The MMALPHA Test Bench*

Patrice Quinton

February 24, 2010

Abstract

We describe a program to generate test bench automatically for MMALPHA programs. We
also describe how to generate stimuli files, and how to generate a bit true simulator.

1 Introduction

In Section 2, we present how to generate a test bench. In Section 5, we present how to generate
stimuli files. In Section 6, we explain how to simulate a program using a bit true simulation.

2 Test Bench Generation

The VhdlTestBench package contains a function that allows a VHDL test bench to be automatically
generated for an ALPHA program. This program must be in ALPHAO format, such that obtained
after a successful utilization of the a2v command. This means that the current program (contained
in the library variable, $1ibrary), has been translated into VHDL.

The function is called vhd1lTestBenchGen. The test bench is produced in a file called £i1eTB. vhd,
where file is the name of the system currently contained in the sys parameter of the vhd1TestBenchGen
function®.

The test bench file is written in the current directory of MATHEMATICA. If such a file already
exists, it is copied in a temporary file named file_.TB.vhd (a previous version of such a file is
deleted, if any exists).

The test-bench that is produced must be used with stimuli files for each of the input variables of
the ALPHA program; it will produce one output file for each output variable of the ALPHAprogram.
How to produce these stimuli files is explained in Section 5 of this documentation.

The vhdlTestBenchGen function allows test benches to be generated for each one of the elements
of the library. Recall that, after generating an ALPHAOQ program, all modules produced are contained
in an MM ALPHA variable called $1ibrary. The current program is in variable $result, and it is
usually the main program. Say this program is fir (corresponding to an initial fir.alpha ALPHA
program), then executing

vhdlTestBenchGen[]

*Version printed on March 11, 2010
1See the usage of this function.

will produced a test-bench named firTB.vhd. It is essential that the content of $library be
consistent with the program for which the test bench is generated.
The vhdlTestBenchGen function checks various possible errors:

e The given program must be recognized as a cell, a module or a controller by MMALPHA
(using the checkCell, checkModule, or checkController functions.

e The name of the given program must appear in the library contained in $library.
[]

More can be found on this topic

3 Technicalities

e There is a provision for generating a VHDL file with the 1987 VHDL syntax (see the s87 flag,
directly in the code).

e The clock rate is 20 ns, and the clock initialization time is 30 ns.

e If there is already a component file for the program contained in $result (say for example,
fir.component) in the directory, this component is used in the test bench, otherwise, a
component is built on the fly (using the buildComponent function). Therefore, if there exists
an inconsistency between the program and its component, an error may happen.

4 Meaning of the signals
Here is a description of some of the signals in the test bench produced.
e clk rate:
e clk init:
e sig Name: a signal associated to ALPHA variable Name;
e comp: the name of the instanciated component;
e ce: clock enable signal;
e rst_0: initial value of the reset signal;
e temp_buffer:
e temp buffer_out:
e endstim: a boolean variable that indicates the end of the stimulus file
e good: a boolean variable used to check the reading of a stimulus file

e temp buffer Name: a temporary buffer for ALPHA variable Name;

e stim_file Name: the declaration of the stimulus file for variable Name:
e stim_line_Name: the declaration of the file line for variable Name:

e timecounter: time counter for the design;

5 Producing Stimuli

As already said, there exists a stimuli file for each input variable. If inVar is the name of an input
variable of the ALPHAprogram, then its stimuli file is named stimInVar.txt. This file contains
one value for each instant of time for which a value is required by the program.

Recall that, for any ALPHA variable, its life time is given by projecting its domain on the t
index. Say this life interval is 10 < t < 20, then values will be required only for time instants
between 10 and 20, therefore, the stimuli file contains 11 values.

Producing automatically stimuli files can be done either manually, or by using the cGen program,
as described here.

