
Extensions to the Code Generator for
Alpha

Inderaj S Bains
IRISA, Rennes

Extensions to the Code Generator for
Alpha

Inderaj S Bains
IRISA, Rennes

2

Overview

• Introduction

– What CodeGen does

– Where does CodeGen fit in

• Previous Work

• Extensions Proposed

3

Where Does Code Generator fit in :

What Code Generator does :

Alpha Program

Schedule
Code Generator C−Program

3

Where Does Code Generator fit in :

What Code Generator does :

Alpha Program

Schedule
Code Generator C−Program

• Why is it needed :

F Checking correctness of program

4

Previous Work

4

Previous Work

• writeC() in C by Doran Wilde

F Code ⇒ Demand Drivens

4

Previous Work

• writeC() in C by Doran Wilde

F Code ⇒ Demand Drivens

• CodeGen() in Mathematica by Fabien Quillere

F Code ⇒ Respecting Schedule

4

Previous Work

• writeC() in C by Doran Wilde

F Code ⇒ Demand Drivens

• CodeGen() in Mathematica by Fabien Quillere

F Code ⇒ Respecting Schedule

• Areas untouched by CodeGen()

F writeC() functionality

F Reductions

F Subsystems

5

Functionality of writeC in CodeGen

5

Functionality of writeC in CodeGen

• Motivations

F People used to

F Single Package

F Easier Maintainence and Extension

5

Functionality of writeC in CodeGen

• Motivations

F People used to

F Single Package

F Easier Maintainence and Extension

• Handling

F CodeGen called Without Schedule or option noSched set

F different function called internally in same file

6

Handling Reductions

• What is a reduction :

– reduce(op , affine ,expr)

– B[i, j] = A[i, j-1] - reduce(+, (i, j,k → i, j), Y)

6

Handling Reductions

• What is a reduction :

– reduce(op , affine ,expr)

– B[i, j] = A[i, j-1] - reduce(+, (i, j,k → i, j), Y)

• physically. . .

j

k

k

i

(i, j, k −> i, j) j

i

7

• How will it be handled:

– We take preimage of point on expr domain by the affine

function, intersect with the domain of expr and generate a

loop for the resultant polyhedra

j

k

k

i

(i, j, k −> i, j) j

i

8

Handling Subsystems

8

Handling Subsystems

• What are subsystems :

F {domain} use sub-name[] (inputs) returns (outputs);

F {i , j |1 ≤ i ≤ j ≤ N} use Lxb[] (L , B) returns(X);

8

Handling Subsystems

• What are subsystems :

F {domain} use sub-name[] (inputs) returns (outputs);

F {i , j |1 ≤ i ≤ j ≤ N} use Lxb[] (L , B) returns(X);

• How can they be handled :

F To be handled as function calls

8

Handling Subsystems

• What are subsystems :

F {domain} use sub-name[] (inputs) returns (outputs);

F {i , j |1 ≤ i ≤ j ≤ N} use Lxb[] (L , B) returns(X);

• How can they be handled :

F To be handled as function calls

• For testing subsystems I have:

F Equivalent blocked and un-bloocked programs

F C programs which generate input,feed in different scanning

orders and compare outputs

8

Handling Subsystems

• What are subsystems :

F {domain} use sub-name[] (inputs) returns (outputs);

F {i , j |1 ≤ i ≤ j ≤ N} use Lxb[] (L , B) returns(X);

• How can they be handled :

F To be handled as function calls

• For testing subsystems I have:

F Equivalent blocked and un-bloocked programs

F C programs which generate input,feed in different scanning

orders and compare outputs

• Usefulness to the Test Bench :

9

Conclusion

• We Have seen how :

– Single package will be made

– writeC() functionality will be provided

– Reductions and Subsystems will be handled

