Combining Flash Memory and FPGAs to Efficiently
Implement a Massively Parallel Algorithm for
Content-Based Image Retrieval

Rayan Chikhi, Steven Derriety Auguste Noumsj and Patrice Quintdh

1 ENS Cachan, antenne de Bretagne — Bruz Cedex, France
2 |RISA/Université de Rennes 1 — 35042 Rennes Cedex, France
3 IRISA/Université de Douala — Daouala, Cameroun
4 |RISA/ENS Cachan, antenne de Bretagne — Bruz Cedex, France

Abstract. With ever larger and more affordable storage capabilitiesyiduals
and companies can now collect huge amounts of multimedé dapecially im-
ages. Searching such databases is still an open problemnlascontent-based
image retrieval (CBIR). In this paper, we present a hardveaclitecture based
on FPGAs which aims at speeding-up visual CBIR.Our architeds based on
the unique combination of reconfigurable resources condtioé-lash memory,
and allows for a speed-up of 45 as compared to existing smdta@utions.

1 Introduction

With large storage devices becoming more and more affoedaidividuals and com-
panies can collect huge amounts of information, e.g. meltiia data. Many activities
such as journalism, medical diagnosis or crime preventiy on large multimedia
(mostly images) databases. To use such databases efficiesgls must be able to
browse and query their images according to tleeimtent These types of search oper-
ations are usually referred to as Content-Based ImageeRali(CBIR) and they are a
very active research area [9,1,3].

There are mainly two types of CBIR methods. The first one isthas the semantic
content of the image. It consists in finding images in a daali@at match a user query
(e.g. keywords) which describes the semantic content dhthge sought. Such an ap-
proach requires each image to be annotated with its sen@oritent. This annotation
can be either done manually or automatically. Most appresébr automated annota-
tion usually rely on textual data which is associated to thage, for example, text in
the enclosing web page.

The second method is based on the visual content of the irttagkes on complex
image processing algorithms which extrambge descriptorsummarizing the image
visual content. A typical use of this approach is digital teord copyright enforcement,
which is a big concern for image database copyright owneris ag photo agencies. In
this case, the goal of the copyright owner is to retrieve -city from the web — all
unregistered uses of its images. In such a context, theveatriechnique must be very
robust to image transformations, as the original image tiglve undergone several
transformations such as cropping, compression, colorgenaaic.

In this work we focus on visual content based image retrieethods. These meth-
ods share characteristics which make them very interes@mglidates for hardware
acceleration :

— They suffer from prohibitive execution time. For exampleaching a 30,000 im-
age database requires 15 minutes of execution time on aasthRE€ workstation.

— They are computationally intensive since they rely on eliefi (i.e.L5) distance
calculation in higher dimension vectors.

— They involve very large databases: typical image databaseg from a few thou-
sands to tens of millions of images.

We propose an application-specific parallel architectorsfpeeding-up visual CBIR
methods. This architecture is designed as a target agplidat the ReMIX machine, a
reconfigurable accelerator aiming at content processinigfge databases. The speci-
ficity of the ReMIX machine is its unique combination of higtraughput, very large
storage resource based on Flash technology, and of highrperifice FPGA technology
in order to speed-up search problems.

The remaining of this paper is organized as follows. Se@iprovides background
information regarding the type of CBIR algorithms we areeiested in. Section 3
presents the ReMIX platform, both at the system and at thieitaotural level. Sec-
tion 4 presents our hardware implementation strategy. IReste given and discussed
in Section 5. Conclusion and future work directions arecthed in Section 6.

2 Content-Based Image Algorithms

2.1 A Short Introduction to Visual CBIR Methods

Visual Content-Based Image Retrieval consists in seagcamimage database to re-
trieve images which are visually similar to a given queryg®aar his type of operation
is based on the notion @fmage descriptarAn image descriptor can be seen asigr
nature which is computed directly from visual features of the imageh as colors,
shapes, contrast, etc.

