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Abstract

This paper introduces basic principles for extending the classical systolic synthesis method-
ology to multi-dimensional time. Multi-dimensional scheduling enables complex algorithms
that do not admit linear schedules to be parallelized, but it also implies the use of memories
in the architecture. The paper explains how to obtain compatible allocation and memory
functions for vlsi (or simd-like code) generation. It also presents an original mechanism
for controlling a vlsi architecture which has a multi-dimensional schedule. A structural
vhdl code has been derived and synthesized (for implementation on fpga platform) using
these systematic design principles. These results are preliminary steps to the possibility of
a systematic hardware synthesis for multi-dimensional time.

Keywords: High level synthesis, systolic architecture, multi-dimensional scheduling, FPGA
compilation

1: Introduction

In the wide context of System on Chip (SoC) design, the different components that are
assembled use many different design technologies. All these design technologies (or at least
the most time consuming ones) must be accelerated in order to reduce the time to market
which is essential for commercial purpose. Among these different tasks, designing special-
purpose chips is a key issue because the design of a new custom hardware is still very long.
High-level design automation tools are still in the research domain because the so called
behavioural synthesizers tools have not proved to be very efficient.

Our research is oriented toward the automatic design of regular applications (signal
processing mainly) from recurrence equation specifications [11, 8]. The Alpha language
is used in the MmAlpha environnement [13] to provide high-level designs of systolic-like
architectures. A typical design flow includes uniformization, linear scheduling, mapping and
hardware generation. This design methodology has been prototyped for simple algorithms
but still needs to be extended to more complex applications in order to be accepted by
designer as a useful tool for the design of special-purpose blocks. Among the interesting
extensions, partitioning has been targeted (as in [6]) but multi-dimensional scheduling [9]



has not been successfully applied to hardware design. The automatic design of hardware
for non linear time complexity algorithms will be very useful because, unlike the simple
applications mentioned above, the resulting architectures are very difficult to see intuitively.

The main novelty of this paper is to extend the classical systolic design flow to multi-
dimensional scheduling, in particular, to provide a clearly defined methodology for memory
synthesis in Alpha. In addition, the results presented here can be useful for promoting ideas
of high-level design of complex applications, involving memory use and not only register
files; it also can be seen as a way to perform a special type of partitioning within the polyhe-
dral model (while the classical partitioning scheme impose non linear transformations). We
start the paper by presenting a motivating example in section 2, then we review in section 3
the existing tools that we will gather to provide our methodology. In section 4, we present
the main results of the paper: the combination of memory function and allocation and a
mechanism for controlling multi-dimensional timed architectures. Implementation results
are presented in section 5 and provide an idea of the additional complexity resulting from
the use of a multi-dimensional schedule.

2: Motivating example

The matrix-multiplication algorithm is often used to prototype the synthesis of systolic
arrays because it combines a three-dimensional index space with a simple, easy to under-
stand dependence structure. The initial specification we start from is shown in Fig. 1(a).
It is a set of uniform recurrence equations written using the Alpha language: each equation
is a single-assignment which defines one variable.

Most often, matrix-multiplication is mapped onto a 2-dimensional systolic array [18]
using a linear scheduling. The schedule function could be for example:

TA[i, j, k] = TB[i, j, k] = i + j + k, TC [i, j, k] = i + j + k + 1, (1)

and the algorithm would then be executed in N + M + P steps on a 2-dimensional archi-
tecture.

In practice [13], this architecture is controlled by a clock enable signal that allows the
execution of all processors to be frozen if, for instance, input data are not ready. This signal
acts as a virtual clock and establishes a correspondence between the virtual time i + j + k
given by the schedule and the actual clock of the circuit. The use of virtual clock ensures
that the behavior of the architecture is really the one that is expected after the scheduling,
and in addition, it allows the architecture to be easily integrated as an ip [8] in a complex
design.

