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Abstract. With ever larger and more affordable storage capabilities,individuals
and companies can now collect huge amounts of multimedia data, especially im-
ages. Searching such databases is still an open problem, known as content-based
image retrieval (CBIR). In this paper, we present a hardwarearchitecture based
on FPGAs which aims at speeding-up visual CBIR.Our architecture is based on
the unique combination of reconfigurable resources combined to Flash memory,
and allows for a speed-up of 45 as compared to existing software solutions.

1 Introduction

With large storage devices becoming more and more affordable, individuals and com-
panies can collect huge amounts of information, e.g. multimedia data. Many activities
such as journalism, medical diagnosis or crime prevention rely on large multimedia
(mostly images) databases. To use such databases efficiently, users must be able to
browse and query their images according to theircontent. These types of search oper-
ations are usually referred to as Content-Based Image Retrieval (CBIR) and they are a
very active research area [9,1,3].

There are mainly two types of CBIR methods. The first one is based on the semantic
content of the image. It consists in finding images in a database that match a user query
(e.g. keywords) which describes the semantic content of theimage sought. Such an ap-
proach requires each image to be annotated with its semanticcontent. This annotation
can be either done manually or automatically. Most approaches for automated annota-
tion usually rely on textual data which is associated to the image, for example, text in
the enclosing web page.

The second method is based on the visual content of the image.It relies on complex
image processing algorithms which extractimage descriptorssummarizing the image
visual content. A typical use of this approach is digital content copyright enforcement,
which is a big concern for image database copyright owners such as photo agencies. In
this case, the goal of the copyright owner is to retrieve – typically from the web – all
unregistered uses of its images. In such a context, the retrieval technique must be very
robust to image transformations, as the original image might have undergone several
transformations such as cropping, compression, color change, etc.



In this work we focus on visual content based image retrievalmethods. These meth-
ods share characteristics which make them very interestingcandidates for hardware
acceleration :

– They suffer from prohibitive execution time. For example, searching a 30,000 im-
age database requires 15 minutes of execution time on a standard PC workstation.

– They are computationally intensive since they rely on euclidian (i.e.L2) distance
calculation in higher dimension vectors.

– They involve very large databases: typical image databasesrange from a few thou-
sands to tens of millions of images.

We propose an application-specific parallel architecture for speeding-up visual CBIR
methods. This architecture is designed as a target application for the ReMIX machine, a
reconfigurable accelerator aiming at content processing for large databases. The speci-
ficity of the ReMIX machine is its unique combination of high throughput, very large
storage resource based on Flash technology, and of high performance FPGA technology
in order to speed-up search problems.

The remaining of this paper is organized as follows. Section2 provides background
information regarding the type of CBIR algorithms we are interested in. Section 3
presents the ReMIX platform, both at the system and at the architectural level. Sec-
tion 4 presents our hardware implementation strategy. Results are given and discussed
in Section 5. Conclusion and future work directions are sketched in Section 6.

2 Content-Based Image Algorithms

2.1 A Short Introduction to Visual CBIR Methods

Visual Content-Based Image Retrieval consists in searching an image database to re-
trieve images which are visually similar to a given query image. This type of operation
is based on the notion ofimage descriptor. An image descriptor can be seen as asig-
naturewhich is computed directly from visual features of the imagesuch as colors,
shapes, contrast, etc.

Two types of descriptors can be used:global descriptorsencode an overall property
of the image such as its color histogram, whilelocal descriptorsare only related to
specific points of interest in the image (see Fig. 1). Using such descriptorssimplifies
the use of image databases, since it allows the user to searchamong the descriptor
database rather than the whole image database.

In this paper, we are interested inlocal descriptors, since it has been shown that
they provide a more robust approach to CBIR.

2.2 Extracting Local Descriptors

Retrieving an image consists first in computing the set of descriptors of the reference
image – typically, a few hundred vectors ofn real components. These descriptors are
extracted from small regions of the image that contains specific visual features (these
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Fig. 1.Point of interest in an image and their associated local descriptors

regions are called interest points), using complex image processing algorithms (see for
example Mikolajczyk et al. [10] for an overview of these techniques).

In addition to offering a concise description of the image content, these descriptors
also need to berobustto image transformations. In other words, descriptors should be
able to identify an image, even though it underwent several image transformations, such
as cropping, constrast/light change, rotation, compression, etc. In our case an image is
typically represented by a set of 50 to 1500 descriptors, each one being a 24-dimension
real vector.

