Theoretical basis of the Pipeline and PipeControl
package

Tanguy Risset Patrice Quinton*

Version of December 1, 2009

Introduction

This document is intended to provide the precise semantics of the functions
of the Pipeline.m package, together with their implementation details and
examples of use. These functions are: pipeline, pipeall, pipelnput,
pipeOutput, pipelO.

1 ToAlphaOv2

1.1 Space time separation

See ToAlphaOv2.m.

Call to spaceTimeDecomposition, with time position and space posi-
tion. An option (exceptions) allows some variables to be ignored.

Compute the list of variables to consider : all variables, except output
of use expressions. Then, call function spaceTimeCase for each variable.

This function check that the variable is defined, and that the definition
is a case expression. If it is not the case, it returns the system unchanged.

Otherwise, it calls makeSTCase. This function will return a new expres-
sion that will replace the old one.

Two cases to be considered: one or more than one branches.

If the expression has only one branch. We compute the domain of the
RHS expression (using expDomain). We compute the intersection of this
domain and of the LHS domain (actually, the declaration domain of the
variable), and we signal if the expression domain is not included in the LHS
domain. Then, we return this intersection domain.

If there are more than one branch, we proceed recursively. Let dy the
domain of the first branch. Assume that the n — 1 remaining branches are
in ST form, and let d; : exp; be the other branches.

*Last modification: 22 nov. 2009

compute the intersection d,, of the space projection of d; and the space
projection of d; ;if d, is empty, we add d; : exp; to the list of restrictions,
and we keep dy unchanged for the next round. if not, we compute
d=dgNd;; and dinter = d; d

2 PipeControl

The pipeControl function aims to optimize a control definition equation.
Such an equation has the form

Vetrl[t, pl, ... 1 =
case
domProcs:
case
domTimel: expl;
domTime2; exp2;
esac;
esac;

(It is called by the pipeAllControl function, which finds out all variables
that are supposed to be control equations. So, if called directly, the property
is not necessarily checked, and the equation may not fit this format.)

The idea is as follows. First, we try to find out a separating hyperplane
for both expressions. The idea would be to find out either a processor
domain, so that the value of the control signal is related to the processor
position, or a time plane, so that the value of the control could be defined
by a controller and broadcasted to all processors.

Once such an hyperplane is found, it gives a direction along which to
propagate the True and False values to the boundaries of the domain.

We first compute the direction vector of the hyperplane, and then, we
compute its null space vectors. We select these vectors in such a way that
their first component (related to time) is not zero, otherwise, that would
mean that we cannot pipeline, but only delocalize the control.

2.1 Checking

The function checks the following conditions:
1. The variable to pipeline exists (message pipeControl: :unknownvar).
2. The dimension of the variable is less than or equal to 4.

3. The first dimension is the time.

3 Pipeline

3.1 Explanation of the transformation

The pipeline transformation is used to transform a program with a definition
of a variable var; which contains an expression expr implying a non uniform
dependence f (Ker(f) # 0): var1[z] = F(expr[f(2)]), into an equivalent!
program which contains a uniform dependence d? for the definition of the
same variable vary.

The principle of the transformation is the following, the user gives :

e the name of a new variable to be created (pipeline variable: pipe Expr);
e the exact instance of the expression to be pipeline (expr|[f(z)] in vary);
e and a pipeline vector d.

In the transformed program, the variable pipe Expr is defined on the whole
domain D where the expression expr(f(z)] is used. pipe Expr|z] is initialized
to expr[f(x)] on the border of D along d (we call this border B). This
value is duplicated (we say pipelined) along d on the rest of the domain
D (pipeExpr|z] = pipeExpr|z — d]). Then, the corresponding part of the
definition of var; is replaced by: vari[z] = pipeExpr|z| (see figure 1).

This transformation cannot be done for every pipeline vector. Note that
the transformation imply that the values pipeExpr(z + kd] Vz € B, k € N
will correspond to the instance expr|[f(z)], thus we must have expr([f(z)] =
expr|[f(z + kz)] Yz € B, k € N. This is verified if d € Ker(f). This
imply that f must be non invertible. Note that the pipeline vector may be
a not primitive vector, but this may induce warning during analysis of the
resulting program because it correspond to the assumption that the domain
of use of the expression is not flat.