Two types of descriptors can be usgthbal descriptorencode an overall property
of the image such as its color histogram, wHideal descriptorsare only related to
specific points of interest in the image (see Fig. 1). Usinghglescriptorssimplifies
the use of image databases, since it allows the user to searohg the descriptor
database rather than the whole image database.

In this paper, we are interested livcal descriptors since it has been shown that
they provide a more robust approach to CBIR.

2.2 Extracting Local Descriptors

Retrieving an image consists first in computing the set otide®rs of the reference
image — typically, a few hundred vectorsofreal components. These descriptors are
extracted from small regions of the image that containsipedsual features (these

d> ds
1,756 08912
7,753 -0,637
23,456 -2,154
-8,007 4,427

W N =2 O

N
7,563 0,745

Fig. 1. Point of interest in an image and their associated localriEscs

regions are called interest points), using complex imagegssing algorithms (see for
example Mikolajczyk et al. [10] for an overview of these taitfues).

In addition to offering a concise description of the imagateat, these descriptors
also need to beobustto image transformations. In other words, descriptors khbe
able to identify an image, even though it underwent severagie transformations, such
as cropping, constrast/light change, rotation, compoesitc. In our case an image is
typically represented by a set of 50 to 1500 descriptord) eae being a 24-dimension
real vector.

2.3 CBIR With Local Descriptors

Once extracted, the reference image descriptgysite compared to the image database
descriptors §;) according to the metrid(b;, ¢;) which corresponds to the euclidian
distance distance calculation stage

24
d(b,q:) £ |bjm — Giml
n=0

For each reference descriptgr ak-NN sorting ¢-NN stands fork-nearest neigh-
bors) selects thk database descriptors, the distané@s, ¢;) of which are the smallest
(selection stage Finally, votes are assigned to images depending on tleirreences
in the k-nearest neighbor listglection stage the image that has the largest number of
votes is considered the best match.

As mentioned in the introduction, retrieving an image in 2080 image database
requires about 15 minutes on a standard workstation. Thispsactical for most ap-
plications of CBIR, since they often require a low respoiset Research on smarter
algorithms, based on clustering techniques for exampleo@adih very active, has not
lead to definitive results because of a phenomenon callesk of dimensionghich
affects large databases operating on higher-dimensiatalsets [1,3]. Very recently,
search methods based on list-ranking have been proposedt@ugh they offer ap-
proximate results, these methods happen to be very efficiéetms of response time.
For example, using this approach, searching a 20,000 imatbalse takes less than
twenty seconds.

It is therefore questionable whether there is any interespeeding-up the original
sequential scan which is based on exhaustive search. Itigeraihe sequential scan
search is of great use for the community that studies descsipnd search algorithms.
When introducing a new type of descriptor extraction or elitg, there is a need for
validating its efficiency and robustness. To obtain unldassults, researchers need
to benchmark their descriptors by using large databaseshwhust be scanned com-
pletely to obtain exhaustive results. This is usually a ¥ieng consuming process since
for each image of the database, a large number (a few hundfétpge variants are
generated. Each variant is to be matched against the whialbatse, and this operation
is repeated for a significant subset of the database. Thisgepts a huge volume of
computation (in the order of weeks or months) since the tatgedatabase is, the more
valuable the search results are.

2.4 Related Work

Accelerating CBIR on a parallel machine is the most natunaiae, and has already
been studied by a few authors, among whom Robles et al [14reThas been only
some work on special-purpose hardware for this type of agfdin [7,15,11]. However,
most of this work either did not address the problem in theedrof areal-life hard-
ware system (i.e. with its communication interface, /O dhaitth constraints, etc.),
or considered a very naive algorithm which has no interegtractice. In a previous
work [12], we proposed to accelerate the CBIR algorithm orP&A based smart-
disk architecture [5]. While this approach provided ingtirgg performance improve-
ment, its efficiently was greatly affected by the limitedtsirsed hard-disk throughput.
While modern hard-drive interface such as SATA offer daamdfer bandwidth up to
133 MBps, the hard disk internal 1/0 rate when performinguserjial scan is much
lower. To overcome this difficulty, we propose an improvezhéecture which can take
advantage of a very high data throughput, by handling biigtance computatioand
selectionin hardware.

