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Abstract

This paper presents a discrete-time Markov chain model
for the Reno version of TCP, the transmission control proto-
col for reliable transport on the Internet. The purpose is the
evaluation of stationary TCP flows behavior using perfor-
mance measures such as the mean throughput. The model
is based on previous works which are generalized by taking
into account the slow start phases that appear after each
time-out recovery, which importance is discussed.

1. Introduction

Because of the great expand of the Internet, a lot of work
has been done on its efficiency and on possible improve-
ments. The apparently simple mechanism of the Transport
Control Protocol TCP used by HTTP transfer, file trans-
fer, email and remote access has been modeled with various
stochastic tools.

Assuming a periodic window evolution marked by ran-
dom loss events of probability p, separating successive con-
gestion avoidance phases, the authors of [15] have shown
that the mean throughput � was O(1=

p
p).

Many studies are based on a fluid approach and are usu-
ally and mainly interested in getting an analytical expres-
sion for the mean throughput of a single steady-state TCP
connection. It is the case of [14], [13], [16] and [6], but also
[2], [1], [5] and [4] which focus on the window size Wn just
before the n-th loss. The case of multiple TCP connections
is the subject of [3], [12], and [8] for instance. Among all
other tools explored, the max-plus algebra provides in [7]
expressions for the mean throughput in the case of several
routers in series.

Our paper is based on previous works presented in [19],
[18] and [9] which consider a discrete-time model and a
discrete evolution of the window size. We propose here a
discrete-time Markov chain model which aims to give ana-
lytical expressions for measures such as the mean through-

put of one bulk transfer TCP-Reno flow among exogenous
traffic. A flow may represent the transfer of a large data file
as well as the global TCP traffic from one ftp serveur to an-
other for instance. This model also provides various results
for the successive TCP phases.

The paper is organized as follows. The TCP-Reno mech-
anisms are reviewed in Section 2 and modeled in Section 3
with a discrete-time Markov chain based on the notion of
rounds. An expression for the mean throughput is obtained
in Section 4 in which we also discuss our numerical results.
Section 5 shows the importance of slow start phases in terms
of duration and of number of segments sent. Section 6 con-
cludes the paper.

2. Description of TCP

TCP is a reliable flow control protocol for connection
oriented links (see [21] and [10]). Network congestion,
identified by packets loss, is detected by TCP by the arrival
or not of packet acknowledgments, leading the protocol to
a modification of the transmission throughput.

Indeed, each successfully transmitted packet is validated
and confirmed to the source by a small packet called ACK
(ACKnowledge) which contains the sequence number of the
next expected byte and a receiver’s maximum window size
giving information about its buffer occupancy. So as not
to unnecessarily load the network, the receiver sometimes
waits for more data to acknowledge before sending an ACK.
Those ACKs are thus called delayed ACKs. The number b
of segments validated per ACK is typically equal to 1 or 2.
A timer Ts will set the departure of an ACK if no new data
is to be ACKed.

There are two kinds of loss detection :

� detection by time-out, or TO : if no ACK is received
for byte number n before the expiry of a timer T 0, then
a time-out occurs. The segment starting with byte n is
considered lost and is thus retransmitted, and no more
data is sent until byte n is ACKed;
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� detection by the arrival of three duplicate ACKs, or
TD : if a segment beginning with byte n is lost
but some following segments are received, each of
these will generate an ACK requesting byte n, that is
one ACK requesting byte n and successive duplicate
ACKs. The reception of the third duplicate ACK (4
similar ACKs) will halve the window and generate the
segment retransmission. In fact, duplicate ACKs can
be due to disordered segment reception, and the arrival
of one or two duplicate ACKs is not considered as a
proof of loss.

TCP is based on a sliding window dynamic. The win-
dow, initialized to 1, gives the number of bytes that can be
sent before receiving any ACK. Each time an ACK arrives,
the window slides to the right to release into the network as
many bytes as the ACK validates. The function of TCP is to
modify the window size W c (in segments) according to the
algorithm presented below and described in the RFC2001
([22]).

