
Documentation on bitwidth in MMALPHA

Edouard BECHETOILLE

September 21, 2005

��
��
��

���	
0 0 0 0 0 111111

0 0 0 01111

00 0 0 0 0 *01 1 1 1 1 1 1 1 1

11111

0 110 0 0 01111

Abstract

This document explains how basic hardware arithmetic is handle by MMALPHA. An ALPHA code
can be written without having to care about size of bits of different variables. However, an ALPHA user
considered as a Hardware Designer, may intend to control the size of every variable of his design. The
different steps to set the bitwidth of an ALPHA variable are detailed here. Many examples are used to put
lights on as many possibilities as possible to manipulate bitwidth. At last, the explanation of the ALPHA
processing is explained for alpha developer to permit faster modifications or upgrades of this topic.

1

Contents
1 Introduction 3

2 User documentation 3
2.1 Use of Fixed Point . 3

2.1.1 Reminder on Two’s Complement . 3
2.1.2 Arithmetics . 3

2.2 How to set bitwith in MMAlpha . 4
2.2.1 Truncate integer datas . 5
2.2.2 Truncate real datas . 7
2.2.3 Truncate fractional datas between 0 and 1 . 8
2.2.4 Reduction . 9
2.2.5 summary of truncation to apply . 9

2.3 VHDL procedures in Definition.vhd . 9

3 Developer documentation 10
3.1 Reminder on VHDL Translator . 10

3.1.1 From Alpha to VHDL . 10
3.1.2 VhdlCell . 11
3.1.3 Procedure or function parsing . 12
3.1.4 Vhdl2 . 13

3.2 Add new VHDL functions or procedure into the Definition Package 13

4 Conclusion 13

List of Figures
1 Example of two’s complement coding . 4
2 bitwidth representation of an addition . 4
3 Example of values coded with {16,15,0} . 6
4 Truncation made by the function Truncate MSB . 6
5 bitwidth representation of a multiplication . 7
6 Truncation made by Truncate MSB and Truncate LSB . 7
7 Effect of procedure Truncate LSSB . 8
8 Saturation to 32767 due to the procedure Reduce MSB . 10
9 Truncation alignement . 11

List of Tables
1 Summary table for truncation . 9

2

1 Introduction
One of the powerful possibility with MMALPHA remains in the parametric expression of an application.
Indeed a parametric expression permits to keep a loop unrolled, which accelerate processing upon the ap-
plication. Alpha generates a virtual Cell that is repeated as needed. Here comes the necessity of truncation
or reduction due to the iteration of a common Cell. If the size of such a cell increases while iterating, the
final design would be too big. As a matter of fact the controlling of data bitwidths’ is essential and detailed
hereafter. To make things clear on data types, a reminder on Fix Point Coding is presented. Ways and
means to set datas bitwitdhs’ are explained in Part 2 . Finally advanced MMAlpha developer will find all
needed information on how bitwidth manipulation had been implemented.

2 User documentation
This part gives all clues to use and check calculations in MMALPHA.

2.1 Use of Fixed Point
2.1.1 Reminder on Two’s Complement

This part is inspired by the document [1]. The way to code negative number is not detailed in this document.

• Definition :
x = −2mS +

∑m−1

i=−n
bi2

iA real number x is represented in Two’s Complement as follows. S and bi

are equal to 0 or 1.

�
2

−1 2
−n

b 1 0bb bm−1 m−2 b −1 b −2 b b−n+1−n+2

n
Fractional Part

m
Integer Part

2
m−1

b−n

2
01

2

S

b

m : distance between the sign bit and the point
n : distance between the point and the least significant
bit
b : size of bit of the container : bitwidth

• Format : We consider the coding format as : {b,m,n}
with the condition that b=m+n+1. ’1’ represent the sign bit. Such a choice defines the domain of the
coding Dc : [−2m, 2m − 2−n] with a quantification step q defined by : q = 2−n. Once the value b is
defined, the size of the container is set. And so wherever the Fixed Point is, it is possible to interpret
the data as a signed integer. Doing so is equivalent to interpret a code {b,m,n} as a Signed Integer
Form code {b,b-1,0}.

