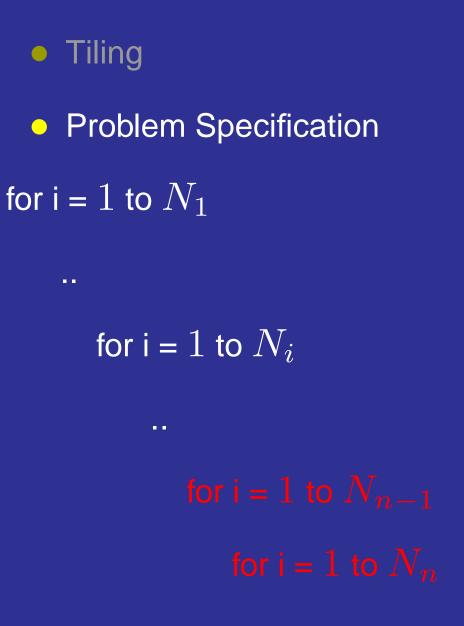
Loop Tiling an n-Dimensional Loop 2-Dimensionally

Aditya Gupta IRISA, Rennes

OUTLINE

- Introduction
- Background
- Strategies for 2-Dimensional Tiling of a n-Dimesional Loop
- Mathematical Analysis
- Best Among 2-Dimensional Tiling Strategies
- Comparison with n-Dimensional Strategy
- Limitations, Ongoing And Future Work



Introduction

Introduction

 Tiling Inner Most Two Loops for i = 1 to N_1 • • for i = 1 to N_{n-2}

for i = 1 to x_1

for i = 1 to x_2

Previous Work

- Optimal Orthogonal 2-D Iterations (Rumen Andonov & Sanjay Rajopadhye)
- Optimal Orthogonal Tiling (Rumen Andonov, Sanjay Rajopadhye & Nicola Yanev)
- On Tiling As Loop Transformation (Jingling Xue)

Background

BSP Cost Model

- α Time to execute one Iteration
- β Synchronization Cost
- τ Network Bandwidth
- p Number Of Processors

Background

BSP Cost Model

- α Time to execute one Iteration
- β Synchronization Cost
- τ Network Bandwidth
- p Number Of Processors