To better explain this program, assume we want to produce stimuli files for the following
program fir:

system fir : {K,N | 3<=K<=N-1}
(x : {i | 0<=i<=N} of integer[S,16];
w : {k | 1<=k<=K} of integer([S,16])
returns (y : {i | K<=i<=N} of integer[S,32]);

var
YLOC: {i,k | K<=i<=N; 0<=k<=K} of integer[S,32];
let
YLOC[i,k] =
case
{l k=02: 0[;
{l k>0 }: YLOC[i,k-1] + wlk]=*x[i-k];
esac;
y[il = YLOC[i,K];
tel;

We load this file, and we schedule it:

load["file.alpha" 1;
scd []

Then, we run the following program
cGen["file.c", { "K" -> 3, "N" -> 10 }, stimuli -> True]

This produces in file file.c a C program that simulates the operations of the ALPHA program.
Compiling this program :

gcc file.c -o fir

produces a binary file fir that we can run
/fr

The effect of this execution is to ask the values of the input variables and to return, eventually, the
values of the output variables. Here is what you see at the console:

x[0]70
x[1]71
x[2]72
x[3]173
x[4]174
x[5]175
x[6]176
x[7]77
x[8]178
x[9]179
x[10]710
wl1]71
w[2]70
w[3]70
y[3]=2
y[41=3
y[5]1=4
y[61=5
y[71=6
y[81=7
y[91=8
y[10]1=9

The input chosen are x[i] = i, and w[0] = 1, w[1] = w[2] = O, which gives the result shown.
As a side effect, this evaluation produces also 3 files: input files stim_x.txt and stim_w.txt

where input values for x and w are recorded, and an output file stim_y.txt. Here is the stim x.txt
file:

x[0]=00000001
x[11=00000002
x[2]1=00000003
x[3]1=00000004
x [4]1=00000005
x[51=00000006
x[6]1=00000007
x[71=00000008
x [8]1=00000009
x[91=0000000a
x[10]=00000000

Here is the stim_w.txt file:

w[1]1=00000001
w[2]=00000000
w[3]1=00000000

Here is the stim_y.txt file:

y [31=00000003
y [41=00000004
y [51=00000005
y [61=00000006
y [71=00000007
y [81=00000008
y[91=00000009
y[10]=0000000a

The cGen function has several options. The noPrint option, when set to True, does not prints
out the name of the inputs and outputs values (for example, x [1]=00000001, but only the result.
The resulting files may then be used to be run with the test bench.

This example is presented in the Fir notebook in mmalpha/demos/NOTEBOOKS/Fir.

6 Bit True Simulation

Documentation to be done.

7 Generation of test files

The Vhd1TestBench package contains now a new function, called alpHardStim, which allows stimuli
files to be generated for the VHDL test bench. For each input in, it produces an input file called
alpHardStimin.txt, and similarly for each output. This file contains, in the order given by the
time variable, the command to be executed to generate...

8 The alpha2mma Package

There exists a prototype program that allows an ALPHA program to be translated into MATHE-
MATICA. This package is called alpha2mma.m. It is currently available in the directory

$MMALPHA/doc/Packages/Meta

as it is an example of using the Meta package.

The alpha2mma.m program is itself produced by the use of the meta command, applied to a
description of the ALPHA syntax given in the meta file alpha2mma.meta. See in the notebook
meta.nb located in the same directory how to call the translator.

Once the alpha2mma.m file has been produced, one loads it by the command

<<alpha2mma.m

Then to translate a program, say testl.alpha into a MATHEMATICA program, one does:

load["testl.alpha" 1;
alpha2mmal]

(there exist a debug option, as usual).

This produces in the current directory a file called test1.simul, which contains definitions for
the input, local and output variables.

Then, one loads this file:

<<testl.simul
and one calls the simul function :
simul ["test1"]

This function has the only effect of entering the context Alpha‘Simul‘testl‘ in which all
definitions of the variables are available, as functions.
To be more explicit, assume that the test1.alpha file looks as follows:

system testl (a : integer; b : integer)
returns (c : integer);
let
c =a+ b;
tel;

This program is translated into the following MATHEMATICA program:

Begin["Alpha‘Simul ‘test1‘"];
Clear[Alpha‘Simul‘testl‘a, Alpha‘Simul‘testl‘b, Alpha‘Simul‘testl‘c];

