
I
 R

 I
 S

IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

830

LOOP NEST SYNTHESIS USING THE POLYHEDRAL LIBRARY

HERVÉ LE VERGE, VINCENT VAN DONGEN AND DORAN K.
WILDE

I R I S A
INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France

Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

Loop Nest Synthesis using the Polyhedral Library

Herv�e Le Verge, Vincent Van Dongen� and Doran K. Wilde��

Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux et syst�emes distribu�es

Projet API

Publication interne n�830 | May 1994 | 7 pages

Abstract: A new method to synthesis loop nests given a polyhedral domain, the context

domain, and the loop nesting order is described. The method is based on functions in the

IRISA polyhedral library.

Key-words: Polyhedral scanning problem

(R�esum�e : tsvp)

�email: vandonge@drebin.crim.ca Working at CRIM (Centre de recherche Informatique de Montr�eal), 1801
Mc Gill college suite 800, H3A 2N4, Montreal, Canada

��email: wilde@irisa.frThis work was partially supported by the Esprit Basic Research Action NANA 2,
Number 6632 and by NSF Grant No. MIP-910852.

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique

(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

La synth�ese de nids de boucles avec la biblioth�eque

poly�edrique

R�esum�e : Une nouvelle m�ethode de synth�ese de nids de boucles est d�ecrite �a partir d'un

domaine poly�edrique, d'un domaine contextuel, et de l'ordre sur les boucles imbriqu�ees. Cette

m�ethode est bas�ee sur les fonctions de la biblioth�eque poly�edrique de l'IRISA.

Mots-cl�e : Probl�eme du parcours d'un poly�edre

Loop Nest Synthesis using the Polyhedral Library 1

1 Introduction

The spatial point of view of a loop nest goes back to the work of Kuck [7] who showed that

the domain of nested loops with a�ne lower and upper bounds can be described in terms of a

polyhedron. Loop nest synthesis grew out of the older loop transformation theory [6, 11] where

it was shown that all loop transformations could be performed by doing a change of basis on the

underlying index domain, followed by a rescanning (perhaps in a di�erent order) of the domain.

Loop nest synthesis is based on the polyhedral scanning problem which poses the problem of

�nding a set of nested do{loops which visit each integral point in a polyhedron.

Ancourt et al. [1] were the �rst to solve the polyhedral scanning problem. They used a

method to compute the loop nests which is based on a Fourier-Motzkin pairwise elimination

procedure. This method involves the projection of polyhedron along an axis to �nd the loop

bounds. The main di�culty is that the Fourier{Motzkin elimination method creates redundant

bound equations which must be eliminated afterward. Le Fur et al. [8] also use this method for

their Pandore II compiler.

The traversal of a polyhedron by a set of nested loops can be thought of as a lexicographical

ordering of the integer points in the polyhedron, where a point a is executed before a point

b if a � b (a precedes b lexicographically). Thus given a polyhedron, loop bound expressions

can be derived by �nding the lexical minimum and maximum of the polyhedron in a given set

of directions and in terms of parameters and outer loop variables. A technique to do this uses

the Parametric Integer Program (PIP) developed by Feautrier [5, 4]. PIP �nds the lexicographic

minimum of the set of integer points which lie inside a convex polyhedron which depends linearly

on one or more parameters. PIP is called twice for each loop in the loop nest, once for the lower

and once for the upper bound. The loop expressions must then be extracted out of the PIP

output, which is a quasi-a�ne expression tree, where each branch is guarded by a constraint

and the terminal nodes hold either an index expression or ? (bottom) meaning that that branch

is infeasible. The extraction of the loop bound expressions from PIP output is not an easy

problem and requires post processing. Collard et al.[3] show how PIP can be used to �nd loop

bounds and how PIP output can be simpli�ed. Chamski [2] reviews the PIP method of �nding

loop bounds and gives timing comparisons between the PIP method and the Fourier-Motzkin

method.

In this paper, we describe a method to scan parameterized polyhedra using the polyhedral

library [10] which is based on the computation of the dual representation of a polyhedron. The

proposed method uses the library function DomainAddRays to project out inner loop indices

in a manner similar to the Fourier{Motzkin elimination method, but without generating any

redundant inequalities. The expressions derived from the projection are further reduced by

considering the context domain of each expression, and eliminating preestablished conditions

using the library DomainSimplify function. Thus, we will show how the synthesis of loop nests

can be nicely done using the polyhedral library.

