
IN : MAM4, 4TH INTERNATIONAL CONFERENCE ON MATRIX
ANALYTIC METHODS. THEORY AND APPLICATIONS. ADELAIDE,

AUSTRALIA, JULY 2002.

DISTRIBUTIONS OF REWARD FUNCTIONS ON
CONTINUOUS-TIME MARKOV CHAINS

MOGENS BLADT

Department of Statistics, IIMAS, Universidad Nacional Autonoma de Mexico
Apartado Postal 20-726, 01000 Mexico, D.F. Mexico

E-mail: bladt@sigma.iimas.unam.mx

BEATRICE MEINI

Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa,
Italy

E-mail: meini@dm.unipi.it

MARCEL F. NEUTS

Department of Systems and Industrial Engineering, The University of Arizona,
Tucson, AZ 85721, USA

E-mail: marcel@sie.arizona.edu

BRUNO SERICOLA

IRISA - INRIA, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
E-mail: sericola@irisa.fr

We develop algorithms for the computation of the distribution of the total reward
accrued during [0, t) in a finite continuous-parameter Markov chain. During so-
journs, the reward grows linearly at a rate depending on the state visited. At
transitions, there can be instantaneous rewards whose values depend on the states
involved in the transition. For moderate values of t, the reward distribution is
obtained by implementing a series representation, due to Sericola, that is based
on the uniformization method. As an alternative, that distribution can also be
computed by the numerical inversion of its Laplace-Stieltjes transform. For larg-
er values of t, we implement a matrix convolution product to compute a related
semi-Markov matrix efficiently and accurately.

1 Introduction

We consider an irreducible, continuous-timem-state Markov chain {J(t)} with
generator Q. Our objective is to develop the theory of and numerical proce-
dures for various probability distributions associated with a reward function

1

defined on the Markov chain.
There is a continuous reward in that, for every unit of time spent in state j,

a reward aj accrues. In addition, there are instantaneous rewards associated
with the various transitions. At each transition h → r, an instantaneous,
finite reward chr is received. We do not impose restrictions on the signs of
the quantities {chr}.

We start by defining several random variables of interest and by intro-
ducing notation. The random variables Nhk(t) are the numbers of transitions
h→ k during [0, t). We make the convention that Nhh(t) = 0, for 1 ≤ h ≤ m.
For use in transforms, we let Z be a matrix with elements zhk where zhh = 1,
for 1 ≤ h ≤ m. We recall that the Schur product, A • B, of m×m matrices
A and B is the matrix with elements AhkBhk.

The piecewise constant random function aJ(t) takes the value aj when
J(t) = j. The total continuous reward Rj(t) earned during sojourns in the
state j over an interval [0, t) is given by

Rj(t) =
∫ t

0

aJ(u)1{J(u)=j}du, for 1 ≤ j ≤ m,

where 1{c} equals 1 if condition c holds and 0 otherwise, and the total contin-
uous reward R(t) over an interval [0, t) is given by

R(t) =
∫ t

0

aJ(u)du.

In the context of dependability analysis of fault-tolerant computer systems,
the random variable R(t) is referred to as a performability measure, see e.g.
3 and 2 and the references therein.

We shall derive a concise expression for the joint Laplace-Stieltjes trans-
form and generating function of the random variables {Rj(t)} and {Nhk(t)}
taking the initial and final states J(0) and J(t) of the Markov chain into ac-
count. By s we denote the vector with components s1, . . . , sm. By ∆(s), we
denote an m×m diagonal matrix with the quantities s1, . . . , sm as its diagonal
elements. We are interested in the transform

V ∗
ij(s, Z; t) = E

exp[−
m∑

h=1

shRh(t)]
∏
h,k

z
Nhk(t)
hk 1{J(t)=j}

∣∣∣∣J(0) = i

 ,

for 1 ≤ i, j ≤ m. By V ∗(s, Z; t), we denote the m ×m matrix with elements
V ∗

ij(s, Z; t). For all t ≥ 0, the matrix V ∗(s, Z; t) is well-defined and analytic
for all complex values of zhk and sν , for 1 ≤ h, k ≤ m, 1 ≤ ν ≤ m.

The remainder of the paper is organized as follows. In the next section,
we present the main theorem which gives the expression of the transform

2

V ∗(s, Z; t). That theorem is used in Section 3 to derive formulas for the first
two moments of various measures combining linear and instantaneous rewards.
Section 4 is devoted to the total continuous reward distribution over [0, t).
We first develop an algorithm based on explicit formulas leading to a stable
method whose precision can be specified in advance. Secondly, we compute
that distribution by the numerical inversion of Laplace-Stieltjes transform
and we compare these two methods through numerical examples. Finally, we
develop a new method based on a matrix convolution product. This method
uses the explicit solution for moderate values of t and implements on that
basis the matrix convolution product for larger values of t.

2 The Main Theorem

Theorem 2.1 For t ≥ 0, the matrix V ∗(s, Z; t) is given by

V ∗(s, Z; t) = exp{[Q • Z − ∆(a)∆(s)]t}. (1)

Proof. The conditional probability

P{Rν(t) ≤ xν , 1 ≤ ν ≤ m;Nhk(t) = Khk, 1 ≤ h, k ≤ m; J(t) = j|J(0) = i}
depends on t, on the m nonnegative variables {xν}, and on the m(m − 1)
nonnegative integer-valued variables {Khk}. We concisely denote that proba-
bility mass-function by Vij(x,K; t). Moreover, let ei be the unit vector with
i-th component equal to one and denote by J(i, r) an m ×m matrix with a
single non-zero element equal to one at the indices i, r. The notation U(x−b)
signifies the m-variate degenerate distribution at b.

Now distinguishing the cases where the state of the Markov chain does
not change in [0, t) and where there is a first state change at some time u,
0 ≤ u ≤ t, and applying a standard first passage argument, we obtain the
equation

Vij(x,K; t) = δij exp(Qiit)U(x − aitei)

+
∑
r 6=i

∫ t

0

exp(Qiiu)QirVrj(x − aiuei,K − J(i, r); t− u)du. (2)

By a simple change of variable, the second term may be rewritten as

∑
r 6=i

∫ t

0

exp[Qii(t− u)]QirVrj(x − ai(t− u)ei,K − J(i, r);u)du.