(x Definition of c *)

Alpha‘Simul ‘testl‘c[f:(_Integer|_Symbol)...] := Plus[al[f], b[f]];

Alpha‘Simul‘testl‘c[___] := Message[Alpha‘Simul‘testl‘c::params];
End[];

As you can see, this program enters the special context Alpha‘Simul ‘test1¢, then clears the
variables a, b and ¢ in this context, and defines a ¢ function. The form of this function is quite
special. It says basically that c[£ 1 := al £] + b[£], where f is any sequence of integers
or symbols. This allows the function to be used for any sequence of indices, a property that will
be useful later on when one wants to evaluate a structured ALPHA program.

When one runs simul["test1"], one enters the (unique) simulation context of test1, where
the definition of ¢ are available. In this context, if we just evaluate c[], we get the result a[] +

b[]; in the same manned, we can evaluate any c[i1, i2, ..., ik] expression, where the ik
are either integers or symbols of MATHEMATICA, to get the result a[i1, i2, ... , ik] + b[
i1, i2, ... , ik].

Consider now a more involved example, where one wants to build a binary adder in ALPHA.
The program is given in Fig. 1.

It contains two parts: a full adder (FullAdder program), and a Plus program, that allows one
to build a binary adder of W bits by instanciating W times the full adder.

Translating this program into MATHEMATICA involves (currently) two steps. First, one translate
the FullAdder program. To this end, assuming that the program is in the file fulladder.alpha,
one loads this program, one select the FullAdder subsystem, and one translates it :

system FullAdder (A :
B :
Cin :
X :
Cout :

returns

let
X[l = A xor B xor
Cout []
tel;

{w |
(A
B
returns (S :

system Plus :

var
Cin :
Cout :
X : {b
let
use {b
Cin[b]
case
{ | b=0} :
{ | 1<=b} :
esac;
S[b] =
case
{ | b<=W-1}
{ | b=W} :
esac;

tel;

: {b |

boolean;
boolean;
boolean)
boolean;
boolean) ;

Cin;

= A and B or A and Cin or B and Cin;

2<=W}

{b | 0<=b<=W} of boolean;
0<=b<=W} of boolean)
{b | 0<=b<=W} of boolean);

{b | 0<=b<=W-1} of boolean;
{b | 0<=b<=W-1} of boolean;
| 0<=b<=W-1} of boolean;

| 0<=b<=W-1} FullAdder[] (A, B, Cin)

Falsel[];

Cout [b-1];

: X[b];

Cout [W-1];

returns

X,

Figure 1: The binary Plus program

Cout)

3

load["fulladder.alpha"];
getSystem["FullAdder" 1];
alpha2mmal];

One does the same for the main program, Plus

getSystem["Plus"];
alpha2mmal] ;

Then, one loads both programs :

<<"Plus.simul"
<<"FullAdder.simul"

which creates definitions for the variables

A The Test Bench for the Fir Filter

—-- VHDL test bench file for system fir

-- Generated with vhdlTestBench.m at 2/25/2010
library ieee;

USE ieee.std_logic_textio.all;

USE std.textio.all;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

USE ieee.numeric_std.all;

USE work.all;

USE work.types.all;

USE work.definition.max;
USE work.definition.min;

ENTITY testbench_fir is
END testbench_fir;

ARCHITECTURE behavioural OF testbench_fir IS

COMPONENT fir
PORT (

clk: IN STD_LOGIC;

CE : IN STD_LOGIC;

Rst : IN STD_LOGIC;

x : IN SIGNED (15 DOWNTO 0);
IN SIGNED (15 DOWNTO 0);
y : OUT SIGNED (31 DOWNTO 0)

=

)
END COMPONENT;

-- Design independent signals

-— Integers to and from tested component

SIGNAL rst_0 : std_logic := ’0’;
SIGNAL clk : std_logic := ’0’;
SIGNAL ce : std_logic := ’0’;

CONSTANT clk_rate : TIME := 20 ns;

CONSTANT clk_init : TIME := 50 ns;