For many different reasons (area, power consumption or throughput of the resulting
architecture), a designer might prefer a multi-dimensional schedule for this program, for
instance:

TA[i, j, k] = TB[i, j, k] =
(

i + j
k

)
, TC [i, j, k] =

(
i + j
k + 1

)
. (2)
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system MatMat :{M,N,P | 3<=M; 3<=N; 3<=P}
(a : {i,k | 1<=i<=M; 1<=k<=N} of real;
b : {k,j | 1<=k<=N; 1<=j<=P} of real)

returns
(c : {i,j | 1<=i<=M; 1<=j<=P} of real);

var
B : {i,j,k | 1<=i<=M; 1<=j<=P; 2<=k<=N}

of real;
A : {i,j,k | 1<=i<=M; 1<=j<=P; 2<=k<=N}

of real;
C : {i,j,k | 1<=i<=M; 1<=j<=P; 1<=k<=N}

of real;
let
B[i,j,k] =

case
{ | i=1} : b[i+k-1,j];
{ | 2<=i} : B[i-1,j,k];

esac;
A[i,j,k] =

case
{ | j=1} : a[i,j+k-1];
{ | 2<=j} : A[i,j-1,k];

esac;
C[i,j,k] =

case
{ | k=1} : 0[];
{ | 2<=k} : A * B + C[i,j,k-1];

esac;
c[i,j] = C[i,j,N];

tel;

system MatMat :{M,N,P | 3<=M; 3<=N; 3<=P}
(a : {i,k | 1<=i<=M; 1<=k<=N} of real;
b : {k,j | 1<=k<=N; 1<=j<=P} of real)

returns
(c : {i,j | 1<=i<=M; 1<=j<=P} of real);

var
Acom : {t1,t2,p | p+2<=t1<=p+M+1;

2<=t2<=N; 1<=p<=P-1} of real;
B : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N; 1<=p<=P} of real;
A : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N; 1<=p<=P} of real;
C : {t1,t2,p | p+1<=t1<=p+M;

2<=t2<=N+1; 1<=p<=P} of real;
let
Acom[t1,t2,p] = A[t1-1,t2,p];
B[t1,t2,p] =

case
{ | t1=p+1} : b[t1+t2-p-1,p];
{ | p+2<=t1} : B[t1-1,t2,p];

esac;
A[t1,t2,p] =

case
{ | p=1} : a[t1-1,t2];
{ | 2<=p} : Acom[t1,t2,p-1];

esac;
C[t1,t2,p] =

case
{ | t2=2} : 0[];
{ | 3<=t2} : A[t1,t2-1,p] *

B[t1,t2-1,p] + C[t1,t2-1,p];
esac;

c[i,j] = C[i+j,N+1,j];
tel;

(a) Original Alpha system (b) After scheduling of (2)

Figure 1. Initial specification of the matrix-multiplication algorithm using the Alpha
(a) and the same specification after applying the schedule of (2) (b).
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The lexicographic order imposed by this schedule is denoted as ¹ in what follows. It
guarantees that the dependencies between computations are satisfied. Here for example,

C[i, j, k] is computed strictly after A[i− 1, j − 1, k] because
(

i + j − 2
k

)
≺

(
i + j
k + 1

)
.

Fig. 1(b) shows the matrix-multiplication program of Fig. 1(a) once all variables have
been reindexed by a space-time transformation, whose first components are the schedule.

a(1,1)a(1,2)a(1,N) ...

b(1,2)

b(2,2)

...

b(N,2)

b(1,P)

b(2,P)

...

b(N,P)

a(M,1)a(M,2)a(M,N) ...

   

b(1,1)

b(2,1)

...

b(N,1)

a(2,1)a(2,2)a(2,N)

   

*

+

...

C

RAM (N)

R
A

M
 (

N
)

Figure 2. Architecture for the matrix-multiplication with the multi-dimensional
schedule of equation (2).

In spite of its power, multi-dimensional scheduling is seldom used in practice, since
translating such a schedule into a real architecture is difficult. Indeed, establishing a corre-
spondence between the logical time given by the scheduling and the physical time in a chip
is not simple: a virtual clock is not as easy to identify as for a linear schedule.

The multi-dimensional scheduling of equation (2) could lead to the architecture sketched
in Fig. 2 where all computations done at logical time (t1, t2) take place at virtual clock
cycle number (N + 1)t1 + t2. One notice on this figure that memories are needed to store
the data between some virtual time instants. Note also that the control is not shown on
this figure: the signals controlling the loading of the registers and memories are quite tricky
to set up. This is explained in the remaining of the paper.