For instance, considering the code {6,3,2}. It is possible to code numbers in the Domain : [-8,7.75]
with 0.25 as quantification step. See Figure 1 which represent the following list {7.75,7.5,0.75,0.5,0,-
0.25,-0.5,-0.75,-7.5,-7.75,-8} coded with {6,3,2}

If a number is out of the definition domain, it can not be coded without unexpected errors. But if a number
is not divisible by the quantification step, it would be coded but approximated to the nearest underneath
value.

2.1.2 Arithmetics

At the input of an arithmetic operator, the operands bitwidths’ need to be equal. As shown in Figure 2, the
containers are extend with signed bit if integer part is too short or with zeros if fractional part is too short.
To use fixed point coding, it is essential to know the format of operands. The Format defines the definition
domain of the coding Dc. But during an operation, the result could get out of this domain Dc. There is
indeed two alternatives. One can increase the size of the container at the output of the operation, or one
can keep the same size of container to reduce the complexity. In the second option, one must be sure that

3

InputForm 6bits Digits FixedPointForm InterpretedValue IntegerSignedForm
7.75 011111 0111.11 7.75 31
7.5 011110 0111.10 7.5 30

0.75 000011 0000.11 0.75 3
0.5 000010 0000.10 0.5 2
0 000000 0000.00 0 0

-0.25 111111 1111.11 -0.25 -1
-0.5 111110 1111.10 -0.5 -2
-0.75 111101 1111.01 -0.75 -3
-7.5 100010 1000.10 -7.5 -30
-7.75 100001 1000.01 -7.75 -31

-8 100000 1000.00 -8. -32

Figure 1: Example of two’s complement coding

S A

�

��

��

b 1 0b b −1 b −2

b 1 0b b −1 b −2 b−nA

b
mRSR

mB
bSA

b−nA

mB
b

0b b −1 b −2SB b−nB

+

ma na

mb

mr nr

00SB SB SB

nb

Figure 2: bitwidth representation of an addition

the datas are small enough to stay in Dc after computing. let A, B be the operands and R the Result with
their respective codes {bx,mx, nx} with bx = mx + nx + 1. In case of :



















































addition,



















bR = mR + nR + 1

mR =

{

max(mA,mB) if A + B ∈ Dc

max(mA,mB) + 1 if A + B /∈ Dc

nR = max(nA, nB)

multiplication,











bR = mR + nR + 1

mR = mA + mB + 1 doubling of the sign bit is added to the integer part
nR = nA + nB

In MMALPHA it has been defined1 that bR = max(bA, bB) + 1 in case of an addition, and bR = bA + bB

in case of a multiplication. Figure 2 illustrate bitwidth of addition.

2.2 How to set bitwith in MMAlpha
In this part, we consider that in Mathematica an alpha program had been loaded, scheduled, mapped,
pipelined as wishes and transformed into Alpha0. Bitwidths had to be set after the Alpha0 process and
before the Translation in AlpHard. Once bitwidths had been set, to generate VHDL, the remaining steps

1See 3.1.4 for developer.

4

are: alpha0ToAlphard, fixParameter if needed, a2v, vhdlTestBenchGen to get the Test Bench and Stimuli
Files generation.

To locate the variables to modify, take a look to the system $result by typing : ashow[]. It results in
something like :

system prodVect :{N | 3<=N}
(a : {i,j | 1<=i<=N; 1<=j<=N} of integer[S,16];
b : {i | 1<=i<=N} of integer[S,16])

returns (c : {i | 1<=i<=N} of integer[S,16]);
var
...

aReg2 : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,16];
CReg1 : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,16];
pipeCb1 : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,16];

let
CReg1[t,p] = CReg1Xloc[t-1,p];
aReg2[t,p] = a[t-p+1,p];
...

C[t,p] =
case

{ | 0<=t<=N-1; p=0; 3<=N} : 0[];
{ | p<=t<=p+N-1; 1<=p<=N; 3<=N} : CReg1 + aReg2 * pipeCb1;

esac;
...