2 Herve Le Verge, Vincent Van Dongen and Doran K. Wilde

2 The Polyhedron Scanning Problem

2.1 Introduction to parameterized polyhedra

This section quickly introduces the concept of polyhedra and parameterized polyhedra to help

in the understanding of the polyhedron scanning problem. A polyhedron is de�ned to be the

set of points bounded by a set of hyperplanes. Each hyperplane is associated with an a�ne

inequality (ax � b) which divides space into two halfspaces: a closed halfspace which satis�es

the inequality and an open halfspace which does not. A system of such inequalities induces a

polyhedron D = f x : Ax � b g where A and b are a constant matrix and vector respectively.

Often we are interested in describing a whole family of polyhedra D(p), one polyhedron

per instance of the parameters p. This can be done by replacing vector b above with an a�ne

combination of a set of parameters p. By so doing, we obtain a parameterized polyhedron:

D(p) = f x : Ax � Bp+ b g

where A and B are constant matrices and b is a constant vector. This parameterized polyhedron

can be rewritten in the form of a non-parameterized polyhedron in the combined data and

parameter space as:

D(p) = f x :
�
A �B

� x
p

!
� b g

D0 = f

x

p

!
: A0

x

p

!
� b g

2.2 The polyhedron scanning problem

To generate sequential code for operations and variables declared over polyhedra, a loop nest

which scans the given polyhedral region must be generated. The polyhedron scanning problem is

formally stated as:

Given a parameterized polyhedral domain D(p) in terms of a parameter vector p and a set of k

constraints:

D(p) = f x : Ax � Bp+ b g

where A and B are constant matrices of size k � n and k �m respectively, and b is a constant

k-vector,

produce the set of loop bound expressions L1; U1; � � �Ln; Un such that loop nest:

Loop Nest Synthesis using the Polyhedral Library 3

DO x1 = L1; U1
...

DO xn = Ln; Un

body

END

END

will visit once and only once all integer points in the domain D(p) in lexicographic order of the

elements of x = (x1; � � � ; xn).

When talking about a particular loop variable xi, we use the terminology outer loops to refer

to loops which enclose the xi{loop, that is, the loops of variables xj ; j < i. We use inner loops

to refer to the loops contained in the xi{loop, that is, the loops of variables xj ; j > i.

The problem of �nding loop bounds is related to the linear programming problem and shares

its complexity. Fortunately, these problems tend to be relatively small (in terms of the dimension

and number of constraints) due to the fact that loops are not deeply nested, and exact solutions

for typical problems can be found in reasonable time.

3 Example

Given the domain de�ned as :

{i,j,k,N,M | i>=0; -i+M>=0; j>=0; -j+N>=0; k>=0; i+j-k>=0}:S

and the context domain {i,j,k,N,M | N>0; M>0} describing what is known to be true a priori,

the following four di�erent loop nests were generated by calling the proposed procedure four

times, each time scanning the domain in a di�erent order.

{i,j,k,N,M | 0<=i<=M} :

{i,j,k,N,M | 0<=j<=N} :

{i,j,k,N,M | 0<=k<=i+j} : S

a. The loop nest in fi, j, kg scan order.

{i,j,k,N,M | 0<=j<=N} :

{i,j,k,N,M | 0<=k<=j+M} :

{i,j,k,N,M | 0<=i<=M; i>=k-j} : S

b. The loop nest in fj, k, ig scan order.

{i,j,k,N,M | 0<=k<=N+M>=0} :

{i,j,k,N,M | 0<=j<=N; j>=k-M} :

{i,j,k,N,M | 0<=i<=M; i>=k-j} : S

c. The loop nest in fk, j, ig scan order.

{i,j,k,N,M | 0<=i<=M} :

{i,j,k,N,M | 0<=k<=i+N} :

{i,j,k,N,M | 0<=j<=N; j>=k-i} : S

d. The loop nest in fi, k, jg scan order.

4 Implementation

The implementation of the proposed method is based on the polyhedral library[10].