2.3 CBIR With Local Descriptors

Once extracted, the reference image descriptors (qi) are compared to the image database
descriptors (bi) according to the metricd(bj , qi) which corresponds to the euclidian
distance (distance calculation stage):

d(bj , qi) ,

24
∑

n=0

|bj,n − qi,n| .

For each reference descriptorqi, ak-NN sorting (k-NN stands fork-nearest neigh-
bors) selects thek database descriptors, the distancesd(bj , qi) of which are the smallest
(selection stage). Finally, votes are assigned to images depending on their occurrences
in thek-nearest neighbor lists (election stage): the image that has the largest number of
votes is considered the best match.

As mentioned in the introduction, retrieving an image in a 30,000 image database
requires about 15 minutes on a standard workstation. This isimpractical for most ap-
plications of CBIR, since they often require a low response time. Research on smarter
algorithms, based on clustering techniques for example, although very active, has not
lead to definitive results because of a phenomenon calledcurse of dimensionswhich
affects large databases operating on higher-dimensional data sets [1,3]. Very recently,
search methods based on list-ranking have been proposed [9]. Although they offer ap-
proximate results, these methods happen to be very efficientin terms of response time.
For example, using this approach, searching a 20,000 image database takes less than
twenty seconds.



It is therefore questionable whether there is any interest in speeding-up the original
sequential scan which is based on exhaustive search. In practice, the sequential scan
search is of great use for the community that studies descriptors and search algorithms.
When introducing a new type of descriptor extraction or encoding, there is a need for
validating its efficiency and robustness. To obtain unbiased results, researchers need
to benchmark their descriptors by using large databases which must be scanned com-
pletely to obtain exhaustive results. This is usually a verytime consuming process since
for each image of the database, a large number (a few hundred)of image variants are
generated. Each variant is to be matched against the whole database, and this operation
is repeated for a significant subset of the database. This represents a huge volume of
computation (in the order of weeks or months) since the larger the database is, the more
valuable the search results are.

2.4 Related Work

Accelerating CBIR on a parallel machine is the most natural choice, and has already
been studied by a few authors, among whom Robles et al [14]. There has been only
some work on special-purpose hardware for this type of application [7,15,11]. However,
most of this work either did not address the problem in the context of areal-life hard-
ware system (i.e. with its communication interface, I/O bandwidth constraints, etc.),
or considered a very naive algorithm which has no interest inpractice. In a previous
work [12], we proposed to accelerate the CBIR algorithm on a FPGA based smart-
disk architecture [5]. While this approach provided interesting performance improve-
ment, its efficiently was greatly affected by the limited sustained hard-disk throughput.
While modern hard-drive interface such as SATA offer data transfer bandwidth up to
133 MBps, the hard disk internal I/O rate when performing sequential scan is much
lower. To overcome this difficulty, we propose an improved architecture which can take
advantage of a very high data throughput, by handling bothdistance computationand
selectionin hardware.

3 The ReMIX Platform

3.1 Overview

The ReMIX machine is a reconfigurable accelerator targeted at content processing for
very large unstructured and indexed databases. The idea behind ReMIX is to benefit
simultaneously from the very high data throughput and the short access-time that can
be obtained with the parallel use of Flash memory devices on the one hand, and from the
high computing density of a high-end FPGA on the other hand. As such, this principle
follows the philosophy ofintelligent memoryproposed by Patterson et al. in the context
of the IRAM project [13].

The goal of the ReMIX architecture was to design a reconfigurable accelerator that
could easily be integrated within a host system and would have the largest possible stor-
age capability and the smallest possible random access time. We considered SRAM,



DRAM, magnetic storage and FLASH memory as possible candidate storage technolo-
gies. Table 1 summarizes the characteristics of these technologies with respect to den-
sity, cost, throughput and random access time in late 2006. All numbers shown assume
a 64 gigabyte memory with a 64 bit width data bus.

