
The Synthesis Program of MmAlpha

Version of July 26, 2009

Patrice Quinton

Version of July 2008∗

Abstract

This documentation presents the syn command of MmAlpha. This
command, which stands for synthesize, allows an Alpha program to
be translated into vhdl, whenever possible, by running in a systematic
way the commands necessary to transform the program into vhdl.

1 Introduction

The syn command allows a vhdl program to be synthesized directly from
an Alpha file. In this document, we explain how this command can be used
and how it is implemented. To better follow this documentation, you may
lauch MmAlpha and type the command: start[]. A notebook will open,
and in this notebook, go in the section New: synthesis notebooks where you
will find the examples presented here.

2 Basic usage

syn["file.alpha"]

in its simplest form.
However, there are several options that allow the basic method to be

changed, if needed.
All functions are called with a special parameter mute: by default, they

are silent.
∗There have been modifications since this note was written.

1

During the execution of one of the transformation steps, if an error mes-
sage is triggered, then syn aborts. It then writes the Alpha program in the
state that it had when the error occured.

A directory is created where various files produced during the synthesis
are stored. A trace file, named trace.txt, contains the list of MmAlpha
commands that have been executed until something wrong happened.

Finally, if everything goes well, a report file is written in this directory.
Example:

syn["fir.alpha"]

synthesizes the program contained in file file.alpha, and shown in Ap-
pendix ??.

This basic command stops just before generating vhdl, as the values of
the K and M parameters are not set. To obtain vhdl, run

syn["fir.alpha", parameterRules -> {"N" -> 20, "M" -> 100}]

The synthesis is almost silent, and takes a few seconds. If it succeeds, a
congratulation message is issued1.

You get more information by adding the verbose option:

syn["fir.alpha", parameterRules -> {"N" -> 20, "M" -> 100},
verbose->True]

The syn program has a few options that can be displayed by evaluating
Options[syn].

2.1 The SYN directory

The execution creates a directory named "firSYN" which contains:

• fir.report: a file giving an analysis of the program after the Alpha0
code generation (corresponding to the file firAlpha0.alpha".

• fir.scd: the value of the schedule that was produced and used.

• firAlpha0.alpha: the program, after Alpha0 generation.

• firAlphard.alpha: the program, after Alphard generation.

• firParametersFixed.alpha: the program, after parameters are fixed.
This is the last transformation step before vhdlgeneration.

1You’ll understand why when you start synthesizing you own program!

2

• firPiped.alpha: the program, after piping variables.

• firScheduled.alpha: the program, after scheduling and placement.

• trace.txt: the list of MmAlphacommands executed.

• VHDL: a directory that contains the vhdl programs.

If the directory contains a file including Wrong in its name, then one
of the steps went wrong (or maybe, this was produced during a previous
execution of syn, as the directory is not cleaned.)

3 The VHDL Directory

The VHDL directory contains the following files, if the synthesis was success-
ful:

• ControlfirModule.component: the component description of the con-
troller part.

• ControlfirModule.vhd: the vhdl description of the controller part.

• cellfirModule1.component: the component description of the first
cell.

• cellfirModule1.vhd: the vhdl description of the first cell.

• cellfirModule2.component: the component description of the sec-
ond cell.

• cellfirModule2.vhd: the vhdl description of the first cell.

• cellfirModule4.component: the component description of cell num-
ber 4.

• cellfirModule4.vhd: the vhdl description of cell number 4.

• definition.vhd: a useless file.

• fir.component: the component description of the fir.

• fir.vhd: the vhdl description of the fir filter.

• firModule.component: the component description of the module part.

• firModule.vhd: the vhdl description of the module part.

3

The generation of vhdl follows the structure shown in Fig. 1. The main
file, fir.vhd, may not be usable for reasons that are difficult to explain
here... But vhdl file called firModule.vhd should be synthesizable. It
calls a controller and instanciates three types of basic cells.

fir

firModule

ControlfirModule cellfirModule1 cellFirModule2 cellFirModule4

Figure 1: Structure of vhdl generated for the FIR filter

4 What syn does

1. Loads the specified file. If this step is successful, the synthesis directory
is created. Its name is xxxSyn where xxx is the name of the local
directory.

2. Inline program, if needed. In other words, if the loaded program con-
tains several systems, then the last one that was loaded is inlined. If
this step is successful, then only this last system is kept in the library,
and it is saved under the name yyyInlined.alpha in the synthesis
directory, where yyy is the name of this system.

3. Checks the program, by doing a static analysis.

4. Schedule the program. Without options, schedule[] is applied. Op-
tions can be provided (see Section 5) to either call scd[]and give
hints to the scheduler. Found schedule is saved in the synthesis di-
rectory and if no schedule is found, the file is saved under the name
yyyWrongScheduled.alpha.

5. Applies the schedule. Result is saved in file yyyScheduled.alpha.

4

6. Pipes variables using pipeVars command. Result is saved in file
yyyPiped.alpha (or yyyWrongPiped.alpha if an error occured).

