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a b s t r a c t

A complex network can be modeled as a graph representing the ‘‘who knows who” relationship. In the
context of graph theory for social networks, the notion of centrality is used to assess the relative impor-
tance of nodes in a given network topology. For example, in a network composed of large dense clusters
connected through only a few links, the nodes involved in those links are particularly critical as far as the
network survivability is concerned. This may also impact any application running on top of it. Such infor-
mation can be exploited for various topological maintenance issues to prevent congestion and disruption.
This can also be used offline to identify the most important actors in large social interaction graphs. Sev-
eral forms of centrality have been proposed so far. Yet, they suffer from imperfections: initially designed
for small social graphs, they are either of limited use (degree centrality), either incompatible in a distrib-
uted setting (e.g. random walk betweenness centrality).
In this paper we introduce a novel form of centrality: the second order centrality which can be com-

puted in a distributed manner. This provides locally each node with a value reflecting its relative criticity
and relies on a random walk visiting the network in an unbiased fashion. To this end, each node records
the time elapsed between visits of that random walk (called return time in the sequel) and computes the
standard deviation (or second order moment) of such return times. The key point is that central nodes see
regularly the random walk compared to other topology nodes. Both through theoretical analysis and sim-
ulation, we show that the standard deviation can be used to accurately identify critical nodes as well as to
globally characterize graphs topology in a distributed way. We finally compare our proposal to well-
known centralities to assess its competitivity.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

Large scale networks, as organizational/social contacts, peer-to-
peer, grids or wireless sensors networks often exhibit complex and
huge interaction graph structure. The scale of these graphs is such
that it usually prevents to compute any global characteristic aggre-
gated from individual nodes [3,25]. Consequently, designing dis-
tributed solutions (in which network components participate
only based on local or close neighborhood information) is of the
utmost importance.

The offline analysis of complex social networks has been
addressed by physicians and sociologists since the 1950s [34].
These works provide metrics to extract characteristics on the inter-
actions captured and the importance or role of individuals in these

graphs. The notion of centrality [7,9,10,18,20,30] typically provides
such importance information,w.r.t. graph structure. Each centrality
defines a particular importance, be it on central nodes, high degree
nodes or on nodes part of redundant paths for example. Existing
algorithms computing node centrality exhibit a high complexity,
since they are used offline and imply costly operations on adja-
cency matrices (generally in O(n3) time, with n being the number
of nodes). Along with time complexity, space required to store
those matrices for computation is also a major issue, considering
the growing size of distributed systems, or the size of today’s social
graphs (Facebook counts over 400 million users). One way of
avoiding such a need for storage on a single computer is to use
the distributed solution. In such a paradigm, all nodes of the stud-
ied network participate in order to produce the final result (here
importance value computation on each node). Unfortunately, dis-
tribution of centrality computation is yet to be deepen. If centrality
based on nodes’ degree is straightforward to distribute [34] (con-
sidering that a node is important if it has a high connectivity), it
remains of a limited interest. Nanda et al. [29] propose a heuristic

0140-3664/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.06.007

* Corresponding author. Tel.: +49 30 8353 58551.
E-mail address: gilles@net.t-labs.tu-berlin.de (G. Trédan).

Computer Communications 34 (2011) 619–628

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom



that only detects nodes bridging highly connected regions. Abite-
boul et al. [2] propose an online solution to compute eigenvector
centrality, which does not need the matrix storage; this centrality
gives importance to nodes that are neighbors of also important
nodes. All other classic centralities (e.g. closeness, eccentricity,
betweenness) are yet to be distributed.

To overcome these issues, we introduce a novel notion of cen-
trality, called second order centrality, which is distributed by design.
The second order centrality provides each individual node with its
relative importance in a given topology, w.r.t. its betweenness; the
gathering of all nodes’ centrality allows global characterization of a
complex network.

1.2. Contributions

In this paper we make the following contributions; (i) we define
a novel notion of centrality, called the second order centrality and
show that it represents a meaningful metric to characterize both
the criticity of individual nodes in a given topology as well as the
global health of a complex network with respect to connections.
(ii) We provide a lightweight algorithm to compute in a distributed
way the second order centrality of each node. The strength of this
algorithm lies in its simplicity: it relies on a single random walk
visiting the network. Nodes compute their centrality by simply
recording the return times of that walk. The standard deviation
of those return times is at the core of our approach. We show
through analysis at a global scale (assuming the knowledge of
the full graph) that what is expected at a local scale (on nodes) is
correct. (iii) We show that this algorithm can be used to provide
graph signatures and therefore information about the global char-
acteristics of a graph. (iv) We provide some simulation results that
not only accurately match the analysis but also provides some evi-
dence of the relevance of that metric in a practical setting. (v) We
finally compare our technique to other well know centralities, to
highlight its benefits.

1.3. Roadmap

The rest of this paper is organized as follows. Section 2 provides
the design rationale of the second order centrality. Section 3 re-
views various forms of centrality and emphasizes their character-
istics and limitations. Section 4 describes the second order
centrality algorithm. The analysis is provided in Section 5. Simula-
tion results are then provided in Section 6, followed in Section 7 by
head to head comparison with well-known forms of centralities.
Section 8 concludes this paper.

2. Design rationale

We consider an arbitrary network, represented as an undirected
graph G ¼ ðV ; EÞ, with n vertices and m edges. For a node i 2 V, Ci

denotes its set of neighbors in G (vertices with an adjacent edge
to i), and di its degree, namely the size of Ci. Note that the resulting
graph may represent any peer-to-peer, grid, social, or physical net-
work. We assume a connected graph; this is crucial to avoid a re-
sult only on the connected component where the algorithm is
started.