3 The ReMIX Platform

3.1 Overview

The ReMIX machine is a reconfigurable accelerator targetedraent processing for
very large unstructured and indexed databases. The ideadbReMIX is to benefit
simultaneously from the very high data throughput and tleetsiccess-time that can
be obtained with the parallel use of Flash memory devicee®nne hand, and from the
high computing density of a high-end FPGA on the other hargdsuch, this principle
follows the philosophy ointelligent memorproposed by Patterson et al. in the context
of the IRAM project [13].

The goal of the ReMIX architecture was to design a reconfigleraccelerator that
could easily be integrated within a host system and woule liae largest possible stor-
age capability and the smallest possible random access Wifraeonsidered SRAM,

DRAM, magnetic storage and FLASH memory as possible catelgtarage technolo-
gies. Table 1 summarizes the characteristics of these ddajies with respect to den-
sity, cost, throughput and random access time in late 20D&ufnbers shown assume
a 64 gigabyte memory with a 64 bit width data bus.

Technology||# of chipg Cost | Access Tim@gBandwidthh Total

for 64 GB power
SRAM 7280 |$123,50 5ns 800 MBps| 5250 W
SDRAM 512 | $4,115 10ns 2GBps | 30W

Flash -NAND 64 $1,030 25us 160 MBps 450 mW|
Flash -NOR|| 4096 |$72,500 100ns |320MBps550mW

Table 1.Memory and storage technology in late 2006

These figures tell us that SRAM technology is obviously natesuto build large
size memory systems. SDRAM could be a good candidate; Havirtegrating 64 GB
of SDRAM memory on a single PCB device remains a very chaitepgroblem be-
cause of power signal integrity issues. On the other handyDiA&lash technology is
probably the best solution: it offers storage densitiesvalibose of DRAM (in late
2006 32 Gb NAND-Flash are available, while only 1 Gb for SDRAMNd this gap
is expected to grow in favor of Flash memory in the forthcognyears. Nevertheless,
NAND-Flash exhibits significant differences with standaremories in the way data is
accessed. In NAND-Flash data is addressed gpdgelevel, each page containing be-
tween 512 byte and 2 KB. Additionally, each access suffensfa relatively important
latency Q0us), three orders of magnitude higher than SRAM or DRAM (bt gtree
orders of magnitude better than an HDD).

3.2 The ReMIX Architecture

The ReMIX system is based on a PCI board which integratesiaxXVlirtex-11 Pro
FPGA coupled to 64 GB of NAND-Flash memory. This memory isamiged in multi-
ple parallel banks as illustrated in Fig. 2. Our prototypstem is fully operational, and
several applications in the field of bio-informatics haveatly been successfully ported
to it [8]. A simple file system allows the user to transparngnilnage the content of the
64 GB Flash memory, while guaranteeing optimal throughpemaccessing data dur-
ing processing stage.

Porting an application to the ReMIX machine consists inglasig a hardware filter
which follows a simple data-driven FIFO interface. The diéwaughput at the filter
input (e.g. at the Flash output) is approximately 640 MBpsilevthe filter output (e.g
the host PCI bus) throughput s restricted to 5 MBps (thegtidPgC| board only supports
slave 1/0). The following Section describes our hardwaterfirchitecture, and how
we accounted for these constraints during its design.

FPGA XC381000

=
128 MB !

_a.| CTRL 160 | 16Go FLASH
DDR RAM T i Wask| a0
L i

. || CTRL 160, | 16Go FLASH
MB/sec bank 1
MB/sec el A i (:
) 640
HOST Remix IP Ty CTRL | L 160, | 16GoFLASH
—» fisce (bank 2)

FPGA XC2VP30

Flash memory
controller

CTRL 160 | 16Go FLASH
= N EEIRCE)

Fig. 2. RMEM card architecture

4 A Hardware Filter Architecture for CBIR

Profiling data shows that the most time-consuming step irCBER algorithm is the
distance computation: it takes more than 98 % of the totatui@n time. This is not
surprising: searching an image database contaiBirgscriptors with a query image
from which@ query descriptors are extracted requieg distance computation steps.
It therefore seems natural to try to speed-up this part cafidication with a dedicated
hardware architecture.

