
I
 R

 I
 S

IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

827

THE ALPHA LANGUAGE

DORAN K. WILDE

I R I S A
INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

The ALPHA Language

Doran K. Wilde
�

Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux et syst�emes distribu�es
Projet API

Publication interne n�827 | May 1994 | 21 pages

Abstract: This report is a formal description of the Alpha language, as it is currently im-
plemented. Alpha is a strongly typed, functional language which embodies the formalism of
systems of a�ne recurrence equations. In this report, Alpha language constructs are described,
and denotational and type semantics are given. The theorems which are the basis for doing
transformations on an Alpha program are stated. And �nally, the syntax and semantics of
Alpha are given.
Key-words: recurrence equations, systolic arrays, functional languages, hardward design lan-
guages

(R�esum�e : tsvp)

�email: wilde@irisa.fr This work was partially supported by the Esprit Basic Research Action NANA 2,

Number 6632 and by NSF Grant No. MIP-910852.

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Le Language ALPHA

R�esum�e : Ce rapport traite de la description formelle de l'impl�emantation courante du
langage Alpha . Alpha est un langage fonctionnel fortement typ�e et bas�e sur le formalisme
des �equations r�ecurrentes a�nes. Sont pr�esent�es ici, les constructions du langage ainsi que sa
s�emantique d�enotationnelle et sa s�emantique des types. Un point est �egalement consacr�e aux
th�eor�emes constituant la base des transformations de programmesAlpha . Ces di��erents aspects
sont compl�et�es par la pr�esentation de la syntaxe et des s�emantiques du langage.
Mots-cl�e : �equations r�ecurrentes, r�eseaux systoliques, langages fonctionnel, langage de des-
cription de mat�eriel.

The ALPHA Language 1

The Alpha language was developed by Mauras [7] at Irisa in Rennes, France. A large part
of this document is my interpretation of Mauras' thesis, both in a linguistic sense and in a
technical sense.

Alpha was a product of research in regular parallel array processors and systolic arrays. The
Alpha language is able to formally represent algorithms which have a high degree of regularity
and parallelism such as systolic algorithms as de�ned by Kung [4]. It is based on the formalism
of recurrence equations which have been often used in various forms by several authors [10, 2, 8]
all of which were based on the introduction of the notion of uniform recurrence equations by
Karp, Miller and Winograd [3].

1 Systems of A�ne Recurrence Equations

Alpha is based on the formalism of systems of a�ne recurrence equations. The de�nitions in
this section review the basic concepts of systems of a�ne recurrence equations and are taken
primarily from the work of Rajopadhye and Fujimoto [10], Yaacoby and Cappello [13], Delosme
and Ipsen [1], and Quinton and Van Dongen [9].

In describing systems of a�ne recurrence equations, there are two equally valid points of view
which can be taken. The �rst is a purely functional point of view in which every identi�er is a
function. A recurrence equation de�nes a function on the left hand side in terms of the functions
on the right hand side. Alternately, each identi�er can be thought of as a single assignment

variable and equations equate the variable on the left hand side to a function of variables on the
right. In the following presentation, I take the second point of view.

De�nition 1 (Recurrence Equation)
A Recurrence Equation over a domain D is de�ned to be an equation of the form

f(z) = g(f1(I1(z)); f2(I2(z)); � � � ; fk(Ik(z)))

where

� f(z) is a variable indexed by z and the left hand side of the equation.

� z 2 D, where D is the (possibly parameterized) domain of variable f .

� f1; � � � ; fk are variables found on the right hand side of the equation. They may include
the variable f , or multiple instances of any variable.

� Ii are index mapping functions which map z 2 D to Ii(z) 2 Di, where D1; � � �Dk are the
(possibly parameterized) domains of variables f1; � � � ; fk, respectively.

� g is a strict single-valued function whose complexity is O(1) de�ning the right hand side
of the equation.

A variation of an equation allows f to be de�ned in a �nite number of disjoint \cases" consisting
of convex subdomains each having the same left hand side as follows:

f(z) =

8><
>:

z 2 D1) g1(. . .f1(I1(z)) � � �)
z 2 D2) g2(. . .f2(I2(z)) � � �)

...

(1)

2 Doran K. Wilde

where the domain of variable f is D =
S
iDi and (i 6= j)! (Di \Dj = ;)

De�nition 2 (Dependency)
For a system of recurrences, we say that a variable fi at a point p 2 Di (directly) depends
on variable fj at q, (denoted by pi 7! qj), whenever fj(q) occurs on the right hand side of
the equation de�ning fi(p). The transitive closure of this is called the dependency relation,
denoted by pi ! qj .

De�nition 3 (Dependency Function)
Given a dependency pi 7! qj , and a function I mapping pi to qj then I is called the dependency
function. The dependency can be rewritten in terms of the mapping function in the form
pi 7! I(pi).

De�nition 4 (A�ne Recurrence Equation)
A recurrence equation of the form de�ned above is called a Uniform Recurrence Equation

(URE) if all of the dependency functions (index mapping functions) Ii are of the form I(z) =
z + b, where b is a (possibly parameterized) constant n-dimensional vector. It is called an
A�ne Recurrence Equation (ARE) if I(z) = Az + b; where A is a constant matrix, and b
is a (possibly parameterized) constant n-vector.