Technology # of chips Cost Access TimeBandwidth Total
for 64 GB power

SRAM 7280 $ 123,500 5 ns 800 MBps 5250 W
SDRAM 512 $ 4,115 10 ns 2 GBps 30 W

Flash -NAND 64 $ 1,030 25 us 160 MBps450 mW
Flash -NOR 4096 $ 72,500 100 ns 320 MBps550 mW

Table 1.Memory and storage technology in late 2006

These figures tell us that SRAM technology is obviously not suited to build large
size memory systems. SDRAM could be a good candidate; However integrating 64 GB
of SDRAM memory on a single PCB device remains a very challenging problem be-
cause of power signal integrity issues. On the other hand, NAND-Flash technology is
probably the best solution: it offers storage densities above those of DRAM (in late
2006 32 Gb NAND-Flash are available, while only 1 Gb for SDRAM), and this gap
is expected to grow in favor of Flash memory in the forthcoming years. Nevertheless,
NAND-Flash exhibits significant differences with standardmemories in the way data is
accessed. In NAND-Flash data is addressed at thepagelevel, each page containing be-
tween 512 byte and 2 KB. Additionally, each access suffers from a relatively important
latency (20µs), three orders of magnitude higher than SRAM or DRAM (but still three
orders of magnitude better than an HDD).

3.2 The ReMIX Architecture

The ReMIX system is based on a PCI board which integrates a Xilinx Virtex-II Pro
FPGA coupled to 64 GB of NAND-Flash memory. This memory is organized in multi-
ple parallel banks as illustrated in Fig. 2. Our prototype system is fully operational, and
several applications in the field of bio-informatics have already been successfully ported
to it [8]. A simple file system allows the user to transparently manage the content of the
64 GB Flash memory, while guaranteeing optimal throughput when accessing data dur-
ing processing stage.

Porting an application to the ReMIX machine consists in designing a hardware filter
which follows a simple data-driven FIFO interface. The datathroughput at the filter
input (e.g. at the Flash output) is approximately 640 MBps, while the filter output (e.g
the host PCI bus) throughput is restricted to 5 MBps (the target PCI board only supports
slave I/O). The following Section describes our hardware filter architecture, and how
we accounted for these constraints during its design.
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Fig. 2.RMEM card architecture

4 A Hardware Filter Architecture for CBIR

Profiling data shows that the most time-consuming step in theCBIR algorithm is the
distance computation: it takes more than 98 % of the total execution time. This is not
surprising: searching an image database containingB descriptors with a query image
from whichQ query descriptors are extracted requiresB.Q distance computation steps.
It therefore seems natural to try to speed-up this part of theapplication with a dedicated
hardware architecture.

4.1 Accelerating Distance Computation

The distance computation algorithm can be seen as a triple nested loop with data de-
pendencies limited to the most inner loop (distance accumulation). This algorithm can
be very easily parallelized as a 2D-systolic architecture.However, such an architecture
requires accessing 24 descriptor components per cycle, while the Flash memory can
only produce 8 bytes per cycle when the hardware filter is clocked at 80 MHz. Instead
of this pure systolic implementation, we use a partitioned systolic linear array which
is represented in Fig. 3. This architecture allows for parallel distance computation be-
tweenQ fixed query descriptorsqi and every single descriptorbj of the database, theB
database descriptors being read from the Flash memory.

When a database descriptorbj is read, distances are computed and accumulated for
each descriptor component and eventually, a distanced(bj , qi) is computed for each
query descriptorqi. In the initial software implementation of our algorithm, distances
were computed using floating-point arithmetic. However, floating-point in FPGAs has
major drawbacks in terms of performance and resources usage[6,4]. We have shown
in [12] that using 8-bit fixed-point arithmetic for descriptor distance computation pre-
serves the accuracy of the results. Similarly we have replaced euclidian distance by
Manhattan distance since the latter allows multiplicationto be replaced by a simple
compare-and-add instruction. Table 2 summarizes resourceusage and performance (in
MHz) of a single array Processing Element for various bitwidth.

The throughput of a linear processor array of 24 PE is 74 MBps:in other words it
processes a new descriptor approximately every 26 cycles, and produces 24 distance
scores every 26 cycles.
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Fig. 3.Distance computation component

Bitwidth 24 bits 16 bits 12 bits 8 bits 3 bits
Resource (Slices) 62 42 32 22 11
Frequency (MHz) 147 161 161 161 168

Table 2. Resource and performance for a distance computation PE as a function of
bitwidth

As we now accelerate the distance computation, it is the selection which is likely
to become a performance bottleneck. Indeed, because of the limited output bandwidth
available at the filter IP block output port, it is not reasonable to forward all distance
scores to the embedded processor or to the host CPU, since ourIP would be slowed
down by I/O stalls. We thus propose to implement the selection entirely in hardware,
so that it can be integrated within the filter IP. With this approach, the filter simply
forwards the content of thek-NN lists to the host for theelection step.