4.1 Accelerating Distance Computation

The distance computation algorithm can be seen as a trigkechéop with data de-
pendencies limited to the most inner loop (distance accatiau). This algorithm can
be very easily parallelized as a 2D-systolic architectdi@vever, such an architecture
requires accessing 24 descriptor components per cyclde wte Flash memory can
only produce 8 bytes per cycle when the hardware filter iskeldat 80 MHz. Instead
of this pure systolic implementation, we use a partitiongsidic linear array which
is represented in Fig. 3. This architecture allows for garalistance computation be-
tween(fixed query descriptorg and every single descriptéy of the database, the
database descriptors being read from the Flash memory.

When a database descriptgris read, distances are computed and accumulated for
each descriptor component and eventually, a distalfeg ¢;) is computed for each
query descriptog;. In the initial software implementation of our algorithnisthnces
were computed using floating-point arithmetic. Howevegtilog-point in FPGAs has
major drawbacks in terms of performance and resources y6atjeWe have shown
in [12] that using 8-bit fixed-point arithmetic for desciptdistance computation pre-
serves the accuracy of the results. Similarly we have replauiclidian distance by
Manhattan distance since the latter allows multiplicatiorbe replaced by a simple
compare-and-add instruction. Table 2 summarizes resasage and performance (in
MHz) of a single array Processing Element for various bittvid

The throughput of a linear processor array of 24 PE is 74 MBpether words it
processes a new descriptor approximately every 26 cyaespeoduces 24 distance
scores every 26 cycles.

db[7:0]

TD_B score[7:0]

1

M1
M2
f13

123

query[7:0]

S
r1$24
~__~
11
ry
fi3
f123
124

Fig. 3. Distance computation component

Bitwidth 24 bits | 16 bits | 12 bits | 8 bhits |3 bits
Resource (Slices) 62 42 32 22 11
Frequency (MHz) 147 161 161 161 168

Table 2. Resource and performance for a distance computation PE @sctidn of
bitwidth

As we now accelerate the distance computation, it is thegelewhich is likely
to become a performance bottleneck. Indeed, because dfrtited output bandwidth
available at the filter IP block output port, it is not readoleato forward all distance
scores to the embedded processor or to the host CPU, sind® ewould be slowed
down by 1I/O stalls. We thus propose to implement the seleaiatirely in hardware,
so that it can be integrated within the filter IP. With this eggch, the filter simply
forwards the content of thie-NN lists to the host for thelection step

4.2 Accelerating Selection using Hardware

The selection consists in sorting distance scores andaimiey thek best distances. In
the software implementation, selection is implementedm@esiadic sorting: all distance
scores that may be part of the final list, — that is to say, &lldistance scores that are
below at least one item of the current list — are stored in &budnce full, this buffer
is sorted, and is merged with the previous list to form theated list. This approach is
very efficient in practice and profiling data show that sétectepresents less than 1%
of the total execution time.

Implementing sorting in hardware is a well-studied problemd several highly
parallel solutions have been proposed, ranging from sprigtworks [2] to systolic
arrays.

— Sorting networks are very efficient to sort data that enterdbrter in parallel:
networks structure of spatial complexi®}(n log n) can sortn tokens every cycle.

— Systolic sorting is more suited to sort data-streams thirehe processor array
sequentially. Sorting is then done @(n) time on a systolic array with proces-
sors.