--—— Design dependent signals
-— Inputs
SIGNAL sig_x : SIGNED (15 DOWNTO 0);
SIGNAL sig_w : SIGNED (15 DOWNTO 0);
—-- Outputs
SIGNAL sig_y : SIGNED (31 DOWNTO 0);

BEGIN
--—— Instantiation of the components

comp : fir PORT MAP(clk => clk, ce => ce, rst => rst_0, x => sig_x, w => sig_w, y => sig_y
-- clock, clock enable and reset generation

ce <= ’1’ AFTER clk_rate;

rst_0 <= ’1’ AFTER clk_init;

clk <= NOT clk AFTER clk_rate;

—-- Process start
stimuli : PROCESS(clk, rst_0O)

-- Design independent variables

VARIABLE temp_buffer: STD_LOGIC_VECTOR (31 DOWNTO 0);
VARIABLE temp_buffer_out: STD_LOGIC_VECTOR (31 DOWNTO O) ;
VARIABLE endstim : BOOLEAN := FALSE; -- end of stimulation
VARIABLE good : BOOLEAN; -- check current read in stimuli file
VARIABLE i,i1,i2,i3,i4 : INTEGER; -- loop counter

VARIABLE j : INTEGER; -- loop counter

CONSTANT space : STRING := " "; -- Blank string

—---- Design dependent variables
--Inputs
VARIABLE x : SIGNED (15 DOWNTO 0);
VARIABLE w : SIGNED (15 DOWNTO 0);
--outputs
VARIABLE y : SIGNED (31 DOWNTO 0);

—--—- Design dependent Buffers
-— Inputs
VARIABLE temp_buffer_x : STD_LOGIC_VECTOR (31 DOWNTO 0)
VARIABLE temp_buffer_w : STD_LOGIC_VECTOR (31 DOWNTO O0)
—-outputs
VARIABLE temp_buffer_y : STD_LOGIC_VECTOR (31 DOWNTO 0)

(OTHERS => ’0’);
(OTHERS => ’0’);

(OTHERS => ’0’);

10

—---- Design dependent file declaration
-—Inputs
FILE stim_file_x :text OPEN READ_MODE IS "stim_x.txt";
FILE stim_file_w :text OPEN READ_MODE IS "stim_w.txt";
-—Outputs
FILE stim_file_y :TEXT OPEN WRITE_MODE IS "stim_y.txt";

—-——— Design dependent line declaration
--Inputs
VARIABLE stim_line_x : LINE ;
VARIABLE stim_line_w : LINE ;
--Outputs
VARIABLE stim_line_y : LINE ;

VARIABLE timecounter : INTEGER := -1; -- indicate the step t.
-— Initialisation is design dependent

BEGIN
IF rst_0 = ’0’ THEN
-- Signal initialisation

ELSIF clk’EVENT AND clk=’1’ THEN
---- Reading stimuli files

IF (timecounter >= 0) AND (timecounter <= 100) THEN
FOR i IN O TO 100 LOOP
READLINE(stim_file_x, stim_line_x);
HREAD(stim_line_x, temp_buffer_x, good);
x := SIGNED(temp_buffer_x (15 DOWNTO 0));
ASSERT good REPORT "read text i/o read error" SEVERITY ERROR;
END LOOP;
END IF;

IF (timecounter >= 1) AND (timecounter <= 3) THEN
FOR k IN 1 TO 3 LOOP
READLINE(stim_file_w, stim_line_w);
HREAD(stim_line_w, temp_buffer_w, good);
w := SIGNED(temp_buffer_w (15 DOWNTO 0));
ASSERT good REPORT "read text i/o read error" SEVERITY ERROR;
END LOOP;
END IF;

11

-- Affectation to signals

sig_x <= x;
sig_w <= w;

y := sig_y;

-- Writing stimuli to files

IF (timecounter >= 4) AND (timecounter <= 100) THEN

FOR i IN 3 TO 100 LOOP
temp_buffer_y (31 DOWNTO 0) := std_logic_vector(y(Q));
HWRITE(stim_line_y, temp_buffer_y);
WRITELINE(stim_file_y , stim_line_y);