To control the output bitwidth of the multiplication operator, a temporary variable had to be added. The
command addLocal[”prod”,”aReg2*pipeCb1”]; performs the task. A variable ”prod” is added. The modi-
fications in the Abstract Syntax Tree (AST) viewed with ashow[] are showed underneath.

var
prod : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,32];

...
let
prod[t,p] = aReg2 * pipeCb1;

...
C[t,p] =

case
{ | 0<=t<=N-1; p=0; 3<=N} : 0[];
{ | p<=t<=p+N-1; 1<=p<=N; 3<=N} : CReg1 + prod;

esac;

It is to notice that the size of prod is indeed 32 twice bigger as the size of aReg2 and pipeCb1. From this
point, we might have different choices. Regarding the type of datas one has to deal with, the different kind
of truncation to apply are stated further. We detail in this paper three cases : Integer, Real and Fraction∈
[0, 1[.

2.2.1 Truncate integer datas

In case of Integer, the coding is a peculiar case. Indeed no fractional part means that the code is : {b,b-1,0}.
As explained before, the definition domain to code integer became Dc : [−2b−1, 2b−1 − 1] In our example
b=16 so Dc = [−32768, 32767]. It is important to call back that we want this domain to be also the domain
of the result. So operand values needs to be much smaller than the bounds of the domain. If inputs values
are limited to the half of the bitwidth b, the result would be for sure in the domain, but it is not a necessity

5

InputForm 16bits Digits FixedPointForm InterpretedValue IntegerSignedForm
-40 1111111111011000 1111111111011000. -40. -40
30 0000000000011110 0000000000011110. 30. 30

-1200 1111101101010000 1111101101010000. -1200. -1200
48000 1011101110000000 1011101110000000. -17536. -17536

Figure 3: Example of values coded with {16,15,0}

��

�������������� ���
���
������ ���
���
������ ���
���
������ ���
���
 � � !�!�!!�!�!"�""�"#�#�##�#�#$�$�$$�$�$ %�%%�%&�&&�&

11111 111 '�''�'(�(
(�()�))�)*�**�* +�+

+�+
,�,,�, -�-
-�-
.�..�. /�/
/�/
0�00�01�1�11�1�12�22�23�3�33�3�34�4�44�4�45�5�55�5�56�6�66�6�6

11111 111

789:

;;;
;;;
;;;
;;;
;;;

1 1111 00000011111

1 1111 00000011111

11111 111 11111 111

* 1 1 1 1 1 1 10 0 0 0 00 0 0 010 0 0 01 1 01110 11 10

Figure 4: Truncation made by the function Truncate MSB

Example : 30 and -1200 belongs to Dc, but 30*-1200=-4800 is not in Dc. The last value in Figure 3 : 48000
cannot be coded, and would be interpreted has -17536 because of truncating.

Now let see an example where no errors occurs. The multiplication of -40 times 30 results in -1200. The
Figure 4 explains that the ’information’ of the data -1200 is on the right of the container. Thus we would be
able to truncate the 16 bits on the left, with the function Truncate MSB made for this.

As we could, see, because we are dealing with integer value, only one truncation is needed. So coming
back to our modification of the AST, once addLocal[”prod”,”operandA*operandB”]; had been executed,
another intermediate variable has to be inserted with the command addLocalLHS[”prodTrunc”, ”prod”];.
Type ashow[] to see the following modification in the AST:

var
prodTrunc : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,32];
prod : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,32];

...
let
prodTrunc[t,p] = prod;
prod[t,p] = aReg2 * pipeCb1;

...
C[t,p] =

case
{ | 0<=t<=N-1; p=0; 3<=N} : 0[];
{ | p<=t<=p+N-1; 1<=p<=N; 3<=N} : CReg1 + prodTrunc;

esac;

Then we apply the function Truncate MSB to this variable prodTrunc with the command : insertFunc-
tion[”prodTrunc”, ”Truncate MSB”];. ashow[] permit again to see the modifications of the AST :

let
prodTrunc[t,p] = Truncate_MSB(prod);

Finally, we force the bithwidth to be equal to the wanted value, in this case : 16, with the function : set-
BitWidth[”prodTrunc”,16]; which modifies the AST in :

var
prodTrunc : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,16];

Now please refer to matvect truncate MSB.nb to execute this example inorder to verify it by yourself.