First, TCP-Reno consists in three phases depending on
loss events and on the comparison of the congestion win-
dow size W c to the slow start threshold W th. If a TD
loss occurs, then W th := max (bW c=2c; 2) and W c :=
max (bW c=2c; 1), then starts a congestion avoidance phase.
If a TO loss occurs, then W th := max (bW c=2c; 2),
W c := 1, and a time-out phase starts.

Time-out, slow start and congestion avoidance operate as
follows

� time-out (to) : just after a TO loss detection, the ap-
parently lost segment is retransmitted. After each re-
transmission failure, the timer value doubles (from T0

to 2T0, 4T0, 8T0,...) until 64T0, and then remains con-
stant (and gets back to T0 at the end of this time-out
period, that is when the corresponding ACK arrives).

� slow start (ss) : starts after a time-out recovery and
lasts as long as W c < W th. During slow start,
W c := W c + 1 each time an ACK is received (b
segments ACKed). If the whole window gets success-
fully transmitted, then it will generate dW c=be ACKs,
where dxe denotes the smallest integer� x. For b = 1,
a window of size W c will thus generate W c ACKs, so
it will grow from W c to 2W c. Consequently, the con-
gestion window grows exponentially during the slow
start phase;

� congestion avoidance (ca) : each ACK reception adds
1=W c segments to the window size, so that the ACK-
ment of the whole window increases W c by 1=b. Con-
sequently, the congestion window grows linearly (of
one segment every b rounds) during the congestion
avoidance phase.

3. The model

If the dispatch duration of all the segments and of all the
ACKs held in a given window is negligible compared to the
round trip time RTT, then we can justify the following def-
inition of round given in [19], [18] and [9] : a round is the
period of time between the departure of the first segment of
the current window and the arrival of its ACK. The duration
of a round is close to the round trip time when the delayed
ACK timer Ts is small compared to the RTT.

3.1. Definition

We aim to model the window behavior using a homo-
geneous discrete-time Markov chain X = (Xn)n�1 with
two components Xn = (W c

n;W
th
n ). The first component

W c
n denotes, when positive, the window size during the n-

th round. The null value for W c
n is used to represent the

time-out period. The second component W th
n denotes the

value of the slow start threshold during the n-th round. We
denote by Wmax the maximum window size, which is the
receiver’s buffer capacity indicated in the ACKs (when W c

n

reaches Wmax it remains constant until the next loss). The
description the state space of this Markov chain is given,
more formally, by

� Xn = (i; j) with i 2 f1; : : : ;Wmaxg and j 2
f2; : : : ; bWmax=2cg when the current window size is
i and the slow start threshold is j,

� Xn = (0; j) with j 2 f2; : : : ; bWmax=2cg when the
connection is in a time-out period with threshold j.

As long as W c
n = i � 1, a transition of the Markov chain

represents one round and thus lasts RTT seconds. In order
to make the mean duration (in seconds) of a time-out period
E[Tto] equal to RTT times the mean number of successive
visits to state (0; j), we define the two following transitions
from each state (0; j), j = 2; : : : ; bWmax=2c :

� from (0; j) to (1; j) with probability p0 at the end of a
time-out period,

� from (0; j) to (0; j) with probability 1� p0 otherwise,

with p0 = RTT=E[Tto]. In Subsection 4.5, we give the
expression of E[Tto] as a function of RTT , p and T0.

The state space E of this Markov chain is a sub-
set of the set E 0 defined by E 0 = f0; : : : ;Wmaxg �
f2; : : : ; bWmax=2cg: We can notice that for Wmax =
10; 50; 100; 200, the set E0 contains respectively 44, 1224,
4949 and 19899 states.

A simple example of the beginning of a connection is
given in Figures 1 and 2 where we take W th

0 = 4 segments,
Wmax = 8 and b = 1.
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Figure 1. Example of congestion window evo-
lution.
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Figure 2. Markov chain transitions and parti-
tioning.

