reference manual for the Alpha Scheduler

Tanguy Risset
April 9, 1997

This documentation provides help for the user of the ALPHA scheduler developer. It is available in the
file $MMALPHA/doc/developper/Scheduler dev man.ps

1 Introduction

The basic goal of the scheduler is to find a valid execution order that is good with respect to a particular
criterion. The theoretical basis for the scheduling process is inherited from the systolic array synthesis
researches and from the automatic parallization researches. OQur implementation makes use of the procedure
defined in [Fea92]. Rouglhy speaking, the time is considered as a discrete single clock. the idea of the
scheduling process is to gather all the constraints that must verify the schedule in a linear programming
problem (LP) and to solve it with a particular software.

This document is not intended to be a comprehensive explanation of the implementation, it is an intro-
duction to the overall architecture of the package NewSchedule.m which is quite big (about 3000 lignes).
The developper should carefully read this before getting into the code. The source code of NewSchedule.mis
commented in such a way that the present document document should be enough to understand everything.

2 theoretical basis

The schedule is based on the method proposed in [Fea92] and uses the farkas lemma. We give her the form
of this lemma that we use for ensuring constraints

theorem 1 (Affine form of Farkas lemma) Let D be a polyhedron defined by the inequalities Ax+b > 0,
Then the affine form ¢ is non-negative on D if and only if there exists Ao, A > 0 such that = A (A b)+)\0

Proof: See [Sch86] .

It is easy to see how we will make use of this lemma. To ensure a linear constraint (which can always
be written as the fact that a linear function is positive on a domain), we will try to find A, Ag such that the
above equality is verified (we transformed a Vz € ... in a 3y > 0s.t....). The method proposed in [Fea92]
distinguish three type of constraints that a scheduling function 7" must ensure.

e Positivity constraints: for each variable A of the program, for any point (z, N) in the domain of A,
we must have T4 (z, N) > 0.

¢ Dependency constraints: for any dependence Az, N] = F(...,B[I(z,N)],...), for each point (z, N)
where this dependence occurs, we must have: T4 (z, N)—Tg(I(x, N))—d6 > 0 (here ¢ is a delai associated
to the computation of A.

e Objective function constraints: These constraints depend on the type of objective function choosen.
If we chose to minimiz e the overall execution time, we introduced a function f(NN) depending only
upon the parameters of the program, which will be greater than any time scheduled (i.e. for each
variable A, for any point (z, N) in the domains of A, we must have f(N) —Ta(z,N) > 0).

As index functions are affine functions in ALPHA, all these constraints are of the required form: ensure that
an affine function is positive on a particular domain, thus we can use the Farkas lemma. For each constraints,
we will use the formulae of theorem 1 and obtain a system of equalities that will be solve with mppip.

e Positivity constraints: if a variable A is defined on the domain D4 = {z | Cz + b > 0} (« has n
components and C has k rows), the scheduling function T4 (z) = T'z + t is positive on D4 if and only
if the system:

(Tt)—A(CD)—X=0
{ A >0,0<i<k

th

has a solution (where A is a k-vectors whose i*® component is A;). Hence we get n + 1 equation:

— for each dimension i, if C.; is the i*” column of C: 7, — A.C; =0
—t—Ab—-X =0

e dependency constraints: A[z] depends upon B[I(z)] where I(x) = Dz + d on the domain Dyp =
{z | Cx + b > 0} (z has n components and C has k rows) the scheduling functions T4 (z) = Taz + ta
and Tg(z) = Tpx + tp respect the dependency if an only if the system:

{ (Tata)— (Te tp).(Dd)—dépa— M.(Cb)—pup=0
ni>0,0<i<k
has a solution (where M is a k-vectors whose it component is u;, 654 is the delai necessary between
the production of B and the production of A). Hence we get n + 1 equation:

h

— for each dimension i, 74; — (T tg).D.; — M.C.; =0
— tA—(TB tB).d—5BA—M.b—u0:0

e Objective function constraints: if a variable A is defined on the domain D 4 with D4 = {(z,N) | A (]ﬂ\tr) +

b > 0} (x has n components, N is the parameter vectors has m component and A has k rows), the
x

scheduling function T4 (xz) = T4 N

) +t 4 lower than the objective function ®.N + ¢g on D4 if and

only if the system:
(0® ¢o) — (Ta ta) — R(AD) —po=0
pi20,0<i<k

has a solution (where R is a k-vectors whose i" component is p;). Hence we get n +m + 1 equation:

— foreachi, 1<i<n: —74;, —RA;=0
—foreachi, n+1<i<n+m: ¢ p—74;,—RA; =0
—¢po—ta—Rb—py=0

3 Algorithm of the schedule function

The basic structure of the fonction schedule is the following:

1. Perform various analysis (get the list of variable, domains for each variables, dependencies, duration
for each instruction ...)

2. Build the list of constraints of the linear program (three types of constraints: constraints ensuring pos-
itivity for timing function, constraints ensuring dependancies, constraints for the objective function).

3. Write the LP in a unix file in Pip. Solve the LP with the software mppip, and get the result.

4. Print the result and get the final output form.

4 Step 1: various analysis

e addAllParameterDomain. The syntax of parameter in Alpha allow some context constraints that are
implicit in all domains of the ALPHAprogram. If we want to apply Farkas lemma, we need all the
constraints of the domain, hence, we add by hand these constraints to all domains of the program.