De�nition 5 (System of A�ne Recurrence Equations, or SARE)
A system of recurrence equations is a set of m such equations, de�ning the functions f1 . . .fm
over domains D1 � � �Dm respectively. The equations may be (mutually) recursive. Variables are
designated as either input, output, or local variables of the system. Each variable (which is not
a system input) appears on the left hand side of an equation once and only once. Variables may
appear on the right hand sides of equations as often as needed.

Since there is a one to one correspondence between (non-input) variables and equations, the
two terms are often used interchangeably. Such equations serve as a purely functional de�nition
of a computation, and are in the form of a static program| a program whose dependency
graph can be statically determined and analyzed (for any given instance of the parameters).
Static programs require that all gi be strict functions and that any conditional expressions be
limited to linear inequalities involving the indices of the left hand side variable. By convention,
it is assumed that, boundary values (or input values) are all speci�ed whenever needed for any
function evaluation.

2 Alpha : An applicative equational language

An equational language is a natural way to describe a SARE. When thinking about algorithms
such as those used in signal processing or numerical analysis applications, a person naturally
thinks in terms of mathematical equations. Mathematical notation has evolved over the centuries
and obeys certain basic rules. 1. Given a function and an input, the same output must be
produced each time the function is evaluated. If the function is time varying, then time must
be a parameter to the function. Turner [11] uses the term static to describe this property. 2.
Consistency in the use of names: a variable stands for the same value throughout its scope. This
is called referential transparency. An immediate consequence of referential transparency it that

The ALPHA Language 3

equality is substitutive | equal expressions are always and everywhere interchangeable. This
property is what gives mathematical notation its deductive power [11]. Alpha shares both of
these properties with mathematical notation: it is static and it is referentially transparent.

Using a language that shares the properties of mathematical notation eases the task of
representing an algorithm as a program. Furthermore, such a method of describing algorithms
has some interesting properties, as has been discovered by users of Alpha . An equation speci�es
an assertion on a variable which must always be true. Reasoning about programs can thus be
done in the context of the program itself, and relies essentially on the fact that Alpha programs
respect the substitution principle. This principle states that an equation X = Expression

speci�es a total synonymy between the variable on the left hand side of the equation and the
expression on the right hand side of the equation. Thus any instance of a variable on the left
hand side of any equation may be replaced with the right hand side of its de�nition. Likewise,
any sub-expression may be replaced with a variable identi�er, provided that an equation exists,
or one is introduced, in which that variable is de�ned to be equal to that sub-expression.

Alpha has other properties which should be mentioned.

� Alpha equations are unordered. The only ordering of computations is that which is implied
by data dependencies.

� Alpha is a single assignment language. Each variable element can only ever hold a single
value which is a function of system inputs.

� Every Alpha program is a static program. This makes Alpha statically analyzable.

� Alpha does not support any notion of global variables. An execution of a system de�ned
in Alpha only a�ects the outputs of the system| there are never any side e�ects. This is a
necessary characteristic of a referentially transparent language. A system without outputs
is without purpose, and is dead code.

� Alpha is strongly typed. Each variable must be predeclared with both a domain and data
type attributed to that variable.

At this point, it can be stated that Alpha adopts the classical principles of a functional
language which is structured and strongly typed. An Alpha program de�nes a function between
domain based input and output variables. This notion of a function is embedded in the de�nition
of the Alpha system construct.

3 Alpha System Declarations

At the top level, an Alpha program consists of a system declaration consisting of:

1. A system name

2. A list of input variable declarations

3. A list of output variable declarations

which is followed by the system de�nition, consisting of:

1. A list of local variable declarations

4 Doran K. Wilde

2. A list of equations de�ning output and local variables.

This information appears in the following format in Alpha syntax.

system <system-name> (<input-variable-declarations>)

returns (<output-variable-declarations>);

)
Declaration

var

<local-variable-declarations>;

let

<equations>

tel;

9>>>>=
>>>>;

De�nition

4 Variable Declarations

Alpha is strongly typed and each variable is declared with a type of the form (< domain > �!

< datatype >). As in a classical typed system, each variable must be declared with its type and
then usages of that variable must conform to its declared type.

A variable can be thought of as a function mapping integer points in a domain to values in
the data type set:

X : z 2 < domain > 7�! X [z] 2 < datatype >

The observation that a variable is also a function ties together the variable and functional views
of recurrence equations as discussed in section 1. The type of a variable may thus be thought of
as a prototype of the function of the variable, giving both the domain and range of the function.

The <datatype> is one of the three base data types: integer, boolean, and real. All data
types are assumed to be in�nite precision and include the special value error which means a
value which is uncomputable.

Each variable in Alpha is associated with a �xed domain and has a value associated with
each point in that domain. Scalar variables may also be declared, and hold single value associated
with the point in the trivial domain Z0. The following syntax forms for a variable declaration
are supported in Alpha , (the last three are scalar declarations):

<var-list> : <domain> of integer;

<var-list> : <domain> of boolean;

<var-list> : <domain> of real;

<var-list> : integer;

<var-list> : boolean;

<var-list> : real;

4.0.1 Type Checking

An important advantage of being a strongly typed language is that certain static analysis me-
thods can be performed which detect inconsistencies in the way a variable is declared and the
way it is used. Alpha extends the classical type check to a much more powerful check which
uses polyhedral computation and permits the veri�cation that a variable is de�ned and used
in manner consistent with its declaration and that each and every element in the variable has
exactly one value associated with it. These syntactic checks are able to detect a large class of
programming and logic errors.