6

InputForm 8bits Digits FixedPointForm InterpretedValue IntegerSignedForm
2.875 00010111 00010.111 2.875 23
-1.125 11110111 11110.111 -1.125 -9

-3.23438 11100110 11100.110 -3.25 -26

Figure 5: bitwidth representation of a multiplication

<�<<�<
<�<
=�==�=
=�=
>�>>�>
>�>
?�??�?
?�?
@�@@�@
@�@
A�AA�A
A�A
B�BB�B
B�B
C�CC�C
C�C
D�DD�D
D�D
E�EE�E
E�E

11111

F�FF�FG�GG�G H�H
H�H
I�II�I J�J
J�J
K�KK�K L�L
L�L
M�MM�M N�N
N�N
O�OO�O

11111 P�P�PP�P�PQ�Q�QQ�Q�QR�R�RR�R�RS�SS�S T�T
T�T
U�UU�U

100

prod

totruncint

totruncfrac

aReg2 pipeCb1

V�VW�W

X�XY�Y

Z�Z[�[

\�\]^�^_

```
```
```
```
```
`

aaa
aaa
aaa
aaa
aaa
a

bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb

b

b

b

m n m n

2b−m−1

0111 0110

11111 0 0111 100110

100

00 0 0 0 0 *01 1 1 1 1 1 1 1 1

0 0111 110

Figure 6: Truncation made by Truncate MSB and Truncate LSB

2.2.2 Truncate real datas

The notebook matvect truncate Real.nb shows how to truncate values with Integer Part and Fractional
Part. This case is the general case. All kind of value code {b,m,n} with b=m+n+1 are covered by this part.
To obtain a correct result in case of multiplication, check that input values belongs to {m/2+n+1,m/2,n}.
Thus by multiplication operation, result will belongs to the domain of the coding Dc=[−2m, 2m − 2−n].
However, there is less care to have for the fractional part. Indeed, if the result of a multiplication need a
smaller quantification step- that is to say the fractional part ’n’ need more bits- then the result will not be
false, but approximated. A simple example will clear this out. If you are working with Mathematica while
reading this notebook, do not hesitate to type:

<< TwosFunctions.m;
TwosTable[{2.875,-1.125,-1.125*2.875},{8,4,3},printDom->True, message->True]

It shows the value of two operands in the Domain defined by {8,4,3} and the result of their multiplication.
As you could see in Figure 5 the result -3.234375 is truncated and will be approximated to -3.25.

Now let see how to specify such a truncation in MMAlpha. As explained before, the alpha system had
already been translated in Alpha0. And in this system exists an element which defines a multiplication
of which we would like to control the bitwidth, by coding the datas with the Encode:{b,m,n}. The oper-
ation : ”operandA*operandB” had been set to ”prod” with addLocal[”prod”,”operandA*operandB”];. In
order to truncate the variable prod which has the encode {2b,2m+1,2n} to a variable that has the encode
{b,m,n}, two steps are needed. First, we will truncate the exceeding bits on the left with truncate MSB.
The size of the outputted variable container had to be specified (totruncint for instance) with its biwidth
b’=m+2n+1=2b-m-1. Secondly, on this resulted variable, the exceeding bits on the right will be removed
with truncate LSB. The container of the outputted variable had to be specified (totruncfrac for instance)
with its bitwidth b”=b. See Figure 6 to fix the ideas.

To perform this task in MMAlpha, use the following steps. Specify the encoding you need by giving
Integer values to {b,m,n}. Add a local variable totrunctint. Insert the function truncate MSB. And set the
bitwith to 2b-m-1.

Coding={16,6,9};
addLocalLHS["totruncint","prod"];

7



cdccdc
cdc
edeede
ede

1 1111

prod

totruncint

aReg2 pipeCb1

fdfghdhidi

jk

lmnnn
nnn
nnn
nnn
nnn

ooo
ooo
ooo
ooo
oo

b

b

b

m n m n

11111 0 0111 100110

pdpdppdpdppdpdp
qdqqdq
qdq
rdrdrrdrdrrdrdr
sdsdssdsdssdsds
tdtdttdtdttdtdt
ududuududuududu
vdvdvvdvdvvdvdv
wdwwdw
wdw