4.2 Accelerating Selection using Hardware

The selection consists in sorting distance scores and in retaining thek best distances. In
the software implementation, selection is implemented as aperiodic sorting: all distance
scores that may be part of the final list, – that is to say, all the distance scores that are
below at least one item of the current list – are stored in a buffer. Once full, this buffer
is sorted, and is merged with the previous list to form the updated list. This approach is
very efficient in practice and profiling data show that selection represents less than 1%
of the total execution time.

Implementing sorting in hardware is a well-studied problem, and several highly
parallel solutions have been proposed, ranging from sorting networks [2] to systolic
arrays.

– Sorting networks are very efficient to sort data that enter the sorter in parallel:
networks structure of spatial complexityO(n log n) can sortn tokens every cycle.

– Systolic sorting is more suited to sort data-streams that enter the processor array
sequentially. Sorting is then done inO(n) time on a systolic array withn proces-
sors.



As distance scores are produced by the distance computationcomponent at a rate of
one score per cycle, selection must be done on the fly. Moreover, we are only interested
in thek lowest distance scores, wherek is very small as compared to the total number
of scoresn produced by the distance computation step. These observations suggest that
neither sorting networks nor systolic sorters are appropriate solutions. One could think
of using a modified systolic sorting array with onlyk processors, however this approach
still requires important hardware resources. Another important observation is that, once
the steady regime is reached, and sincen ≫ k, only very few distance scores would
walk past the first processor of a systolic sorter array5. This would result in a highly
inefficient architecture in which processors would remain idle most of the time.

Instead of using systolic sorting, we therefore propose to implement selection as a
simple insertion sorting. Fig. 4 represents the insertion sorting datapath, which consists
of a dual-port on-chip memory associated to a simple comparator. This architecture
can handle up to 32 lists, which is enough since the output flowof our distance stage
consists in distance scores related to 24 distincts query descriptors.
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Fig. 4. Structural view of the sorting element

This solution is highly inefficient from a theoretical pointof view, since its time
complexity for obtaining thek-NN from a set ofn distance scores isO(n.k). However,
its practical complexity remains very close toO(n): the vast majority of scores (more
than 99%) are not to be inserted into thek-NN list and would just pass through the
insertion sorting step with an overhead of a few cycles. Evenso, this overhead is still
unacceptable, since it happens for each distance score. To remove this overhead, we
perform a preliminary filtering step which buffers potential matches into a FIFO, as
described in Fig. 5.

5 Note that the software implementation takes advantage of this property to skip distance calcu-
lation whenever the current score is above its corresponding k-NN list threshold score
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Fig. 5.Structural view of the selection component

The resulting selection component uses 135 FPGA slices and one RAM block and
its maximum operating frequency is 200 MHz. It allows each new score to be inserted
at then-th position in thek-NN list in n + 3 cycles.

4.3 Putting it Altogether

The Xilinx Virtex-II Pro FPGA used in the ReMIX machine has 15,000 slices and ap-
proximately 50% of them are used by the ReMIX controller. It is therefore possible to
take advantage of the available space by implementing several linesof distance compu-
tation and selection units which operate in parallel, as shown in Fig. 6. In this execution
scheme, each line is given a different subset of query descriptors, and they all process
the same database subset in parallel.

Each line contains 24 query image descriptors. Therefore, each time the entire database
is read, the filter computes in parallel the nearest neighbors of 240 query descriptors,
i.e. in average1/3 of an image descriptors set. When the whole database has been
processed, the lists of query descriptors are flushed out separately through a simple
pipeline mechanism.

Table 3 compares various bit-width implementations, in terms of maximum number
of lines, with the maximum frequency and slices usage for each case. This shows that
with 8 bits descriptors and a ReMIX architecture clocked at 80 MHz, 10 such lines can
be instantiated.

5 Experimental results

In this section, we present the performance model that guided our design choice, and
then compare the estimation obtained from this model to the actual performance results.