The ALPHA Language 5

Union of Polyhedra Domain Variable X

X(1,7)

X(2,1)

X(2,2)

X(2,3)

X(2,4)

X(2,5)

X(3,1)

X(3,2)

X(3,3)

X(3,4)

X(4,1)

X(4,2)

X(4,3)

X(5,1)

X(5,2)

X(5,3)

X(6,1)

X(6,2)

X(6,3)

X(7,2)

X(7,3)

X(7,1)

Figure 1: Comparison of Polyhedra, Domain, and Variable

5 Domain variables

Each variable used in an Alpha program is a function over a domain in Zn. When specifying
a system of a�ne recurrence equations, unions of convex polyhedra are used to describe the
domains of computation of system variables.

De�nition 6 A polyhedron, P is a subspace of Qn (rational space1) bounded by a �nite
number of hyperplanes.

Alternate de�nition:
P = intersection of a �nite family of closed linear halfspaces fx j ax � cg where a is a non-zero
row vector, c is a scalar constant.

The set of solution points which satisfy a mixed system of linear constraints form a polyhedron
P and serve as the implicit de�nition of the polyhedron

P = fx j Ax = b; Cx � dg (2)

given in terms of equations (rows of A, b) and inequalities (rows of C, d), where A, C are
matrices, and b, d and x are vectors. All polyhedra are convex.

Some important polyhedral operators are used in the semantics of Alpha. They are de�ned
here:

Image(P ; T) = fx j x = Ty; y 2 Pg

Preimage(P ; T) = fx j 9y 2 P : y = Txg
P1 \ P2 = fx j x 2 P1 and x 2 P2g
P1 [P2 = fx j x 2 P1 or x 2 P2g
P1nP2 = fx j x 2 P1 and not x 2 P2g

These operations are all implemented in the polyhedral library [12] which is used extensively
in the Alpha system.

Whereas a polyhedron is a region containing an in�nite number of rational points, a polyhedral
domain, as the term is used in this report, refers to the lattice of integral points Zn which are
inside a polyhedron (or union of polyhedra). Figure 1 illustrates this di�erence.

De�nition 7 A polyhedral domain of dimension n is de�ned as

D : fz j z 2 Zn; z 2 Pg = Zn \ P (3)

1polynomials may be de�ned in real space also

6 Doran K. Wilde

where P is a union of convex polyhedra of dimension n.

In a�ne recurrence equations of the type considered here and in the Alpha language, every
variable is declared over a domain as just described. Elements of a variable are in a one-to-one
correspondence with points in a domain. Again, �gure 1 illustrates this. Here, we formalize the
de�nition of a variable.

De�nition 8 A variable X of type \datatype" declared over a domain D is de�ned as

X = f X [z] : X([z]) 2 datatype; z 2 D g (4)

where X [z] is the element of X corresponding to the point z in domain D and \datatype" is
either integer, boolean, or real.

The Alpha syntax for representing a domain which consists of a single polyhedron is as
follows:

{ <index-list> | <constraint-list> }

More complicated domains can be built up using the three domain operators: union, intersection,
and di�erence. Union is written by combining two domains with a vertical bar: { ... } | { ... },
intersection is written with an ampersand: { ... } & { ... }, and di�erence with an ampersand-
tilde: { ... } &~{ ... }

Some examples of domains written in the Alpha syntax are given below :

{ x,y,z | -5 <= x-y <= 5; -5 <= x+y <= 5; z = 2x - 3y }

{ i,j,N | 0 <= i <= N-1; N <= j <= 2N-1 } -- parameterized domain

{ i,j,k | k = 5 } -- a plane in 3 space

{ i,j | 1>=0 } -- 2 dimensional universe domain

{ i | 1 = 0 } -- 1 dimensional empty domain

{ i,j | i=1; 0<=j<=2} | { i,j | i=3; 1<=j<=5 } -- union of domains

6 Denotational and type semantics

In the following sections, the syntax and semantics of each Alpha construct is described. For
each construct, both the denotational and type semantics are given in terms of functions which
take as an argument a syntactic entity which is in the form of an abstract syntax tree. These
functions are described in this section.

The type semantics are de�nes by the two functions Domain(), and Type(). The functions
Domain(), and Type() both take a single argument, which is a syntactic entity representing
an Alpha expression, and they return the <domain> and <datatype> of their arguments res-
pectively. Using these two functions, a static type checker can be made which checks the type
semantics of a program.

The denotational semantics are given by the Eval() function which takes as its �rst argument
a syntactic entity, and as its second argument, a point in the domain space of that entity. It then
returns the value of the �rst argument evaluated at the point given by the second argument.
The function is usually given recursively in terms of other Eval() functions, the error value, and
the input() function. The input() function retrieves values from the \system" in an unspeci�ed

The ALPHA Language 7

manner. (The parameter passing mechanism is unspeci�ed). Using the denotational semantics,
an interpreter which \executes" a program, that is, �nds values for all of the outputs given the
outputs, may be written.