3: Existing design tools

In this section, we briefly review the different tools that will be assembled to enable
automatic design of hardware for algorithms with multi-dimensional schedule. For a more
complete description of these tools, please refer to [12, 14, 9, 17].
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Systems of uniform recurrence equations Our initial specification is a system of
uniform recurrence equations, that is to say a set of equations of the form:

z ∈ DU : U [z] = F(. . . , V [d(z)], . . .) (3)

where DU , the iteration space, is the set of integral points of a domain (usually a convex
polyhedron or a union of convex polyhedra) of Zn, and n is the dimension of U . Note that
as the system is uniform, all variables have the same dimension. Function d is an affine
function of z which happens to be, as the system is uniform, a translation: d(z) = z + z1

where z1 is a constant vector. These equations recursively define the values of the variables
(U , V , etc.). We represent systems of recurrences by means of the Alpha programming
language (e.g. the Alpha programs of Fig. 1(a) and 1(b) are uniform systems of recurrence
equations). Alpha and its associated synthesis environment MmAlpha provide a framework
for the synthesis of regular architectures [13].

Multi-dimensional schedules The multi-dimensional schedule [14, 9]. of a system of
recurrence equations is a family of functions (one function for each variable U) TU (z) =[
t1U (z), .., tkU (z)

]t such that tiU (z) is an affine function for all i. Here, k is the dimension of
the schedule. A schedule specifies an execution order for the operations of the system: U [z]
is computed after V [z′] if and only if TV (z′) ≺ TU (z).

In this paper we will assume that the schedule have k dimension and have a common
linear part for all variable (as we did in the classical systolic design method). We also
assume that this linear has rank k and can be completed in a unimodular matrix. We can
see that the schedule given by equation (2) meets these conditions. The common linear part
of all functions is i+j at level one and k at level two. A possible right inverse is T−1(t1, t2) =
[t1, 0, t2]

t. Here, the schedule can be completed into the function M = (i + j, k, j) whose
matrix is unimodular.

Allocation function and memory function Given an n-dimensional system of uniform
recurrence equations with k-dimensional schedule, an allocation is a n − k dimensional
function A(z) = [a1(z), . . . , an−k(z)]t which specifies the coordinates of a processor where
each computation is to be executed. In the example of Fig. 1(b), the allocation function
A(i, j, k) = j was choosen.

Given a system of recurrence equations with schedule T , the memory function of a
variable V is a mV -dimensional linear function MV which specifies for each value of V , an
address in a memory attached to V where the value can be stored for its whole life time.
Memory functions can be built in a systematic way as shown in [17, 16] for example.

In the example of Fig. 1(a) and for the schedule of equation (2), the following memory
functions are valid:

MA(t1, t2, p) = (p, t2 − 1) MB(t1, t2, p) = (p, t2 − 1) MC(t1, t2, p) = (p) . (4)

In other words, A[t1, t2, p] is stored in a common memory at address (p, t2 − 1), or equiva-
lently, on a memory located on processor p at address t2 − 1. The same memory function
is user for variable B. As far as C is concerned, all its instances for a given processor are
stored on a single element memory, which could be implemented using a single register.
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4: Methodology improvements for multi-dimensional scheduling

This section presents the original contributions of the paper: how to combine allocation
and memory function and how to control a multi-dimensional scheduled architecture.

4.1: Merging allocation and memory functions

The method roposed by Quillere and Rajopadhye (QR method in what follows)[17] as-
sumes an underlying shared memory architecture model. In the context of vlsi, we want
each processor of our architecture to store the values that it computes. It is not exactly the
owner computes rule because variables are moving in the architecture it is rather a computer
owns rule (each data is stored on the processor that have computed it). This adds to the
constraints identified by the QR method a new constraint on the memory function: its first
n−k rows should be the equal to the allocation function. Note that, as a consequence, these
first n− k rows are common to all variables of the program. In this section, we show how
allocation functions and memory functions can be combined in order to meet the computer
owns rule.

In the QR method, the memory function for V (denoted by MV ) is a projection which
can be specified by a projection direction, that is to say by the mv vectors of its kernel
(mv ≤ k). We now show that it is possible to find (n−mv)×n memory functions matrices
whose first n− k rows have the same linear part.