xdxdxxdxdxxdxdx
ydyydy
ydy
zdzdzzdzdzzdzdz
{d{d{{d{d{{d{d{
|d|d||d|d||d|d|
}d}d}}d}d}}d}d}

00 0 0 0 0 *01 1 1 1 1 1 1 1 1

11 01 0 1 1 0 0 0 1

Figure 7: Effect of procedure Truncate LSSB

insertFunction["totruncint","Truncate_MSB"];
setBitWidth["totruncint",Coding[[2]]+2*Coding[[3]]+1];

Repeat the last three steps with totruncfrac, exept that addLocal is not applied to prod but to totruncint,
and that the bithwidth had to be set to b.

addLocalLHS["totruncfrac","totruncint"];
insertFunction["totruncfrac","Truncate_LSB"];
setBitWidth["totruncfrac",Coding[[1]]];

Those steps gives modifications to the alpha system example shown underneath.

...
var
totruncfrac : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,16];
totruncint : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,25];
prod : {t,p | p<=t<=p+N-1; 1<=p<=N; 3<=N} of integer[S,32];

...
let
totruncfrac[t,p] = Truncate_LSB(totruncint);
totruncint[t,p] = Truncate_MSB(prod);
prod[t,p] = aReg2 * pipeCb1;

...
C[t,p] =

case
{ | 0<=t<=N-1; p=0; 3<=N} : 0[];
{ | p<=t<=p+N-1; 1<=p<=N; 3<=N} : CReg1 + totruncfrac;

esac;

It is important to repeat that this case is a general case, so all kind of truncation could be done this way.
However one might want to use less steps such as described in Section 2.2.1 and 2.2.3.

2.2.3 Truncate fractional datas between 0 and 1

If Datas ∈ [0, 1[ , no Integer part is needed. The encoding is equivalent to {b,0,b-1}. The multiplication of
two variables aReg2 and pipeCb1 with an encoding {b,0,b-1} will result in an encoding {2b,1,2b-2}. Warn-
ing, watch out that a kind of bit appears in the integer part. This phenomena is often called the doubling
of the sign bit. See Figure 7 to see such a representation. In order to take this case into account, the VHDL
procedure Truncate LSSB had been added to the library Definition.vhd. Hence, for an encoding {16,0,15},
the doubled sign bit and the exceeding bits on the right will be removed by executing the following steps:

addLocalLHS["prodTrunc","prod"];
insertFunction["prodTrunc","Truncate_LSSB"];
setBitWidth["prodTrunc",16];

8



Encoding : {b,m,n} with b=m+n+1
Hypothesis : it exists in the alpha system C=D+A*B

Truncation
Integer Real Fraction

addLocal[”prod”,”A*B”] addLocal[”prod”,”A*B”] addLocal[”prod”,”A*B”]
addLocalLHS[”Res”, ”prod”] addLocalLHS[”Res”, ”prod”] addLocalLHS[”Res”, ”prod”]
insertFunction[”Res”,”Truncate MSB”] insertFunction[”Res”,”Truncate MSB”] insertFunction[”Res”,”Truncate LSSB”]
setBitWidth[”Res”,b] setBitWidth[”Res”,m+2n+1] setBitWidth[”Res”,b]

addLocalLHS[”Result”, ”Res”]
insertFunction[”Result”,”Truncate LSB”]
setBitWidth[”Result”,b]

Table 1: Summary table for truncation

See notebook : matvect truncate LSB.nb for full example.

2.2.4 Reduction

The VHDL reduction procedure check that no overflow or underflow occurs while truncating a value.
No overflow or underflow occurs when only redundant sign bits are removed. Overflow represents a
truncating error of a positive data. In such a case, the outputted value is set to the highest value. Underflow
represents a truncating error of a negative data. In such a case, the outputted value is set to the lowest value.
This procedure is useful in case of Integer value to saturate the output instead of adding unexpected errors.

To see the effect of the Reduce MSB procedure, we need input values to reach the bounds of the encod-
ing. Warn that the limits would also be reached for the ’+’ operator if used in the application. In the example