3

To facilitate the derivation of equation (1) we introduce and evaluate the
transforms

V 0
ij(s, Z; t) =

∫ ∞

0

· · ·
∫ ∞

0

∑
K

∏
h,k

zKhk

hk exp

(
−

m∑
ν=1

sνxν

)
Vij(x,K; t)dx1 · · ·dxm.

With respect to the variables x1, . . . , xm, these are Laplace, not Laplace-
Stieltjes, transforms. Equation (2) leads to

V 0
ij(s, Z; t) = δij exp[(Qii − aisi)t](s1 · · · sm)−1

+
∑
r 6=i

∑
K

∏
h,k

zKhk

hk

∫ t

0

exp(Qiiu)Qirdu

∫ ∞

0

· · ·
∫ ∞

aiu

· · ·
∫ ∞

0

exp

(
−

m∑
ν=1

sνxν

)
×Vrj(x − aiuei,K − J(i, r); t − u)dx1 · · · dxm.

By routine changes of variables that reduces to

V 0
ij(s, Z; t) = δij exp[(Qii − aisi)t](s1 · · · sm)−1

+
∑
r 6=i

∫ t

0

exp[(Qii − aisi)u]QirzirV
0
ij(s, Z; t− u)du. (3)

In equation (3) we multiply both sides by exp[(aisi−Qii)t] and we differentiate
the resulting equation with respect to t. Routine simplifications lead to the
differential equations

d

dt
V 0

ij(s, Z; t) = −aisiV
0
ij(s, Z; t) + [(Q • Z)V 0(s, Z; t)]ij , (4)

for 1 ≤ i, j ≤ m with initial conditions V 0
ij(s, Z; 0) = δij(s1 · · · sm)−1.

The Laplace-Stieltjes transforms V ∗
ij(s, Z; t) are related to the Laplace

transforms V 0
ij(s, Z; t) by V ∗

ij(s, Z; t) = s1 · · · smV
0
ij(s, Z; t). They satisfy the

same differential equations with constant coefficients as in (4) but with initial
conditions V ∗

ij(s, Z; 0) = δij . Integrating these equations we obtain (1).

Corollary 2.2 The joint Laplace-Stieltjes transform of the total continu-
ous rewards Rν(t) and the total instantaneous rewards chkNhk(t) is given
by the matrix V ∗(s,Ξ; t), where the matrix Ξ is obtained by setting zhk =
exp(−chkξhk), for 1 ≤ h, k ≤ m. The ξhk are the transform variables corre-
sponding to the total instantaneous rewards chkNhk(t).
Proof. Obvious from the definition of the Laplace-Stieltjes transform and
the fact that

exp{−chkNhk(t)ξhk} = [exp(−chkξhk)]Nhk(t),

4

for 1 ≤ h, k ≤ m.

3 Moment Formulas

We derive formulas for the mean and variance of the total reward accrued
during an interval [0, t) in the stationary version of the process. Using special
choices of the quantities ai and chk, we can immediately obtain the first two
moments of various interesting quantities associated with finite Markov chains.

The matrix Ξo(s) has elements exp(−chks). The vector θ is the station-
ary probability vector of the matrix Q and e is the column vector with all
components equal to 1. The Laplace-Stieltjes transform of the total reward
in the interval [0, t) is then given by ψ(s) = θV ∗(s,Ξo(s); t)e, where

V ∗(s,Ξo(s); t) = exp{[Q • Ξo(s) − s∆(a)]t}.
The computation of the mean and variance amounts to evaluating the first
two derivatives of ψ(s) at zero. However, because of the matrix functions
involved, that computation requires manipulations that we need to present in
some detail. These are similar to those in Narayana and Neuts 4. First some
preliminaries: the quantity ω∗ is defined by

ω∗ = θ[Q • C + ∆(a)]e = θ(Q • C)e + θa,

in which C = {chk}, where by convention, chh = 0 for 1 ≤ h ≤ m. ω∗ is
the steady-state instantaneous reward rate. The first term is the contribution
of the instantaneous rewards; the second term corresponds to the piecewise
linear rewards. It is well-known that the matrix eθ −Q is invertible and that∫ t

0

exp(Qu)du = eθt+ [I − exp(Qt)](eθ −Q)−1. (5)

Theorem 3.1 The mean total reward in [0, t) is given by µ′
1(t) = ω∗t, and

the corresponding variance σ2(t) by

σ2(t) = tθ(Q • C • C)e

+ 2t
{

θ[Q • C + ∆(a)](eθ −Q)−1[Q • C + ∆(a)]e − ω∗2

}
− 2θ[Q • C + ∆(a)](eθ −Q)−1[I − exp(Qt)](eθ −Q)−1[Q • C + ∆(a)]e.

Proof. We introduce the matrices M1(t) and M2(t), defined by

M1(t) = −[
∂

∂s
V ∗(s,Ξo(s); t)]s=0, M2(t) = [

∂2

∂s2
V ∗(s,Ξo(s); t)]s=0.

5

We twice differentiate with respect to s in the differential equation

∂

∂t
V ∗(s,Ξo(s); t) = V ∗(s,Ξo(s); t)[Q • Ξo(s) − s∆(a)],

we set s = 0, and we notice that

[
∂

∂s
Ξo(s)]s=0 = −C, [

∂2

∂s2
Ξo(s)]s=0 = C • C,

to obtain the differential equations

d

dt
M1(t) = M1(t)Q+ exp(Qt)[Q • C + ∆(a)],

and
d

dt
M2(t) = M2(t)Q+ 2M1(t)[Q • C + ∆(a)] + exp(Qt)(Q • C • C).

