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Abstract 

Interval availability is a dependability measure defined 
by the fraction of time during which a system is in operation 
over a finite observation period. The computation of its 
distribution allows the user to ensure that the probability 
that its system will achieve a given availability level is high 
enough. 

As usual, the system is assumed to be modeled by a 
finite Markov process. We propose in this paper two new 
algorithms to compute this measure and we compare them 
with respect of the input parameters of the model, both 
through the storage requirement and the execution time 
points of view. We show that one of them is an improvement 
of U well known one. Both algorithms are based on the 
uniformization technique. 

Index terms - Repairable computer systems, depend- 
ability, interval availability, Markov processes, uniformiza- 
tion. 

1 Introduction 

In the dependability analysis of repairable computing 
systems, there is an increasing interest in evaluating cumu- 
lative measures, in particular the availability over a given 
period. In highly available systems, steady state measures 
can be very poor, even if the mission time is not small. The 
use of expectations also suffers from similar drawbacks. 
Considering, for instance, critical applications, it is crucial 
for the user to ensure that the probability that its system 
will achieve a given availability level is high enough. This 
paper deals with the computation of the distribution of the 
interval availability which is defined by the fraction of time 
during which a system is in operation over a finite obser- 
vation period. 

Formally, if the system is modeled by a Markov process, 
its state space is divided into two disjoint sets representing 
the up states in which the system delivers the specified ser- 
vice ‘and the down states in which there is no more service 
delivered. Transitions from the up (resp. down) states to 

the down (resp. up) states are called failures (resp. re- 
pairs). The interval availability over (0 ,  t )  is the fraction 
of the interval (0 ,  t )  during which the process is in the up 
states. This random variable has been studied in previous 
papers as for instance in [l], where its distribution is cal- 
culated recursively by discretizing the observation period 
(0, t )  into intervals of length At small enough so that the 
probability of two or more events occuring during At is 
negligible. However, no error bounds were found for this 
approximation method. In [2 ] ,  a particular algorithm has 
been developed in the case where the two sequences of 
sojourn times in the subsets of operational and unopera- 
tional states are both independent and independent of each 
other. It is also shown that this property can be checked 
directly on the transition rate matrix of the process. In [3] 
the evaluation of the distribution of the interval availability 
is based on the uniformization technique. This approach is 
interesting because it has good numerical properties and, 
moreover, it allows the user to perform the computation 
with an error as small as desired. 

In this paper we develop two new methods to compute 
the interval availability distribution. They are based on the 
uniformization technique and the starting point is the work 
performed in [3]. 

The remainder of the paper is organized as follows. In 
the following section, we recall the main relation and the 
corresponding algorithm of [31. In Section 3, we give a first 
algorithm which is an improvement of the previous one. It 
needs the same memory space but it is faster. In Section 4, 
we propose a second method. Its main characteristics are 
that it needs less memory space than the previous methods 
and that its space requirements are known at the beginning 
of the execution. In Section 5 we compare the complexity 
of these algorithms and we illustrate the results with some 
numerical values. 

2 Interval Availability Distribution 

Consider a continuous-time homogeneous Markov pro- 
cess X = { X t ,  t > 0}, over a finite state space denoted 
by S. The states of $5’ are divided into two disjoint subsets: 
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[ J ,  the set of the operational states (or the up states) and 
D, the set of the unoperational states (or the down states). 
We assume that the system, modeled by such a process, 
is considered during a finite interval of tiime denoted by 
(0, t ) .  Of interest is the cumulative amount of operational 
time (up time) during (0, t ) ,  defined by 

O(t )  = I ( s )ds  l 
where I(s) denotes the indicator random variable 

1 if X ,  E U,  
0 otherwise. l ( s )  

From this, the interval availability over (O,, t ) ,  that is, the 
fraction of time the system is in operation during (0, t ) ,  is 
defined by 

The process X is, as usual, given by its infinitesimal gener- 
ator, denoted by A ,  in which the ith diagmal entry A ( i ,  i) 
verifies A(i, i) = - Cj+; A(i, j )  and by its initial proba- 
bility distribution a. 

Let us denote by 2 the uniformized Markov chain with 
respect to the uniformization rate X and by P its transition 
probability matrix [4]. The uniformization rate X veri- 
fies X > "ax(-A(i, i), i E E )  and P is rfelated to A by 
P = I + A/X, where I denotes the identity imatrix. We de- 
compose P and the initial probability vector Q with respect 
to the partition {U,  D }  of S as follows: 

Let us now briefly recall how the distribution of O(t )  is 
derived in [3 ] .  Using results on order statistics of identically 
and uniformly distributed random variables in (0, t ) ,  it is 
shown that for p < 1 (and thus for IC 5 ?I), 