3.2 Implementation

The pipeline function should be used by programmers only, the users
should use pipeall. In the parameter of the function, the name of the vari-
able and the pipeline vector are catched in the same expression :"Name.function"
where the function is the translation in the direction of the pipeline vector.

At the moment, the domain of the new variable build is the intersection
of the context domain of the expression to pipeline (getContextDomain)
with the domain of the expression to pipeline (expDomain). If the pipeline
vector is not in the kernel of the dependence function, the transformation is
aborted.

Lequivalence to be proved

2or several uniform dependencies

3at the points where we cannot retrieve one more pipeline vector without getting out
of D

expr(f(2)] expr(f(z)]

B

Vary(z) pipe\/(a;"(z)
Vari(z

Figure 1: Example of pipeline Transformation

3.3 pipeall

pipeall is like a pipeline more convivial. If an expression is present in
several places in the definition of a variable, or even in several definition of
different variables, pipeall will pipeline all occurrences of this expression.
In that case, the domain on which is defined the variable is the union of
all the domains which would result of each individual pipelines. The main
difference with pipeline are the way the arguments are asked (see ?pipeall).
Be careful, you cannot expressed the expression to be pipelined using the
array notation, you must specify expr. (x->f (x)) instead of expr [f(x)].

4 Pipeline of Inputs and Outputs

the pipeline transformation pipelines a dependance which was originally
a broadcast (dependence non invertible). We may need to pipeline an ex-
pression even if it is not broadcasted, this is particularly useful when the
expression to pipeline must be input (resp. output) in an architecture, in
which they must go through some cells before being used in a computation
(array with a loading phase). This can be done with the pipeI0 function,
which should be used through the functions pipeInput and pipeOutput.
pipel0 perform a routing. It takes some data at some place of the iteration
space and bring it into another place of the iteration space.

4.1 Pipelnput

The user gives:

B
D
expr(f(z)]
expr|f(z)] pipeVar(y)
Vary(x) Var(z)
A
H

Figure 2: Example of input pipe with pipeInput

e the name of a new variable to be created (pipeline variable: pipe Expr);

e the exact instance of the expression to be pipeline (expr[f(z)] in
vary[f(z)], note that f may be non-singular);

e a pipeline vector d;

e and the half space in which the pipeline is to be performed (bounded
by an hyperplane H).

Pipelining an expression as an input consists in the following transforma-
tion: we suppose the expression expr|f(z)] is used an expression somewhere
x (Var[z] = expr[f(x)] on domain A, see figure 2). After the transfor-
mation, the expression expr is used somewhere else y (along the bounding
hyperplan H) and the value is propagated to location x by the pipeline
variable (Var[z] = pipeExpr|x] on the original domain A, pipeExpr|z] =
pipe Expr|z—d] inside the pipeline Domain D, and pipe Expr(y| = epxr|f[z]]
on the border B). This transformation is very close to the usual pipeline
transformation

This transformation is illustrated on figure 3 and 4. figure 3 represents
the original program and figure 4 represents the program after the execution

of the command: pipeInput["C", "b.(i,j->i)","B1l.(i,j->i+1,j+1)",
"{i,j | 1 >= 0 } "] and normalization. The example also corresponds
to the illustration of figure 2. Varl is C, expr[f(x)] is b.(i,j->1), d is
(1,1) (represented by (i,j->i+1,j+1)), pipeVar is B1, and H is {i,j |
i >= 0}.

system silly: {N | N>1}
(a : {i,jl1 <= i,j <= N} of boolean;
b : {ill1 <= i <= N} of boolean)
returns (c : {ill <= i <= N} of boolean);

var
C: {i,jl1 <= i <= N; 0<= j <=N} of boolean;
let
Cli,j] = case
{1j=0} : blil;
{1 j>=1} : C[i,j-1]1 + ali,j];
esac;
c[il=C[i,N];
tel;

Figure 3: simple program before the use of pipelnput

4.2 PipeOutput

The user gives (as for pipeInput:
e the name of a new variable to be created (pipeline variable: pipe Expr);

e the exact instance of the expression to be pipeline (expr[f(z)] in
var1[f(2)], note that f may be non-singular);

e a pipeline vector d;

e and the half space in which the pipeline is to be performed (bounded
by an hyperplane H).