These functions are used to prove theorems relating to the semantic equivalence of Alpha

expressions. Many of these theorems are stated in this report. Their proofs are based the the
de�nition of equivalent Alpha expressions, which is given here.

De�nition 9 (Equivalent Expressions)
Two Alpha expressions exp1 and exp2 are equivalent if and only if they are of the same type
and denotation, as established by the following three equalities :

Domain(exp1) = Domain(exp2) = D

Type(exp1) = Type(exp2)

8 z 2 D : Eval(exp1; z) = Eval(exp2; z)

7 Equations and Expressions

All local and output variables are de�ned by a set of equations.

var

X : <domain> of <type>;

...

let

X = <expression_1>;

...

X = <expression_n>;

tel;

where :
X : <domain> of <type>; is called the declaration of X , and
X =< expression >1; � � �X =< expression >n; is called the de�nition of X . The semantics of
an equation are as follows:

8z 2 <domain> : Eval(X; z) =

8>>><
>>>:

Eval(<expression>1; z) if z 2 Domain(<expression>1)
� � �
Eval(<expression>n; z) if z 2 Domain(<expression>n)
error otherwise

A procedure, GetInfo, can be de�ned which retrieves the type and de�nition information for a
variable:

GetInfo(X) = f< domain >;< type >;< kind >;< expression >g

where < domain > is from the declaration of X

< type > 2 finteger; boolean; realg from the declaration of X

< kind > 2 finput; output; localg from the declaration of X

< expression > is from the de�nition of X

8 Doran K. Wilde

The following static type checks can be made

[
i

Domain(<expression>i) � <domain>

8i : Type(<expression>i) = <type>

Other static checks may also be made:

1. Declaration rule. Every variable has one declaration as either an input, output, or local
variable.

2. De�nition rule. Every output and local variable has a de�nition. Input variables have no
de�nition.

3. Usage rule. Every local and input variable appears in the de�nition of some other variable.

The following theorems apply to equations:

Var = Exp1; � � � Var = Expn; () Var = case(Exp1; � � � ;Expn);
Var1 = Exp1; Var2 = � � �Var1 � � � ; () Var2 = � � � (Domain(Var1) : Exp1) � � � ;
if Domain(Var)\ Domain(Exp) = ; =)

Var = Exp; () < removed >

An expression in Alpha is composed of variables, constants, and operations de�ned in the
language. These constructs are described in the following sections.

7.1 Variables

All variables must have a <domain> and <type> given in the variable declaration and a de�ning
<expression> given on the RHS of the variable de�nition. (Exception: input variables do not
have a de�nition). When a variable is used, the following semantics apply:

GetInfo(X) = f< domain >;< type >;< kind >;< expression >g

Eval(X; z) =

8><
>:

Eval(<expression>; z) if z 2 <domain> AND < kind > = local or output
input(X; z) if z 2 <domain> AND < kind > = input
error otherwise

Domain(X) = <domain>

Type(X) = <type>

A second evaluation procedure, Eval2, stores precomputed values for points in X in a table
which has been preinitialized with the value unde�ned. The �rst time each point is evaluated,
it is stored in this table. Should a point ever need to be re-evaluated, it is not recomputed, but
obtained from the table. This method is more complicated, but also more e�cient. The table is
accessed using three procedures: Store(X; z; v) which stores value v in the X-table at point z,
Get(X; z) which retrieves and returns the value in the X-table at point z, and Valid(X; z) which
returns true if the value in the X-table at point z is not unde�ned.

Eval2(X; z) =

(
Get(X; z) if Valid(X; z) is True
v = Eval(X; z); Store(X; z; v) if Valid(X; z) is False

The ALPHA Language 9

7.2 Constants

Constants (integer, boolean, and real) are de�ned over the scalar domain Z0, a zero dimensional
domain consisting of a single value. This domain can be extended to a domain of any dimension.

Eval(constant; z) = constant:value

Domain(constant) = Z0

Type(constant) = constant:type

Both the value and the type of a constant are extracted from the syntax.

7.3 Pointwise operators

A pointwise operator is an operator which takes arguments de�ned over some common domain
and returns a result de�ned over this same domain. These operations are a spatial generalization
of classical scalar operators which are applied to the domains of their arguments element by
element. For example, if

X =
X11 X21 X31

X12 X22

X13

Y =
Y11 Y21 Y31
Y12 Y22
Y13

then the expression X � Y is computed as:

X � Y =
X11 � Y11 X21 � Y21 X31 � Y31
X12 � Y12 X22 � Y22
X13 � Y13

Even if the domains of the arguments are not exactly the same, the de�nition of a scalar
binary operator can still be extended to a operate over two domain variables. In general, a
pointwise operator op is de�ned over the intersection of the domains of its argument variables
as follows for binary operations :

Eval(binop(op;Exp1;Exp2); z) =

8><
>:

Eval(Exp1; z) op Eval(Exp2; z)
: if z 2 (Domain(Exp1) \Domain(Exp2))

error : otherwise

Domain(binop(op ;Exp1;Exp2)) = Domain(Exp1) \Domain(Exp2)
Type(binop(op ;Exp1;Exp2)) = TypeTable(op;Type(Exp1);Type(Exp2))

and as follows for unary operations :

Eval(unop(op ;Exp); z) =

(
op Eval(Exp; z) : if z 2 Domain(Exp)
error : otherwise

Domain(unop(op ;Exp)) = Domain(Exp)
Type(unop(op ;Exp)) = TypeTable(op;Type(Exp))

�

The type semantics of all of the pointwise operators are de�ned in table 1.