END LOOP;

END IF;

-- End of process, increment of timecounter

timecounter := timecounter+i1;

ASSERT NOT endstim REPORT "end of stimuli file. Stop the rtl!" SEVERITY ERROR;
endstim := ENDFILE(stim_file_x) OR ENDFILE(stim_file_w) ;

-— severity error does not stop the simulation, whether failure does!
—-— But the process has to continue until the end of the calculation

ASSERT timecounter <= 101
-- May be upBound 7
REPORT " Failure asked on purpose, normaly result is written in stim_y.txt "
SEVERITY FAILURE;
END IF;
END PROCESS;

END BEHAVIOURAL;

12

B The Stimuli Generator for the Fir Filter

This program was generated with the default value of the noPrint option.

/* Generated: 25/2/2010 at 14:58:58 x/
/* Code generated by MMAlpha code generator version 0.2.6 (02/02/2001 11:35) FQ =/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include <assert.h>

#define min(a,b) ((a) > () 7 (b) : (a))
#define max(a,b) ((a) > (b) 7 (a) : (b))
#define power(a, i) ((a)~ (1))
static int rfloor (int a, int b) {
assert (b>0);
return ((a<0) 7 ((a+1)/b)-1 : a/b);
}
static int rceil (int a, int b) {
assert (b>0);
return ((a>0) ? ((a-1)/b)+1 : a/b);
}

x, short* _w, int*x _y) {

void fir(short*x _
/* Aliases for all variables */

#define x(i) _x[(i)]

#define w(k) _wl(-1 + (k))]

#define y(i) _y[(-3 + (i))]

#define YLOC(t, p) _YLOC[(-12 + 4x(p) + (£))]

#define outy(t, p) y(p)

/* Allocate memory for local variables */
int * _YLOC = (int %) malloc(sizeof (int)*(32));

/* Loop variables */
int i;
int p;
int t;

/* A few loops */
t = 0;

13

for (p = 3; p <= 10; ++p) {
YLOC(t, p) = O;

}

for (t = 1; t <= 3; ++t) {
for (p = 3; p <= 10; ++p) {

YLOC(t, p) = (YLOC((-1 + t), p) + (w(t) * x((p + -t))));

}

}

t = 4;

for (p = 3; p <= 10; ++p) {
outy(t, p) = YLOC(3, p);

}

/* Clean up local variables’ memory */

/* Commented out because it was crashing at run timex/
/*

free(_YLOC) ;

*/
/* And finally undef aliases */

#undef x
#undef w
#undef y
#undef YLOC
#undef outy

int main (void) {

#define x(i) _x[(i)]
#define w(k) _w[(-1 + (k))]
#define y(i) _y[(-3 + (i))]

short * _x = (short *) malloc(sizeof (short)*(11));
short * _w = (short *) malloc(sizeof (short)*(3));
int * _y = (int *) malloc(sizeof (int)*(8));
int 1i;
int k;
FILE xfile_x=fopen("stim_x.txt","w");
FILE *file_w=fopen("stim_w.txt","w");
FILE *file_y=fopen("stim_y.txt","w");
for (i = 0; i <= 10; ++i) {
fprintf (stdout, "x[%il?", 1);
fscanf (stdin, "%i", &(x(i)));
fprintf(file_x,"x[%i]=", 1i);
fprintf(file_x,"%.8x\n", (x(1)));

14

for (k = 1; k <= 3; ++k) {
fprintf (stdout, "w[%il?", k);
fscanf (stdin, "%i", &w(k)));
fprintf(file_w,"w[%il=", k);
fprintf(file_w,"%.8x\n", (w(k)));
}
fir(_x, _w, _y);
for (i = 3; i <= 10; ++i) {
fprintf (stdout, "y[/il=%i\n", i, y(i));
fprintf(file_y,"y[%il=%.8x\n", i, y(i));
+
fclose(file_x);
fclose(file_w);
fclose(file_y);
free(_x);
free(_w);
free(_y);
#undef x
#undef w
#undef y
exit (0);
}

15