It can be noted in Figure 1, that, for instance, state (3; 4)
will never be reached. This is due to the fact that the win-
dow sizes reached in the slow start phase are for

� b = 1 : 1, 1 +

�
1

b

�
= 2, 2 +

�
2

b

�
= 4, 8, 16, 32,: : :

� b = 2 : 1, 1 +

�
1

b

�
= 2, 2 +

�
2

b

�
= 3, 5, 8, 12,: : :

This example leads to the following partitioning for the
state space of the Markov chain, which is represented in
Figure 2. The state space E is written as E = E0 [ A [ B
where

� E0 = f(0; j) j 2 � j � bWmax=2cg,
� B = f(i; j) j 2 � j � i �Wmax and j � bWmax=2cg,

� A = f(i; j) j 1 � i < j � bWmax=2c and 9n � 0
such that i = f [n](1)g, where f(w) = w + dw=be,
f [0](w) = w, and f [n] = f [n�1] Æ f , for n � 1.

The partition shown in Figure 2 is in fact a partition of the
state space E0 and the set A contains the reachable states of
A0 during the slow start phase.

This discrete-time Markov chain is irreducible and ape-
riodic. It is thus ergodic and its stationary distribution � is
the unique distribution verifying �P = � where P is the
transition probability matrix, which is given in Section 3.3.

3.2. Cyclic behavior

In what follows, we consider the Markov chain in sta-
tionary regime and we assume that the source behaves as a
saturated source, which means that there are always packets
waiting for transmission.

In such a context, an observation of the congestion win-
dow size shows a cyclic evolution, consisting in one slow
start phase followed by several congestion avoidance phases
separated by TD losses, and then a TO loss starting a time-
out period at the end of which a new cycle begins (see Fig-
ure 3).

W
c

TD

TD

TO

W
th

W
th

TD

Tss Tca Tca

TD

Tca

TO

Tto

cycle

Wmax

Figure 3. Description of a cycle.

We denote respectively by

� Tto, Tss and Tca the duration of a time-out period, a
slow start phase and a congestion avoidance phase,

� dto, dss and dca the number of segments sent during
the periods Tto, Tss and Tca,

� T back
E0 the time between a time-out recovery and the

next TO loss,

� dbackE0 the number of segments sent during T back
E0 ,

� Nloss the mean number of loss detections per cycle,

� � the connection throughput, more precisely the mean
transmission rate or send rate, which takes into ac-
count all segments that have left the source, including
lost segments and retransmissions (� is the input rate
seen by the network).
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Observing Figure 3 and because of the cyclic window
evolution, we would write the throughput � as

E[dbackE0 ] +E[dto]

E[T back
E0 ] +E[Tto]

: (1)

However, this formula does not take into account the resid-
ual rounds that appear after each loss and which are pre-
sented in Subsection 4.1 together with the expression of �.

3.3. The transition probabilities

We assume that losses only occur in the direction from
the sender to the receiver (no loss of ACKs) and that any
segment has a fixed probability p to get lost. More precisely,
the random variable defined by the number of consecutive
segments that are transmitted before loss has a geometric
distribution with parameter 1� p.

Let us first suppose that the connection is in slow start,
i.e. W c

n = i < j = W th
n . As long as the Markov chain

remains in slow start, the congestion window increases by
1 segment each time an ACK is received. And because
dW c

n=be segments are acknowledged for the whole round,
W c

n+1 = W c
n + dW c

n=be = dW c
ne with  = 1 + 1=b. In

the following propositions, we give expressions for the non-
zero transition probabilities of the Markov chain. These ex-
pressions being easy to obtain, we omit the proofs.

Proposition 1 For 1 � i < j � bWmax=2c, we get :

� P(i;j)(die;j) = (1� p)i : no loss occurs,

� P(i;j)(0;max(bi=2c;2)) =
�
1� (1� p)i

�
qi : a TO loss

occurs,

� P(i;j)(max(bi=2c;1);max(bi=2c;2))=
�
1�(1�p)i

�
(1�qi)

: a TD loss occurs,

where qi (computed in Subsection 4.2) denotes the proba-
bility that a loss is due to time-out when W c = i.