We postmultiply by exp(−Qt) in both equations and integrate. That leads to

M1(t) =
∫ t

0

exp(Qu)[Q • C + ∆(a)] exp[Q(t− u)]du, (6)

and

M2(t) −M1(t) =
∫ t

0

[2M1(u) − exp(Qu)][Q • C + ∆(a)] exp[Q(t− u)]du

+
∫ t

0

exp(Qu)(Q • C • C) exp[Q(t− u)]du. (7)

We premultiply by θ in (6) and invoke the integration formula (5) to obtain
that

θM1(t) = ω∗θt+ θ[Q • C + ∆(a)][I − exp(Qt)](eθ −Q)−1. (8)

The equality (8) readily implies that θM1(t)e = ω∗t. Premultiplying by θ in
(7) leads to

θM2(t)e = θ(Q • C • C)et+ 2θ

∫ t

0

M1(u)du[Q • C + ∆(a)]e. (9)

The integral is evaluated by using formulas (8) and (5) and performing routine
simplifications. We obtain that

θ

∫ t

0

M1(u)du =
1
2
ω∗t2θ + θ[Q • C + ∆(a)](eθ −Q)−1t− ω∗tθ

− θ[Q • C + ∆(a)][I − exp(Qt)](eθ −Q)−2.

6

Upon substitution into the formula (9) for the second moment, the stated
formula for the variance is obtained after simplifications.

For selected choices of the parameter ai and chk, we obtain moment for-
mulas of special interest. For example, setting all chk = 0, and ai = 1, for
i belonging to a set B of indices and 0 otherwise, we obtain the moments of
the total sojourn time of the Markov chain in the set of states B. Setting all
ai = 0, and chk = 1 if k belongs to B, and 0 otherwise, we obtain moments
of the total number of visits to the set B during [0, t).

4 The Total Continuous Reward Distribution

We recall that henceforth all the instantaneous rewards chk are zero. In this

section we consider the semi-Markov matrix W (x, t) =
(
Wij(x, t)

)
where

Wij(x, t) = P{R(t) ≤ x, J(t) = j|J(0) = i}.
We partition the state space S = {1, . . . ,m} of the Markov chain {J(t)} into
disjoint subsets containing the states with the same reward rates. The number
of distinct rewards is φ+ 1 and their different values are

r0 < r1 < · · · < rφ−1 < rφ.

States in the subsets Bl, l = 0, . . . , φ, have the same reward rate rl. That is,
for l = 0, . . . , φ,

Bl = {i ∈ S|ai = rl}.
We then haveR(t) ∈ [r0t, rφt] with probability one. Without loss of generality,
we may set r0 = 0. That can be done by considering the random variable
R(t) − r0t instead of R(t) and the reward rates rl − r0 instead of rl.

We denote by P the transition probability matrix of the uniformized dis-
crete time Markov chain associated to the Markov chain {J(t)}, with the
same initial distribution. The matrix P is related to the generator Q by P =
I+Q/λ, where I is the identity matrix and λ satisfies λ ≥ max{−Qii, i ∈ S}.

Using the partition B0, . . . , Bφ, the matrices Q, P , and W (x, t) can be
written, for u, v = 0, . . . , φ, as

Q = {QBuBv} , P = {PBuBv} and W (x, t) = {WBuBv (x, t)} .
The distribution of R(t) has at most φ+1 jumps at the points r0t = 0, r1t, . . . ,
rφt. For t > 0, the jump at x = rlt is the probability that the Markov chain

7

{J(t)}, starting in subset Bl, stays in that set during all of [0, t). Therefore,
for t > 0, and 0 ≤ l ≤ φ,

P{R(t) = rlt, J(t) = j|J(0) = i} =
{

(eQBlBl
t)ij if i, j ∈ Bl,

0 otherwise, (10)

which can also be written as

P{R(t) = rlt, J(t) = j|J(0) = i} =
∞∑

n=0

e−λt (λt)
n

n!
(PBlBl

)n
ij1{i,j∈Bl}.

4.1 Explicit Formulas

An explicit formula for the matrix W (x, t), is given by the following theorem.
It is derived in 5.
Theorem 4.1 For every t > 0, and x ∈ [rh−1t, rht), for 1 ≤ h ≤ φ,

W (x, t) =
∞∑

n=0

e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

h(1 − xh)n−kC(h)(n, k), (11)

where xh =
x− rh−1t

(rh − rh−1)t
and C(h)(n, k) =

(
C

(h)
BuBv

(n, k)
)

0≤u,v≤φ
are matri-

ces given by the recurrence relations:
For h ≤ u ≤ φ, and 0 ≤ v ≤ φ :

for n ≥ 0 : C(1)
BuBv

(n, 0) = 0BuBv , C
(h)
BuBv

(n, 0) = C
(h−1)
BuBv

(n, n), for h > 1;

for 1 ≤ k ≤ n :

C
(h)
BuBv

(n, k)=
ru−rh
ru−rh−1

C
(h)
BuBv

(n, k−1)+
rh−rh−1

ru−rh−1

φ∑
w=0

PBuBwC
(h)
BwBv

(n−1, k−1).

(12)
For 0 ≤ u ≤ h− 1, and 0 ≤ v ≤ φ :

for n ≥ 0 : C(φ)
BuBv

(n, n) = (Pn)BuBv , C
(h)
BuBv

(n, n) = C
(h+1)
BuBv

(n, 0), for h < φ;

for 0 ≤ k ≤ n− 1 :

C
(h)
BuBv

(n, k) =
rh−1−ru
rh−ru C

(h)
BuBv

(n, k+1)+
rh−rh−1

rh−ru
φ∑

w=0

PBuBwC
(h)
BwBv

(n−1, k).

(13)
Proof. See 5

8

In what follows, we denote by W ′(x, t) the partial derivative of W (x, t)
with respect to x. That matrix, defined only for t > 0 and x 6= rlt, l = 0, . . . , φ,
is given in the following corollary.
Corollary 4.2 For t > 0, and x ∈ (rh−1t, rht), for 1 ≤ h ≤ φ, we have

W ′(x, t) =
λ

rh − rh−1

∞∑
n=0

e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

h(1 − xh)n−k

×
[
C(h)(n+ 1, k + 1) − C(h)(n+ 1, k)

]
. (14)

Proof. Obvious from relation (11).