As distance scores are produced by the distance computatimponent at a rate of
one score per cycle, selection must be done on the fly. Moreweeare only interested
in the k lowest distance scores, whetés very small as compared to the total number
of scoresn produced by the distance computation step. These obsamsatiiggest that
neither sorting networks nor systolic sorters are appad@isolutions. One could think
of using a modified systolic sorting array with orlyprocessors, however this approach
still requires important hardware resources. Another irtgyd observation is that, once
the steady regime is reached, and since> k, only very few distance scores would
walk past the first processor of a systolic sorter atraiis would result in a highly
inefficient architecture in which processors would reméla most of the time.

Instead of using systolic sorting, we therefore proposenjglément selection as a
simple insertion sorting. Fig. 4 represents the insertatirsy datapath, which consists
of a dual-port on-chip memory associated to a simple con@araéhis architecture
can handle up to 32 lists, which is enough since the outputdibaur distance stage
consists in distance scores related to 24 distincts quesgrigieors.

ranm_wr (£ dataA[15:0]
wr_en
wr_rst (® ©) i

RAM

list[256]

write
> FIFO

Read (6)—

ram_out

FIFO

new_score

‘LXJ mux 0

To control Unit inf

Fig. 4. Structural view of the sorting element

This solution is highly inefficient from a theoretical poiot view, since its time
complexity for obtaining thé-NN from a set ofn distance scores 8(n.k). However,
its practical complexity remains very close@n): the vast majority of scores (more
than 99%) are not to be inserted into the\N list and would just pass through the
insertion sorting step with an overhead of a few cycles. Eserthis overhead is still
unacceptable, since it happens for each distance scoreniove this overhead, we
perform a preliminary filtering step which buffers potehtigatches into a FIFO, as
described in Fig. 5.

5 Note that the software implementation takes advantagesptoperty to skip distance calcu-
lation whenever the current score is above its correspgrichNN list threshold score

KNN-lists
K-nn list for
descriptor n®1
K-nn list for
descriptor n°2

Holds the lowest score
for each one of the 24

Ko lists Konnlist for
descriptor n°24
Ram24; Update_adr & wr
res_req
C Update_score C Insert

56 sorting res_adr[7:0]
@ Fifo256 res_data[15.]
@ Full Read
[
E Wiite Empty

[(DA4[7:0] D37:0] | (
FSM FSM

Fig. 5. Structural view of the selection component

The resulting selection component uses 135 FPGA slices aadRé&M block and
its maximum operating frequency is 200 MHz. It allows eactv seore to be inserted
at then-th position in thek-NN list in n. 4 3 cycles.

4.3 Putting it Altogether

The Xilinx Virtex-11 Pro FPGA used in the ReMIX machine has,a80 slices and ap-

proximately 50% of them are used by the ReMIX controllersithierefore possible to
take advantage of the available space by implementingaiirers of distance compu-

tation and selection units which operate in parallel, aswsha Fig. 6. In this execution

scheme, each line is given a different subset of query descs, and they all process
the same database subset in parallel.

Each line contains 24 query image descriptors. Therefadd #me the entire database
is read, the filter computes in parallel the nearest neighbbR40 query descriptors,
i.e. in averagel /3 of an image descriptors set. When the whole database has been
processed, the lists of query descriptors are flushed oatratgty through a simple
pipeline mechanism.

Table 3 compares various bit-width implementations, imgof maximum number
of lines, with the maximum frequency and slices usage fohease. This shows that
with 8 bits descriptors and a ReMIX architecture clockedt/iz, 10 such lines can
be instantiated.

5 Experimental results

In this section, we present the performance model that duide design choice, and
then compare the estimation obtained from this model tocheahperformance results.