Processor Distribution

- Blocked
- Cyclic

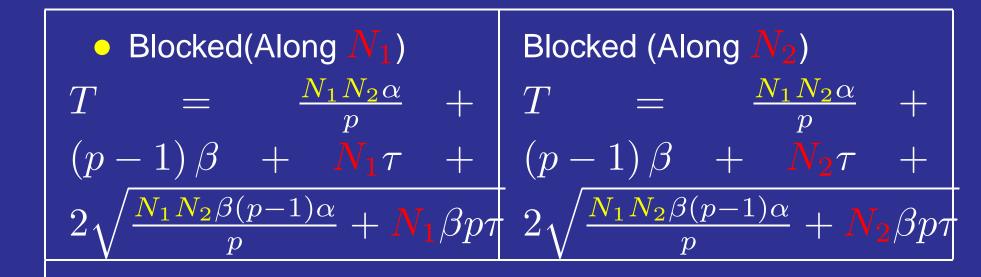
Background

BSP Cost Model

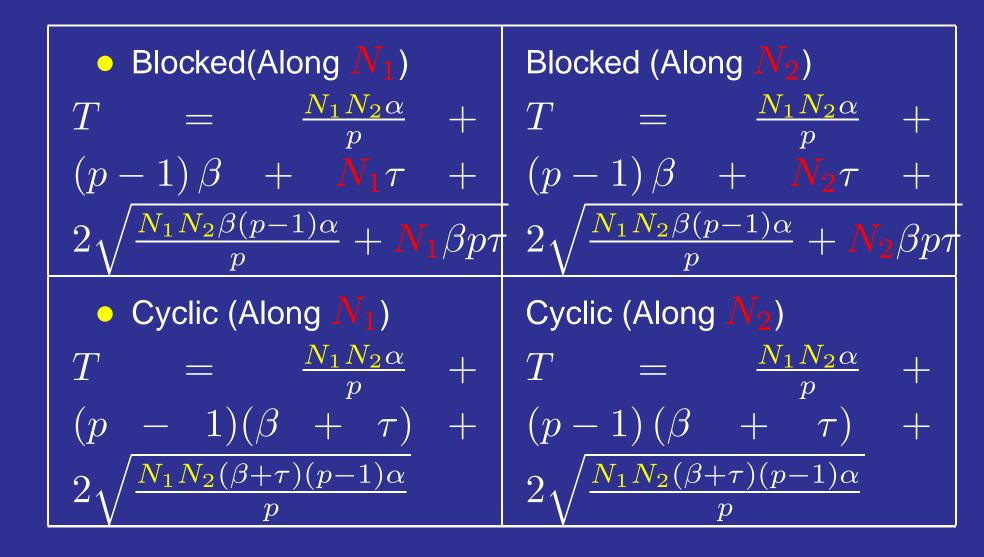
- α Time to execute one Iteration
- β Synchronization Cost
- τ Network Bandwidth
- p Number Of Processors

Processor Distribution

- Blocked
- Cyclic

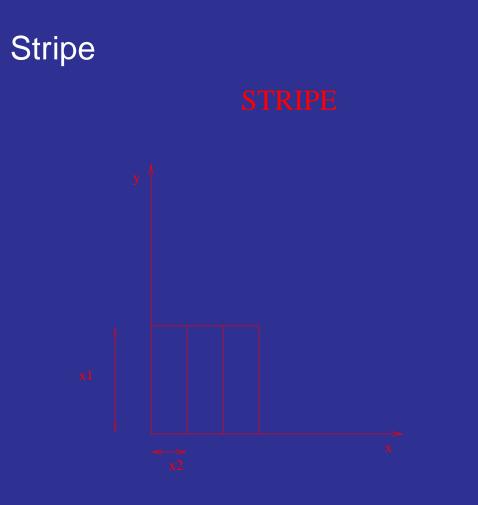

•
$$\frac{N_1}{N_2} \ge \frac{(p-1)\alpha}{p\beta}$$

Optimal Direction of Projection



Optimal Direction of Projection

Optimal Direction of Projection


Strategies for 2-Dimensional Tiling

Strategies for 2-Dimensional Tiling

 \bigcirc

Merge

Merge The Original Loop Bounds for i = 1 to N_1 • • for i = 1 to N_i • •

• Now

for i = 1 to $N_1 \times N_2 \times \dots \times N_i$ for i = 1 to $N_{i+1} \times N_{i+2} \times \dots \times N_n$

Now

for i = 1 to $N_1 \times N_2 \times \dots \times N_i$

for i = 1 to $N_{i+1} \times N_{i+2} \times \dots \times N_n$

Notation

• $W = N_1 \times N_2 \times \dots \times N_n$ • $M_1 = N_1 \times N_2 \times \dots \times N_i$ • $M_2 = N_{i+1} \times N_{i+2} \times \dots \times N_n$

Non Linear Discrete Optimization Problem

•
$$T(v) = \frac{A}{v} + Bv + C$$

• $v = \sqrt{\frac{B}{A}}, T_{optimal} = C + 2\sqrt{AB}$

Non Linear Discrete Optimization Problem

•
$$T(v) = \frac{A}{v} + Bv + C$$

• $v = \sqrt{\frac{B}{A}}, T_{optimal} = C + 2\sqrt{AB}$
• Basic

Non Linear Discrete Optimization Problem

Basic

Blocked Distribution

Non Linear Discrete Optimization Problem

•
$$T(v) = \frac{A}{v} + Bv + C$$

• $v = \sqrt{\frac{B}{A}}, T_{optimal} = C + 2\sqrt{AB}$

Basic

Blocked Distribution

$$\star x_2 = \frac{N_n}{p}, x_1 = \sqrt{\frac{N_{n-1}p(\beta+\tau)}{N_n(p-1)\alpha}}$$

$$\star T = \frac{W\beta}{N_n x_1} + (p-1)\left(\frac{\alpha N_n}{p} + \tau\right)x_1 + \frac{\alpha W}{p} + (p-1)\beta + \frac{\tau W}{N_n}$$