We use a random walk on the graph G, i.e. a process progressing
in the network from a node i to another node chosen uniformly in
i’s neighborhood Ci. We consider this walk to be permanent for it
has no stop condition; this is one of the main differences with most
of random walk based algorithms (e.g. sampling [19] or search
[27]). The random walk is initiated by an arbitrary node of the net-
work. We also assume, for the sake of comprehension, that the net-

work is static i.e. the topology does not change during the process
execution. Finally, the random walk is never lost.

Our approach relies on the fact that the relative importance of a
given node can be inferred from the regularity at which the ran-
dom walk visits the node. Typically, the algorithm exploits the
time elapsed between two consecutive visits of such random walk
on a given node (called return time hereafter). These return times
can be either absolute time, thus implying a clock on every system
node, or simply the number of steps proceeded by the random
walk (which thus carries that information). Note that in the first
case, nodes’ clock do not need to be synchronized, as we are inter-
ested in local standard deviation of return times.

Note that our model only requires one random walk for the
whole system to provide the algorithm result, as opposed e.g. to
one random walk launched by each node for its own purposes.
On the design side, our approach aims at replacing storage space
on a single server by time complexity; our solution with second or-
der centrality is then computable on a distributed setting. It is also
computable in a standard fashion on a central server, using graph
adjacency matrix (with provided formula), when used e.g. for small
graphs or for networks where participants cannot collaborate (off-
line analysis).

3. Related work

3.1. Centralities: criticity of individuals in the graph

We are in this paper interested in the properties of individual
nodes and their impact on overall graph connectivity. This impact
is reflected by centrality indices.

The betweenness centrality [18,7,9,20] is considered the most
relevant in that context. It consists in computing on each node
the fraction of shortest paths that pass through it. Formally, the
betweenness centrality for a node v is CbðvÞ ¼

P
s;t2V

rs;tðvÞ
rs;t

, where
rs,t(v) is the number of shortest paths from node s to node t passing
through v, and rs,t, the total number of shortest paths from s to t.
The original algorithm requires X(n3) time steps to complete; a
first approximation approach completes in O(nm) steps [9]. Finally,
recent experimental studies [10,20] propose some approximations
for practical use in large networks.

The other most current centralities are precisely defined in Sec-
tion 7, for comparison purposes with our proposal.

3.2. Random walk based betweenness centrality

Despite a great interest towards the betweenness metric, New-
man showed [30] that the notion of betweenness centrality suffers
from some imperfections as it considers only nodes involved in
shortest paths. A typical example is presented in Fig. 1, where
two clusters are linked by a few nodes only. Here, node c, which
is outside the shortest paths linking left and right clusters is given
a very low score of betweenness centrality despite its clear impor-
tance for alternative paths.

Such left outnodes canalsobeof vital importance for thenetwork
resilience, for loadbalancingor facing failuresof shortestpathnodes.
Anothermetric, known as flow betweenness, also suffers from a sim-

a b

c

Fig. 1. An example where betweenness centrality give node c a low score despite its
importance.
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ilar drawback [30].Randomwalk betweennesshasbeen introduced to
fix this issue: the idea is that a random process also takes into ac-
count non-optimal paths. Assuming the knowledge of the whole
graph, the proposed method uses its adjacency matrix and com-
pletes in O((m + n)n2) steps. It consists in launching a random walk
from each node s to every other node t. The randomwalk between-
ness of a node i is equal to the number of times that a randomwalk
starting at s and ending at t passes through i along theway, averaged
by all possible (s, t) pairs. A heuristic is also added to avoid counting
back and forth randomwalk passages on nodes.

Despite a proper definition of the randomwalk based centrality,
the Newman’s approach requires a global knowledge of the graph
and this prevents its application in a distributed setting.

Instead, we define a new form of centrality, called the second or-
der, as opposed to Newman’s approach interested in the first order
(expected number of visits to a given node for all source-target
pairs [30]). This centrality is computed through the use of a single
random walk, in a distributed manner. Each node is required to be
aware of its direct neighborhood C only; there is no need for any
global information anymore.

Note that the randomwalktool is alsoused forotherpurposes in the
context of complex networks, such as e.g. community detection [32].

4. Second order centrality

In this section, we first describe the intuition behind our ap-
proach. We then present the distributed algorithm which outputs
on each node its centrality, the value of which reflects the relative
importance of that node in the network.

4.1. The high clustering intuition

To illustrate our purpose, we consider an extreme setting,
known as the barbell graph. The following barbell graph is com-
posed of two fully connected components (called bells) ofm1 nodes
each, connected by a path of m2 nodes. Fig. 2 depicts such a graph
with m1 = 5 and m2 = 2.

Consider a random walk visiting the network from node to
node. Firstly, let us consider node vL in Fig. 2: if a random walk is
running in the left bell, vL has the same probability 1/m1, than
any other node in this bell to be visited by the randomwalk at each
step. Yet, once the random walk has passed to the right bell, vL is
the mandatory passage point for the walk to get back to the left
bell. Therefore, such bridge nodes, vL and vR, are visited more reg-
ularly than other nodes by a random walk continuously running.
This is turned into a reduced standard deviation of the number
of steps needed for a randomwalk to return to them, after an initial
passage (called return time). Our claim is then that different roles of
nodes in the topology can be inferred from the return times.

Secondly, return times can also be used to discover topology is-
sues. It can easily be shown (see e.g. [5]) that a random walk start-
ing at any node in the left bell, say vl, takes as mean time m2

1m2

steps to reach another node, vr, in the right bell (and conversely).
On the other hand, nodes from a given bell are visited by the ran-

dom walk often as long as the random walk remains in the same
bell. Once it has crossed the path to the other bell, the trends re-
verses. By simply comparing the standard deviation of return times
of the random walk, every graph node can then locally detect the
presence of critical paths, or traps, in the topology.