Suppose now that the transmission is in congestion
avoidance in state (i; j), i.e. W c

n = i � j = W th
n .

Proposition 2 Observing that congestion avoidance glob-
ally raises the window size by 1=b, i.e. by 1 segment every b
rounds, then for 1 � j � i < Wmax,

� P(i;j)(i;j) = (1� p)i
�
1� 1

b

�
: no loss occurs,

� P(i;j)(i+1;j) = (1� p)i
1

b
: no loss occurs,

� P(i;j)(0;max(bi=2c;2)) =
�
1� (1� p)i

�
qi : a TO loss

occurs,

� P(i;j)(max(bi=2c;1);max(bi=2c;2))=
�
1�(1�p)i

�
(1�qi)

: a TD loss occurs.

Note that in order to get the model more accurate about
the raise of 1 segment every b rounds, we should decompose
the Markov chain state (i; j) into b new states, say (i; j; 1),
(i; j; 2), : : :, (i; j; b), but, first that would of course signif-
icantly increase the Markov chain size (even for b = 2)
and secondly, that would not change the measures of in-
terest since the stationary distribution on the state space E
remains the same after such a transformation.

Proposition 3 Similarly, for each j we have :

� P(Wmax;j)(Wmax;j) = (1� p)Wmax : no loss occurs,

� P(Wmax;j)(0;max(bWmax=2c;2))=
�
1�(1�p)Wmax

�
q
Wmax

: a TO loss occurs,

� P(Wmax;j)(max(bWmax=2c;1);max(bWmax=2c;2)) =�
1� (1� p)Wmax

�
(1� q

Wmax

) : a TD loss occurs.

As explained in Section 3, we define the transition prob-
abilities in time-out.

Proposition 4 For each j, we have :

� P(0;j)(0;j) = 1� RTT

E[Tto]
: no acknowledgment yet,

� P(0;j)(1;j) =
RTT

E[Tto]
: the acknowledgment is arrived.

The expression of E[Tto] as a function of the timer T0 and
the loss probability p is computed in Section 4.5.

The shape of the transition probability matrix P and the
regions corresponding to the different types of losses are
shown in Figure 4.

TD LOSS

TD LOSS

TD LOSS

P =

T
O

L
O
S
S

L
O

S
S

O
N

Figure 4. Link between the transition matrix
P and TCP.
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4. Computation of the throughput

4.1. Residual rounds

First, we make the assumption that in a given round, the
loss of one segment leads to the loss of the following seg-
ments (correlated losses). This should be the case in a high
speed network for instance. Moreover, in the round where
the loss takes place, if k segments are however transmit-
ted before congestion, then those segments will generate
ACKs and the window will slide. This means that k new
segments are transmitted in the next round, which is called
the residual round.

This behavior is shown in Figure 5 which depicts the
case where the last segment sent during the residual round
is lost.

k

i

1

k+1

Figure 5. The residual round.

We consequently introduce the following notations :

� drr : number of segments sent in a residual round,

� prr : probability that a loss is followed by a residual
round, that is probability that a residual round is not
empty.

We can now give the expression of the send rate �.

Proposition 5 The send rate � is given by

� =
E[dto] +E[dbackE0 ] +NlossE[drr]

E[Tto] +E[T back
E0 ] +RTT (Nloss � 1)prr

: (2)

Proof. The first terms of expression (2) correspond to Re-
lation (1). The last terms, where Nloss appears, are due
to the residual rounds. In counting the mean number of
segments transmitted during a cycle, we also need to take
into account the mean number of segments constituting the
residual rounds generated by the N loss loss detections. This
mean number of segments is equal to N lossE[drr].

For what concerns the mean cycle duration, it is in-
creased by prrRTT for each of the (Nloss � 1) TD losses,
because the TO loss residual round is taken into account in
next time-out period, as shown in Figure 6. 2

The expressions of Nloss, prr, E[drr], E[dto], E[Tto],
E[T back

E0 ],E[dbackE0 ] are given in Relations (4-8) and (11-12).