7. Generates

5 Options

optionsOfScheduler: contains options that are passed to the scheduler

debug: debug option

verbose:

schedMethod: allows the scheduler type to be specified. Values are farkas
(by default) or otherwise (any other value), the vertex method.

parameterRules: specifies an association list of parameter values.

6 Report

1. Writes Equation

2. Gives the declaration of the lhs

3. Prints out the equation

4. Prints out the type of the lhs

5. Signals if equation is an output equation (the lhs is an output variable),
or a local equation (the lhs is local)

6. Signals if we have an input equation, i.e., an equation of the form lhs
= input2.

7. Prints out the indexes.

8. Signals if equation is scheduled. It could be a scalar, a variable with
one dimension of time, possibly with several dimensions of space.

2This should be extended to the case where there is an domain, and possibly an de-
pendency.

5

system fir : {K,M | 3<=K<=M-1}
(x : {i | 0<=i<=M} of integer;
w : {k | 1<=k<=K} of integer)

returns (y : {i | K<=i<=M} of integer);
var

Y: {i,k | K<=i<=M; 0<=k<=K} of integer;
let

Y[i,k] =
case
{| k = 0 }: 0[];
{| k > 0 }: Y[i,k-1] + w[k]*x[i-k];

esac;
y[i] = Y[i,K];

tel;

A vhdl Model Generated for the FIR Module

This is the file firModule.vhd.

-- VHDL Model Created for "system firModule"
-- 1/8/2008 10:29:33.954955
-- Alpha2Vhdl Version 0.9
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_signed.all;
use IEEE.numeric_std.all;

PACKAGE TYPES IS
TYPE HXMirr1InTYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE xXMirr1InTYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE ser1OutTYPE IS ARRAY (20 TO 100) OF SIGNED (15 DOWNTO 0);
TYPE HXMirr1TYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE xXMirr1TYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE pipeCx31TYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE pipeCx3Reg2XlocTYPE IS ARRAY (3 TO 101) OF SIGNED (15 DOWNTO 0);
TYPE pipeCH31TYPE IS ARRAY (2 TO 2) OF SIGNED (15 DOWNTO 0);
TYPE pipeCH3Reg1TYPE IS ARRAY (3 TO 100) OF SIGNED (15 DOWNTO 0);
TYPE pipeCx32TYPE IS ARRAY (20 TO 100) OF SIGNED (15 DOWNTO 0);
TYPE pipeCH32TYPE IS ARRAY (20 TO 100) OF SIGNED (15 DOWNTO 0);
TYPE ser1Xctl1XInTYPE IS ARRAY (20 TO 100) OF STD_LOGIC;

6

TYPE ser12TYPE IS ARRAY (20 TO 100) OF SIGNED (15 DOWNTO 0);
TYPE pipeCx34TYPE IS ARRAY (3 TO 19) OF SIGNED (15 DOWNTO 0);
TYPE pipeCH34TYPE IS ARRAY (3 TO 19) OF SIGNED (15 DOWNTO 0);

END TYPES;
USE work.types.all;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use IEEE.numeric_std.all;

library work;
use work.definition.all;

ENTITY firModule IS
PORT(

clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
HXMirr1In : IN HXMirr1InTYPE;
xXMirr1In : IN xXMirr1InTYPE;
ser1Out : OUT ser1OutTYPE

);
END firModule;

ARCHITECTURE behavioural OF firModule IS
SIGNAL ser1Xctl1 : STD_LOGIC;
SIGNAL HXMirr1 : HXMirr1TYPE;
SIGNAL xXMirr1 : xXMirr1TYPE;
SIGNAL pipeCx31 : pipeCx31TYPE;
SIGNAL pipeCx3Reg2Xloc : pipeCx3Reg2XlocTYPE;
SIGNAL pipeCH31 : pipeCH31TYPE;
SIGNAL pipeCH3Reg1 : pipeCH3Reg1TYPE;
SIGNAL pipeCx32 : pipeCx32TYPE;
SIGNAL pipeCH32 : pipeCH32TYPE;
SIGNAL ser1Xctl1XIn : ser1Xctl1XInTYPE;
SIGNAL ser12 : ser12TYPE;
SIGNAL pipeCx34 : pipeCx34TYPE;
SIGNAL pipeCH34 : pipeCH34TYPE;

7

-- Insert missing components here!
COMPONENT ControlfirModule
PORT(

clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
ser1Xctl1 : OUT STD_LOGIC

);
END COMPONENT;

COMPONENT cellfirModule1
PORT(

clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
HXMirr1 : IN SIGNED (15 DOWNTO 0);
xXMirr1 : IN SIGNED (15 DOWNTO 0);
pipeCx3 : OUT SIGNED (15 DOWNTO 0);
pipeCH3 : OUT SIGNED (15 DOWNTO 0)

);
END COMPONENT;

COMPONENT cellfirModule2
PORT(

clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
pipeCx3Reg2Xloc : IN SIGNED (15 DOWNTO 0);
pipeCH3Reg1 : IN SIGNED (15 DOWNTO 0);
ser1Xctl1XIn : IN STD_LOGIC;
pipeCx3 : OUT SIGNED (15 DOWNTO 0);
pipeCH3 : OUT SIGNED (15 DOWNTO 0);
ser1 : OUT SIGNED (15 DOWNTO 0)