4.2. Distributed second order algorithm

Based on those observations, we propose in this section the sec-
ond order centrality, along with a distributed algorithm to com-
pute it, in which each node simply computes the standard
deviation of the return times of a permanent unbiased random
walk running on the topology.

4.2.1. Unbiased random walk
The paper by Newman considered simple random walk s over

the graph’s transition probability matrix. This represents the clas-
sic process where at each node, a random walk is directed to a
neighbor of the node, picked uniformly at random. Such a simple
forwarding process obviously favors high degree nodes, as its sta-
tionary distribution pi = di/2m (see e.g. [28]). The more a node is
connected the more often it is visited. Newman points out this is-
sue and shows experimentally that it results in a correlation be-
tween a node’s degree and its random walk based betweenness
centrality, even for nodes that are not central in the topology.

To overcome this issue and cope with heterogeneous distribu-
tion of degree, the proposed distributed second order algorithm,
relies on an unbiased random walk, where pi is 1/n for all i 2 V.
Informally, this means that after a sufficient number of steps
(called mixing time in literature), the random walk has an equal
probability to be on any graph node.

Unbiasing the random walk ensures that the only cause of the
variations of return times on nodes is due to their relative impor-
tance in the topology, and does not depend on local factors such as
node degrees. In addition, the fact that the randomwalk eventually
visits all nodes an equal number of times, speeds up the algo-
rithm’s convergence by evenly providing return times to all nodes.
The Metropolis–Hastings technique [23,33] is used to unbias the
random walk. The node hosting the random walk selects a neigh-
bor uniformly at random: the random walk is forwarded to the
chosen neighbor with a probability depending on the degree of
both nodes. This process is described from line 1 to line 9 in the
algorithm description (Algorithm 1).

Algorithm 1. Second order centrality algorithm

1: Upon reception of random walk on node i:
2: /* Metropolis–Hastings random walk */
3: Choose a neighbor j from Ci uniformly at random
4: Query j for dj
5: Generate a random number p 2 [0,1] uniformly
6: if p 6 di/dj then
7: forward the random walk to j
8: else
9: random walk remains at i
10: /* Standard deviation */
11: if first visit of the random walk on i then
12: Create array Ni

13: else
14: Compute return time r since last visit
15: Add r to Ni

16: If jNijP 3 then
17: Compute standard deviation ri(N):

18:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
k¼1NiðkÞ2 � 1

N�1

PN
k¼1NiðkÞ

h i2r
Fig. 2. Example of a Barbell graph.
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4.2.2. Standard deviation of return times
The key point of the algorithm is the variation of the frequency

at which a random walk visits nodes. Every node i in G joins the
process on the first visit of the random walk, by creating an array
Ni that logs every return time. Recall that the return time to node
i is defined by the time, for the walk starting at i, to return to i. We
denote by Ni(k) the kth return time of the randomwalk to node i. A
simple solution to capture an irregularity of visits on nodes is to
proceed as follows: after the third recorded return time, a node i
computes the standard deviation of the N values inNi. These return
times being independent, we have from the strong law of large
numbers: limN?1ri(N) = ri.

Once the random walk has run for a sufficiently long time on
the graph, r values represent the relative importance of nodes in
the graph: the lower the value, the higher the importance of a
node. The description of the algorithm is provided in Algorithm 1.

4.2.3. Algorithm convergence time
4.2.3.1. Theoretical convergence. Each node needs to be visited a few
times by the random walk to compute meaningful deviation re-
sults. Therefore the algorithm convergence time is related to the
cover time of graph G. Cover time is defined as the number of steps
needed by a random walk to visit each vertex of G. Feige [15]
showed that cover time, for a simple random walk, ranges from
(1 + o(1))nlnn steps for a complete undirected graph to at most at
4
27n

3 þ oðn3Þ [16] for the lollipop graph (a fully connected graph of
n
2 nodes, linked to a line of the remaining nodes). This lower bound
result holds for an unbiased random walk as all nodes in a com-
plete graph have the same degree. We are not aware of an upper
bound for an unbiased random walk. Therefore, our algorithm re-
quires the number of steps to cover the graph, times a constant,
so that each node is visited several times (O(n3)).

Other random walk based algorithms (e.g. for graph connectiv-
ity assessment [17]) exhibit running time of O(n3) in worst case of
input graph irregularity; we expect reduced running times for
application-realistic networks. Cover time of the Barabási–Albert
graph (often used to model the WWW) for example drops to
2m
m�1n logn [12].

4.2.3.2. Trivial parallelization. For the sake of clarity, we described
our algorithm as a purely sequential process, since it uses only
one random walk at a time. A simple way of making it parallel is
to make all nodes run multiple random walks. The number k of re-
turn times needed by each node to get precise approximations of
the standard deviation is obtained from the central limit theorem;
it can be used, since the successive return times to a node form a
sequence of independent and identically distributed random vari-
ables. In practice, it is well-known that for k = 30, we generally ob-
tain a good approximation in the use of the central limit theorem.
Actually, the convergence speed of the empirical distribution to-
wards the normal distribution can be obtained by the Berry-Essen
theorem. In that light, if each node launches 30 random walks,
algorithm convergence time is then trivially bounded only by
one cover time, then removing the constant previously needed.
The analysis of a tighter bound on convergence, for the case of
the algorithm using multiple random walks (as e.g. studied in [6]
for particular bias of the walks), is subject to future work.

In the remaining of the paper, we analyse our algorithm by still
considering one single random walk in the system.