5 Given 10 lines, any frequency optimization overflows the banof available slices.

70 Mbyte/s

1 Kbyte
ReMIX Distance Computation 70 MbYte/S | Insertion Sort |- — zt—-
e
Flash | | ;colrgs | 10 Kbytes ReMIX
FIFO | i peline > Out
: 170 Mbyte/s 1 Kbyte FIFO
Distance Computation Insertion Sort |— — — >
—— throughput ———» flush
Fig. 6. Filter as integrated in ReMIX
Bitwidth 24 bits 16 bits 12 bits 8 bits 3 bits
Nb lines 4 5 7 10 16
Resource (Slicesf037 (98%)6206 (93%)6865 (97%)7180 (99%)7078 (99%
Frequency (MHZ) 124 129 131 84° 125

Table 3. Resource and performance for the maximum number of procésss as
a function of bit-width, with Synplify used for synthesisdaiXilinx ISE8.1 used for
back-end

5.1 Theoretical Performance Model

Let N, be the number of descriptors in our datab&sethe filter clock period (set at
12.5ns in our tests)Npg the total number of distance processor in the design (here
Npgr = 240) andk the number of items in eadikNN list (we havek = 32). Knowing
that our implementation of distance computation proceédsearate of 1 descriptor
every 26 cycles, the tim&.,,;. required to perform the distance computation step is
given byT.,.. = 26N,T.. However, our performance model must also account for
several performance overheads.

For example, the whole descriptor database cannot be readtlre Flash memory
in a single pass, it is therefore necessary to split the da&intoN. chunks. This
induces a chunk access overhdag.... which value can only be determined experi-
mentally (our performance model will therefore ignore thverhead).

On the other hand, whenever a FIFO reaches its maximum d¢gpihe distance
computation component must be stalled to avoid data-lo€aentifying the overhead
due to these stalls (we wrifg,;; s this overhead) would require to have a precise model
for the FIFO usage over execution time. However, a simpléabdistic reasoning can
help us to obtain a higher bound o, ;.

Let us consider a scenario in which there is no FIFO betweepite-filtering step
and the insertion sort. In such a situation, eawtchcauses the distance computation
component to stall until theatchis correctly inserted in its correspondihegNN list.

We write p.aten, the probability for a distance score to not be pre-filterefbiee
insertion. We know from software profiling that this valugisse top,,,q¢cn, = 2.107°.

We also know that our insertion sort component has a worst-egecution time of+ 3
cycles. The percentage of stall cycles in this scenarioltarefore be bounded by:

Pmatch
pnmtch(k + 3) + 1

DPstall =

The overhead (that we can write Bs.;; = pstaiiTcaic) iN this scenario can be consid-
ered as a higher bound of what we would observe in practioegsive use a 256-slot
FIFO buffer between pre-filtering and sorting steps.

Finally, we must also account for the time spent flushing detiNN lists (we
write T'y14sp, this overhead). This step has a fixed impact on the globalugiecand
can be written as :

Npp

Bpcr

where Bpc; stands for the actual output PCI bandwidth (here we hBye; =
5MBps). The total search timé;.,.., for a query image containingy, descriptors
can then be written as :

Ttiush = k.

N,
T‘;(’(l'f‘(' = _q T((l(' Tg aulls T us
search {240—‘(cale + Tstatis + Triush)

5.2 Measured and projected performance

We have benchmarked our design over a real life 30,000 imdgtdbase consisting
in 20,868,278 descriptors. This database normally reg@ii®B of storage, however,
thanks to the use of 8 bit fixed point arithmetic instead ofj@rmprecision floating-point
this size was reduced to 650 MB.

Using the performance model obtained, we estimate thatisiegra 30,000 image
database with a 720 descriptors query leads to a search fifig. Q.. = 19,68 s.
Running the same search on the actual ReMIX system lead us abserved search
time of 20.43 seconds, that is within a 4 % error margin of the predicteéoperance.

The actual speed-up factor over the original software imletation is 45. In other
words a single ReMIX system is as efficient as a 45 PCs cluafieile this accelera-
tion factor only holds for descriptors encoded as 8 bitsgete, we estimated the cor-
responding results for different bitwidth by implementiagf many processor lines as
possible on the FPGA and use this result to estimate thesponeling speed-up. These
performance projections are summarized in Table 4.