4 Herve Le Verge, Vincent Van Dongen and Doran K. Wilde

�

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6

-

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

ub2ublb

xj

lb2

Figure 1: Projection using Fourier{Motzkin Elimination

4.1 Basis of method

This method resembles the Fourier{Motzkin (FM) method in that it projects the polyhedron in

the canonical direction of inner loop variables in order to eliminate dependencies on them. Thus

bounds on a loop are found independent of inner loop indices. However, the FMmethod considers

all pairs of constraints when �nding the bound on the projection. In �gure 1, for example, lower

bounds lb2 and lb and upper bounds ub2 and ub are all considered by the FM method. In

general, given n constraints, as many as n2

4
loop bounds could be generated in eliminating a

single variable, and this number grows exponentially with the number of variables. Most of these

bounds turn out to be redundant (non-tight) and must be eliminated. The elimination of these

redundant loop bounds is a signi�cant problem when using the FM method.

The proposed method is based on the double description by Motzkin1 [9] which only considers

pairs of constraints that are adjacent, and therefore never generates any redundant bounds (like

lb2 and ub2 in the example). Thus the redundant bound elimination phase of the FM method

is replaced with an adjacency test on pairs of constraints in the proposed method. This test

is accomplished very e�ciently assuming the rays and vertices of the polyhedron are known.

The algorithm maintains both the constraint and the ray/vertex representation of a polyhedron

allowing the employ of the adjacency test. Keeping the dual representation is only feasible for

small dimensional domains since a d{polyhedron with n constraints might have as many as db
n

2
c

rays/vertices, in the worst case. We rely on the fact that computational domains tend to be

relatively small polyhedra (in terms of the dimension and number of constraints) due to the fact

that loops are not deeply nested.

4.2 Add Rays to a Domain

The library function DomainAddRays joins a set of lines, rays, or points to a domain and

produces the resulting domain with all redundancies eliminated. It is used in this paper to

1sometime erroneously attributed to Chernikova

Loop Nest Synthesis using the Polyhedral Library 5

6

-

6

-

6

?

6

?

6

?

xi

xj xj

lb ub
xi

lj+ =

Figure 2: Adding a line to project out an index

.

..
..
..
..
..
.
..
..
..
..
..
.

.

..
..
..
..
.
..
..
..
..
..
..
.

.

..
..
..
..
..
.
..
..
..
..
..
.

.

..
..
..
..
.
..
..
..
..
..
..
.

6

-

C

A

B B

Figure 3: Domain Simpli�cation

eliminate (or project out) the inner loop indices from the bound expressions of outer loops. This

is illustrated in �gure 2 where xi is an outer loop variable and xj is an inner loop variable. To

compute the loop bounds for the xi{loop as a function of parameters and outer loop variables, the

inner loop variables xj ; j > i must be removed from the domain. This is done by projecting the

scan domain in the direction of the inner loop variables onto the xi-axis, giving lb and ub as the

lower and upper bounds of xi, respectively. This can be accomplished using the polyhedral library

by adding lines fli+1; li+2; � � �g in the direction of all of the inner loop variables fxi+1; xi+2; � � �g.

The resulting polyhedron is a cylinder open in the direction of inner loop variables (as shown in

the �gure) which has no constraints in terms of the inner loop variables.

4.3 Domain Simplify

The function simplify in context called DomainSimplify in the library is de�ned as follows:

Given domains A and B, then Simplify(A, B) = C, when C \ B = A \ B, C � A

and there does not exist any other domain C0 � C such that C0 \B = A \B.

The domain B is called the context. The simplify function therefore �nds the largest domain set

(or smallest list of constraints) that, when intersected with the context B is equal to A\B. The

simplify operation is done by computing the intersection A \ B and while doing so, recording

which constraints of A are \redundant" with result of the intersection. The result of the simplify

6 Herve Le Verge, Vincent Van Dongen and Doran K. Wilde

operation is then the domain A with the \redundant" constraints removed. A simple of example is

shown in �gure 3. In the example, domain A is simpli�ed (resulting in domain C) by eliminating

the two constraints that are redundant with context domain B.