4.2.3.3. The termination question. We discuss here a limitation of
our approach as well as some other random walk based protocols.
The fully distributed nature of our model implies that we do not
make assumptions on the knowledge of global parameters such
as n, the size of the graph, or its conductance (related to random
walk mixing time). As a consequence, a single node cannot decide

on its own when the algorithm has converged, which means that it
does not know when the random walk has run a long enough per-
iod of time to have visited a few times the whole graph. Such a
problem is related to the general problem of distributed termina-
tion detection. An extreme case is the Barbell graph considered
in Fig. 2. Assume the random walk starts in the left bell; then node
vl has a high probability to be visited several times before the ran-
dom walk passes in the right bell. If the graph was less severely
degenerated, the few return times computed by vl would have
been sufficient to get a representative r value; in this particular
case, we would like the node to take a value as a result of the algo-
rithm when the random walk has went several times back and
forth in both bells. Convergence thus depends on network size
and conductance. This problem is actually related to the mixing
time of the random walk process [5], introduced in the related
work Section. Many random walk based algorithms also suffer
from this factor [19,33].

In this light, our approach eventually converges to a satisfying
standard deviation value, meaning a convergence after a constant
factor (number of visits needed on each node) times the upper
bound on cover time (that handles worst cases of topology wiring).
A practical approach to this decision problem on each node is to
use periodic comparison of values between nodes. Another one is
to relax the assumption on the non-knowledge of n, by having a
rough estimation of its order of magnitude (e.g. for offline social
graph analysis, researchers have an idea of the data-set size, or in
peer-to-peer systems, designers have an idea of the popularity of
their application), then worst case time to wait is directly derivable
from cover time bounds.

5. Return times in Markov chains

This section provides some theoretical analysis of the second
order algorithm. More specifically we provide a formula to com-
pute the theoretical standard deviation of return times for any
node, given an input graph as a transition probability matrix. In
addition, it is used as the baseline centralized theoretical predic-
tion against which the simulation results of the distributed algo-
rithm are compared.

This formula is also useful for (i) a system administrator who
wants to predict the behavior of random walks over a particular
graph structure before deploying it, or for (ii) graph nodes to derive
an expected algorithm completion time when basic properties of
the graph are known.

5.1. Standard deviation of return times

We look for a formula that provides standard deviation of re-
turn times on a particular node, given by the graph transition prob-
ability matrix. This return time is function of the position of this
node in the graph. This idea is at the core of our approach, and is
generally forgotten due to the fact that literature often provides
bounds to return times that hide the local variations nodes may
experience (big O notation). Those potentially small variations suf-
fice to differentiate nodes with respect to their position in the
graph.

We use a classical discrete time Markov chain model to repre-
sent the random walk running on the input graph. States of the
Markov chain are nodes, or vertices V of G. The general case of a
biased walk is presented first, as an unbiased walk is simply a sub-
case of it. Finally, for the purpose of the demonstration and to give
theoretical results on return times, we consider the transition
probability matrix of the considered graph; as precised in Section
2. This global knowledge of the graph is obviously not assumed
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in our distributed algorithm proposal. Proofs are deferred in the
Appendix.

Let X ¼ fXn; n 2 Ng be a homogeneous and irreducible discrete
time Markov chain on the finite state space S. We denote by
P = (P(i, j))i,j2S its transition probability matrix and we are inter-
ested in the computation of the return times for every state of S.
For every state j 2 S, we denote by s(j) the number of transitions
(random walk steps) needed to reach state j, i.e.

sðjÞ ¼ inffn P 1jXn ¼ jg:
The state space S being finite and X being irreducible, X is recurrent
which means that s(j) is finite a.s. We denote by f ðnÞj ðiÞ the distribu-
tion of s(j) when the initial state of X is i, that is, for every nP 1,

f ðnÞj ðiÞ ¼ PfsðjÞ ¼ njX0 ¼ ig:
f ðnÞi ðiÞ represents the probability, starting from state i, that the first
return to state i occurs at instant n and, for i– j, f ðnÞj ðiÞ represents
the probability, starting from state i, that the first visit to state j oc-
curs at instant n. These probabilities are given by the following the-
orem [11]. For the sake of completeness, the proof of this theorem is
also provided in the Appendix.

Theorem 1. For every i, j 2 S and nP 1, we have

f ðnÞj ðiÞ ¼
Pði; jÞ if n ¼ 1;P
‘2S�fjg

Pði; ‘Þf ðn�1Þ
j ð‘Þ if n P 2:

8<
: ð1Þ

For every j 2 S and nP 1, we denote by f ðnÞj the column vector
containing the values f ðnÞj ðiÞ for every i 2 S. For every j 2 S, we intro-
duce the matrix Qj obtained from matrix P by replacing the jth col-
umn by zeros, that is

Qjði; ‘Þ ¼
Pði; ‘Þ if ‘–j;

0 if ‘ ¼ j:

�

We also introduce the column vector Pj containing the jth column of
matrix P, i.e. Pj(i) = P(i,j). Eq. (1) can then be written in matrix nota-
tion as

f ðnÞj ¼ Pj if n ¼ 1;
Qjf

ðn�1Þj if n P 2;

(
ð2Þ

which leads to an easy computation of the vectors f ðnÞj . We now de-
fine the matrix M = (M(i, j))i,j2S by Mði; jÞ ¼ EfsðjÞjX0 ¼ ig. M(i, i) rep-
resents the expected time between two successive visits of X to
state i, and, for i– j, M(i, j) represents the expected time, starting
from state i, to reach state j for the first time. The Markov chain X
being irreducible, we have M(i, j) <1 for every i, j 2 S and

Mði; iÞ ¼ 1
pi

;

where pi is the ith entry of the probability distribution p, which is
the unique solution to the system p = pP.