71. transitions in (0, t ) ,  
IC states of [ J  visited 

n 

i = k  

Let Q(n, I C ) ,  0 5 IC 5 n + 1, be the probiibility that the 
uniformized Markov chain 2 visits IC states of lJ during 
its 71 first transitions. Unconditioning with respect to the 
number of visited states of [ J .  we have 

P(IAV(t)  5 p I n transitions in (0, t ) )  = 
n n 

k =O i = k  

Finally, unconditioning on the number of transitions in 

P(IAV( t )  5 p )  = 
(0, t ) 9  

Let e ( N )  be the error obtained when the previous series is 
truncated at step N .  We write 

lP(IAV(t)  5 p )  = e (N)+ 

It is immediately checked that e ( N )  can be bounded in the 
following manner: 

e ( N )  = 

(At)" 
- 

71! 
n =O 

(4) 

and so N can be evaluated beforehand for a given specified 
error tolerance. 

In order to evaluate the values of Q(n,  I C ) ,  let SZ,(n, I C )  
(resp. nu(71, I C ) ,  &(n,  I C ) )  be the row vector so that its 
ith entry, i E S (resp. i E U ,  i E D),  is the probability 
that the Markov chain 2 visits IC states of subset lJ during 
the first n transitions and the nth transition leads to state i. 
Thus, 

where 1 = (1 1 . . . 1) and ()' denotes the transpose 
operator. Using the backward renewal equations on the 
Markov chain 2, we have 

q 7 1 ,  I C )  = SZs(71, k)1' 

with initial conditions, 

nv(0,o) = 0, Q D ( O , O )  = QD, 

a u ( 0 , l )  = & U ,  QD(0,l) = 0 

Finally, changing the summation order on relation (2) and 
performing a second truncation, 

P(IAV(t)  5 p )  = e ( N )  + e ' (N ,  C)+ 
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Then, the table of Figure 1 is computed column by column. 
The algorithm stops after column C where, using the bound 
of (8), 

n 

n To do this, the sum of the scalars Q j ~ , ~ - k + l  is computed 
I, 

e ' (N ,  C) 5 1 - x C L ( N ,  N - IC + 1). from the elements of the last line of the table that have been 
k =O already computed. 

This bound is obtained from the following relation which is 
proved in the Appendix of [3]: for every integers C ,  7 1 ,  m 
such that 0 5 C 5 m 5 n, 

3 Algorithm 1 

c c In this section, we improve the previous algorithm from 
the computational point of view. We start from relation (1) 
which can be rewritten, for p < 1, as 

qT1, 71 - IC + 1) qm, - IC + 1). (9) 
k =O k=O 

The following figure shows how the computation of P(UV( t )  5 P )  = 
Q(n, I C )  is done in a column by column manner. 

+m " (W" e-xt - c,kpk (1 - p)n-k ~ ( n ,  I C )  (12) 
n! 

n =O k =O IC0 1 C; N-1"+1 

where W(n ,  I C )  is defined, for 0 5 IC 5 n + 1, by 

k 

W(n,k.)  = C Q ( n , i ) ,  (13) 
z =O 

that is, W ( n ,  I C )  is the probability that 2 visits at most 
IC states of IJ during the lirst n transitions. To evaluate 
the values of W(n ,  I C ) ,  we use the forward renewal equa- 
tions (instead of the backward ones). Let Ws(n,  I C )  (resp. 
Wu(71, I C ) ,  WO (n ,  I C ) )  be the column vector so that its ith 
entry, i E S (resp. i E U ,  i E D),  is the probability that 
2 visits at most IC states of U during the lirst 71 transitions, 
given that the initial state is i. We have 

W ( n ,  I C )  = aWs(n, I C ) .  - - - - + - - - - + - - - - + - - - - + - - - -  
, , , I  

, , , I  

Using the forward renewal equations on the Markov chain 

Figure 1. The contents of cell (71,  I C )  is 
the vector Qs(71, TI - IC + 1). 

Cell (71. , I C )  is filled from cells (71  - 1, I C )  and (n  - 1, IC - 1) 
using the recurrences (5) and (6). This means that it is 
necessary to store a whole column to compute the next one. 
The algorithm proceeds in the following manner. Given a 
tolerance error E specified by the user, the lirst truncation 
step is N, computed from (3)  and (4) as 

2, we get 

with initial conditions Wu(n, 0) = 0 and WD (0,O) = lT. 
Note also that Ws(n, 71 + 1) = lT. These equations are 
more interesting than the backward ones since, in practice, 
the initial probability is almost always concentrated in only 
one state I ,  and so W(n ,  IC) is equal to the lth component 
of the vector Ws(n, I C ) .  
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Let us rewrite relation (12), by malning the variable 
change k H 71 - k in the second sum: 

lP(IAV(t)  5 p )  = 

As in the previous section, the series is truncated at step N 
and we write 

p ( U V ( t )  5 p )  = e(N)-it 

I " .  