Given an Alpha program and a schedule T for this program, let V0 be the variable of the
program whose lifetime dV0 is lexicographically minimum1. First, let us prove lemma 4.1
which ensures that we can choose kernel vectors of MV in such a way that they are also
kernel vectors of MV0 . Intuitively, the memory of a variable with a short lifetime will always
fit into the memory of a variable with a longer lifetime.

Lemma 4.1 Given a system of recurrence equations with a multi-dimensional schedule,
for all variables V of the system, the algorithm proposed by QR [17] chooses kernel vectors
of the memory function MV in such a way that they are also kernel vectors of MV0 (where
V0 is the variable with the shortest lifetime).

Proof: see [12]

Hence we can safely assume that Ker(MV ) ⊂ Ker(MV0). On the other hand, as Ker(T )∩
Ker(MV0) = 0 (see [12]), the function MV0 is a (n−mV 0)×n matrix (with mV 0 ≤ k) such

that the matrix
(

T
MV 0

)
is full-column rank. Therefore, it is possible to reorganize the

rows of MV0 into a new matrix M ′
V0

in such a way that the upper n× n square sub-matrix

of
(

T
M ′

V0

)
is non-singular. Note that M ′

V0
is still a valid memory function for V0 as

Ker(MV0) = Ker(M ′
V0

). Let A be the sub-matrix of M ′
V0

composed of its first n− k rows.

Then the matrix
(

T
A

)
is non singular and A is a valid allocation (Ker(T )∩Ker(A) = 0).

1Given a variable V , the lifetime vector dV of V is the lexicographical maximum, upon all the operations
V (z), of the difference between the time at which V (z) is produced and the time of its last consumption.
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Our proposition is the following one: for all other variables V of the program, A can be
completed into a valid memory function. Indeed, the mV vectors (ρ1, . . . , ρmV ) which gener-
ate the kernel of the memory function of V are already in Ker(A) (because of Lemma 4.1).

Hence the problem amounts to find a (k −mV )× n matrix NV such that MV =
(

A
NV

)

is a memory function for V , or in other words, Ker(MV ) = V ect(ρ1, . . . , ρmV ) and MV is
full-row rank. The following theorem solves this problem.

Theorem 4.2 Given mV linearly independent integral vectors (ρ1, . . . , ρmV ) and a n−k×n
full row rank integral matrix A such that V ect(ρ1, . . . , ρmV ) ⊂ Ker(A) (k ≥ mV ), it is
possible to find a (n−mV )× n full-row rank matrix MV which is built by completion of A
and which satisfies Ker(MV ) = V ect(ρ1, . . . , ρmV ).

Proof: see [12], the proof is constructive, it uses the Hermite decomposition of the
matrix whose columns are the ρi to build the matrix MV . The construction is illustrated
on the example below.

Hence, we have the following situation: A is a valid allocation function for the com-
putations of the program and moreover, for all variables V , the memory function of V

has the form MV =
(

A
NV

)
. As a consequence, in the resulting architecture opera-

tion V [i1, . . . , in] is computed on processor A(i1, . . . , in)t and is stored in memory location

M(i1, . . . , in)t =
(

A(i1, . . . , in)t

NV (i1, . . . , in)t

)
. One can interpret this location as being memory

NV (i1, . . . , in)t of processor A(i1, . . . , in)t, which meets the computer owns rule.

We illustrate this method on our program of Fig. 1(a) with schedule of equation (2). The
dependencies are dC = (0, 1)t, dA = dB = (1, 0)t. QR method gives the following kernel
basis vectors: Ker(MC) = {(1, 0, 0)t, (0, 0, 1)t}, Ker(MA) = Ker(MB) = {(1, 0, 0)t}. On
the other hand, textttC is the variable with the minimal lifetime, and mC = k = 2. A
memory function matrix for textttC is MC(i, j, k) = (j).

We can complete the MC matrix with one row, using the technique explained in [12], to
obtain MA and MB, which gives for instance: MA(i, j, k) = MB(i, j, k) = (j, k − 1). Thus
we end up with a change of basis COB(i, j, k) = (i + j, k, j) which associates an execution
time and a processor number to all computations resulting in a linear architecture similar
to that of Fig. 2. In addition, we also have the information that in each processor p, C needs
only a register to be stored (its memory function has a 0 local dimension) while A and B
both need a memory of size N − 1: A[i, j, k] is stored in processor j at memory location
k − 1, for example.