);
END COMPONENT;

8

COMPONENT cellfirModule4
PORT(
clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
pipeCx3Reg2Xloc : IN SIGNED (15 DOWNTO 0);
pipeCH3Reg1 : IN SIGNED (15 DOWNTO 0);
pipeCx3 : OUT SIGNED (15 DOWNTO 0);
pipeCH3 : OUT SIGNED (15 DOWNTO 0)

);
END COMPONENT;

BEGIN

HXMirr1(2) <= HXMirr1In(2);

pipeCH3Reg1(3) <= pipeCH31(2);

G1 : FOR p IN 21 TO 100 GENERATE
pipeCH3Reg1(p) <= pipeCH32(-1 + p);

END GENERATE;

G2 : FOR p IN 4 TO 20 GENERATE
pipeCH3Reg1(p) <= pipeCH34(-1 + p);

END GENERATE;

pipeCx3Reg2Xloc(3) <= pipeCx31(2);

G3 : FOR p IN 21 TO 101 GENERATE
pipeCx3Reg2Xloc(p) <= pipeCx32(-1 + p);

END GENERATE;

G4 : FOR p IN 4 TO 20 GENERATE
pipeCx3Reg2Xloc(p) <= pipeCx34(-1 + p);

END GENERATE;

G5 : FOR p IN 20 TO 100 GENERATE
ser1Out(p) <= ser12(p);

END GENERATE;

9

G6 : FOR p IN 20 TO 100 GENERATE
ser1Xctl1XIn(p) <= ser1Xctl1;

END GENERATE;

xXMirr1(2) <= xXMirr1In(2);

G7 : ControlfirModule PORT MAP (clk, CE, Rst, ser1Xctl1);

G8 : cellfirModule1 PORT MAP (clk, CE, Rst, HXMirr1(2), xXMirr1(2), pipeCx31(2), pipeCH31(2));

G9 : FOR p IN 20 TO 100 GENERATE
G10 : cellfirModule2 PORT MAP (clk, CE, Rst, pipeCx3Reg2Xloc(p), pipeCH3Reg1(p), ser1Xctl1XIn(p), pipeCx32(p), pipeCH32(p), ser12(p));

END GENERATE;

G11 : FOR p IN 3 TO 19 GENERATE
G12 : cellfirModule4 PORT MAP (clk, CE, Rst, pipeCx3Reg2Xloc(p), pipeCH3Reg1(p), pipeCx34(p), pipeCH34(p));

END GENERATE;
END BEHAVIOURAL;

B vhdl Model Generated for the FIR cell 2

This is the file cellfirModule2.vhd.

-- VHDL Model Created for "system cellfirModule2"
-- 1/8/2008 10:29:33.067807
-- Alpha2Vhdl Version 0.9

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use IEEE.numeric_std.all;

library work;
use work.definition.all;

ENTITY cellfirModule2 IS
PORT(

10

clk: IN STD_LOGIC;
CE : IN STD_LOGIC;
Rst : IN STD_LOGIC;
pipeCx3Reg2Xloc : IN SIGNED (15 DOWNTO 0);
pipeCH3Reg1 : IN SIGNED (15 DOWNTO 0);
ser1Xctl1XIn : IN STD_LOGIC;
pipeCx3 : OUT SIGNED (15 DOWNTO 0);
pipeCH3 : OUT SIGNED (15 DOWNTO 0);
ser1 : OUT SIGNED (15 DOWNTO 0)

);
END cellfirModule2;

ARCHITECTURE behavioural OF cellfirModule2 IS
SIGNAL ser1loc3 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL pipeCH3loc2 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL pipeCx3loc1 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL pipeCx3Reg2 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL ser1Reg3 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL TSep1 : SIGNED (15 DOWNTO 0) := "0000000000000000";
SIGNAL TSep2 : SIGNED (15 DOWNTO 0) := "0000000000000000";

-- Insert missing components here!---------
BEGIN

ser1 <= ser1loc3;

pipeCH3 <= pipeCH3loc2;

pipeCx3 <= pipeCx3loc1;

PROCESS(clk) BEGIN IF (clk = ’1’ AND clk’EVENT) THEN
IF CE=’1’ THEN pipeCx3Reg2 <= pipeCx3Reg2Xloc; END IF;

END IF;
END PROCESS;

PROCESS(clk) BEGIN IF (clk = ’1’ AND clk’EVENT) THEN
IF CE=’1’ THEN ser1Reg3 <= ser1loc3; END IF;

END IF;
END PROCESS;

11

pipeCx3loc1 <= pipeCx3Reg2;

pipeCH3loc2 <= pipeCH3Reg1;

TSep1 <= (pipeCH3loc2 * pipeCx3loc1);

TSep2 <= (ser1Reg3 + TSep1);

ser1loc3 <= "0000000000000000" WHEN ser1Xctl1XIn = ’1’ ELSE TSep2;

END behavioural;

12