Note that in (12), that is for h ≤ u, we have

0 ≤ ru − rh
ru − rh−1

= 1 − rh − rh−1

ru − rh−1
≤ 1,

and in (13), that is for u ≤ h− 1, we have

0 ≤ rh−1 − ru
rh − ru

= 1 − rh − rh−1

rh − ru
≤ 1.

The following corollary gives some properties of the matrices C(h)(n, k). If M
and K are square matrices of the same order, M ≤ K signifies element-wise
inequality.
Corollary 4.3 For every n ≥ 0, 0 ≤ k ≤ n, and 1 ≤ h ≤ φ,

0 ≤ C(h)(n, k) ≤ Pn, 0 ≤ k ≤ n,

C(h)(n, k) ≤ C(h)(n, k + 1), 0 ≤ k ≤ n− 1.

Proof. For the first inequality, see 5. The same recurrence mechanism is
used to prove the second one.

These considerations yield a computational method that avoids numerical
problems since, except for the ratio λ/(rh − rh−1) in (14), all the computed
quantities are between 0 and 1 and require only additions and multiplications
of nonnegative quantities. This leads to a stable algorithm whose precision
can be specified in advance.

Let ε be the desired precision for the computation of W (x, t). We define
the integer N by

N = min

{
n ≥ 0

∣∣∣∣∣
n∑

i=0

e−λt (λt)
i

i!
≥ 1 − ε

}
. (15)

9

We thus have

W (x, t) =
N∑

n=0

e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

h(1 − xh)n−kC(h)(n, k) + e(N).

From the first inequality of Corollary 4.3, we obtain that the remainder of the
series e(N) satisfies eij(N) ≤ ε, for every i, j ∈ S.

With regards to W ′(x, t), again from Corollary 4.3, we have that

0 ≤ C(h)(n+ 1, k + 1) − C(h)(n+ 1, k) ≤ Pn+1, 0 ≤ k ≤ n,

and so we obtain that

W ′(x, t) =
λ

rh − rh−1

∞∑
n=0

e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

h(1 − xh)n−k

×
[
C(h)(n+ 1, k + 1) − C(h)(n+ 1, k)

]
+ e1(N),

where the remainder of the series e1(N) is such that, for every i, j ∈ S,

e1ij(N) ≤ λε

rh − rh−1
≤ λε

r
,

and r = min{rh − rh−1, h = 1, . . . , φ}.

4.1.1 Algorithmic aspects

In this section we consider the computation of matrixW (x, t). The main effort
goes into the computation of the matrices C(h)(n, k). With regards to storage
requirements, since the values of the C(h)(n, k) at step n depend only on their
values at step n− 1, we need to store only two arrays of (N + 1)φ matrices.
At step n, we need to compute n + 1 matrices for each h = 1, . . . , φ. That
can easily be seen from the algorithmic description in Table 2. The procedure
Accumulate(n) is used to compute the approximate matrixW ε(x, t) defined,
for h = 1, . . . , φ and x ∈ [rh−1t, rht), by

W ε(x, t) =
N∑

n=0

e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

h(1 − xh)n−kC(h)(n, k).

By the definition of N in (15) and from Corollary 4.3, we have, for a given
value of the precision ε, that

sup
i∈S

∑
j∈S

(Wij(x, t) −W ε
ij(x, t)) ≤ ε.

10

Table 1. The procedure Accumulate(n)

for i = 1 to M do

W ε(x(i), t, n) = e−λt (λt)
n

n!

n∑
k=0

(
n

k

)
xk

hi
(1 − xhi)

n−kC(hi)(n, k)

W ε(x(i), t) = W ε(x(i), t) +W ε(x(i), t, n)
endfor

The procedure Accumulate(n), described in Table 1, involves a fixed value
t > 0 and M distinct values of x, denoted by x(i), 1 ≤ i ≤ M . We initialize
W ε(x(i), t) = 0, we denote by hi the index such that x(i) ∈ [rhi−1t, rhit), and
we define

xhi =
x(i) − rhi−1t

(rhi − rhi−1)t
.

Note that the integer N , defined in (15), is an increasing function of t,
say N(t). So, if the matrix W (x, t) is to be computed at L different t−values,
say t1 < . . . < tL, we need only evaluate the matrices C(h)(n, k) for n =
0, 1, . . . , N(tL), as these matrices do not depend on the values of t1, . . . , tL.

The main effort required for the computation of matrices W (x, t) or
W ′(x, t) is in the computation of matrices C(h)(n, k). We use for matrix P
a compact storage. If d denotes the connectivity degree of matrix P , that is
the maximum number of nonzero entries in each row, then the computational
cost of one matrix C(h)(n, k) is O(dm2). The number of such matrices that
have to be computed (see Table 2) is equal to φ(N + 1)(N + 2)/2, The total
computational effort required is thus O(φdm2N2/2). Concerning the storage
requirements, it is easy to see, from Table 2, that we need to store two arrays
of φ(N + 1) matrices for the recursive computation of matrices C(h)(n, k).
Thus the storage complexity is O(φm2N).

Note also that if one only wants to compute the distribution P{R(t) ≤
x}, there is no need to evaluate the matrices C(h)(n, k). It then suffices to
evaluate the vectors b(h)(n, k) = C(h)(n, k)e. The algorithm thereby becomes
more efficient, as the matrix-matrix products are replaced by matrix-vector
products. In that case, the end product of the algorithm is the vectorG(x, t) =
W (x, t)e and the complexity is reduced by a factor m.