10 Doran K. Wilde

Operators Source1 Type Source 2 Type ! Destination Type

+;�; �; div;mod ;min;max int int int

+;�; �;min;max= real real real

� (negate) int/real int/real

<;�; >;� int/real int/real boolean

=; 6= int/real/boolean int/real/boolean boolean

and,or, xor int/boolean int/boolean int/boolean

not int/boolean int/boolean

And for the if | then | else | operation :

Source1 Type Source 2 Type Source 3 Type ! Destination Type

boolean int/real/boolean int/real/boolean int/real/boolean

Table 1: Type Table for Pointwise Operations

8 Domain operators

The domain operators explicitly manipulate the domains of domain based variables. In this
section, the case operator is presented which allows the piecewise de�nition of equations. In
connection with the case operator, the restrict operator is presented which permits the discri-
mination between di�erent parts of a variable domain. And �nally, the dependence operator
is presented, which establishes a relation between the points of one domain and the points of
another.

8.1 Case operator

The case operator pieces together a set of disjoint subexpressions. The expression :

case
Exp1...
Expn

esac

is de�ned as:

Eval(case(Exp1; � � � ;Expn); z) =

8>>>><
>>>>:

Eval(Exp1; z) : if z 2 D1 = Domain(Exp1)
...

Eval(Expn; z) : if z 2 Dn = Domain(Expn)
error : otherwise

Domain(case(Exp1; � � � ;Expn)) = Domain(Exp1) [� � � [Domain(Expn)
Type(case(Exp1; � � � ;Expn)) = Type(Expi); i = 1 � � �n

�

The ALPHA Language 11

with static checks

i 6= j !

(
Domain(Expi) \Domain(Expj) = fg

Type(Expi) = Type(Expj)

Theorems

case(Exp) () Exp

case(case(Exp1; � � � ;Expn)) () case(Exp1; � � � ;Expn)
Exp op case(Exp1; � � � ;Expn) () case(Exp op Exp1; � � � ;Exp op Expn)
case(Exp1; � � � ;Expn) op Exp () case(Exp1 op Exp � � � ;Expn op Exp)

case(Dom1 : Exp;Dom2 : Exp; � � �) () case(Dom1 [Dom2 : Exp; � � �)
Var = Exp1; � � � ;Var = Expn; () Var = case(Exp1; � � � ;Expn)

if Domain(Var) \Domain(Expk) = ; =)
Var = case(� � � ;Expk ; � � �) () Var = case(� � � ;Expk�1;Expk+1; � � �)

For each point z 2 Domain(case), one and only one expression should ever exist such that
z 2 Domain(Expi). The value of the case statement is not de�ned for values of z which are not
found in the domains of any of the subexpressions, and is de�ned to be an error z is found in
two or more subexpression domains. This error can be found with a static check.

8.2 Restrict operator

The case statement is usually used in combination with the restriction operator. The restriction
operator takes a subset of an expression and is written as:

Dom : Exp

and is de�ned as:

Eval(restrict(Dom ;Exp); z) =

(
Eval(Exp; z) : if z 2 Dom \ Domain(Exp)
error : otherwise

Domain(restrict(Dom ;Exp)) = Dom \ Domain(Exp)
Type(restrict(Dom ;Exp)) = Type(Exp)

�

The restrict operator if often used in connection with the case operator as follows:

case
Dom1 : Exp1...
Domn : Expn

esac

12 Doran K. Wilde

in which the restriction operators help to de�ne the subdomains of the case expressions. The
following theorems follow from the de�nition of the restrict operator.

Domain(Exp) : Exp () Exp

Dom : Exp () Exp i� Dom � Domain(Exp)
Dom1 : (Dom2 : Exp) () (Dom1 \ Dom2) : Exp

Dom : (Exp1 op Exp2) () (Dom : Exp1) op (Dom : Exp2)
Dom : case(Exp1; � � � ;Expn) () case(Dom : Exp1; � � � ;Dom : Expn)

Dom1 \Dom2 : (Exp1 op Exp2) () (Dom1 : Exp1) op (Dom2 : Exp2)
Dom : (Var1 = Exp1; � � � ;Varn = Expn;) () Dom : Var1 = Exp1; � � � ;Dom : Varn = Expn;

Dom : Var = Exp; () Var = Dom : Exp;

8.3 Dependence operator

An a�ne dependence function is a function that maps each point z in a domain D to a point
A:z + b in a domain E , dep : D 7�! E . The dependence operator composes an expression Exp

with an a�ne dependence function de�ned by A:z + b, where A is a constant matrix and b is a
constant vector, and is written as:

Exp:(z ! A:z + b)

and is de�ned as:

matrix =

A b

0 1

!