Pipelining an expression as an output consists in the following trans-
formation: we suppose we use at some place x an expression which was
produce at some place y (Var[z] = expr[y] on domain A). In the trans-
formed program, we use this expression in another variable at place y
(VarPipely] = expr[y]) and the value in pipelined in VarPipe until an-
other place f(x) where it is consumed by Var (Var[z] = VarPipe[f(z)] on
domain B, see figure 5 for example of output pipe).

This transformation is illustrated on figure 6. figure 3 represents the
original program and figure 4 represents the program after the execution of

var
Bl : {i,j | (j+1,0)<=i<=j+N; j<=0; 2<=N} of integer;
C : {i,j | 1<=i<=N; 0<=j<=N} of boolean;

let
B1[i,j] =
case
{l i=0; -N<=j<=-1; 2<=N} : bl[i-j];
{| 1<=i<=j+N; j<=0; 2<=N} : B1[i-1,j-1];
esac;
cli,jl =
case

{l 1<=i<=N; j=0; 2<=N} : Bi;
{l 1<=3} : C[i,j-1]1 + ali,jl;
esac;

Figure 4: Program of figure 3, after use of pipeInput: pipeInput["C",
"b.(i,j->i)","Bl.(i,j->i+1,j+)", " {i,j | i >= 0} "]

the command: pipeOutput["c", "C","C1l.(i,j->i+1,j+1)", "{i,jl i
<= N}"]. The transformation performed is illustrated on figure 5 where Var
is ¢, expr[f(z)]isC. (i,j->1,j), dis (1,1) (represented by (i,j->i+1,j+1)),
varPipe is C1 and H is . {i,jl i <= N}.

4.3 Implementation

Both pipeOutput and pipelInput are implemented by the same function :

pipelI0, we will briefly described the implementation of this function here.

The fact that the pipeline is an input pipe or an output pipe is determined

by the scalar dot of the pipeline vector and the normal to the hyperplane

H bounding the half space. If the pipeline vector goes towards H then, this

must be an output pipe, if it comes from H, this must be an input Pipe
Three domains are distinguished:

e the domain of the original expression expr[f(z)] (that we will call
domFExpr), which is the domain where the pipeline is initialized in the
case of an output pipe and the domain where the pipeline ends in the
case of an input pipe (domain A on figure 2 and 5).

e the pipeline domain (that we will call realDomPipe) which is the
domain on which the value is pipelined (domain D on figure 2 and 5).

e the domains where the pipeline ends (that we will call pipe EndDom),
which is in fact the domain where the pipeline is initialized in the case

expr(y]

var|x]

var|z] VarPipe|f(x)]

Figure 5: Example of output pipe with pipeOutput

var

Cl : {i,j | j-N+1<=i<=N; N<=j; 2<=N} of integer;

case
{| 1<=i<=N; j=N} : C;
{] j-N+1<=i<=N; N+1<=j} : C1[i-1,j-1];
esac;
c[i] = C1[N,-i+2N];
tel;

Figure 6: program of figure 3, after use of pipeOuput: pipeIO["c",
"C","Cl.(i,j->i+1,j+1)","{i,j| i <= N}"]

B

Var Pipe[y]

of an input pipe (domain B on figure 2 and 5).

domExpr is computed as the intersection of the context domain of the ex-
pression to pipeline (getContextDomain) and the domain of the expression
itself (expDomain). realDomPipe is computed by adding to domFEzpr a
ray (which is the pipeline vector in the case of an output pipe and its op-
posite in the case of an input pipe) and then by intersection the resulting
domain with the half space bounded by H. pipeEndDom is computed by
shifting real Pipe Domain by the pipeline vector in case of input pipe (resp.
its opposite in case of output pipe) and retrieving the real Dom Pipe.
there remains the problem of founding, given on index point in pipe EndDom,

what is the corresponding point in domExpr (resp. the other way around in
the case of input pipe). This is done by observing the following fact. If we
find a function of the indices whose value is constant on the pipeline path
and which is perfectly determined by the pipeline path (unique for each
pipeline path), then giving this value will determine a unique antecedent
point z1 in exprDom and a unique antecedent point zo in pipe EndDom.
Hence, we will be able to use the inverseInContext function is order to
find for a point in pipe EndDom the corresponding point in exprDom. the
function to build must have a square matrix thus we take a square n x n
matrix of rank n — 1 for which the kernel is generated by the pipeline vector.
And it works... The use of inverseInContext impose that the domains of
the expressions to pipeline must be flat (dimension n — 1).