11

Table 2. Computation of the matrices C(h)(n, k) and W (x, t)

for h = 1 to φ do ∀ u, v = 0, . . . , φ, C(h)
BuBv

(0, 0) = 0BuBv endfor
for h = 1 to φ do ∀ u = 0, . . . , h− 1, C(h)

BuBu
(0, 0) = IBuBv endfor

Accumulate(0)
for n = 1 to N do

∀ u = 1, . . . , φ, ∀ v = 0, . . . , φ, C(1)
BuBv

(n, 0) = 0BuBv

for h = 1 to φ do
for k = 1 to n do

∀ u = h, . . . , φ, ∀ v = 0, . . . , φ, compute relation (12)
endfor
∀ u = h+ 1, . . . , φ, ∀ v = 0, . . . , φ, C(h+1)

BuBv
(n, 0) = C

(h)
BuBv

(n, n)
endfor
∀ u = 0, . . . , φ− 1, ∀ v = 0, . . . , φ, C(φ)

BuBv
(n, n) = (Pn)BuBv

for h = φ downto 1 do
for k = n− 1 downto 0 do

∀ u = 0, . . . , h− 1, ∀ v = 0, . . . , φ, compute relation (13)
endfor
∀ u = 0, . . . , h− 2, ∀ v = 0, . . . , φ, C(h−1)

BuBv
(n, n) = C

(h)
BuBv

(n, 0)
endfor
Accumulate(n)

endfor

4.1.2 Numerical examples

Consider the Markov chain with S = {1, 2, 3}, the generatorQ and the reward
vector a, given by

Q =

−1 1 0
0.5 −1 0.5
0 1 −1

 and a =
(
2 1 0

)
.

We thus have λ = 1, φ = 2 and 0 ≤ R(t) ≤ 2t with probability 1. For the
error tolerance ε = 10−10, we obtain the following results.
For t = 1

W (0, 1) =

0.0000000000 0.0000000000 0.0000000000
0.0000000000 0.0000000000 0.0000000000
0.0000000000 0.0000000000 0.3678794412

 .

12

Note the high precision of the algorithm: the element W33(0, 1) is the jump
corresponding to the MC staying in the state 3 up to time t = 1. That is also
equal to exp(−1) ≈ 0.36787944117.

W (1 − 10−12, 1) =

0.0010069669 0.0163117922 0.0499470501
0.0081558961 0.0998941002 0.2080102831
0.0499470501 0.4160205662 0.4667665745

 ,

W (1, 1) =

0.0010069669 0.0163117922 0.0499470501
0.0081558961 0.4677735414 0.2080102831
0.0499470501 0.4160205662 0.4667665745

 .

Again, note the high precision of the algorithm: all the elements of W (1 −
10−12, 1) and W (1, 1) are equal except for the element of indices (2, 2). The
difference between these two values is 0.3678794412; it corresponds to the
jump at x = 1, the probability that the MC stays in state 2 beyond time
t = 1, or exp(−1) ≈ 0.36787944117.

W (2−, 1) =

0.0998941002 0.4323323583 0.0998941002
0.2161661792 0.5676676416 0.2161661792
0.0998941002 0.4323323583 0.4677735414

 .

The elements of the matrix W (2−, 1) are

Wij(2−, 1) = P{R(t) < 2, J(1) = j | J(0) = i}.
Since W (2, 1) = eQ, we easily obtain the jump

P{R(t) = 2, J(1) = 1 | J(0) = 1} =
3∑

j=1

W1j(2, 1) −
3∑

j=1

W1j(2−, 1)

= 1 −
3∑

j=1

W1j(2−, 1) = 0.3678794412,

whose value is exp(−1) ≈ 0.36787944117.
For t = 100, we obtain Wij(0, 100) = 0 for every 1 ≤ i, j ≤ 3, and

W (100, 100) =

0.1050278103 0.2299261526 0.1250000000
0.1149630763 0.2500000000 0.1350369237
0.1250000000 0.2700738474 0.1449721896

 ,

13

W (200−, 100) =

0.2500000000 0.5000000000 0.2500000000
0.2500000000 0.5000000000 0.2500000000
0.2500000000 0.5000000000 0.2500000000

 .

Note that in this case the jumps are invisible since exp(−100) ≈ 0.372×10−43.

4.2 Numerical transform inversion

The joint Laplace transform and generating function V ∗(s, Z; t) can be nu-
merically inverted, at least in some special cases. We only consider the case
where we want to find the distribution (density) of the total continuous re-
ward earned in some subset of the state–space, A say. In this case the joint
transform of course reduces to a Laplace–transform for this reward. Since the
density of interest is concentrated on the positive real axis we can use the
Bromwich inversion integral as follows. For simplicity let V ∗(t) denote the
Laplace transform for the total continuous reward. The ij’th element is hence
the Laplace transform corresponding to the case where the Markov jump pro-
cess initiates in state i and is in state j at time t. Let the corresponding
(defective) density of total reward earned in the set A be f(t), whose i, j’s
element corresponds to the conditional density given initiation of the Markov
jump process in state i, and subject to being in state j at time t. Then the
Bromwich inversion integral is

f(t) =
2
π

∫ ∞

0

Re(V ∗(iu)) cos(ut)du.

This integral is hence solved by numerical integration (trapezoidal rule) choos-
ing discretization such that the cosine term becomes (−1)k and we approxi-
mate the integral by an alternating series, which in turn is calculated by Euler
summation to approximate the infinite series. See Abate and Whitt (1992) 1

for details.
The transform V ∗(iu) in the integral above is essentially a matrix–expone-

ntial of a complex matrix. Such a matrix–exponential is obviously the solu-
tion to a system of linear differential equations, and we solve for the matrix–
exponential by solving the system of differential equation using a fourth or-
der Runge–Kutta method. In order to speed up the procedure there is also
a scaling consideration involved where we use the property of the matrix–
exponential exp(Γt) = exp(Γt/n)n. If we choose n to be a power of 2, n = 2k

say, then the power of the exponential is particularly fast to calculate by
repeated squaring of the exponential k times with itself.

The numerical inversion of the transform requires the evaluation of the
exponential of a matrix, here carried out by the fourth order Runge–Kutta

14

method, the complexity of which is O(m2n1), where n1 is the number of
discretization steps for solving the differential equations. The storage require-
ment for evaluating the transform is O(m2) as we need to store the intensity
matrix (m×m) and reward vector (dimension m). The numerical integration
depends linearly on the number of steps involved when we consider the total
reward earned in some states. If we let n2 denote the number of integration
steps and n3 the number of density points to be produced, the complexity of
the total algorithm is O(m2n1n2n3), while the storage requirements remain
O(m2).

4.3 Comparison of the Two Methods

Next, we compare the performance of the explicit method and the numerical
transform inversion by means of two examples. We refer to the former as the
exact method and to the latter as the inversion method.