Eval(dep(Exp;matrix); z) =

8><
>:

Eval(Exp; A:z + b) :
if z 2 Preimage(Domain(Exp);matrix)

error : otherwise

Domain(dep(Exp;matrix)) = Preimage(Domain(Exp);matrix)
Type(dep(Exp;matrix)) = Type(Exp)

Here are a few examples of dependency operations written in Alpha syntax:
X.(i,j->j,i) The transpose of a 2-dimensional variable X
X.(i->i,i) The diagonal vector of a 2-dimensional variable X
X.(i,j->2*i+j+3) A 1-dimensional variable X being indexed by 2 � i+ j + 3

The following theorems follow from the de�nition of the dependence operator:

Exp:(z ! z) () Exp

(Exp:(y ! Ay + b)):(z! Cz + d) () Exp:(z ! (AC)z + (Ad+ b))
(Exp1 op Exp2):(z ! Az + b) () (Exp1:(z ! Az + b)) op (Exp2:(z ! Az + b))

case(Exp1; � � � ;Expn):(z ! Az + b) () case(Exp1:(z ! Az + b); � � � ;Expn:(z ! Az + b))
(dom : Exp):(z ! Az + b) () dom :(z ! Az + b) : Exp:(z ! Az + b)

dom :(z ! Az + b) () Preimage(dom ;matrix)

The ALPHA Language 13

8.4 Reduction Operator

The reduction operator is a high level construct that allows for a more abstract expression of an
algorithm and enlarges the design space for the implementation of the algorithm. Many basic
regular array algorithms can be very simply expressed using this operator. It was introduced
into the Alpha language by Le Verge [5] who showed that this construct preserved referential
transparency, the substitution principle, and normalization.

A reduction operator performs a many to one projection of an Alpha expression, combining
values mapped to a common result point with an associative and commutative binary operator.
Its syntax is

reduce(�; (z ! A:z + b); expression)

The operator � is any associative and commutative binary operator de�ned in the Alpha

language and expression is any Alpha expression. The function (z ! A:z + b) is a projection

function f : Zn 7! Zm which is written like a dependence operator, where the matrix A is of
dimension n � m;n > m. Not all projection functions are valid in a reduction operator. The
following conditions qualify a valid function (z ! A:z + b):
1. A is an n �m matrix, where n > m and the Domain(expression) is of dimension n.

2. The matrix A has an integer right inverse. This is true of A can be written as A = [Id 0]U
where [Id 0] is the hermite normal form of A and U is a square unimodular matrix.

3. Given D =Domain(expression), for all T =

Idn�n t

0 1

!
, where At = 0,

the domain E = D[Image(D; T) must be a convex domain over Zn. This can be tested by
the checking that (convex(E)nE)\Zn = ;. This test guarantees that all integer points in
the projection of D by the function (z ! A:z+b) have at least one antecedent in D. This
is proved in [6, page 41].

Examples of projection functions are: (i; j; k! i + j + k) and (i; j ! j). The semantics of the
reduction operator are de�ned as:

matrix =

An�m b

0 1

!
; n > m

Eval(reduce(�; (z ! A:z + b);Exp); z) =

8>>><
>>>:

L
(fEval(Exp; y) j A:y + b = z; y 2 Domain(Exp)g) :

if z 2 Image(Domain(Exp);matrix)
error :

otherwise
Domain(reduce(�; (z ! A:z + b);Exp)) = Image(Domain(Exp);matrix)

Type(reduce(�; (z ! A:z + b);Exp)) = Type(Exp)L
(S) =

(
Identity(�) : if S = ;

x �
L
(S nfxg) : if x 2 S

An example of a reduction operation to do matrix multiplication, written in Alpha syntex is:
reduce(+, (u,v,w->u,v), a(i,j,k->i,j)*b(i,j,k->k,j))

14 Doran K. Wilde

The following theorems follow from the de�nition of the dependence operator:

reduce(�; f;Exp) () reduce(�; f:g;Exp:g)

Dom = fxjCx+ d >= 0g; f = (z ! A:z + b); 8t : (At = 0) Ct = 0) =)
reduce(�; f;Dom : Exp) () Image(Dom; f) : reduce(�; f;Exp)

reduce(�; f; case(Exp1;Exp2) () reduce(�; f; case(Domain(Exp1) : Identity(�);Exp2) �
reduce(�; f; case(Exp1;Domain(Exp2) : Identity(�))

reduce(�; f; case(Exp1;Exp2)) () case(D12 : reduce(�; f;Exp1) � reduce(�; f;Exp2);
D1 : reduce(�; f;Exp1);
D2 : reduce(�; f;Exp2))

where D12 = Image(Domain(Exp1); f)\ Image(Domain(Exp2); f)
D1 = Image(Domain(Exp1); f)nD12

D2 = Image(Domain(Exp2); f)nD12

reduce(�; f;Exp):g () reduce(�; f 0;Exp:g0)
where f; g; f 0; and g0 are a�ne integer functions

f and f 0 are right invertible
g � f 0 = f � g0

reduce(�; f;Exp) () case(Image(D; T)nD : Identity(�);D : Y:T � Exp):g
where D = Domain(Exp);

f : Zn 7! Zn�1 = (z ! Az + b);
T = (z ! z � t); where At = 0;
8y 2 DnImage(D; T) : f � g(y) = y

if f = f1 � f2 � � � � � fn�m ; where f : Zn 7! Zm; n > m; fi : Z
n+1�i 7! Zn�i =)

reduce(�; f;Exp) () reduce(�; f1; reduce(�; f2; � � �reduce(�; fn�m;Exp) � � �))