Remark 1 Let us denote by nca the number of ca phases
in a cycle and Nca = E[nca]. Whereas it is clear that
E[T back

E0 ] = E[Tss]+E[ncaTca], our numerical results have
shown that E[T back

E0 ] is very closed to E[Tss] +NcaE[Tca],
which means that nca and Tca can be considered as inde-
pendent. The same results hold for variables nca and dca.

4.2. TO-type losses proportion

Now that we introduced residual rounds, we are able to
understand how a loss might be a TO loss and not a TD
loss, and thus to compute probabilities qi that a loss is due
to TO whenW c = i, which are necessary for the evaluation
of transition probabilities.

Proposition 6 The probability qi that a loss is due to TO
when W c = i is given by : qi = 1 if i � 2b + 1 and if
i � 2b+ 2

qi =
(1� (1� p)2b+1)

�
1+ (1� p)2b+1� (1� p)i

�
1� (1� p)i

: (3)

Proof. Using the notation in Figure 5, we have

� If i � 2b + 1 then k � 2b and thus no TD loss can
happen (3 duplicate ACKs need b + b + 1 = 2b +
1 segments to be received). In this case, the loss is
necessarily due to TO, i.e. qi = 1.

� If i � 2b+ 2 then :

– if k � 2b : similarly, only a TO loss can occur;

– if k � 2b + 1 : there is a TO loss only when
less than 2b+1 segments from the residual round
arrive at destination (the 2b+1 first segments are
not all received), i.e. the l-th segment from the
residual round gets lost, with 1 � l � 2b+ 1.

Thus, if we denote by Lk+1 the event corresponding to
the loss of the (k + 1)-th segment, we get

qi = P (TO jW c = i & loss)

=

i�1X
k=0

qi;kP (Lk+1 jW c = i & loss)

where

qi;k = P (TO jW c = i & Lk+1)

=

�
1 if k � 2b

1� (1� p)2b+1 if k � 2b+ 1;

and P (Lk+1 jW c = i & loss) =
(1� p)kp

1� (1� p)i
. Rela-

tion (3) then follows after some algebra. 2
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4.3. Mean number of losses per cycle

Proposition 7 The mean number Nloss of loss detections
per cycle is given by

Nloss =

1�
X

(i;j)2E

(1� p)i�(i; j)

X
(i;j)2E

qi
�
1� (1� p)i

�
�(i; j)

: (4)

Proof. Each cycle (see Figure 3) is composed of several
TD losses and only one TO loss. Thus, we have

1

Nloss
= P (TO j loss &W c � 1) =

WmaxX
i=1

qipijloss

where

pijloss = P (W c = i j loss &W c � 1)

=
P (loss jW c = i)P (W c = i jW c � 1)

P (loss jW c � 1)

=

�
1� (1� p)i

� P (W c = i)

P (W c � 1)
WmaxX
i=1

�
1� (1� p)i

� P (W c = i)

P (W c � 1)

=

�
1� (1� p)i

� bWmax=2cX
j=2

�(i; j)

X
(i;j)2E

�
1� (1� p)i

�
�(i; j)

: 2

4.4. The weight of residual rounds

Proposition 8 The probability prr that a residual round
appears after loss is given by

prr = 1� p

1�
bWmax=2cX

j=2

�(0; j)

1�
X

(i;j)2E

(1� p)i�(i; j)
: (5)

Proof. Let K be the random variable equal to the number
of segments sent before loss in the round in which that loss
occurred (see Figure 5, in which we have drawn the case
K = k). We thus have

prr = P (K 6= 0 j loss &W c � 1)

=

WmaxX
i=1

P (K 6= 0 jW c = i & loss)pijloss

=

WmaxX
i=1

�
1� p

1� (1� p)i

�
pijloss;

which leads to Relation (5) using the expression of p ijloss
given in the proof of proposition 7. 2

Proposition 9 The mean number of segments E[drr] that
are sent in a residual round is given by

E[drr] =
1� p

p
�

X
(i;j)2E

i(1� p)i�(i; j)

1�
X

(i;j)2E

(1� p)i�(i; j)
: (6)