4.4 Loop Separation

Using the above two library functions, a function can be written which takes a speci�ed domain

D and separates (or factors) it into an intersection of the initial context domain D0 and a

sequence of loop domains D1; D2; � � � (D = D0 \ D1 \ D2 \ � � �) where each loop domain is

not a function of inner loop variables. Accordingly, the loop domain Di; i � 1 can be recursively

computed as:

Di = DomainSimplify(DomainAddRays(D; fli+1; li+2; � � �g); D0 \ � � �Di�1);

5 Conclusion

We have implemented the procedure described in this paper, and tested it on a number of

examples (kindly provided by Marc Le Fur). Its di�cult to fairly compare the FM method

with the method described here, because of the di�erences in implementation. The FM method

programmed by Marc Le Fur [8] is based on Caml, an interpreted functional language, where as

the method described here is programmed in C. Testing has shown about two orders of magnitude

di�erence in run time, however, this is no doubt due to the implementation di�erences.

Some examples have been found to cause problems in the polyhedral library. Two di�erent

problems have been encountered. The �rst is an numeric over
ow problem. The polyhedral

library performs exact rational computation, and numbers are stored using 32 bit integer nu-

merators and denominators. If two rational numbers are multiplied, and there is no cancelation,

then the storage requirement for the result is the sum of the storage for the two operands

(measured in number of bits). The solution to this problem is either to use a multi-precision

arithmetic package in which storage grows to meet demand, or to integerize the vertices by ad-

ding additional constraints which \chop o�" non integral vertices without excluding any of the

integral points inside the polyhedron.

The second problem is a memory over
ow problem. Given a d dimensional polyhedron with n

constraints, as many as nb
d

2
c vertices could be required in the dual representation. This e�ectively

limits computation to small dimensional polyhedra. This problem is aggravated by the fact that

the current implementation allocates a �xed amount of work space to perform a computation.

A dynamic work space would be better in light of this problem.

On the sunnier side, this method has several advantages. First of all, this method produces

well minimized results in a convenient form. The implementation is very straight forward, using

Loop Nest Synthesis using the Polyhedral Library 7

procedures from the polyhedral library. Since no redundant bounds are generated, as in the

Fourier{Motzkin method, we expect this method to be more e�cient.

Future experimentation is needed to empirically compare this method to the other two known

methods.

Acknowledgments

We thank Marc Le Fur for his collaboration and the examples he gave us.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Third Symposium on

Principles and Practice of Parallel Programming (PPoPP), pages 39{50, ACM SIGPLAN,

ACM Press, 1991.

[2] Zbigniew Chamski. Fast and E�cient Generation of Loop Bounds. Technical Report In-

ternal Publication 771, IRISA, Rennes, France, Oct 1993.

[3] J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops from systems of a�ne

constraints. Technical Report 93{15, Ecole Normale Sup�erieure de Lyon, May 1993.

[4] P. Feautrier. Data
ow analysis of array and scalar references. International Journal of

Parallel Programming, 20(1):23{53, Feb 1991.

[5] P. Feautrier. Parametric integer programming. RAIRO Recherche Op�erationelle,

22(3):243{268, Sep 1988.

[6] F. Irigoin. Code generation for the hyperplane method and for loop interchange. Technical

Report ENSMP-CAI-88-E102/CAI/I, Ecole Nationale Superieure des Mines de Paris, Oct

1988.

[7] D. J. Kuck. The Structure of Computers and Computations. J. Wiley and Sons, NY, 1978.

[8] M. Le Fur, J.-L. Pazat, and F. Andr�e. Static Domain Analysis for Compiling Commutative

Loop Nests. Technical Report 757, IRISA, September 1993.

[9] T. S. Motzkin, H. Rai�a, G. L. Thompson, and R. M. Thrall. The double description

method. Theodore S. Motzkin: Selected Papers, 1953.

[10] D. Wilde. A Library for Doing Polyhedral Operations. Technical Report Internal Publica-

tion 785, IRISA, Rennes, France, Dec 1993.

[11] M.E. Wolf and M. Lam. Loop transformation theory and an algorithm to maximize paral-

lelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452{471, Oct 1991.

8 Herve Le Verge, Vincent Van Dongen and Doran K. Wilde