n=O k =O 

This relation can be written as 

I * .  k=O n=k 

and then as 

where 
el(N1 Cl)  = 

l". 

k=C,+I n=k 

The term el (NI C;;)  is bounded in the following way: 

e l ( N , c ; )  5 

Thiscomesfromtheinequality W ( n ,  k )  5 ?4' (7 i+1 ,  k+l), 
which is an equivalent form of (9). The folllowing second 
relation: 

W(71, k )  5 W(r1, k + l ) ,  

a trivial consequence of the definition of W(7&, k ) ,  allows 
us to obtain 

el ( N ,  Cl)  I 
N N  

W ( N ,  N - C:,) C e - A t T C n p  (At>n k n - k  (1 - p)'" 
71 . 

k=CI+l n=k 

e-Atp ,-At(l-p) (w - P N k  
k=CI+l 5 n=k 2 ( n - k ) !  k !  

= W ( N , N - C 1 )  x 

5 W ( N , N - C 1 )  x 

From the algorithmic point of view, we follow the same 
computational scheme as in the previous algorithm, illus- 
trated by Figure 1, and we have the same memory require- 
ments. Here, cell (n ,  k )  contains the value W ( n ,  71 - k )  
and C is replaced by Cl defined as 

Remark that, since for every 1 such that 0 5 1 5 N ,  

N+I 
W ( N , N - Z ) =  q N , N - k + l ) ,  

k=l+l 

we have CI 5 C ,  which proves that this algorithm runs 
faster than the algorithm in [3]; moreover, the difference 
becomes important when p is near from 1 since C; de- 
creases when p increases, while C does not depend on p. 

4 AlgorithmII 

As we have seen, the two previous algorithms need a 
large amount of memory to run. Once N is known, the 
workspace is composed basically by N vectors having the 
size of the whole state space. In this section, a different 
approach is followed to derive a new method with a better 
space complexity. Let us come back to relation (12), that 
we write as 

IP(IAV(t) > p )  = 

( A t ) "  +w Ce-"----- C C k p '  (1 - p ) n - k  Y(71, k )  (19) ri! 
n =O k =O 

where 
Y ( n ,  k )  = 1 - W(n,  k ) .  
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The usual k s t  truncation leads to Let N be computed as in the previous algorithms and C2 

as 

N 
- Ckpk (1 - p)n-lc Y(n ,  k ) .  (20) 

k =O 
n! 

n =O 

As previously, we change the order of the sums to obtain 

k=O n=k 

and then, we perform a second truncation: 

P(IAV(t )  > p )  = e ( N )  + e2(N, C2)-t 

(21) 
where e2(N, C2) verifies 

' Y .  

k=O n=Cz+k+l 

Then, the total error introduced when the double truncation 
is performed is less than E. As for C1, the truncation step 
C2 decreases when p increases. 

The recurrences to compute the Y ( n  , k )  's can be derived 
from (14) or directly by writing the corresponding forward 
equations. They are 

Y u ( n ,  k )  = PuYu(n - 1 ,  k - 1 )  

(23 1 + P~,Y,(,z - 1, k - 1) 
Y o ( n , k )  = PuoYu(n - 1 , k )  

+ PoYo(n  - 1 , k )  

with initial conditions Yu(n ,  0) = lT and Yo(0,O) = 0. 
To evaluate the two first terms in (21), as we know the 

value of C2, we need to store only C2 vectors having the 
size of the whole state space, in contrast with the N vectors 
needed by the previous algorithms. The key feature of 
this technique is then the fact that we are able to compute 
the index C2 beforehand. In the previous algorithms, the 
second truncation steps C and CI are known only at the 
end of the execution. 

A further improvement can be made in the following 
way. Consider the greatest integer C3 such that 

2 e - X t ( l - p )  (Wl - P>>" I 2. 
?1! 3 

n =O 

Such a value of C3 exists if e - X t ( l - p )  5 ~ / 3 .  Assume that 
this is the case. Relation (21) can be written as 

N-Cz-1  ( X t ( 1  - p ) ) n - k  
( n  - k ) !  B ( U V ( t )  > p )  = e ( N )  + e2(N,  C2) + e s ( N ,  C;, S) 

n =Cz+ k + 1 
k !  

k =O 

(W N-C2 CZ+k 

+ e-x t -Ckpk ( 1  - p)n-k  Y ( n ,  k )  (24) 
n! 