5

domains of variables. We have choosen to distinguish three types of variables: input variables, local
variables and Output variables. For each variable, the domain is convexise, i.e. we take the convex hull
of the real domain of the variable (this allow to simplify the resulting LP, but imply a less powerfull
scheduler).

dependencies. The dependence analysis is first done by the dep[] function. Then, the list of
dependancies are classified according to the type of dependancy (6 type of dependency, in this order:
Local variable to Output variable, Input to Output, Output to Local, Input to Local, Local to Local,
Output to Output).

makeNumInstr. This function numbers all variable. The number of a variable is its order of declaration
in the Alpha program. This function build a list of couple: {name _String,number Integer} that will
be used in the rest of the program to make the correspondance between the name of a variable and its
number.

makeRefline. At this point of the program, we are able to know exactly how many variables will have
the linear program generated (how many \’s, p’s, etc...). As we will see below, we will first build a
constraint matrix in which each row has the same structure. This structure is indicated by the refline
constructed here. refline contains 8 sublist. The first one indicates how many coefficient there are in
the objective function ®. The second one indicates, for each variable A, the dimension of the domain
of A (hence the number of 74’s). The third one indicates how many variables will be dedicated to the
constant part of the scheduling functions (the a’s). The fourth indicates, for each dependancy, how
many farkas coefficient (mu) will be introduced by the equation needed to ensure this dependancy.
The fifth indicates, for each variable, how many farkas coefficient (\) will be necessary to ensure the
positivity condition for this variable, The sixth indicates, for each variable, how many farkas coefficient
(p) will be necessary for the objective function constraints. the 7t* and 8" elements are set to {1} and
will be explained later.

As we have classified the variables in three categories and the dependancies in 6 categories, elements
2,3,5,6 of refline are divised in three sublist and element 4 of refline is divised in 6 sublist. The precise
structure of refline is clearly commented in the NewSchedule.m package. For the moment, we just
need to know that this variable will be used in the rest of the program for getting information on the
program (for instance: how many input variable, how many \’s related to variable A etc.).

Step 2: building the list of constraint

the list of constraints is built by the function makeTableEq. As we have explained in section 2, there are
three types of constraints. The positivity constraints are set for the Input, Output and Local variables,
but we impose the objective function constraint only on the output variables. the dependency constraints
are built for the six type of dependencies. The constraints are the elements of the structTableEq. Each
constraint is a list which have the following structure:

A m s e

Aam s e

PhiCoeffs_IntList,
TauLocal_IntListList,TauOutput_IntListList,Taulnput_IntListList},
Alphalocal_IntList,AlphaOutput_IntList,Alphalnput_IntList},
LambdaLocToOut_IntListList, LambdaInToOut_IntListList,
LambdaOutToLoc_IntListList, LambdaInToLoc_IntListList,
LambdaLocToLoc_IntListList, LambdaOutToOut_IntListList},
MuLoc_IntListList, MuOut_IntListList, Muln_IntListList },
RhoLoc_IntListList, RhoOut_IntListList, RhoIn_IntListList },
CstCoeff_Int },

EqOrIneq_Int} }

In the above structure, _IntList indicates that the element considered is a list of integer (and _IntListList,
a list of list of integer). In a constraints c1 of this type, PhiCoeffs is the list of factors of the coefficients

of the objective function ® in c¢1. One element of TauLocal correspond to a local variable (say A) and
gives the factor (in c1) of the components of the scheduling vectors of A. One element of LambdaLocToOut
corresponds to a particular dependency from a local variable to an output variable and gives the coefficients
(in c1) of the farkas coefficient A introduced for this dependency, and so on

For instance, if A is the first local variable of the Alpha program which has only one parameter (the
domain of A has dimension 3), and we want to impose the constraint: ¢; — 2741 = 0, this constraint we be
stored in one row as:

{ {1,0},{{{-2,0,0},{0.... (* structured list of O in the remaining *) ,{0}}
¢ TA1
and the real constraint can be obtained by exzprl = (1 0). (gzﬁl) +(-200).(742 | +...=0.
0
TA,3

In NewSchedule.m such structured constraints are always assigned to variables which are called 1ine0
or linel (like the lines of the constraint matrix). Usually, 1ine0 consists of a structured constraints corre-
sponding to 0=0 (build from the informations contained in refline), then it is assigned to linel, and the
components of 1inel are iteratively modified to obtain a valid constraint as indicated in section 2. The 7th
element of linel is a list of one single integer which is the constant that appear in the constraint. The 8'h
element of linel is a list of one single integer which indicates if the constraints is and equality (value 0) or
an inequality (value 1: exprl > 0)

6 Step 3: Solving the LP

fichierPip writes the constraints of structTableEq matrix in the mppip format in a file, then calls mpppip
to solve the LP and read the solution.

fichierPip first calls matPip which flatten the output of each line of structTablEq. At this point, the
order of the coefficients of the 7’s is inverted in order to minimize first the coefficients of the parameters.
matPip outputs the matrix matrice Then, writefile writes the matrix in a file (this part is quite long for
big files). During this phase we add a single parameter to the LP which is specific to Pip behaviour. As
we want to allow some variables to be negative (the 7’s for instance), we have to add a big parameter G and
replace each occurrence of a 7 by 7 — G. This manipulation is explained in [?], This should be transparent
and the coefficient of the big parameter in the solution is not important.

After the matrix is written, we perform some unix manipulations on the file to obtain the good mppip
input format. Then, we run mppip [Fea92] and the result is read by readPipResult,

7 Step 4: final output form

reorderSchedResult place back the coefficients of the parameters at the end of the scheduling vectors.
getFinalOutputForm pretty prints the result to the screen and set the output format to the following form:
<schedResult>=Alpha‘ScheduleResult [scheduleType_Integer,<sched3List>]
{ nameVar String,
<sched3>= indices_List,
Alpha‘sched[tauVector List,constCoef _Integer] }

References

[Fea92] P. Feautrier. Some efficient solutions to the affine scheduling problem, part I, one dimensional time.
Int. J. of Parallel Programming, 21(5):313-348, October 1992.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York, 1986.