Cyclic Distribution

Cyclic Distribution

$$\star x_1 = 1, x_2 = \sqrt{\frac{N_{n-1}N_n(\beta+\tau)}{p(p-1)\alpha}}$$

$$\star T = \frac{W(\beta+\tau)}{px_2} + \left[(p-1)\alpha + \left(\frac{\alpha W}{N_n}\right) \right] x_2 + \frac{\alpha W}{p} + \left(p - 1 - \frac{W}{N_n} \right) (\beta + \tau)$$

♦ Cyclic Distribution

$$\star x_1 = 1, x_2 = \sqrt{\frac{N_{n-1}N_n(\beta+\tau)}{p(p-1)\alpha}}$$

$$\star T = \frac{W(\beta+\tau)}{px_2} + \left[(p-1)\alpha + \left(\frac{\alpha W}{N_n}\right) \right] x_2 + \frac{\alpha W}{p} + \left(p - 1 - \frac{W}{N_n} \right) (\beta + \tau)$$

♦ Cyclic Distribution

$$\star x_1 = 1, x_2 = \sqrt{\frac{N_{n-1}N_n(\beta+\tau)}{p(p-1)\alpha}}$$

$$\star T = \frac{W(\beta+\tau)}{px_2} + \left[(p-1)\alpha + \left(\frac{\alpha W}{N_n}\right) \right] x_2 + \frac{\alpha W}{p} + \left(p - 1 - \frac{W}{N_n} \right) (\beta + \tau)$$

• Stripe

•
$$x_1 = N_{n-1}$$
, $x_2 = \frac{N_n}{p}$.
• $T = \frac{W\beta}{N_n N_{n-1}} + (p-1)\left(\frac{\alpha N_n}{p} + \tau\right)N_{n-1} + \frac{\alpha W}{p} + (p-1)\beta + \frac{\tau W}{N_n}$

• Merge

• Is Orthogonal Tiling Valid ?

♦ Is Orthogonal Tiling Valid ?

Blocked Distribution

• Merge

Is Orthogonal Tiling Valid ? Blocked Distribution $\star x_2 = \frac{M_2}{p}$ and $\frac{M_1}{M_2} \ge \frac{(p-1)\alpha}{p\beta}$ $\star T = \frac{W\alpha}{p} + (p-1)\beta + M_1\tau +$ $2\sqrt{\frac{W\beta(p-1)\alpha}{p}} + M_1\beta p\tau$ \star As we decrease i we decrease M_1 and T