9 Example

This section presents an Alpha program for a simple convolution �lter. Given a sequence xi,
where i � 1, and a set of coe�cients ai, where i = 1 � � �4, the convolution �lter computes an
output sequence yi =

P
4
j=1 ajxi�j+1 for i � 4. This function is expressed in its most general

form using reduction and a parameter as a simple equation in the Alpha language as shown
in �gure 2. The reduction statement can be serialized and replaced with a set of recurrence
equations as shown in �gure 3. The parameter can be �xed to a constant as shown in �gure 4.
This same program in array notation is shown in �gure 5. The expression 0 .(i,j->) means

that the constant 0 de�ned over the domain Z0 (a single point) is projected on to Z2 and
becomes a 2-dimensional in�nite array of constant 0's.

The ALPHA Language 15

system convolution (N : { N | N>=0 } parameter;

a : { j | 1<=j<=N } of integer;

x : { i | i>=1 } of integer)

returns (y : { i | i>=N } of integer);

var

Y : { i,j | 0<=j<=N; i>=1; i>=j } of integer;

let

y = reduce(+, (i,j->i), a.(i,j->j)*x.(i,j->i-j+1));

tel;

Figure 2: Parameterized Alpha Program for a Convolution Filter using Reduce

system convolution (N : { N | N>=0 } parameter;

a : { j | 1<=j<=N } of integer;

x : { i | i>=1 } of integer)

returns (y : { i | i>=N } of integer);

var

Y : { i,j | 0<=j<=N ; i>=N } of integer;

let

Y = case

{ i,j | j=0 } : 0.(i,j->);

{ i,j | 1<=j<=N } : Y.(i,j->i,j-1)

+ a.(i,j->j) * x.(i,j->i-j+1);

esac;

y = Y.(i->i,N);

tel;

Figure 3: Parameterized Alpha Program for a Convolution Filter

16 Doran K. Wilde

system convolution (a : { j | 1<=j<=4 } of integer;

x : { i | i>=1 } of integer)

returns (y : { i | i>=4 } of integer);

var

Y : { i,j | 0<=j<=4 ; i>=1; i>=j } of integer;

let

Y = case

{ i,j | j=0 } : 0 .(i,j->);

{ i,j | 1<=j<=4 } : Y .(i,j->i,j-1)

+ a .(i,j->j) * x .(i,j->i-j+1);

esac;

y = Y .(i->i,4);

tel;

Figure 4: Alpha Program for a Convolution Filter with 4 Stages

system convolution (a : {j | 1<=j<=4} of integer;

x : {i | 1<=i} of integer)

returns (y : {i | 4<=i} of integer);

var

Y : {i,j | (1,j)<=i; 0<=j<=4} of integer;

let

Y[i,j] =

case

{|j=0} : 0[];

{|1<=j<=4} : Y[i,j-1] + a[j] * x[i-j+1];

esac;

y[i] = Y[i,4];

tel;

Figure 5: Alpha Program for a Convolution Filter in Arrray Notation

The ALPHA Language 17

10 Alpha Syntax

This section speci�es the syntax of Alpha . It was extracted from the yacc �le of the actual
Alpha parser.

Comments in Alpha start with a double dash ({ {) and terminate with the end of line (like
C++).

10.1 Meta Syntax

phrase* === zero or more repetitions of phrase

phrase1 / phrase2 === Alternation, either phrase1 or phrase2

(� � �) === syntactic grouping

[� � �] === optional semantic phrase

bold === a terminal

italic === a non-terminal

10.2 Systems

system :: system system-name ([input-declaration-list])
returns (output-declaration-list);
[var local-declaration-list]
equation-block

system-name :: id

input-declaration-list :: var-declaration-list

output-declaration-list :: var-declaration-list

local-declaration-list :: var-declaration-list

10.3 Declarations

var-declaration :: id-list : [domain of] /
id-list : domain parameter (integer / boolean / real)

var-declaration-list :: [var-declaration-list] ; var-declaration

10.4 Domains

domain :: ff index-list constraint-list gg /
domain domain /
domain & domain /
domain . function /
domain . convex /
~ domain /
(domain)

index-list :: [index-list ,] id

constraint-list :: [constraint-list ;] constraint

18 Doran K. Wilde

constraint :: increasing-sequence / decreasing-sequence / equality-sequence

increasing-sequence :: (increasing-sequence / index-expression-list) (< / <=) index-expression-
list

decreasing-sequence :: (decreasing-sequence / index-expression-list) (> / >=) index-expression-
list

equality-sequence :: (equality-sequence / index-expression-list) = index-expression-list

10.5 Equations

equation-block :: let equation-list tel;

equation-list :: [equation-list] equation

equation :: id = expression ; /
id [[index-list]] = expression ; /
equation-block /
domain : equation