Bitwidth 24 bits | 16 bits | 12 bits | 8bits | 3 bits
Query Time (seq¢) 50 40 28.5 20 12.5
Speed-up factor 18 22 31 45 72
Number of line§ 4 5 7 10 16

Table 4. Estimated search time and corresponding speed-up fomghbyiwidth for a
30.000 images database

6 Conclusion

In this paper we have proposed a hardware accelerator fale@oBased Image Re-
trieval based on local descriptors. Our architecture perécboth the distance calcula-
tion and selection in hardware, and was experimentallyda#tid on the ReMIX ma-

chine using a real-life image database.

A single PCI board associated provides similar performémeel5 node PC cluster,
at 1/20 the price (without accounting for the host PC). An interagpoint is that our
hardware architecture can easily be targeted at differestriptors (e.g. for different
precision, or higher number of dimension), with moderatgteefforts.

Directions for future work include studying the implemetida of CBIR on GPUs
which appear to be an interesting platform to speed-upypis of algorithms.

References

1. Laurent Amsaleg and Patrick Gros. Content-Based Ratnising Local Descriptors: Prob-
lems and Issues from a Database Perspediatern Analysis and Application2001.

2. K.E. Batcher. Sorting networks and their applicatiomsPioceedings of the AFIPS Spring
Joint Computer Conference 32968.

3. Christos FaloutsosSearching Multimedia Databases by ConteKiuwer Academic Pub-
lishers, 1996.

4. Gokul Govindu, Ling Zhuo, Seonil Choi, and Viktor Prasann Analysis of High-
performance Floating-point Arithmetic on FPGAs. Reconfigurable Architecture Work-
shop 2004.

5. Stéphane Guyetant, Mathieu Giraud, Ludovic L'Hoursy&teDerrien, Stephane Rubini,
Dominique Lavenier, and Frédéric Raimbault. Cluster ofd®éigurable Nodes for Scanning
Large Genomic Banksarallel Computing 2005.

6. Walter B. Ligon lll, Scott McMillan, Greg Monn, Kevin Scboover, Fred Stivers, and
Keith D. Underwood. A Re-evaluation of the Practicality db&ting-Point Operations on
FPGAs. InNFCCM '98: Proceedings of the IEEE Symposium on FPGAs for @nstom-
puting Machines1998.

7. L.Kostoulas and I. Andreadis. Parallel Local Histograom®arison Hardware Architecture
for Content Based Image Retrievdburnal of Intelligent and Robotic Syster2904.

8. Dominique Lavenier, Xinchun Liu, and Gilles Georges. &based genomic sequence com-
parison using a fpga/flash accelerator. Tmappear in Proceedings of EEE International
Conference on Field Programmable Technola2906.

9. Herwig Lejsek. A case-study of scoring schemes for theipdex. INnCVDB '05: Proceed-
ings of the 2nd international workshop on Computer visiortselatabasepages 51-58,
New York, NY, USA, 2005. ACM Press.

10. Krystian Mikolajczyk and Cordelia Schmid. A performarevaluation of local descriptors.
IEEE Trans. Pattern Anal. Mach. Intel27(10):1615-1630, 2005.

11. Koji Nakano and Etsuko Takamichi. An Image Retrievalt8&ysUsing FPGAs. IiProceed-
ings of ASPDAC2003.

12. Auguste Noumsi, Steven Derrien, and Patrice Quintoncelscation of a content-based
image-retrieval application on the RDISK cluster.lhternational Parallel and Distributed
Processing Symposium (IPDPS 2008)06.

13. David Patterson, Thomas Anderson, Neal Cardwell, Riclkimomm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelié case for intelligent ram.
IEEE Micro, 17(2):34-44, 1997.

14. Oscar D. Robles, José L. Bosque, Luis Pastor, and AngligRez. Performance Analysis
of a CBIR System on Shared-Memory Systems and Heteroger@&osters. INEEE Inter-
national Workshop on Computer Architectures for Machine@®gtion (CAMP’05) 2005.

15. Constantinos Skarpathiotis and K.R. Dimond. A Hardwarplementation of a Content
Based Image Retrieval Algorithm. limternational Conference on Field Programmable
Logic and Application (FPL)January 2004.

