
User manual of the Alpha Scheduler

Version of July 10, 2006

Tanguy Risset and Patrice Quinton

July 10, 2006

Contents

1 Introduction 2

2 The MmAlpha schedule function 3

3 Options of the schedule function 3
3.1 Main options . 4
3.2 Advanced options . 8

4 Format of schedule’s results 10

5 Technical settings 11

6 Examples 11

7 Troubles 13

1

This documentation1 provides some information regarding the Alpha
schedulers. It is available in the file:
$MMALPHA/doc/user/Scheduler user manual.pdf

Section 1 describes the principles of the Farkas and the vertex sched-
ulers. Section 2 presents the main utilization modes of the schedule func-
tion, while section 3 describes the options of this function. In section 4 the
output format of the scheduler is detailed. Section 5 describes briefly the
Schedule.m package. A short example is shown in section 6. Troubles are
described in section 7.

1 Introduction

The scheduler is a package of MmAlpha that attempts to find a sched-
ule for a given Alpha program. An Alpha program [Wil94, Mau89] has
no sequential ordering: any sequential or parallel ordering of the computa-
tions is semantically valid provided it respects the data dependencies of the
program.

Scheduling an Alpha program consists in giving a computation date
for each variable of the program. The time is considered as a discrete
single clock. The basic goal of the scheduler is to find a valid execution
order that is good with respect to a particular criterion. The theoretical
basis for the scheduling process is inherited from research on systolic ar-
ray synthesis and on automatic parallelization. Currently two techniques
are implemented for the computation of a scheduling function, we will call
them the Farkas method [Fea92b] (method used by default), and the vertex
method [MQRS90].

In order to compute a schedule, the scheduler gathers all the constraints
that the schedule must meet and builds a linear program (LP) which is then
solved with a particular software. The two implemented methods proceed
differently but both give a mono-dimensional affine by variable schedule.
They can also provide a multi-dimensional affine by variable schedule by
changing the options of the schedule (see section 2).

A mono-dimensional affine by variable schedule assigns to each Alpha
equation of the form A[i,j] = ..., an execution date TA(i, j) which is
given by an affine function of the indices (i, j) and of the system parameters
(N):

TA(i, j) = τ i
Ai + τ j

Aj + τN
A N + αA .

1It improves and replaces the previous scheduler manual that was called docSched.tex.
Unfortunately, this documentation in far from being complete.

2

The vector (τ i
A, τ j

A, τN
A) is called the scheduling vector. For instance: TA(i, j) =

2i + j + 3 is a mono-dimensional affine schedule for variable A; Its corre-
sponding scheduling vector is (2, 1).

One important subset of mono-dimensional affine schedules are affine
with constant linear part schedules, where the value of the scheduling vector
is the same for each local variable of the program; In this case, all variables
must have the same number of indices.

Multidimensional schedules are used for programs that do not admit a
linear execution time (for instance, if the execution time is N2). In this
case, the schedule function is a vector of linear functions and the order
that is defined by the schedule is the lexicographic order on the components
(see [Fea92a] for details).

2 The MmAlpha schedule function

The function to be called in order to schedule a program is schedule[]. Its
effects is to schedule the Alpha program contained in the $result MmAl-
pha variable, and to put the result in the global variable $schedule (see
section 4 for the structure of the resulting schedule). Options allow several
parameters to be changed (see section 3).

The possible forms of the use of the function schedule are:

• schedule[]: finds an affine by variable schedule for $result which
minimizes the global execution time of the system and assigns this
schedule to $schedule.

• schedule[sys]: finds an affine by variable schedule for the Alpha
system sys; the schedule minimizes the global execution time. The
resulting schedule is assigned to $schedule

• schedule[option 1->value 1,...,option n->value n]: finds a sched-
ule for $result which respects the chosen options and assign it to
$schedule

• schedule[sys,option 1->value 1,...,option n->value n]
find a schedule for the Alpha system sys which respects the chosen
options and assigns it to $schedule.

3

3 Options of the schedule function

Options have default values indicated hereafter. To change these values,
put one of the corresponding rules as a parameter to the schedule function.
The Farkas method and the vertex method have completely different imple-
mentations, hence their options are sometimes different. Choosing between
the Farkas method and the vertex method is done with the schedMethod
option.

3.1 Main options

schedMethod

This option2 allows one to switch from the Farkas method to the vertex
method. Its type is symbolic. Changing the value of this option greatly
influences the other options (for instance, it changes default values of some
options: durationByEq,...), be sure to check the others options you use. The
possible values are:

• schedMethod -> farkas (default) selects the Farkas method.

• schedMethod -> vertex selects the vertex method.