Proof. As above, we denote by K the random variable
equal to the number of segments sent before loss in the
round in which that loss occurred (see Figure 5). We have

E[drr] = E[K j loss &W c � 1] =

WmaxX
i=1

E[drr j i]pijloss

where

E[drr j i] = E[K jW c = i & loss] =
i�1X
k=0

k
(1� p)kp

1� (1� p)i

=

�
1� p

p

�
1� (1� p)i � ip(1� p)i�1

1� (1� p)i
:

Relation (6) is then obtained using the expression of p ijloss
given in the proof of Proposition 7. 2

4.5. Time-out study

The behavior of TCP during a time-out period is illus-
trated in Figure 6, where rr denotes the residual round (see
also Figure 5).

1

W c

rr

TO

T0 2T0

ACK

Tto

64T064T0

Figure 6. Detail of a time-out period.

The following result can be found in [19].

Proposition 10 The mean number of segments sent during
a time-out period and the mean duration of a time-out pe-
riod are given by

E[dto] =
p

1� p
(7)

(geometric distribution of segments loss),

E[Tto] = T0
1+ p+2p2+4p3+8p4+16p5+32p6

1� p
�RTT:

(8)
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4.6. Between two time-out periods

In the following remark, we briefly recall some results
on sojourn times in Markov chains. These results have been
obtained in [20].

Remark 2 Consider an irreducible discrete time Markov
chain with finite state space E, transition probability matrix
P and stationary probability distribution �. We denote by
1 the column vector with all the entries equal to 1. Let F
be a proper subset of E and F 0 the complementary subset
E � F . The partition F; F 0 of E induces the following
decomposition of P , � and 1:

P =

�
PF PF;F 0

PF 0;F PF 0

�
, � =

�
�F �F 0

�
;1 =

�
1F

1F 0

�
:

If vi denotes the stationary probability that a sojourn in F
initiates in state i (i 2 F ) and v the row vector composed of
the vi, then

v =
�F (I � PF )

�F (I � PF )1F
=

�F 0PF 0;F

�F 0PF 0;F1F
; (9)

where I is the identity matrix of dimension given by the
context. Moreover, for every i 2 F , let N i;F be the number
of visits to state i during a sojourn in F and let ri be any real
number. If we denote by rF the column vector composed of
the ri and by CF the random variable CF =

P
i2F riNi;F ;

we easily get

E[CF ] = v(I � PF )
�1rF =

�F rF
�F 0PF 0;F1F

: (10)

Using these results, we have the following proposition.

Proposition 11 The mean time E[T back
E0 ] between the end

of a time-out period (the beginning of slow start) and the
next TO loss is given by

E[T back
E0 ] =

RTT

p0

0
BBBBB@

1
bWmax=2cX

j=2

�(0; j)

� 1

1
CCCCCA
: (11)

Proof. E[T back
E0 ] is RTT times the mean time spent by the

Markov chain in subset A [ B. Following Remark 2, Rela-
tion (10), we have

E[T back
E0 ] = RTT�E[CA[B] = RTT

�A[BrA[B
�E0PE0;A[B1A[B

where rA[B = 1A[B . We thus have

E[T back
E0 ] = RTT

P
(i;j)2A[B

�(i; j)

bWmax=2cP
j=2

p0�(0; j)

=
RTT

p0

1� P
(i;j)2E0

�(i; j)

bWmax=2cP
j=2

�(0; j)

=
RTT

p0

1�
bWmax=2cP

j=2
�(0; j)

bWmax=2cP
j=2

�(0; j)

;

where the last equality follows from the fact that E 0 is the
subset of states (0; j), j = 2; : : : ; bWmax=2c. 2

Proposition 12 The mean number E[dbackE0 ] of segments
sent between the end of a time-out period and the next TO
loss is given by

E[dbackE0 ] =

X
(i;j)2A[B

i�(i; j)

p0

bWmax=2cX
j=2

�(0; j)

: (12)