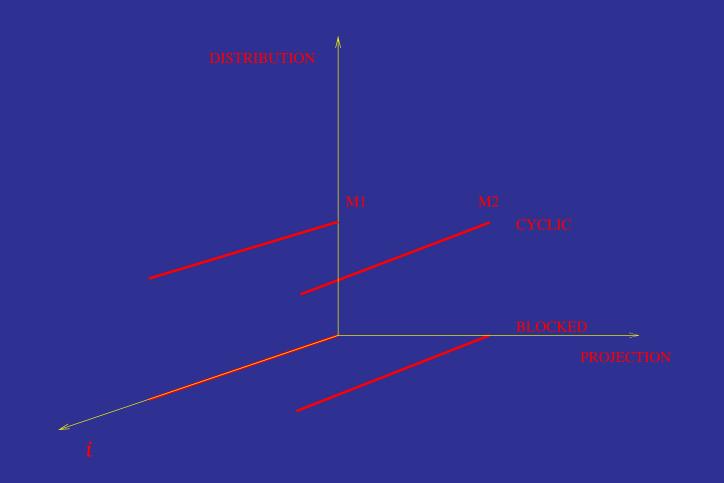
decreases

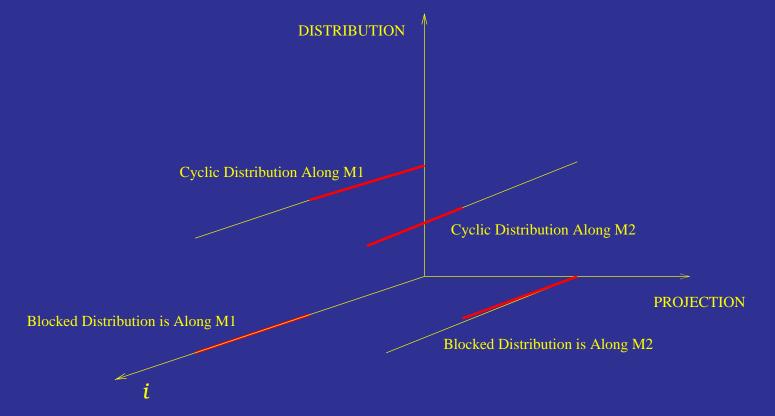
Optimize Cyclic Distribution

♦ Cyclic Distribution ★ x₁ = 1 and M₁/M₂ < (p-1) \alpha/p\beta ★ T = M\alpha/p + (p-1)(\beta+\tau) + 2\sqrt{W(\beta+\tau)(p-1)\alpha}/p

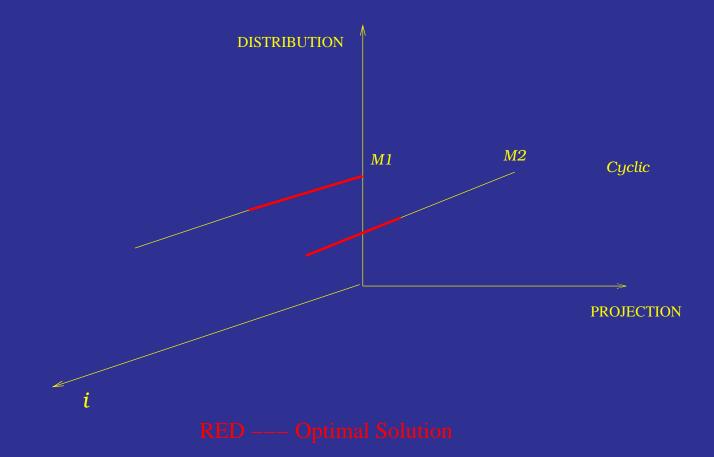
★ Independant of Direction of Projection

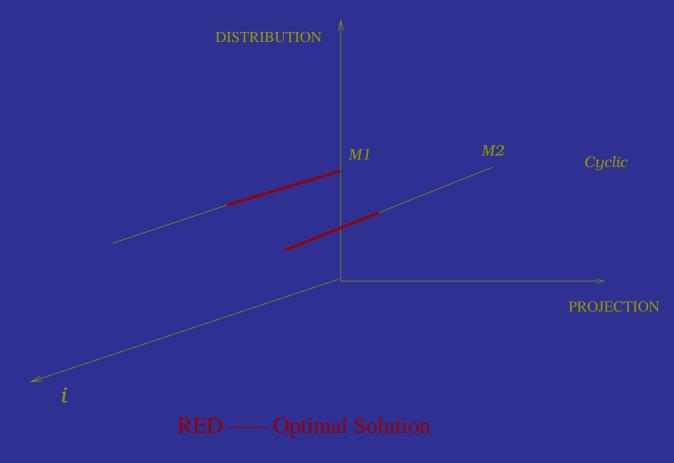
★ Independant of Point of Break OR " i "




Where do we break ????

♦ Where do we break ????





RED ---- Optimal Processor Distribution for Different Projections for Varying " i "

CYCLIC IS OPTIMAL

• Basic V/S Stripe

Stripe is BETTER

♦ Stripe is BETTER

• Stripe V/S Merge

Merge is BETTER

MERGE IS BEST AMONG 2-D STRATEGIES

BUT

n-Dimensional Tiling should be BETTER

BUT

- n-Dimensional Tiling should be BETTER
- MERGE is NOT FAR AWAY

Drawbacks in Analysis

Drawbacks in Analysis

• BSP Model

Drawbacks in Analysis

• BSP Model

• Data Locality And Cache Misses

• Experimental Validation of The Analysis

• Looking into Oblique Tiling Problems