To compute all the entries of matrix M, we introduce the col-
umn vector Mj containing the jth column of matrix M, i.e. Mj(i) = -
M(i, j) and the column vector of ones denoted by 1. These expected
values are given by the following result.

Corollary 2. For every j 2 S, we have

Mj ¼ ðI � QjÞ�1
1: ð3Þ

In practice, the column vector Mj is obtained for every j 2 S by
solving the linear system ðI � QjÞMj ¼ 1.

Let us consider now the second moment of s(j). We define the
matrix H = (H(i, j))i,j2S by Hði; jÞ ¼ EfsðjÞ2jX0 ¼ ig. H(i, i) represents
the second moment of the time between two successive visits of

X to state i, and, for i– j, H(i, j) represents the second moment of
the time, starting from state i, to reach state j for the first time.
We introduce the column vector Hj containing the jth column of
matrix H, i.e. Hj(i) = H(i, j). These values are given by the following
result.

Corollary 3. For every j 2 S, we have

Hj ¼ ðI � QjÞ�1ðI þ QjÞMj:

In practice, the column vector Hj is obtained for every j 2 S by
solving the linear system (I � Qj)Hj = (I + Qj)Mj.

The standard deviation r(i) of the return time to state i on a tar-
get graph is thus given by

rðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hði; iÞ � ½Mði; iÞ�2

q
: ð4Þ

5.1.1. Unbiased random walks
When the random walk is unbiased, all the nodes in the graph

have the same degree d (Metropolis–Hastings method virtually
adds self-loops to poorly connected nodes to adjust their degree)
and P(i, j) = 1/d if nodes i and j are connected in the graph and 0
otherwise. This means in particular that matrix P is symmetric
and thus bistochastic, i.e. 1tP ¼ 1t , where t denotes the transpose
operator. We then have pi = 1/jSj and M(i, i) = jSj. For what concerns
the second order moments H(i, i) of return times to state i, we have
from Corollary 3,

ðI � QjÞHj ¼ ðI þ QjÞMj:

Premultiplying by 1t, we get

1tHj � 1tQ jHj ¼ 1tMj þ 1tQ jMj: ð5Þ
By definition of Qj, we have 1tQ j ¼ 1t � ej, where ej is the jth unit
row vector, i.e. ej(i) = 1 if i = j and 0 otherwise. So Eq. (5) simplifies
as

1tHj � ð1t � ejÞHj ¼ 1tMj þ ð1t � ejÞMj

and thus

Hðj; jÞ ¼ 2
X
i2S

Mði; jÞ �Mðj; jÞ ¼ 2
X
i2S

Mði; jÞ � jSj:

The standard deviation r(j) then writes, from relation (4), as

rðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
i2S

Mði; jÞ � jSjðjSj þ 1Þ
r

: ð6Þ

5.2. Results for 3 classes of particular graphs

We instantiate this formula for three extreme graph diameter
settings: a complete graph (diameter 1), a ring (diameter bn2c) and
a line (diameter n). On all graphs, we consider an unbiased random
walk.

Fig. 3 summarizes our results for which proofs can be found in
Appendix. Because of the regularity of the Ring graph and the Com-
plete graph, all nodes of these structures have the same standard
deviation. Note that for the line r(j) = r(n � j � 1) because of the
symmetry of the structure, and that r(j) is minimal for nodes
bn�1

2 c and dn�1
2 e. This last remark highlights the fact that our algo-

rithm produces a centrality result, as on a line, critical nodes (w.r.t.
centrality) are in the middle of it.

Moreover, in the context of symmetric graphs, the ring and the
complete graph are extreme cases of resiliency: the ring is the
weakest (it is only 2-connected), whereas the complete graph is
the most robust structure (it is (n � 1)-connected). We believe it
is reasonable to expect the standard deviation of symmetric graphs
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to evolve between the corresponding values (i.e. between o(n) for
the complete graph, and o(n3/2) for the ring).

5.3. Application to specific graphs

Another contribution of this paper is, through the previous for-
mula (6), to be able to provide signatures1 of graphs. We now expose
different signatures, that can help to sort graphs according to their
health: we consider that a graph is healthy if it is robust to multiple
targeted attacks, i.e. it has a low vulnerability in the sense of [4]. A
targeting strategy that consists in aiming central nodes is described
in Section 7.2.

Note that this definition of robustness also captures to some ex-
tend other interesting robustness aspects of the graph, such as it’s
average shortest path length, or it’s resilience to congestion. In-
deed, the former definition captures the average number of inter-
mediary nodes (and thus, points of failure) linking any two nodes
of the network, and the latter definition closely relates to the aver-
age amount of alternative paths linking them. Intuitively, a robust
graph has most of it’s nodes close to each other, and linked by
many redundant paths. Note also that a healthy graph (i.e. resilient
to targeted attacks) is also resilient to random attacks (since tar-
geting should be more efficient than random).

The r value is computed for each node, based on the transition
probability matrix (using a random walk unbiased with the
Metropolis–Hastings method). We considered the following graphs
for theoretical computation: (i) a random graph, constructed on the
Erdös–Rényi model [14]. The probability that two edges are con-
nected is given by p ¼ h lnn

n . Probability p > lnn
n insures connectivity

of G, i.e. that no vertex is isolated. (ii) a clusterized graph composed
of two equal size random graphs linked by a single edge. The
resulting graph is close to a Barbell graph presented earlier in
the paper, with the difference that left and right bells are not fully
connected (i.e. not complete graphs). (iii) a ring lattice, where a
node i is connected to nodes i � k/2, i � k/2 + 1, . . ., i + k/2 (values
modn, and k being an input parameter), excluding itself. Finally
(iv) a scale-free graph, based on the Barabási/Albert model [3].
We believe that those graphs are representative of classical graph
families, i.e. graphs that are both widely studied and often targeted
in today network designs, or parts of actual social graphs [35]. All
four graphs have a size of 103 nodes, and all input parameters have
been set so that their average degree is 20, insuring a fair
comparison.