4.3.1 A 3-state model

We again consider the example of section 4.1.2. We compute the conditional
density W ′

13(x, 10) for various values of x. For the exact method, the precision
ε was set to 10−10, while the error for the inversion method is estimated in the
course of the computation. We obtained W ′

13(x, 10) for many x; only a few
numerical results are shown in Table 3. The third column lists the estimated
error for the inversion method. Among all the computed values, the maximum
absolute difference between the results of both methods is 1.3 × 10−7. In
particular, this suggests that the error estimates in the inversion method are
not accurate. All the values in the third column of Table 3 are much smaller
than 1.3×10−7. Given the high accuracy of the exact method, it appears that
the error in the inversion method is larger than reported.

4.3.2 A stiff model

Consider a system with N processors that, independently of each other, are
subject to failure and repair. The times to failure and the repair times of each
processor are exponential, respectively, with parameters β and µ. There is a
single repairman. We denote by J(t) the number of operational processors at
time t. The transition rates of the Markov chain J(t) are shown in Figure 1.
We assign a reward equal to 1 to states N and N − 1 and equal to 0 to all
other states.

Such a model is called stiff when the ratio between the largest and the
smallest transition rates is very large. By choosing β = 10−9 and µ = 1, we

15

Table 3. Numerical results for the 3-state model

x exact inversion Error Estim. on Inv.
1 6.90841D-05 6.9084099823223D-05 6.7762635780344D-21
5 8.0198771D-03 8.0198758928317D-03 1.0842021724855D-18
10 3.39710030D-02 3.3970937106725D-02 1.9185555921730D-10
15 8.0198771D-03 8.0198749959861D-03 1.6532381453410D-10
16 3.9259414D-03 3.9259417172244D-03 1.8769383399939D-10
17 1.5424709D-03 1.5424716317178D-03 1.6531584738286D-10
18 4.395360D-04 4.3953734438919D-04 1.7517860938427D-10
19 6.90841D-05 6.9086110168773D-05 9.4898452709599D-11
20 0.0000000000 1.3247682929818D-07 1.9573838184247D-10

· · ·
µ µ µ

N − 1N 1 0

(N − 1)β βNβ 2β

µ

Figure 1. A stiff model

obtain an example of a stiff model.
We compute the conditional density of the total continuous reward earned

up to time t = 100, that the state is then N , given that 1 is the initial
state. For this example, R(t) is called the interval availability over [0, t). We
computed W ′

1N (x, 100) for various values of the accumulated reward x and
for N = 10. As before, for the exact method, the precision was specified as
ε = 10−10, while the error for the inversion method is estimated as we go.

We obtained W ′
1N (x, 100) for many values of x and, as for the preceding

example, Table 4 lists only some representative values.
Among all computed values, the maximum absolute difference between

the results of both methods is 5.5 × 10−6. As for the previous example, this
suggests that the error estimates in the inversion method are not accurate.
All the values in the third column of Table 4 are much smaller than 5.5×10−6.
Given the high accuracy of the exact method, it appears again that the error
in the inversion method is larger than reported.

These two examples show, as expected, that the exact method has a high
precision that can be given in advance. So we can evaluate beforehand the
time needed execute the corresponding algorithm. This execution time can
be very important for large values of the mission time t and also for a large

16

Table 4. Numerical results for the stiff model

x exact inversion Error Estim. on Inv.
70 4.061D-07 3.6675885125778D-07 1.0268233628745D-10
75 1.68185D-05 1.6742507306377D-05 1.4984542538130D-10
80 5.234676D-04 5.2333975210878D-04 1.7149709717655D-10
85 1.03702940D-02 1.0369952661451D-02 1.5675087616795D-10
90 9.00792255D-02 9.0078490790866D-02 1.0241073961081D-10
95 1.044448605D-01 1.0443933140437D-01 4.8018394815941D-11
96 0.0595403611D-02 5.9534948246358D-02 9.9827379002049D-11
97 0.0216040309D-02 2.1604262271277D-02 1.0371982179375D-10
98 0.0034370865D-03 3.4426169921810D-03 7.2716614413909D-11
99 0.0000729920D-05 7.7315641585370D-05 7.5063514621719D-11
100 0.0000000000 -2.2215910573491D-07 1.5172630167441D-10

number of distinct rewards. Concerning the inversion method, it is not so
accurate and the error estimated is not reliable, so we are not sure that it
gives the correct result. The main advantage of that method is that the
execution time is independent of the mission time t and of the number of
distinct rewards φ.

4.4 Convolution Method

In this section we spell out the convolution properties of the matrix W (x, t)
and we use these properties to develop a new algorithm to deal with large
values of t. The exact algorithm developed from the explicit formulas serves as
a starting point for the convolution method. We thus initiate the convolutions
with data having very high precision.

To simplify notation, we denote by Ql the matrix QBlBl
, for 0 ≤ l ≤ φ.

For any real numbers a and b, we define a ∧ b = min(a, b). Recall that for
x ≥ rφ(t + s), we have W (x, t + s) = eQ(t+s), and for x = 0, we have,
W (0, t+ s) = e

Q(t+s)
ij 1{i,j∈B0}.

Theorem 4.4 For 0 < x < rφ(t+ s), we have that

Wij(x, t+ s) =
∑
k∈S

∫ x∧rφt

0

W ′
ik(v, t)Wkj(x− v, s)dv

+
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x − rlt, s)1{i∈Bl}1{x≥rlt}. (16)

17

Proof. By R(t, t+s), we denote the total continuous reward over the interval
(t, t+x]. We thus have R(t) = R(0, t) and R(t+s) = R(t)+R(t, t+s). Using
this relation, we have

Wij(x, t+ s) = P{R(t+ s) ≤ x, J(t+ s) = j | J(0) = i}
=
∑
k∈S

P{R(t) +R(t, t+ s) ≤ x, J(t+ s) = j, J(t) = k | J(0) = i}

=
∑
k∈S

∫
v≥0

P{R(t, t+ s) ≤ x− v, J(t+ s) = j|J(t) = k,R(t) = v, J(0) = i}

×dP{R(t) ≤ v, J(t) = k | J(0) = i}
=
∑
k∈S

∫
v≥0

P{R(t, t+ s) ≤ x− v, J(t+ s) = j | J(t) = k}

×dP{R(t) ≤ v, J(t) = k | J(0) = i}
=
∑
k∈S

∫
v≥0

P{R(s) ≤ x− v, J(s) = j | J(0) = k}

×dP{R(t) ≤ v, J(t) = k | J(0) = i}
=
∑
k∈S

∫
v≥0

dWik(v, t)Wkj(x− v, s).