Proof. E[dbackE0 ] is the mean number of segments sent dur-
ing a sojourn in A[B. We thus haveE[dbackE0 ] = E[CA[B ]
where the entry (i; j) of vector rA[B is now the num-
ber of segments sent when the Markov chain is in state
(i; j) 2 A [ B, that is r(i;j) = i, for every (i; j) 2 A [ B.
Following Remark 2, Relation (10), the rest of the proof is
similar to that of Proposition 11. 2

4.7. Numerical Results

0

50

100

150

200

0 0.002 0.004 0.006 0.008 0.01

�

p

Wmax = 8, b = 2, T0 = 0:500 s

RTT = 0:050 s
RTT = 0:100 s
RTT = 0:250 s

Figure 7. Send rate � for different values of
RTT .

Figure 7 : The send rate � gets equal to Wmax segments
per RTT (Wmax=RTT segments per second) when loss
probability p is close to zero, and converges to zero when
p increases. Moreover, the shorter RTT is, the more seg-
ments are sent per second (quick acknowledgments).
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Figure 8. Send rate � for different values of
Wmax.

Figure 8 : When Wmax increases, the window size can
reach higher values and the mean throughput naturally in-
creases too. Note that for small values of the loss proba-
bility p, � reaches Wmax=RTT segments per second, and
for large values of p, � seems to be less dependent on
Wmax. Indeed, for p = 0; 01, � gets close to 20 or 30 seg-
ments per second, that is around 6 segments per RTT for
Wmax = 8; 16; 32.
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Figure 9. Comparison to other models for
RTT = 0:250 s.

Figures 9 and 10 provide a comparison to simpler mod-
els [15] and [19] which have been validated from both sim-
ulations and real traffic measurements that we do not re-
port here but that can be found in [15, 19, 9]. Note that
the throughput of our model, evaluated with less simplifica-
tions, is lower than the one obtained by the authors of [15]
and [19]. But the higher RTT is, the closer the different
models are.

Remark 3 Note that similar results have been obtained in
[11] for the goodput (or output rate), which represents the
throughput seen by the receiver.

0

1000

2000

3000

4000

0 0.002 0.004 0.006 0.008 0.01

�

p

RTT = 0:010 s, b = 2, T0 = 0:500 s

[15] : � = 1

RTT
:

q
3

2bp

[19] (full model)

our model

Figure 10. Comparison to other models for
RTT = 0:010 s.

5. The importance of slow start

The strength of our model is that it allows us to give a
detailed description of the window evolution. In particu-
lar, we obtain the expression of E[Tss], the mean duration
of a slow start phase, and of E[dss], the mean number of
segments sent in a slow start phase.

Proposition 13 The mean duration E[Tss] of a slow start
phase is

E[Tss] =
RTT

p0

bWmax=2cP
j=2

j�1P
i=1

�(i; j)

bWmax=2cP
j=2

�(0; j)

:

Proof. E[Tss] is RTT times the mean time spent by the
Markov chain in subset A. Following Remark 2, Rela-
tion (10), we have

E[Tss] = RTTE[CA] = RTT
�ArA

�E0[BPE0[B;A1A

where rA = 1A. We thus have

E[Tss] = RTT

P
(i;j)2A

�(i; j)

bWmax=2cP
j=2

p0�(0; j)

= RTT

bWmax=2cP
j=2

j�1P
i=1

�(i; j)

p0
bWmax=2cP

j=2
�(0; j)

; 2

Proposition 14 The mean number E[dss] of segments sent
during a slow start phase is

E[dss] =

bWmax=2cP
j=2

njP
n=1

wn(1� p)dn�1�(0; j)

bWmax=2cP
j=2

�(0; j)

;
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where in any slow start phase, wn is the size of n-th round,

dn =
nP

k=1

wk (with d0 = 0) is the number of segments sent

during the first n rounds and nj is the number of rounds
needed to reach the slow start threshold j.