One of the main differences between the two methods is that the Farkas
method uses the Pip software to solve the LP while the vertex method uses
the Mathematica linear solver.

scheduleType

This option gives the type of schedule that schedule looks for. Its type is
symbolic, and its possible values are:

• scheduleType -> affineByVar (default): affine by variable schedule.

• scheduleType -> sameLinearPart: affine by variable scheduling with
constant linear part. This option is often used for systolic designs.

• scheduleType -> sameLinearPartExceptParam: affine by variable
schedule with constant linear part except for the parameters.

The default option allows one to get any kind of affine schedule. Option
sameLinearPart constraints the schedule to have all a common linear part.
As a consequence, all variables must have the same dimension (not checked).

2As of July 10, 2006, this option does not work. To use the vertex method, run the
scd[] command.

4

multidimensional

By default, the scheduler looks for a mono-dimensional schedule. If the
multidimensionalis set, the scheduler also looks for multi-dimensional sched-
ules. This option is boolean, hence its possible values are:

• multidimensional -> False (default): the schedule will be mono-
dimensional.

• multiDimensional -> True: the schedule will be multidimensional.
If you set this options, be aware that it greatly influences the value
of other options: addConstraints, durations must be of type list
of list (one list by schedule dimension, this means that you have to
know the number of dimensions of the resulting schedule). Options
optimizationTime is automatically set to multi.

optimizationType

This option sets the objective function chosen. Its type is symbolic, and its
possible values are:

• optimizationType -> time (default): the total latency is minimized
(In the Farkas method, this minimization always correspond to the
lexicographic minimization of the coefficients of the global execution
time which is an affine function of the parameters. In the vertex
method the way this minimization is performed can be changed by
the option objFunction).

• optimizationType -> Null : no objective function (the coefficients
of the scheduling vectors are minimized in a lexicographic order)

• optimizationType -> delay: tries to minimize the delays on the
dependencies (not implemented currently).

• optimizationType -> multi is for internal use, when a multidimen-
sional scheduling is computed, just be aware that the three above val-
ues for this option are not compatible with multi-dimensional schedul-
ing.

addConstraints

This option allows one to add some constraints to the generated LP. Adding
constraints is very important if you want to control the resulting schedule.

5

The type of this option is a list of strings, each one of which represent
a constraint. The type of constraints authorized are affine constraints on
scheduling vectors. Constraints can have two forms: one can force the value
of a scheduling vector or one can force coefficients of schedule to meet some
constraints:

• Forcing a variable A[i, j] to be scheduled at time i+2j+2 can be done
by the adding "TA[i,j]=i+2j+2" to the constraints list.

• For more precise constraints, one can directly access each component of
the schedule functions of each variable. For instance TAD2 represents
coefficient τ j

A of the schedule of A and CA represents the constant
coefficient αA). With these names, one can add linear constraints on
these coefficients using operators == or >=. For instance,
{"TAD1 == 1","TAD2 == 2", "CA >= 2" }
is the same constraint as above except that the constant is allowed to
be greater than two.

These options can also be used during the search of a multi-dimensional
schedule. In that case, its value is a list of lists of string, each list of strings
corresponding to constraints imposed on a dimension of the schedule. Ex-
ample of use for mono-dimensional scheduling:

schedule[addConstraints-> {"TA[i,j,N]=i+2j-2",
"T1D2==2","T1D1+2T1D3>=1"}]}

durations

This option allows the user to specify precisely the execution time for each
equation or for each dependence. By default, each equation is assumed to
need exactly one cycle to be evaluated. Sometimes, one want to be more
precise, especially when designing a circuit. For example, an equation of the
form A = B imposes that A be scheduled one cycle after B.

The type of this option is a list of integers. It may be affected by the
value of the durationByEq option.

For the Farkas method, the possible values of this option are:

• durations -> {} (default): each equation lasts one cycle.

• duration -> {0,0,1,1,0,...0,3,1} (list of integers):

– If the durationByEq option is set to True (default in the Farkas
method): integer number i indicates the duration of the equation

6

defining variable number i of the Alpha program. The variables
are numbered in their order of declaration in the Alpha system:
input variables, then output variables, and finally local variables.

– If the durationByEq option is set to False (default in the vertex
method), integer number i indicating the duration of dependence
number i. The dependencies are numbered in the order given by
the dep function: to get the list of dependences run the function
show[dep[]].