4.2: Controllers for multi-dimensional schedules

We now turn to the problem of generating a controller for a multi-dimensional scheduling.
An architecture with a linear schedule can be controlled by a single counter enumerating
the time steps. To extend this idea to multi-dimensional time, we propose here to control
the architecture by means of a multi-dimensional counter. A simple example of multi-
dimensional counter is a watch enumerating hours, minutes and seconds. Here, however,
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each hour may have a different number of minutes and each minute may have a different
number of seconds, as our time may span a polyhedron of any dimension.

Let us call time domain of a variable the values that its time indexes may take. The
time domain of a variable, when restricted to a given processor, corresponds to the space-
time domain of the variable (i.e. the domain of the variable after the space-time change
of basis has been performed, e.g. in Fig. 1(b)), where processor indexes are considered as
parameters. the time indices vector ((t1, t2) on Fig 1(b)) is exactly the multi-dimensionnal
counter we are looking for.

Eventually, this multi-dimensional clock counter has to be converted in a one dimensional
clock which will ensure a correspondence with the counter of the physical clock of the
architecture. The idea is to scan the convex union of all time domains and to provide
activation signal (write enable) for each variable. Among the various techniques which
have been proposed to scan the integer points of a given polyhedron, Boulet and Feautrier [1]
express the scanning program as a finite automaton. This method fits very well the context
of hardware synthesis, as automata are efficiently mapped to hardware by synthesis tools.

t1=p+1
t2=2
enableA=1
enableB=1
enableAcom=0
enableC=1

2 if (t2<=N-1) then
t2=t2+1
GOTO 2
endif

t1=t1+1
t2=2

// Acom start at p+2
enableAcom=1

3 if (t2<=N-1) then
t2=t2+1
GOTO 3
endif

if (t1<=p+M) then
t2=2
t1=t1+1
GOTO 3
endif

t1=t1+1
t2=2

// Acom last up to p+M+1
enableA=0
enableB=0
enableC=0

4 if (t2<=N-1) then
t2=t2+1
GOTO 4
endif

1 // end of time

Figure 3. Automata used to enumerate time domains of the program of Fig. 1(b)

Hence, one can define the largest time domain, scan this domain with an automaton
and generate for each variable an activation signal indicating whether the current scanned
point belongs to the time domain of this variable. This new activation signal will control
the loading of the memory elements storing this variable. This amounts to attach to each
variable an individual clock enable signal, which is possible in most fpga architectures.

A possible instance of a control automaton for the program of figure 1(b), is shown in
Fig. 3. The enableX signals indicate the virtual cycles at which an instance of the array X
has to be computed.
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5: Implementation results

This section presents preliminary implementation results. The architecture of Fig. 2
was written in vhdl. To this end, this architecture was first expressed in Alpha and this
Alpha program was then translated into vhdl by following systematic rules so that this
translation can be easily implemented in the MmAlpha system (see [12]).

Implementing memories Memories are implemented by instantiating predefined com-
ponents. Our abstraction for such component is the following: a memory has two (read
and write) ports, and these ports are controlled with clock enables. We choose to use the
predefined block Ram existing on the Xilinx platform which can be accessed in one clock
cycle. Would the size available of these memory be not sufficient, one would have to use ex-
ternal memories which are bigger and slower; the design would then be much more complex
because data would have to be pre-fetched in order not to slow down the execution.

Synthesis results The synthesis has been done for the matrix-matrix product program
of Fig. 1(a) with the schedules of equations (1) (classical two dimensional array) and (2)
(linear architecture with memory represented in Fig. 2). The target fpga platform is a
Xilinx Virtex XCV800. Area complexity is expressed in term of Slices (on clb is two slices
which contains itself 2 look up tables ). Value chosen for the parameters where: P = 6,
N = 8, M = 10. Coefficients of the matrices where chosen to be 8 bits integers.

One cell of the array Clock Complete Complete
Control Memory Datapath Cycle execution array

Multi-dimensional
time (Fig. 2)

65 Slices 2 Ram blocks 26 Slices 16.5 ns 363 ns 581 Slices

Linear time - - 26 Slices 16.5 ns 2227 ns 1560 Slices

Table 1. Result of the synthesis of the Matrix-Matrix product of Fig. 1(b) for values
P = 4, N = 8, M = 10.