of matrix vector multiplication, there is multiplications and additions. Thus we will force the addition to use
a ’+’ operator that take into account the case explained Page 2.1.2 : mR = max(mA +mB)+1ifA+B /∈ Dc.

addLocal["prod","aReg2*pipeCb1"];
addLocalLHS["prodTrunc","prod"];
insertFunction["prodTrunc","ProcedureReduce_MSB"];
setBitWidth["prodTrunc",16];
addLocal["plusT","CReg1+prodTrunc"];
addLocalLHS["plusTrunc","plusT"];
insertFunction["plusTrunc", "ProcedureReduce_MSB"];
setBitWidth["plusT",17];

Variable plusT is indeed set to 17bits = max(16, 16)+1 in this example. This added bit requires an addition
operator which take into account the last carry. Such operator had been added to the file Definition.vhd as
a function. Hence came the necessity to manually change the generated VHDL files where the operator ’+’
is used. Instead of ”plusT ¡= CReg1 + prodTrunc;”, write ”plusT ¡= plusOne(CReg1, prodTrunc);”. If you
evaluate the notebook matvect reduce MSB.nb and if the above modification is made to cellprodVectMod-
ule1.vhd and cellprodVectModule2.vhd the Figure ?? might be observed in ModelSim.

2.2.5 summary of truncation to apply

See Table 1.

2.3 VHDL procedures in Definition.vhd
To perform the MMAlpha truncation tool, we choose VHDL procedure instead of function. The advantage
of a procedure is that the Attribute Length of the output signal : outSignal’length may be used in the body

9



Figure 8: Saturation to 32767 due to the procedure Reduce MSB

of the procedure, even for an Unconstrained output signal. Therefore, no additional input size parameter
were include. Thanks to this possibility, truncation procedure are really simple.

procedure Truncate MSB( SIGNAL totrunc : IN SIGNED; SIGNAL truncated : OUT SIGNED) is
Begin truncated <= totrunc(totrunc’low + truncated’length-1 downto totrunc’low); end Truncate MSB;
procedure Truncate LSB( SIGNAL totrunc : IN SIGNED; SIGNAL truncated : OUT SIGNED) is
Begin truncated <= totrunc(totrunc’high downto totrunc’high -truncated’length+1); end Truncate LSB;
procedure Truncate LSSB( SIGNAL totrunc : IN SIGNED; SIGNAL truncated : OUT SIGNED) is
Begin truncated <= totrunc(totrunc’high-1 downto totrunc’high -truncated’length); end Truncate LSSB;

Figure 9 represents how the input totrunc and the output truncated are aligned.

3 Developer documentation

3.1 Reminder on VHDL Translator
3.1.1 From Alpha to VHDL

In a notebook, at the loading of a program in Mathematica, an Abstract Syntax Tree (AST) is created. From
that point, every modification made on this AST is made by analysing its content and modifying it if wishes.
For instance, analyze[] checks that the program is written correctly and that all the definition domains of
all variables are correct. One might want to schedule[] the program, and map the recognized dependences
to the system with the function appSched[]. There is also possibilities to pipeline variable if necessary.
Once the alpha program had been manipulated by aim of application, it is time to transform it in the sub-
set Alpha0 language. The operation to the AST is made during the step toAlpha0v2[]. This step add also
control signals to what will be the hardware architecture. It is the right moment to apply truncation to the
wanted elements in respect to the chosen type of coding. Then the finals steps are : alpha0ToAlphard[], fix-

10



~~
~~
~~
~~
~~
~~
~

��
��
��
��
��
��
�

Truncate_MSB(totrunc, )truncated

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��

Truncate_LSB(totrunc, truncated )