Results are presented as histograms in Fig. 4. A particular point,
say (x = 2500,y = 3), expresses that three network nodes have a
resulting r of 2500. We first observe a clear difference in the dis-
tribution of results for the tested graphs. A thin distribution of val-
ues for a particular graph basically means that all nodes have a
similar role or importance in the structure. Contrarily, a significant
scattering in the values is to be interpreted as an important irreg-
ularity of roles. Furthermore, in graphs of equal sizes and degree

average, differences in tendencies of mean r value, reflect discrep-
ancies in the navigation properties of those graphs (related to
diameter or presence of bottlenecks).

The graph exhibiting the lowest r values is the random graph
(marked a), as the gathered values on nodes lie approximately in
a [1000:1500] step interval. This matches the consensus about
the attractive properties (low diameter and low clustering coeffi-
cient) of such graphs. It is followed by the Barabási/Albert graph
(b), which has a larger repartition of values (1000-2500). This is
due to the fact that hubs (highest degree nodes) are part of a lot
of shortest paths, and that most of other nodes have a far inferior
global importance. In the ring lattice (c), a line-shaped distribution
(note the logscale on the y-axis) is observed, due to the perfect reg-
ularity of the lattice structure. Finally, the clusterized graph (d)
exhibits an interesting distribution for two reasons. First, this
structure, composed of two random graphs linked by an edge, pro-
duces a r value, three time the one of a (single) random graph. This
is obviously due to the difficulty of the randomwalk progression in
the structure, as exposed in Section 4.1. The second observation
concerns the detached line around 3250: the two nodes responsi-
ble of this line are the bridge nodes of the structure (as nodes vL
and vR in Fig. 2). This confirms the intuition given in Section 4.1
stating that those bridges play an important role in the topology
and thus see the random walk more regularly than other nodes.

To summarize, this formal method can also be leveraged to as-
sign particular signatures to class of graphs, allowing to sort them
by order of healthiness or usability in practice.

6. Evaluation

We now evaluate our distributed algorithm through simula-
tions on various graph topologies, including the previously intro-
duced ones. The distributed second order centrality algorithm is

1 A graph signature could be seen as a footprint constituted by the distribution of
centrality values of its nodes.
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evaluated along the following metrics: (i) the ability to produce
unbiased results in the presence of heterogeneous degree distribu-
tions; (ii) the matching between the theoretical expectations and
the experimental results with respect to convergence time, and fi-
nally (iii) the practicality of the approach: typically we show that
for graphs used in practice, convergence time is, as expected, far
less than the upper bounds given by theory.

Theoretical values computed and reported in previous section
are used as baseline for comparison. We experimentally show that
our algorithm results on nodes converge (i.e. tends to accurate re-
sults asymptotically), thus validating our proposal.

Experiments have been obtained using the PeerSim discrete
event simulator [1].

6.1. Degree bias removal

We now provide a simple algorithm run example, aiming to as-
sess the effectiveness of the Metropolis–Hastings method used
jointly to our algorithm, on our typical clusterized graph. Fig. 5 de-
picts simulation results of the proposed algorithm, over the previ-
ously introduced clusterized graph (n = 103, p ¼ 1:5 lnn

n ). We run a
simple random walk instance, and an unbiased version; results
are plotted after 2 � 106 random walk steps.

We observe that for the simple random walk case, there is a
clear correlation between resulting standard deviations and nodes’
degree. Recall that low rmeans a high importance in the topology;
high degree nodes then all get a high value, despite a non necessar-
ily real importance. Contrariwise, no effect is measured on the
unbiased case, as the r are concentrated in a tighter range, that
does not decrease when nodes’ degree is increasing. This example
confirms that our algorithm removes the fact of considering a node
with a high degree as more important than it really is, regarding
the global topology structure.

Note that using an unbiased random walk preserves the impor-
tance of high degree nodes, if this high degree is correlated to its
importance (for example a node may be some kind of hub and is
therefore lying on many shortest paths [30]).

6.2. Speed of convergence

This section studies how fast simulations match the theoretical
expectations provided by Formula (6). Fig. 6 plots, for the four pre-
viously introduced graphs, the error ratio of algorithm results as
the random walk proceeds. The y-axis represents the computation
error, that is the algorithm result value minus the theoretical one,

normalized by the theoretical value (y = 0 then exhibit a perfect re-
sult). Presented curves are the average result of all graph nodes’
value.

As the random walk progresses in the graph, the number of vis-
its on nodes strictly increases, and thus gives a larger set of return
time values in their N array. The computation of standard devia-
tions then provides continuously improved estimations of impor-
tance (we assume here unlimited memory as we believe storing
simple integers is not an issue in practice). We observe that this
algorithm quickly converges to a small error window, validating
its behavior against theory prediction and showing a relatively fast
behavior (compared to the worst case O(n3) theoretical prediction).
This reflects the theoretical analysis provided in Section 5.3: the
largest the diameter and the more clusterized the graphs, the long-
er the convergence of our algorithm toward an acceptable value. In
high diameter/clusterized settings, the random walk process may
get ‘‘trapped” in specific zones. Escaping from such zones may take
time, thus slowing down the computation of an acceptable stan-
dard deviation.

7. Second order centrality compared to other centralities

In addition to Betweenness and Random Walk Betweenness
centralities introduced in related work, we briefly define in next
subsection other well-known centralities, before comparing them
all on a node-removal scenario.

