bj;

b
ðj21Þ
i ðn; nÞ otherwise;

8<
:

that is,

b
ðjÞ
Bj
ðn; 0Þ ¼ b

ðj21Þ
Bj

ðn; nÞ1 Pn
BjBj

1Bj
;

b
ðjÞ
Bl
ðn; 0Þ ¼ b

ðj21Þ
Bl

ðn; nÞ for l – j:

Last we consider the case where j ¼ v 2 1; that is when

t [
2x

rv21

;11

� �
:

In this case, since r1j11 ¼ 0; we get when x ! 0; with x . 0; pj ! 1 and so

x ! 0;x.0
lim Fiðt; xÞ ¼

X1
n¼0

e2lt ðltÞn

n!
bðv21Þ

i ðn; nÞ:

It follows from the initial condition expressed in Theorem 1 that

bðv21Þ
i ðn; nÞ ¼ 1 if di # 0;

that is

bðv21Þ
Bl

ðn; nÞ ¼ 1Bl
for l ¼ 0;…; v 2 1:

APPENDIX B: PROOF OF THEOREM 4

(a) These inequalities are immediate since the relations (5) and (6) are

convex combinations of the vectors bBl
ðn; kÞ that initially have their entries equal

to 0 or 1.

(b) The relation is immediate for n ¼ 0 since we have bBl
ð1; 1Þ $ 0 ¼

bBl
ð0; 0Þ for l ¼ v;…;m and bBl

ð1; 1Þ ¼ bBl
ð0; 0Þ ¼ 1Bl

for l ¼ 0;…; v 2 1:
Suppose the relation is satisfied at level n 2 1; n $ 1; that is suppose that for

all l ¼ 0;…;m and 0 # k # n; we have bBl
ðn; kÞ $ bBl

ðn 2 1; k 2 1Þ:

BARBOT, SERICOLA, AND TELEK424

D
ow

nl
oa

de
d 

by
 [

In
ri

a 
R

oc
qu

en
co

ur
t]

 a
t 0

0:
48

 2
1 

O
ct

ob
er

 2
01

1 



ORDER                        REPRINTS

For l ¼ 0;…; v 2 1; we have bBl
ðn 1 1; n 1 1Þ ¼ bBl

ðn; nÞ ¼ 1Bl
which

means that the relation is satisfied at level n for k ¼ n: Suppose the relation is

satisfied at level n for the integer k+1, that is suppose that we have bBl
ðn 1

1; k 1 2Þ $ bBl
ðn; k 1 1Þ: Let us define

p ¼
rl 2 rv21

rl

:

We have p [ ½0; 1�: Using the relation (6), we get

bBl
ðn 1 1; k 1 1Þ 2 bBl

ðn; kÞ ¼ pðbBl
ðn 1 1; k 1 2Þ2 bBl

ðn; k 1 1ÞÞ

1 ð1 2 pÞ
Xm

i¼0

PBlBi
ðbBi

ðn; k 1 1Þ2 bBi
ðn 2 1; kÞÞ $ 0;

from the recurrence hypothesis.

For l ¼ v;…;m; we have bBl
ðn 1 1; 1Þ $ 0 ¼ bBl

ðn; 0Þ which means that the

relation is satisfied at level n for k 2 0: Suppose the relation is satisfied at level n

for the integer k 2 1; that is suppose that we have bBl
ðn 1 1; kÞ $ bBl

ðn; k 2 1Þ:
Let us define

q ¼
rl

rl 2 rv21

:

We have q [ ½0; 1�: Using the relation (6), we get

bBl
ðn 1 1; k 1 1Þ 2 bBl

ðn; kÞ ¼ qðbBl
ðn 1 1; kÞ2 bBl

ðn; k 2 1ÞÞ

1 ð1 2 qÞ
Xm

i¼0

PBlBi
ðbBi

ðn; kÞ2 bBi
ðn 2 1; kÞÞ # 0;

from the recurrence hypothesis.

(c) The relation is immediate for n ¼ 0 since we have bBl
ð1; 0Þ ¼ bBl

ð0; 0Þ ¼
0 for l ¼ v;…;m; and bBl

ð1; 0Þ # bBl
ð0; 0Þ ¼ 1Bl; for 1 ¼ 0;…; v 2 1:

Suppose the relation is satisfied at level n 2 1; n $ 1; that is suppose that for

all l ¼ 0;…;m and 0 # k # n 2 1; we have bBl
ðn; kÞ # bBl

ðn 2 1; kÞ:
For l ¼ 0;…; v 2 1; we have bBl

ðn 1 1; nÞ # bBl
ðn; nÞ ¼ 1Bl

which means

that the relation is satisfied at level n for k ¼ n: Suppose the relation is satisfied at

level n for the integer k 1 1; that is suppose that we have bBl
ðn 1 1; k 1 1Þ #

bBl
ðn; k 1 1Þ: Let us define

p ¼
rl 2 rv21

rl

:
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We have p [ ½0; 1�: Using the relation (6), we get

bBl
ðn 1 1; kÞ 2 bBl

ðn; kÞ ¼ pðbBl
ðn 1 1; k 1 1Þ2 bBl

ðn; k 1 1ÞÞ

1 ð1 2 pÞ
Xm

i¼0

PBlBi
ðbBi

ðn; kÞ2 bBi
ðn 2 1; kÞÞ # 0;

from the recurrence hypothesis.

For l ¼ v;…;m; we have bBl
ðn 1 1; 0Þ ¼ bBl

ðn; 0Þ ¼ 0 which means that the

relation is satisfied at level n for the k ¼ 0: Suppose the relation is satisfied at level

n for the integer k 2 1; that is suppose that we have bBl
ðn 1 1; k 2 1Þ #

bBl
ðn; k 2 1Þ: Let us define

q ¼
rl

rl 2 rv21

:

We have q [ ½0; 1�: Using the relation (5), we get

bBl
ðn 1 1; kÞ 2 bBl

ðn; kÞ ¼ qðbBl
ðn 1 1; k 2 1Þ2 bBl

ðn; k 2 1ÞÞ

1 ð1 2 qÞ
Xm

i20

PBlBi
ðbBi

ðn; k 2 1Þ2 bBi
ðn 2 1; k 2 1ÞÞ # 0;

from the recurrence hypothesis.

(d) directly follows from (b) and (c).

(e) directly follows from (c) and (d).

(f) From inequality (b), we deduce that for every i [ S; the sequence bi(n,n )

is increasing. Moreover, from inequality (a), we have biðn; nÞ # 1 so, the sequence

bi(n,n ) converges when n goes to infinity. For every i [ S; we denote by li the

limit of the sequence bi(n,n ). We then have

Fiðt; 0Þ ¼
X1
n¼0

e2lt ðltÞn

n!
biðn; nÞ ! li when t !1:

In another hand, since we have assumed that the stability condition
P

i[Sdipi , 0

is satisfied, we have Fiðt; 0Þ ! 1 when t !1: Thus, we conclude that for every

i [ S; li ¼ 1:
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