������������������������������������������������������������������������������������
��
��
�

��
��
��
�

��
��
��
��
��
��
��
��
�

totrunc

totrunc’lentgh

truncated’length

totrunc’high totrunc’low

truncated’lowtruncated’high

Truncate_LSSB(totrunc, truncated )

Figure 9: Truncation alignement

Parameter[”Param”, value], $library = Drop[$library,-1]; to remove the variable used to create the system
elements, a2v[$library], getSystem[”NameOfTheSystemModule”], vhdlTestBenchGen[]. All those steps
permit VHDL files and their test bench to be generated.

3.1.2 VhdlCell

Let us focus on the transformation AlpHard to VHDL made by a2v[]. The AST which is set to the variable
$result is written in a particular manner defined by the semantic of Alpha. For instance, the modifications
apply in Table 1 for Real datas has include in the variable $result :
equation[”totruncfrac”, call[”Truncate LSB”, var[”totruncint”]]], equation[”totruncint”, call[”Truncate MSB”, var[”AB”]]]
To interpret the AST and transform it into VHDL, the file vhdlCell.meta is used to parse the AST and apply
the function corresponding to the pattern encountered. Such function is written in the file vhdlCell.sem.
To continue our example, let see interesting part of vhdlCell.meta:

EQUATION ::=
{ equation[_,_call] -> CALLSTATEMENT,
_equation -> ASSIGNMENT,
_use -> USESTATEMENT

}
...
CALLSTATEMENT ::=

equation[ leftHandSide: _String,
funcCall: CALLEXP

]
:> semFuncCell[ "equation", leftHandSide, funcCall ,trfuncCall, opts]
...
CALLEXP ::=

call[
funcName: _String,

funcOps: {SUBEXPRESSION}
]
:> { "expression" }

The .sem and .meta files seems fastidious, but they permit faster modifications. A little explanation is
unavoidable. Once the pattern equation[ , call] is encountered, CALLSTATEMENT apply the function
semFuncCell with a text string as first parameter : ”equation”, the argument that came across are left-
HandSide and funcCall. trfuncCall represent the transmitted result of argument funcCall recognize as a

11



CALLEXP. trfuncCall is in fact a list of one element text string: {”expression”}. Consequently, if a pattern
like : equation[”aName”, call[”aProcedureName”, var[”anotherName”]]] appear in variable $result, the function
:
semFuncCell[ ”equation”, ”aName” , call[”aProcedureName”, {var[”anotherName”]}] , {”expression”},
opts] will be applied.

3.1.3 Procedure or function parsing

All the functions to apply are described in vhdlCell.meta. See below the functions concerned by our matter.

semFuncCell[
"equation", lhs:_, rhs:_call, {"expression"}, opts:___Rule ]:=
"\n "<>semFuncCell[ "call", lhs, rhs, opts ];

...
semFuncCell[ "call", lhs_, call[funcName:_String, opListAst:_], opts:___Rule ]:=
Module[{listArg,stringArg,res},
listArg=Map[semFuncCell["expression", lhs, # , opts] &,opListAst];
stringArg=Map[StringJoin[#,","] &,listArg];
stringArg=Apply[StringJoin,stringArg];
stringArg=StringDrop[stringArg,-1]; (*remove last comma *)
Which[
StringMatchQ[funcName,"Truncate*",IgnoreCase -> True],
res="\n "<>funcName<>"("<>stringArg<>", "<>lhs<>")",
StringMatchQ[funcName,"Procedure*",IgnoreCase -> True],
res="\n "<>StringReplace[funcName,"Procedure"->"",IgnoreCase -> True]

<>"("<>stringArg<>", "<>lhs<>")",
True,
res="\n "<>lhs<>" <= "<>funcName<>"("<>stringArg<>")"
] ;
res

];
...
semFuncCell[
"expression", lhs:_, var[ id:_ ]|affine[var[id:_],_], opts:___Rule ]:= id;

Three semFuncCell functions a stated above. The First is only removing the argument {”expression”} to