Proof. Let us denote byZA the state of subsetA by which a
sojourn in A begins. These states are necessarily the states
(1; j) for j = 1; : : : ; bWmax=2c. From Remark 2, Rela-
tion (9), P (ZA = (1; j)) is equal to the entry (1; j) of the
vector �A(I � PA)=[�A(I � PA)1A], that is

P (ZA = (1; j)) =
[�A(I � PA)](1; j)

�A(I � PA)1A

=
[�E0PE0;A](1; j)

�E0PE0;A1A

=
p0�(0; j)

bWmax=2cP
j=2

p0�(0; j)

:

Now, if the slow start phase initiates by state (1; j) then the
maximum number of rounds in that phase is equal to n j .
For n < nj , the wn segments of the n-th round are sent if
no loss has occurred during the n � 1 first rounds, that is
among the dn�1 first segments. Thus

E[dss j ZA = (1; j)] =

njX
n=1

wn(1� p)dn�1 :

The result follows by writing

E[dss] =

bWmax=2cX
j=2

E[dss jZA = (1; j)]P (ZA = (1; j)): 2

We can notice in Figure 11 that the proportion of time
spent in slow start per cycle depends on Wmax in the sense
that when Wmax gets higher, slow start phases can reach
higher thresholds and thus last longer (whereas in conges-
tion avoidance, the bigger the window size is, the higher is
the probability that a loss appears, stopping thus the con-
gestion avoidance phase). But the main remark is that the
duration of a slow start phase may reach 10 or 15 per cent
of E[T back

E0 ].
Contrary to slow start duration, Figure 12 shows that the

number of segments E[dss] sent in slow start remains less
than 5 per cent of E[dbackE0 ], even for a high Wmax. This
implies that in the expression of � given in Relation 2, the
numerator will not change a lot if slow start is not taken into
account, but the denominator will be significantly reduced,
and thus � may significantly grow.

The best way of neglecting slow start phase is to consider
that this phase is instantaneous. So if we denote by � 0 the

0

0.1

0.2

0 0.002 0.004 0.006 0.008 0.01

p

RTT = 0:250 s, b = 2, T0 = 0:500 s

Wmax = 8

Wmax = 16

Wmax = 32

Figure 11. Proportion of time in each cycle :
E[Tss]=E[T back

E0 ].

throughput obtained without integrating slow start phases,
we have

�0 =
E[dto]+(E[dbackE0 ]�E[dss])+NlossE[drr]

E[Tto]+(E[T back
E0 ]�E[Tss])+RTT (Nloss � 1)prr

:

0
0 0.002 0.004 0.006 0.008 0.01

p

RTT = 0:250 s, b = 2, T0 = 0:500 s

Wmax = 8

Wmax = 16

Wmax = 32

Figure 12. Number of segments in each cycle
: E[dss]=E[dbackE0 ].

Figure 13, shows that �0 can be until 12 per cent higher
than �. The lower the loss probability p is, the more � 0 is
close to �. But traffic management and bandwidth alloca-
tion for instance need a good estimation of �, and even a 5
per cent overestimation can lead to severe problems in per-
formance evaluation of other measures of interest.

6. Conclusion

The main assumption we made is that the connection
is established in a high speed and wide area (large RTT )
network. Indeed, the time needed to send all segments in
congestion window and the time interval between ACKs
must be significantly low compared to the round trip time
for the identification of separated bursts, called and defined
as rounds.
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Figure 13. �0=� versus the loss probability p.

Moreover, we supposed that the loss probability p is in-
dependent to the window size, because in high capacity net-
works, the load of a single connection is not responsible of
congestion. Concerning loss correlation (when a segment
gets lost, all the following ones in the same round also get
lost), we apply our model to high capacity and high speed
networks with drop-tail routers, in which the connection is
not the cause of congestion and packets of a given round
arrive in burst in the overflowed router. And despite multi-
plexing, a router remains full as long as packets of the same
window arrive and thus rejects all of them.

With these assumptions, we have been able to obtain
an analytical expression for the throughput of a long term
steady-state connection (stationary regime). But our model
gives a more precise description of TCP which permits an
accurate study of its performance. Other performance mea-
sures can be discussed such as, for instance, the proportion
of TO-type losses, the average time interval between two
consecutive losses, and the proportion of time during which
the window size is maximum.
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