The fourth equality is due to the Markov property and the fifth comes from
the homogeneity of J . The jumps arising in Wik(v, t) are described in rela-
tion (10). Using that relation, we have

Wij(x, t+ s) =
∑
k∈S

∫
v≥0

W ′
ik(v, t)Wkj(x− v, s)dv

+
∑
k∈S

φ∑
l=0

Pr{R(t) = rlt, J(t) = k | J(0) = i}Wkj(x− rlt, s)

=
∑
k∈S

∫
v≥0

W ′
ik(v, t)Wkj(x− v, s)dv

+
∑
k∈S

φ∑
l=0

eQlt
ik 1{i,k∈Bl}Wkj(x− rlt, s)

=
∑
k∈S

∫
v≥0

W ′
ik(v, t)Wkj(x− v, s)dv

18

+
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x− rlt, s)1{i∈Bl},

and the result follows since Wkj(x − v, s) = 0, for v > x, W ′
ik(v, t) = 0, for

v > rφt and, Wkj(x− rlt, s) = 0, for x < rlt.

The following corollary is a simplified version of relation (16). As usual,
we define x+ = max(0, x), for any real number x.
Corollary 4.5 For 0 < x < rφ(t+ s), we have

Wij(x, t+ s) =
∑
k∈S

∫ x∧rφt

(x−rφs)+
W ′

ik(v, t)Wkj(x− v, s)dv

+
∑
k∈S

Wik((x− rφs)+, t)e
Qs
kj

+
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x − rlt, s)1{i∈Bl}1{rlt≤x<rlt+rφs}, (17)

Proof. Consider relation (16) and denote by β the integral part and by α
the other part corresponding to the jumps. We thus have

α =
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x− rlt, s)1{i∈Bl}1{x≥rlt},

and

β =
∑
k∈S

∫ x∧rφt

0

W ′
ik(v, t)Wkj(x − v, s)dv.

Since Wkj(x− rlt, s) = eQs
kj , if x ≥ rlt+ rφs and as x < rφ(t+ s), we get

α =
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x− rlt, s)1{i∈Bl}1{rlt≤x<rlt+rφs}

+
φ∑

l=0

∑
k∈Bl

eQlt
ik eQs

kj 1{i∈Bl}1{x≥rlt+rφs}

=
φ∑

l=0

∑
k∈Bl

eQlt
ik Wkj(x− rlt, s)1{i∈Bl}1{rlt≤x<rlt+rφs}

19

+
φ−1∑
l=0

∑
k∈Bl

eQlt
ik eQs

kj 1{i∈Bl}1{x≥rlt+rφs}. (18)

In the same way, since Wkj(x− v, s) = eQs
kj , if v ≤ x− rφs, we get

β =
∑
k∈S

(∫ (x−rφs)+

0

W ′
ik(v, t)dv

)
eQs

kj

+
∑
k∈S

∫ x∧rφt

(x−rφs)+
W ′

ik(v, t)Wkj(x− v, s)dv.

Let us denote by θ the integral arising in the first sum. We have

θ =
∫ (x−rφs)+

0

W ′
ik(v, t)dv

= Wik((x − rφs)+, t) −
φ∑

h=1

h−1∑
l=0

eQlt
ik 1{i,k∈Bl}1{(x−rφs)+∈[rh−1t,rht)}

= Wik((x − rφs)+, t) −
φ−1∑
l=0

φ∑
h=l+1

eQlt
ik 1{i,k∈Bl}1{(x−rφs)+∈[rh−1t,rht)}

= Wik((x − rφs)+, t) −
φ−1∑
l=0

eQlt
ik 1{i,k∈Bl}1{x≥rlt+rφs}.

Finally, we obtain that

β =
∑
k∈S

Wik((x − rφs)+, t)e
Qs
kj −

φ−1∑
l=0

∑
k∈Bl

eQlt
ik eQs

kj 1{i∈Bl}1{x≥rlt+rφs}

+
∑
k∈S

∫ x∧rφt

(x−rφs)+
W ′

ik(v, t)Wkj(x− v, s)dv. (19)

By adding the expressions (18) and (19), we obtain the desired result.

4.4.1 Algorithmic aspects

We wish to compute Wi,j(x, 2t) for some values of x, where 0 < x < 2rφt,
assuming that we know W ′

ij(x, t), Wij(x, t) at the same points x. For this
purpose, we use the relations (16) and (17) for s = t. Let us consider formula

20

(16). The main difficulty consists in the evaluation of matrices U(x, t) defined
by

Ui,j(x, t) =
∑
k∈S

∫ x∧rφt

0

W ′
ik(v, t)Wkj(x− v, t)dv.

In order to simplify notations, let us write W ′
ij(x) instead of W ′

ij(x, t), Wij(x)
instead of Wij(x, t) and Uij(x) instead of Uij(x, t). Moreover, we can write
that

U(x) =
∫ x∧rφt

0

W ′(v)W (x − v)dv

where the integral of a matrix function is the matrix whose entries are the
integrals of the entries of the matrix function.

Let us partition the interval [0, 2rφt] into subintervals [xi, xi+1], i =
0, . . . , N − 1, where xi = 2irφt/N , i = 0, . . . , N . In this way x0 = 0,
xN/2 = rφt, xN = 2rφt.

We wish to approximate U(xi) by using the trapezoidal rule with knots
xk, k = 0, . . . ,min(i, N/2) (the trapezoidal rule can be naturally extended to
the case of matrix functions).