apply semFuncCell with ”call” as first argument instead of ”equation”. The second semFuncCell func-
tion apply the third one to all the element of the second argument of call[#1,#2]. In our example equa-
tion[”aName”, call[”aProcedureName”, var[”anotherName”]]]. There is only one element : ”anotherName”, so
it would be returned and be equal to listArg. Then, still in this second semFuncCell function described
above, pattern matching is done. If the first element of the call is like ”Truncate...”, it would be interpreted
as a Procedure in VHDL. Moreover, to permit evolution in the package Definition.vhd, a pattern matching
with the keyword ”Procedure” at the beginning of a funcName is done. Every procedure called ”Proce-
dureSomething” would have its prefix Procedure removed for instance: g=ProcedureReduce MSB(f) will
be transformed in Reduce MSB(f, g). If funcName is neither ”Truncate...” nor ”Procedure...”, the call will
be instantiate as a VHDL function. Please keep in mind those points:

• Truncate XSB might also be instantiate with insertFunction[””,”ProcedureTruncate XSB”]

• A VHDL function must not be name ”Procedure...” or it would be interpreted as a procedure.

• out=vhdlFunction(in1,in2,in3...) will be transformed in : out <= vhdlFunction(in1, in2, in3...)

• out=ProcedureSomething(in1,in2,in3) will be transformed in : ProcedureSomething(in1, in2, in3, out)

12



• In Mathematica when a modification is made to either vhdlCell .sem or .meta, execute the lines
below to update modifications

<<Alpha/vhdlCell.sem;
OLDPWD=Directory[]
setMMADir[{"lib","Packages","Alpha"}];
meta["vhdlCell"];
SetDirectory[OLDPWD]
<<Alpha/vhdlCell.m;

The meta function transform vhdlCell.sem and vhdlCell.meta into vhdlCell.m which needs to be reloaded.

3.1.4 Vhdl2

Has refered in section 2.1.2. The size of outputted bitwidth is defined by the lines :
bitWidthOfExpr[sys ,binop[add , arg1 ,arg2 ],options Rule]:= Max[bitWidthOfExpr[sys,arg1], bitWidthOf-
Expr[sys,arg2]] + 1;
bitWidthOfExpr[sys ,binop[mul , arg1 ,arg2 ],options Rule]:= bitWidthOfExpr[sys,arg1] + bitWidthOf-
Expr[sys,arg2];

3.2 Add new VHDL functions or procedure into the Definition Package
The file Definition.vhd is written from Vhdl2.m Vhdl2.m calls functionToVhdlPackage[] present in Vhdl-
LibGen.m. The function functionToVhdlPackage[] analyse the variable VHDLpk and writes the correspon-
dent instantiation and body instantiation. The variable types works together with the keyword SameType
and permit to iterate the definition of a function for multiple types : SIGNED, STD LOGIC VECTOR ...

To add a new procedure or function to the package, modify the Variable VHDLpk in $MMALPHA/
lib/ Packages/ Alpha/ VhdlLibGen.m. Type ?ToVhdlPackage in Mathematica to see the different manner
to add an element.

4 Conclusion
This documentation shows how it is possible to use easily Integer, Real or fractional datas coded in two’s
Complement. The demos Notebooks , matvect truncate MSB.nb, matvect truncate LSB.nb, matvect truncate Real.nb,
matvect reduce MSB.nb demonstrate it. Results are correct if the known limits of Fixed Point encoding are
respected.

This document also shows to developer an example on how the meta function works. Indeed, parts of
MMAlpha is develop in a Multi-Modelling manner. This is the case for the generation of VHDL cells and
so for variable bitwidths’ manipulation.

References
[1] Olivier SENTIEYS, Implantation d’algorithmes de traitement du signal sur les architectures virgule fixe,

ARCHI05.

13