Note: as of July 10, 2006, I think that the option durationByEq -> True
is only valid for the Farkas method and the option durationByEq -> False
is only valid for the vertex method.

outputForm

This options allows a non standard output to be obtained. The standard
schedule output is described in section 4. One can also obtain as a result
the linear program to be solved in various formats, or the schedule polytope,
i.e. the polytope which contains all the valid solutions in the Alpha format.
The possible values of outputForm are:

• outputForm -> scheduleResult (default): standard schedule output
form (Alpha‘ScheduleResult structure, see section 4).

• outputForm -> lpSolve: outputs in the format of the lp solve soft-
ware, the linear programming problem to solve in order to find the
schedule.

• outputForm -> lpMMA: outputs the linear programming problem to
solve in order top find the schedule in the format of the linear solver
of Mathematica. Warning; as of July 10, 2006, this option is not
implemented.

• outputForm -> domain: outputs the schedule polytope, i.e. the Al-
pha domain which is composed of all the constraints of the LP to solve.
WARNING, this works only for SMALL programs (3 instructions),
otherwise the domain is too big to be handled by polylib.

debug

Prints additional information and does not destroy the temporary files build
for the interface with PIP. The type of this option is boolean, possible value

7

are:

• debug -> False (default): debug mode not set.

• debug -> True : debug mode set.

verbose

If set, the scheduler returns additional information, otherwise, it returns
only the result. This option is boolean, its possible values are:

• verbose -> True (default): normal printing.

• verbose -> False: nothing is printed out.

3.2 Advanced options

These options are here for an advanced use of the schedule function.

resolutionSoft

This function indicates which software will be used to solve the LP. Its type
is symbolic, the possible values are:

• resolutionSoft -> pip: uses P. Feautrier’s PIP software (only avail-
able for the Farkas method).

• resolutionSoft -> mma: uses the ConstrainedMin function of Math-
ematica (only implemented in the vertex method).

• resolutionSoft -> lpSolve: uses the lp solve software(not imple-
mented yet).

objFunction

This option is used to indicate how the minimization of the objective func-
tion (which is usually a function of the parameters) is performed. Its type
is symbolic, the possible values are:

• objFunction -> lexicographic: minimizes lexicographically the co-
efficient of this function in the order of the declaration of the corre-
sponding parameters in the Alpha program (default in Fakas imple-
mentation).

8

• objFunction -> lexicographic["N","P","M"]: (not implemented
anywhere)

• objFunction -> 2"N" + "P" minimize 2 time the coefficient of pa-
rameter ”N” plus one time the coefficient of parameter ”P” (only im-
plemented in the vertex resolution).

onlyVar

Indicates which variables to schedule (useful if you have a very long program
and which to schedule only part of it. Its type is a list of strings, the possible
values are:

• onlyVar -> all (default value): schedules all the variables.

• onlyVar -> {"a","B","c"} (list of strings): schedules only the spec-
ified variables, Warning, if some variables are needed for the compu-
tation of the variables listed in the option, the function will try to find
their execution dates in $schedule (This feature is only implemented
in the Farkas method).

onlyDep

Indicates which dependences to schedule (used for multidimensional schedul-
ing). Its type is a list of integers and its possible values are:

• onlyDep -> all (default value): schedules all the dependencies.

• onlyDep -> {1,4,5} (list of integers): schedules only the specified
dependencies, the number correspond to their position in the list of de-
pendencies which is returned by the dep[] function (only implemented
in the Farkas method).

subSystems

Indicates whether or not the schedule takes into account calls to other sub-
systems.

• subSystems -> False: (default value).

• subSystems -> True.

In the Farkas method, the default value is not to consider subsystems, and
if there are some calls, the method fails. Therefore, to schedule a structured
system, one must run:

9

schedule[subSystem -> True]

or equivalently:

structSched[]

subSystemsSchedule

Indicates where are the schedules of the subsystems used in the system we
schedule. Its type is a list of schedules (see the format in section 4.

• subSystemsSchedule -> $scheduleLibrary (default value).

• subSystemsSchedule -> List[schedule..].

Note that the scheduler automatically appends to $scheduleLibrary the
schedules of all new systems that it schedules.

4 Format of schedule’s results

The result given by the function schedule has a special form. Two new
head names are introduced: Alpha‘scheduleResult and Alpha‘sched.

The outermost structure is a structure starting with the head Alpha‘ScheduleResult,
where the first argument is the name of the system (string) and where the
second argument is the schedule itself.

The Last argument of Alpha‘scheduleResult is for internal use.
The syntax of this structure is described here.