Let us first consider the case i ≥ N/2, i.e., xi ≥ rφt. Then

U(xi) =
∫ rφt

0

W ′(v)W (xi − v)dv

can be approximated by

Ũ(xi) =
2rφt
N

[
W ′(x0)W (xi) +W ′(xN/2)W (xi − xN/2)

]
+

4rφt
N

N/2−1∑
k=1

W ′(xk)W (xi − xk). (20)

Now, xi − xj = (2t(i − j)rφ)/N = xi−j . Thus, if we set wi = W (xi), w′
i =

W ′(xi), and ũi = Ũ(xi), i = 0, . . . , N , we can write (20) as

ũi =
2rφt
N

w′
0wi + w′

N/2wi−N/2 + 2
N/2−1∑

k=1

w′
kwi−k

 , i = N/2, . . . , N − 1.

(21)
If i = 1, . . . , N/2 − 1, then

U(xi) =
∫ xi

0

W ′(v)W (xi − v, s)dv

21

can be approximated by

Ũ(xi) =
2rφt
N

(
W ′(x0)W (xi) +W ′(xi)W (x0) + 2

i−1∑
k=1

W ′(xk)W (xi − xk)

)
,

which yields

ũi =
2rφt
N

(
w′

0wi + w′
iw0 + 2

i−1∑
k=1

w′
kwi−k

)
, i = 1, . . . , N/2 − 1. (22)

If we write (21,22) in matrix form we obtain that

ũ1

ũ2

...

...
ũN−2

ũN−1


=

2rφt
N





w′
1
...

w′
N/2

0
...
0


w0 + TN



w1

w2

...

...
wN−2

wN−1




,

where

TN =



w′
0 ©

2w′
1 w′

0
... 2w′

1

. . .

2w′
N/2−1

...
.

w′
N/2 2w′

N/2−1

.

0
.

...
. w′

0

0 . . . 0 w′
N/2 2w′

N/2−1 . . . 2w
′
1 w

′
0


is a block (N − 1) × (N − 1) banded lower triangular block Toeplitz matrix.

The product between TN and the block vector wN = (wi)i=1,N−1 can
be computed by means of FFT’s of length N with a computational cost of
O(m2N logN +m3N) arithmetic operations, where the size of the blocks wi

is equal to m, the size of the state space of the Markov chain {J(t)}. More
specifically, we may define the N × N block triangular Toeplitz matrix T ∗

N ,
obtained by adding a block row and a block column to TN , and consider
the problem of computing the product T ∗

Nw
∗
N , where w∗

N = (w∗
i)i=1,N is the

block vector obtained by appending to wN a null block component: in fact,

22

the vector TNwN is given by the first N − 1 block components of T ∗
Nw

∗
N .

Assuming that N is a power of 2, we may partition the matrix T ∗
N into a 2×2

block matrix,

T ∗
N =

[
TN,1 0
TN,2 TN,1

]
,

where TN,1 and TN,2 are respectively block lower and upper triangular block
Toeplitz matrices with block size N/2, and write the vector T ∗

Nw
∗
N as

T ∗
Nw

∗
N =

[
TN,1wN,1

TN,2wN,1 + TN,1wN,2

]
,

where wN,1 = (w∗
i)i=1,N/2, wN,2 = (w∗

i)i=N/2+1,N . The block vectors
TN,1wN,1, TN,2wN,1 and TN,1wN,2 can be obtained by means of the relation

CN

[
wN,1 0

0 wN,2

]
=
[
TN,1wN,1 TN,2wN,2

TN,2wN,1 TN,1wN,2

]
, (23)

where

CN =
[
TN,1 TN,2

TN,2 TN,1

]
is the block circulant matrix defined by the first block column of T ∗

N . Since
CN is block circulant, the right hand side in (23) can be computed according
to the following scheme:

1. DFT associated with CN : Evaluate the matrix polynomial w′
N (z) = w′

0 +
2
∑N/2−1

i=1 w′
iz

i +w′
N/2z

N/2 at the N -th roots of 1, by means of m2 FFT’s
of length N ;

2. DFT’s associated with wN,1 and wN,2: evaluate the matrix polynomials
wN,1(z) =

∑N/2−1
i=0 wi+1z

i and wN,2(z) =
∑N−2

i=N/2 wi+1z
i at the N -th

roots of 1, by means of 2m2 FFT’s of length N ;

3. Convolution: Compute the values of the matrix polynomials p1(z) =
w′

N (z)wN,1(z) and p2(z) = w′
N (z)wN,2(z) at the N -th roots of 1 by means

of 2N matrix products;

4. IDFT’s: Interpolate the values obtained at the previous step by means
of 2m2 FFT’s of length N , thus obtaining the block coefficients of p1(z)
and p2(z); the block coefficients of p1(z) and p2(z) coincide with the block

entries of the vectors
[
TN,1wN,1

TN,2wN,1

]
and

[
TN,2wN,2

TN,1wN,2

]
in (23), respectively.

23

Thus the overall computational cost amounts to O(m2N logN +m3N) arith-
metic operations.

Concerning the number N of knots which are sufficient to have a good
approximation of the integral, we can use the estimates of the approximation
error of the trapezoidal rule. In particular

max
i=0,...,N−1

|ui − ũi| ≤ rφt

6N2
γ,

where γ is an upper bound to the maximum norm of the second derivative of
the argument of the integral.

References

1. J. Abate and W. Whitt, The Fourier-series method for inverting trans-
forms of probability distributions, Queueing Systems, 10, 5-88, 1992.

2. E. de Souza e Silva and H. R. Gail, An algorithm to calculate transient
distributions of cumulative rate and impulse based reward, Stochastic
Models, 14(3), 1998.

3. H. Nabli and B. Sericola, Performability analysis: A new algorithm, IEEE
Transactions on Computers, 45(4), April 1996.

4. S. Narayana and M. F. Neuts, The first two moments matrices of the
counts for the Markovian arrival process, Stochastic Models, 8, 459-477,
1992.

5. B. Sericola, Occupation times in Markov processes, Stochastic Models,
16, 479-510, 2000.

Acknowledgments

This research of M. F. Neuts was supported in part by NSF Grant Nr. DMI-
9988749.

24