6 Given 10 lines, any frequency optimization overflows the number of available slices.



Fig. 6.Filter as integrated in ReMIX
Bitwidth 24 bits 16 bits 12 bits 8 bits 3 bits
Nb lines 4 5 7 10 16

Resource (Slices)7037 (98%)6206 (93%)6865 (97%)7180 (99%)7078 (99%)
Frequency (MHz) 124 129 131 846 125

Table 3. Resource and performance for the maximum number of processor lines as
a function of bit-width, with Synplify used for synthesis and Xilinx ISE8.1 used for
back-end

5.1 Theoretical Performance Model

Let Nd be the number of descriptors in our database,Tc the filter clock period (set at
12.5 ns in our tests),NPE the total number of distance processor in the design (here
NPE = 240) andk the number of items in eachk-NN list (we havek = 32). Knowing
that our implementation of distance computation proceeds at the rate of 1 descriptor
every 26 cycles, the timeTcalc required to perform the distance computation step is
given byTcalc = 26NdTc. However, our performance model must also account for
several performance overheads.

For example, the whole descriptor database cannot be read from the Flash memory
in a single pass, it is therefore necessary to split the database intoNc chunks. This
induces a chunk access overheadTchunk which value can only be determined experi-
mentally (our performance model will therefore ignore thisoverhead).

On the other hand, whenever a FIFO reaches its maximum capacity, the distance
computation component must be stalled to avoid data-losses. Quantifying the overhead
due to these stalls (we writeTstalls this overhead) would require to have a precise model
for the FIFO usage over execution time. However, a simple probabilistic reasoning can
help us to obtain a higher bound forTstalls.

Let us consider a scenario in which there is no FIFO between the pre-filtering step
and the insertion sort. In such a situation, eachmatchcauses the distance computation
component to stall until thematchis correctly inserted in its correspondingk-NN list.

We write pmatch the probability for a distance score to not be pre-filtered before
insertion. We know from software profiling that this value isclose topmatch = 2.10−5.
We also know that our insertion sort component has a worst-case execution time ofk+3
cycles. The percentage of stall cycles in this scenario can therefore be bounded by:

pstall =
pmatch

pmatch(k + 3) + 1



The overhead (that we can write asTstall = pstallTcalc) in this scenario can be consid-
ered as a higher bound of what we would observe in practice, since we use a 256-slot
FIFO buffer between pre-filtering and sorting steps.

Finally, we must also account for the time spent flushing out the k-NN lists (we
write Tflush this overhead). This step has a fixed impact on the global execution and
can be written as :

Tflush = k.
NPE

BPCI

whereBPCI stands for the actual output PCI bandwidth (here we haveBPCI =
5 MBps). The total search timeTsearch for a query image containingNq descriptors
can then be written as :

Tsearch =

⌈

Nq

240

⌉

(Tcalc + Tstalls + Tflush)

5.2 Measured and projected performance

We have benchmarked our design over a real life 30,000 imagesdatabase consisting
in 20,868,278 descriptors. This database normally requires 2 GB of storage, however,
thanks to the use of 8 bit fixed point arithmetic instead of single precision floating-point
this size was reduced to 650 MB.

Using the performance model obtained, we estimate that searching a 30,000 image
database with a 720 descriptors query leads to a search time of Tsearch = 19, 68 s.
Running the same search on the actual ReMIX system lead us to an observed search
time of20.43 seconds, that is within a 4 % error margin of the predicted performance.

The actual speed-up factor over the original software implementation is 45. In other
words a single ReMIX system is as efficient as a 45 PCs cluster.While this accelera-
tion factor only holds for descriptors encoded as 8 bits integers, we estimated the cor-
responding results for different bitwidth by implementingas many processor lines as
possible on the FPGA and use this result to estimate the corresponding speed-up. These
performance projections are summarized in Table 4.

Bitwidth 24 bits 16 bits 12 bits 8 bits 3 bits
Query Time (sec) 50 40 28.5 20 12.5
Speed-up factor 18 22 31 45 72
Number of lines 4 5 7 10 16

Table 4.Estimated search time and corresponding speed-up for varying bitwidth for a
30.000 images database

6 Conclusion

In this paper we have proposed a hardware accelerator for Content Based Image Re-
trieval based on local descriptors. Our architecture performs both the distance calcula-
tion and selection in hardware, and was experimentally validated on the ReMIX ma-
chine using a real-life image database.



A single PCI board associated provides similar performanceto a 45 node PC cluster,
at 1/20 the price (without accounting for the host PC). An interesting point is that our
hardware architecture can easily be targeted at different descriptors (e.g. for different
precision, or higher number of dimension), with moderate design efforts.

Directions for future work include studying the implementation of CBIR on GPUs
which appear to be an interesting platform to speed-up this type of algorithms.
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