10.6 Expressions

expression :: case expression-list ; esac /
if expression then expression else expression /
domain : expression /
expression . function /
expression [[index-expression-list]] /
expression binary-op expression /
unary-op expression /
binary-op (expression , expression) /
reduce (commutative-op , function , expression) /
(expression) /
id /
constant

expression-list :: [expression-list ;] expression

binary-op :: commutative-op / relative-op / - / / / div / mod

commutative-op :: + / * / and / or / xor / min / max

relative-op :: = / <> / < / <= / > / >=

unary-op :: - / not

constant :: integer-constant / real-constant / boolean-constant

10.7 Dependence Functions and Index Expressions

function :: ([index-list] -> [index-expression-list])

index-expression-list :: [index-expression-list ,] index-expression / (index-expression-list)

index-expression :: index-expression (+ / -) index-term / [-] index-term

index-term :: integer-constant id / integer-constant / id

The ALPHA Language 19

10.8 Terminals

integer-constant :: [-] number

real-constant :: [-] number . number

boolean-constant :: true / false

number :: digit digit*

digit :: 0 / 1 / ... / 9

id :: letter (letter / digit)*

letter :: a / ... / z / A / ... / Z / _

11 Alpha semantics

In this section, the semantics of Alpha are speci�ed.

1. Alpha is a single assignment language. The de�nition of a variable must be unique at
each point in its domain.

2. Only single system programs are supported, no subsystems are supported at this time.

3. Variables may be declared over domains consisting of unions of polyhedra. Polyhedra are
de�ned with both equalities and inequalities.

4. Scalar variables are declared over domains of dimension zero.

5. All data types are assumed to be in�nite precision and include the special value error which
means an uncomputable value. Some operational semantics also require a value unde�ned
to represent a value which is not (yet) computed.

6. A parameter declaration, if it exists, must be the �rst declaration in the input declaration
section of a system. The parameter domain de�nes the range of values that parameters
can take in that system.

7. The precedence of expression operations is de�ned in the following table :

20 Doran K. Wilde

Expression Operation Associative Precedence

reduce(commutative-op, projection-function, Expression) 11
binary-op(Expression, Expression) 11
Expression.a�ne-function (change of basis) 10
Expression[index-expression*] (value selection) 10
{ (negation) 9
* (multiplication) Y 8
/ (division), div (integer division), mod (modulo) 8
+ (addition) Y 7
{ (subtraction) 7
<; �; =; �; >; 6= 6
not 5
and, min, max Y 4
or, xor Y 3
Domain : Expression (restriction) 2
if Expression then Expression else Expression 1
case (Expression;)* esac 1

8. The precision of arithmetic is unspeci�ed (assumed in�nite).

9. The domains of expressions within a case statement do not intersect each other.

10. The precedence of domain operations is de�ned in the following table :

Domain Operation Precedence

~

(inversion) 4

Domain.a�ne-function (change of basis) 3
Domain.convex (convex hull) 3
& (intersection) 2
| (union) 1

References

[1] J. M. Delosme and I. C. F. Ipsen. Systolic Array Synthesis: Computability and Time Cones,
pages 295{312. Elsevier Science Publishers B. V. (North-Holland), 1986.

[2] Concettina Guerra. A unifying framework for systolic design. In F. Makedon, T. Melhorn,
T. Papatheodorou, and P. Spirakis, editors, VLSI Algorithms and Architectures: Aegean

Workshop on Computing, Springer-Verlag, Loutraki, Greece, 1986.

[3] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. JACM, 14(3):563{590, Jul 1967.

[4] H. T. Kung. Why systolic architectures. Computer, 15(1):37{46, January 1982.

[5] H. Le Verge. Reduction operators in alpha. In D. Etiemble and J-C. Syre, editors, Parallel
Algorithms and Architectures, Europe, pages 397{411, Springer Verlag, Paris, June 1992.
See also [6].

The ALPHA Language 21

[6] Herv�e Le Verge. Un environnement de tranformations de programmes pour la synth�ese

d'architectures r�eguli�eres. PhD thesis, Universit�e de Rennes 1, Rennes, France, Oct 1992.

[7] Christophe Mauras. Alpha, un langage �equationnel pour la conception et la programmation

d'architectures parall�eles synchrones. PhD thesis, Universit�e de Rennes I, Rennes, France,
Dec 1989.

[8] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrence equations.
Proceedings 11th Annual International Symposium on Computer Architecture, Ann Arbor,
208{214, June 1984.

[9] Patrice Quinton and Vincent Van Dongen. The mapping of linear recurrence equations on
regular arrays. Journal of VLSI Signal Processing, 1(2):95{113, 1989.

[10] S. V. Rajopadhye and R. M. Fujimoto. Synthesizing systolic arrays from recurrence equa-
tions. Parallel Computing 14, 14:163{189, 1990.

[11] D. A. Turner. Recursion Equations as a Programming Language, pages 1{28. Cambridge
University Press, 1982.

[12] D. Wilde. A Library for Doing Polyhedral Operations. Technical Report Internal Publica-
tion 785, IRISA, Rennes, France, Dec 1993.

[13] Yoav Yaacoby and Peter R. Cappello. Scheduling a system of nonsingular a�ne recurrence
equations onto a processor array. Journal of VLSI Signal Processing, 1(2):115{125, 1989.

22 Doran K. Wilde