These results show that the cost of the additional control is not negligeable (size of
a cell approximately multiplied by 3), but the complete area is still decreasing. A good
point is that this complex control mechanism does not affect the frequency which is mainly
constrained by the datapath. Both control and datapath could be optimised further. The
rams used in each cell are not included in the area complexity because these ram blocks
are already present on the chip: if not used, they are lost anyway.

6: Conclusion

We have shown that we could extend the classical systolic space-time mapping to multi-
dimensional scheduled uniform recurrence equations. This raises the issue of mapping
computations to memories. To our knowledge, our work is the first attempt to automate
the hardware synthesis of multi-dimensional scheduled parallel programs. Wilde et al [2]
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consider the issue of generating control signals when control conditions are polynomials
in the time counter. Our implementation of control is inspired from [1] and covers a
larger variety of control signals, as parameters do not need to be fixed during controller
generation, and can be used for other purposes such as address generation for instance.
Some related papers can be found in the work on hpf [3, 15, 19] as well as the work on
partitionning [4, 5, 7, 6, 10, 20].

Starting from an Alpha representation of uniform recurrences together with a k-dimensional
schedule, we have shown that we can map such a program on a n − k dimensional paral-
lel systolic architecture, where each processor has local memories. We have proven that
linear allocation functions and linear memory functions as obtained by previous research
can be combined to obtain a memory function which maps the data to local memories.
We have presented a method to generate a controller for this architecture, using an exist-
ing polyhedron scanning method. These theoretical results can be used to generate in a
systematic way a vhdl description of these architectures. Our method was illustrated on
the matrix-multiplication architecture, and vhdl code resulting of this method has been
written, validated and the additional complexity (compare to a classical systolic design)
has been evaluated.

The work presented here is already completed enough to be implemented in synthesis
tools such as MmAlpha. Nevetherless, several question remain open, especially concerning
the complexity of the solutions to problems such as the control of the architecture, the
memory implementation, broadcast versus pipelined control information, etc., but also
concerning many minor technical problems not solved here (unimodular completion of the
schedule function, automatic detection of fifos, handling large memories outside the fpga,
etc.). All these problems request an implementation of the design methodology presented
here because manual execution of the different steps (scheduling, memory function and
allocation, control automaton generation, vhdl generation and simulation) is impossible.
We therefore plan to implement this methodology in the MmAlpha environment.

References

[1] P. Boulet and P. Feautrier. Scanning polyhedra without do-loops. In IEEE PACT, pages 4–11,
1998.

[2] S. Bowden, D. Wilde, and S. Rajopadhye. Quadratic control in linear systolic arrays. In IEEE
International Conference on Application-specific Systems, Architectures and Processors, July
2000.

[3] F. Coelho. Compiling dynamic mappings with array copies. In Proceedings of the sixth ACM
SIGPLAN symposium on Principles & practice of parallel programming, pages 168–179. ACM
Press, 1997.

[4] A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays. Integration, the VLSI
Journal, 12(3):293–304, 1991.

[5] A. Darte and B. R. e. F. V. R. Schreiber. A constructive solution to juggling problem in systolic
array synthesis. Technical Report 1999-15, Laboratoire de L’informatique du parallélisme, 1999.

[6] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. Constructing and exploiting linear schedules
with prescribed parallelism. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 7(1):159–172, 2002.

10



[7] S. Derrien and S. Rajopadhye. Loop tiling for reconfigurable accelerators. In Eleventh Intl.
Symp. on Field Programmable Logic (FPL’2001), 2001.

[8] F. Dupont de Dinechin, M. Manjunathaiah, T. Risset, and M. Spivey. Design of highly parallel
architectures with alpha and handel. In Forum on Specification & Design Langages, Marseille,
Sept. 2002.

[9] P. Feautrier. Some efficient solution to the affine scheduling problem, part II, multidimensional
time. Int. J. of Parallel Programming, 21(6), Dec. 1992.

[10] D. Fimmel. Generation of scheduling functions supporting lsgp-partitioning. In IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors (ASAP 2000),
Boston, July 2000.
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