7.1. Other forms of centralities

7.1.1. Degree centrality
The simplest form of centrality, degree centrality assesses the

importance of a node according to its degree in the interaction
graph. We note Cd(i) = di, the degree centrality of a node i.

7.1.2. Closeness centrality
Here important nodes are nodes close to all others in the graph.

Practically, this is computable for a node i by averaging the dis-
tance between i and all other nodes v in G; we note
CcðiÞ ¼ 1P

j2V dði;jÞ
, where d(i, j) is defined as the distance (shortest

path) between nodes i and j in the current graph.

7.1.3. Eccentricity
Eccentricity [22] now takes the notion of maximal distance be-

tween pairs of nodes, to compute their importance: CeðiÞ ¼ 1
maxj2V dði;jÞ
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for a node i. The intuition is that a node is central if no node is far
from it.

7.1.4. Eigenvector centrality
Another method, proposed by Bonacich [8], is to consider the

importance of neighbors of a node; in other words, an important
node has important neighbors in the graph topology. Considering
a node i, we then have CkðiÞ ¼

P
j2Ci

CkðjÞ: Google’s pagerank algo-
rithm is currently using a variant of eigenvector centrality [31].

7.2. Efficiency of centralities on a relationship network

We now present experiments we ran to compare our approach
to existing centralities. The experimental network is a 191 nodes
network modeling the largest connected component of jazz players
collaborations [21]. In this graph, 10% of nodes have more than 40
neighbors and 10% of nodes have less than 7 neighbors; such
imbalance is representative of common social graphs [3].

One way of assessing the absolute importance of nodes given by
centralities w.r.t. the topology is by removing highest ranked
nodes, and observing the resulting graph. Since each centrality al-
lows to rank the nodes according to their importance, each central-
ity defines a strategy for a targeted attack of the network. We thus
compare the effectiveness of the targeting strategy associated with
each centrality, considering that a centrality is efficient if it induces
an efficient node targeting strategy. A similar approach can be
found in [13].

For a given centrality, we sequentially removed nodes starting
from the most important remaining one, and then computed on
the resulting graph (i) the relative size of the biggest connected
component (Fig. 7), and (ii) the average path length between all
nodes belonging to this component (Fig. 8). For example, consider-
ing (x = 60) for the degree centrality, we learn that the original
graph minus the 60 highest degree nodes still connects 90% of
the remaining 131 nodes, and that the average distance between
two nodes belonging that connected part is around 3.8 hops.

As awaited [34], betweenness measures succeed to give impor-
tance to critical nodes for graph connectivity, by providing a very
similar effect on resulting structure. A drop is observed for both
centralities around 45 nodes removed (Fig. 7); it represents the last
removal before a first relatively large part of the graph is discon-
nected (here around 25% of nodes). This expresses their efficiency
for identifying critical nodes for structural disruption. An advan-
tage goes to random walk betweenness, which does not only con-
sider optimal paths; the removal of the nodes it identifies damages
alternative but yet centrality-important paths. At the same time,

average route length drops, as main component size is reduced
due to partition.

Second order centrality does not quickly disconnect large graph
parts, but considerably stretches route lengths in the main compo-
nent. It is somehow related to the random walk betweenness effi-
ciency for non-optimal paths, but by being less critical, it smoothly
targets relatively important nodes and then outputs a hardly nav-
igable structure. Note that it ends up with the smallest compo-
nents: after removing 100 nodes, the largest connected
component of the remaining graph is composed by approximately
15 nodes.

We can observe that eccentricity, degree, eigenvector and close-
ness do not significantly affect graph connectivity; meanwhile,
node removal have different effects on route lengths. Degree cen-
trality indeed stretches paths more importantly; it succeeds in
sorting important nodes for route lengths, as this simulation actu-
ally removes topology hubs that play shortcut roles. Eccentricity
behaves poorly in both scenarios, confirming its very particular
applicability.

We then conclude that focusing on identification of critical
nodes (w.r.t. topology disruption), results of our approach sit be-
tween the two betweenness techniques we aim to mimic on a dis-
tributed way, and the other centralities from state of the art. A
more complete panorama, considering applicability and tradeoff
of those different centralities, can be found in paper [26].

8. Conclusion

While evaluating the global characteristic of complex networks
with respect to connectivity, it is also of the utmost importance to
clearly identify the criticity of individual nodes. Such nodes may be
at the origin of bottlenecks for example that can significantly ham-
per the performance of any application running on the network. In
an attempt to overcome the drawback of current approaches,
which are either not addressing all individual nodes or need to
store the complete matrix on a single point (considering contem-
porary network sizes), we present a new centrality, called the sec-
ond order centrality. Its preserves the advantages highlighted by
Newman over previously introduced centralities, while being sim-
ple, lightweight and able to be computed in a decentralized way.
Based on our claim that regularity of visits on nodes reflects their
relative importance, we showed that a single random walk, run-
ning permanently in the system, can distributedly provide values
that allow a ranking of nodes in the topology. Theoretical analysis
of the second order centrality has been provided. Simulation
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results match the analysis and highlight the fact that such an algo-
rithm can be considered in practice to assess the relative impor-
tance of nodes in large scale networks, and that results compete
with state of the art centralities.

In the light of recent work [6] on the use of multiple parallel
random walk s to lower cover time (k times linear speed up for
large classes of graphs, for k 6 logn walks), or on the fact [24] that
a small extra neighborhood knowledge can suffice to bias a random
walk in order to speed up cover time (O(n2logn) instead of O(n3)),
forthcoming studies may show that those applications can lower
convergence time of our approach, without producing significant
side effects on real importance of nodes.