(W -PI>" 
N-C2-1 N - k  

n! k=O n=k 
k=O n=Cz+l 

(At)" e-Xt-CLpk ( 1  - I ) ) ~ - '  ~ ( n ,  I C ) .  
N - G - 1  N 

+ ( X t P ) k  5 e - x t ( l - p )  n! 
k=N-C2+1 n=k 

(w -PI>" 
N-Cz-I  

n! 5 e - x t p  
k =O n=C2+1 Note that if C3 = C2 - 1 then the second term in the 

previous relation is equal to 0. The error e3 (N, C2, C 3 )  

verifies 
(W -PI>" 5 e - w - P )  

N 

n! 
n=Cz+l e 3 ( K  c 2 ,  C3) = 

n =O 
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The first two truncations steps N and C2 are computed 
as before from (10) and (22), by changiing e/2 by ~ / 3 .  
Observe that the following inequalities hold:: 

The general computational scheme is shown in Figure 2, 
where we indicate the cells that are effectively filled. When 
C3 does not exist, we can define C3 = --I1 and still use 
relation (24). 

IC0 1 N - C 3  N - 1 N  
71 

0 

1 

Figure 2. The contents of cell ( ? I ,  k )  is 
the vector YS(PL,  IC).. 

5 Complexity analysis and numerical exam- 
ples 

In this section, we compare the different techniques from 
the complexity point of view and we give some numerical 
results. The number of states of the system is denoted by 
M .  

5.1 Storage complexity 

The method proposed in [ 3 ]  and Algorithm I basically 
need the storage of N vectors of dimension M ,  that is, of 
N M real numbers. Algorithm I1 necessites the storage of 
C, vectors of dimension M ,  that is C2 M real numbers. 

5.2 Time complexity ' 

In the three considered algorithms, the complexity of the 
computation of each cell is the same: it requires a matrix- 
vector product of dimension M .  Observe that a compact 
representation of the involved matrices must be used since, 
in general, they are sparse. The number of cells constructed 
in the algorithm proposed in [3] is 

in Algorithm I it is equal to 

and in Algorithm I1 its value is 

where N' is the truncation step computed from Relation 10 
by changing ~ / 2  by ~ / 3 .  We have N' = N if C3 = - 1 'and 
N' 2 N otherwise. It is  clear that #I 5 #O since CI 5 C,  
as we pointed out before. Concerning Algorithm 11, the 
number of cells can be anywhere, from values greater th,m 
#O to values less than #I. In practice, it is in general near 
#I ,  leading to better computational times than those of the 
algorithm in [3]. In the next subsection, we give some 
execution times to illustrate the behaviour of the different 
algorithms. 

5.3 Numerical examples 

Let us consider a hardware system which consists of 
71 identical components. As for most hardware devices, 
failure is a reflection of component failure. Let us assume 
that our system operates on a "k out of 71" basis, that is, 
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the system is up when at least k components are up. Fur- 
thermore, it is assumed that the failure of any component 
would occur independently of the operation of the others. 
Repair times are stochastically independent of component 
lives and maintainance policy is unrestricted (i.e., the num- 
ber of repairmen available is equal to the number of system 
components). These assumptions lead to a Markov model 
in which the number of system states results to be A4 = 2". 
The failure and the repair rate of each component are taken 
to be 0.01 and 1 respectively. For numerical results, we 
will consider the case of k respectively equal to n, n - 1 
and n - 2, which leads to a number of operational states 
respectively equal to 1,1 + n, 1 + n + n(n - 1)/2. 

We compute the probability of achieving an availability 
of at least p ,  that is lP(LAV(t) > p ) ,  for different values 
of the parameters p and t: p = 0.95, 0.97, 0.99, 0.995; 
t = 100,1000. Theglobal error E chosen for each algorithm 
is equal to 0.00001. 

The following tables show the computation time (in sec- 
onds) of the two algorithms proposed in this paper as a 
function of the input parameters. The programs were run 
on a Sun 4/50. The number of components are succes- 
sively n = 5 and n = 6, and the values of k are k = n 
and k = n - 1. The computational time of the algorithm 
described in [3] being independent of p ,  it is given in each 
table header between parentheses. 

t = 100 t = 1000 

k = 7 

n = 5 ,  k = 4 
11 t = 100 (33) I (  t = 1000 (889) 

[31 I 1 I 11 [31 I 1 1  I1 
464 I 146 I 153 20347 I 9747 I 9343 

k = 6  
k = 5 

380 141 153 14179 9275 9428 
308 134 153 9217 8110 9443 

n = 6 , k = 6  
I 11 t = 100 (146) 11 t = 1000 (5537) 1 

p=0.950 
~ = 0 . 9 7 0  

I I1 I I1 
16 18 950 1024 
12 13 631 677 

U I ~ = 0 . 9 7 0  11 35 I 36 11 1950 I 2002 I 

p = 0.990 
P = 0.995 

6 7 260 297 
4 5 154 192 

n = 6 , k = 5  
11 t = 100 (115) 11 t = 1000 (3565) 

p=0.950 
P =  0.970 

I I1 I I1 
15 18 785 1019 
11 13 576 675 

p = 0.990 
p =  0.995 

I 

6 7 263 I 304 
4 5 154 I 192 References 
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