Appendix A. Proofs

A.1. Proof of Theorem 1

By definition of f ðnÞj ðiÞ we have, for n = 1, f ð1Þj ðiÞ ¼ Pði; jÞ. For
nP 2, we have

f ðnÞj ðiÞ ¼ PfsðjÞ ¼ njX0 ¼ ig ¼ PfXn ¼ j;Xk–j;1 6 k 6 n� 1jX0 ¼ ig
¼
X

‘2S�fjg
PfXn ¼ j;Xk–j;2 6 k 6 n� 1;X1 ¼ ‘jX0 ¼ ig

¼
X

‘2S�fjg
Pði; ‘ÞPfXn ¼ j;Xk–j;2 6 k 6 n� 1jX1 ¼ ‘g

¼
X

‘2S�fjg
Pði; ‘ÞPfXn�1 ¼ j;Xk–j;1 6 k 6 n� 2jX0 ¼ ‘g

¼
X

‘2S�fjg
Pði; ‘Þf ðn�1Þ

j ð‘Þ;

where the last but one and the antepenultimate equalities come
respectively from the Markov property and the homogeneity of
the Markov chain X. h

A.2. Proof of Corollary 2

Using Relation (2), we obtain

Mj ¼
X1
n¼1

nf ðnÞj ¼ Pj þ Qj

X1
n¼2

nf ðn�1Þ
j ¼ Pj þ Qj

X1
n¼1

nf ðnÞj þ
X1
n¼1

f ðnÞj

 !

¼ Pj þ QjðMj þ 1Þ;
and, since Pj þ Qj1 ¼ 1, we get

Mj ¼ QjMj þ 1:

Matrix Qj is the submatrix of the transition probability matrix of an
absorbing Markov chain with jSj transient states and one absorbing
state, thus the matrix I � Qj is invertible. This leads to

Mj ¼ ðI � QjÞ�1
1: �

A.3. Proof of Corollary 3

Using again Relation (2), we obtain

Hj ¼
X1
n¼1

n2f ðnÞj ¼ Pj þ Qj

X1
n¼2

n2f ðn�1Þ
j

¼ Pj þ Qj

X1
n¼1

n2f ðnÞj þ 2
X1
n¼1

nf ðnÞj þ
X1
n¼1

nf ðnÞj

 !

¼ Pj þ QjðHj þ 2Mj þ 1Þ ¼ QjHj þ 2QjMj þ 1

¼ QjHj þ QjMj þMj;

since, from Corollary 2, we have QjMj þ 1 ¼ Mj. This leads to

Hj ¼ ðI � QjÞ�1ðI þ QjÞMj: �

A.4. Proof of Theorem 4 – standard deviation on a Ring graph

On the ring we have d = 2 and the non zero transition probabil-
ities are given, f or every i 2 S = {0, . . .,n � 1}, by

Pði; iþ 1ðmodnÞÞ ¼ Pði; i� 1ðmodnÞÞ ¼ 1=2:

The standard deviations of the return times are given by the follow-
ing theorem.

Theorem 4. For the unbiased random walk on a n nodes ring, we
have r(j) = r for every j where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þðn� 2Þ

3

r
:

Proof. It is easily checked that the solution to Eq. (3) is given, for
i– j, by

Mði; jÞ ¼ ðn� ji� jjÞðji� jjÞ
and as mentioned above, we have M(i, i) = n. We then have

Xn�1

i¼0

Mði; jÞ ¼ nþ ðn� 1Þnðnþ 1Þ
6

Using Eq. (6), we obtain the desired result. h

Note that the fact all the r(j)’s are equal is due to the regularity
of the structure.

A.5. Proof of Theorem 5 – standard deviation on a Complete graph

On the complete graph, we have d = n � 1 and thus, the transi-
tion probabilities are given, for every i, j 2 S, by P(i, j) = 1/(n � 1) if
i– j and P(i, i) = 0. The standard deviations of the return times
are given by the following theorem.

Theorem 5. For an unbiased random walk on a n nodes complete
graph, we have r(j) = r for every j where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

p
:

Proof. It is easily checked that the solution to Eq. (3) is given, for
i– j, by

Mði; jÞ ¼ n� 1

and as mentioned above, we have M(i, i) = n. We then have

Xn�1

i¼0

Mði; jÞ ¼ nþ ðn� 1Þ2

Using Eq. (6), we obtain the desired result. h

Again the fact all the r(j)’s are equal is due to the regularity of
the structure.

A.6. Proof of Theorem 6 – standard deviation on a Line graph

On a line we have d = 2 and the non zero transition probabilities
are given, for every i 2 {1, . . .,n � 2}, by

Pði; iþ 1Þ ¼ Pði; i� 1Þ ¼ 1=2

and P(0,0) = P(0,1) = P(n � 1,n � 2) = P(n � 1,n � 1) = 1/2. The stan-
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dard deviations of the return times are given by the following
theorem.

Theorem 6. For the unbiased random walk on a n nodes line, we have
for every j 2 {0,1, . . .,n � 1},

rðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þð4n� 5Þ

3
� 4njðn� j� 1Þ

r
:

Proof. It is easily checked that the solution to Eq. (3) is given, for
i– j, by

Mði; jÞ ¼ ðj� iÞðiþ jþ 1Þ for i < j;
Mði; jÞ ¼ ði� jÞð2n� ðiþ jþ 1ÞÞ for i > j

and as mentioned above, we have M(i, i) = n. We then have

Xn�1

i¼0

Mði; jÞ ¼ nð2n2 � 3nþ 4Þ
3

� 2njðn� j� 1Þ:

Using Eq. (6), we obtain the desired result. h
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