<schedResult> =
Alpha‘ScheduleResult[
scheduleType_Integer, <sched3List>, objFunc_]

<sched3List> = { nameVar_String, indices_List,
Alpha‘sched[tauVector_List, constCoef_Integer] }

Example:

scheduleResult["test1",
{{"a", {"i", "k"}, sched[{2, 2}, -4]},
{"b", {"j"}, sched[{0}, 0]}, {"c", {"i"}, sched[{0}, 15]},
{"A", {"i", "k"}, sched[{2, 2}, -3]},
{"C", {"i", "k"}, sched[{2, 2}, -2]}}, {15}]

Other examples are given in section 6.

10

5 Technical settings

The packages is called Schedule.m. It uses packages
FarkasSchedule, VertexSchedule and scheduleTools.m.

The Farkas implementation uses the pip software (version D.1 [Fea88])
which must be present in the binary directory3.

The communication between Mathematica and pip is done by files.
These files are written in the directory indicated by the Mathematica
variable $tmpDirectory. Currently, all methods should work on Solaris,
Windows and MacOS X plateforms.

6 Examples

Consider the program of Fig. 1. In the following, we give the result of the
scheduler with different options.

system matmult : {M |M>1}
(a,b : {i,j | 1<=i,j<=M} of real)

returns
(c : {i,j | 1<=i,j<=M } of real);

var
C : {i,j,k | 1<=i,j<=M; 0<=k<=M} of real;

let
c[i,j] = C[i,j,M];
C[i,j,k] = case

{|k=0} : 0[];
{|1<=k<=M} : C[i,j,k-1]+a[i,k]*b[k,j];

esac;
tel;

Figure 1: Matrix multiplication

Default use

If you type the following command (after loading the program of Fig. 1):
schedule[]
the output written on the screen session should look like:

3Explain where...

11

In[65]:=
schedule[]
Checking options...
Dependence analysis...
Building LP...
LP: 92 variables, 80 Constraints
Writing file for PIP....
Solving the LP...
Total execution Time: 1+M
T_a{{i,j,M} = 0
T_b{i,j,M} = 0
T_c{i,j,M} = 1+M
T_C{i,j,k,M} = k

Out[65]=
scheduleResult[matmult,{{a,{i,j,M},sched[{0,0,

0},0]},{b,{i,j,M},sched[{0,0,0},0]},{c,{i,j,M},sched[{0,0,1},1]},{
C,{i,j,k,M},sched[{0,0,1,0},0]}},{1,1}]

The first lines indicates which computations are performed. Then the result
is printed on the screen. Here, for instance the schedule is affine by vari-
able. c[i,j,k] is computed at time 1+M. The result (after Out[65]) is the
corresponding Mathematica structure assigned to $schedule.

Adding a constraint

Suppose that we want to impose that variable C[i,j,k] be schedule at
time 2i + j + k + 7 and that τ i

a = τ i
b = τ i

c . We have to add the two con-
straints: "TC[i,j,k]=2i+j+k+7", "TaD1==TbD2" and "TaD1==TcD2", hence
the command is:

In[15]:= schedule[addConstraints->{"TA[i,j,k]=2i+j+k+7",
"TaD1==TbD2", "TaD1==TcD1}]

The result is

T_a{i, j, N} = i
T_b{i, j, N} = i
T_c{i, j, N} = 8 + i + j + 2 M
T_C{i, j, k, N} = 7 + 2i + j + k

Notice that in this schedule, c and C do not have the same τ i coefficient.
We may, if needed, fix this by adding the constraint TcD1==TCD1.

12

7 Troubles

No schedule is found

If no schedule is found, a message tells the user and there may be several
reasons.

• No schedule exists (no way of solving this problem). You should be
aware that finding a schedule for a system of recurrence equations
is in the general case undecidable. Finding out an affine schedule is
decidable, but an absence of affine schedule does not guarantee that
there does not exist a schedule. Most often, however, the scheduler
fails because there is an error in the Alpha program which contains a
dependence cycle: the only solution is to check the program (use the
analyze command, then check your program ”by hand”).

• No schedule of the chosen type exists: try a multi-dimensional sched-
ule, or try another type of schedule.

• There exists a schedule but the time is not bounded. In this case try
with the option objFunction set to 1): this prevents the scheduler to
try optimizing the total time of the algorithm.

• The program is not semantically correct: try the analyze function.

An awful error message

In general, when something goes wrong during the scheduling, the error
is captured correctly. Sometimes, the error may come with the following
message:

General::aofil: /tmp/mat.tmp already open as /tmp/mat.tmp.
OpenWrite::noopen: Cannot open /tmp/mat.tmp.
General::stream: \$Failed is not a string, InputStream[],
or OutputStream[].

This may come from the fact that you have interrupted the previous exe-
cution of the scheduler: Mathematica tries then to open a file which was
not closed. You can close these files (here /tmp/mat.tmp) by typing:

Close["/tmp/mat.tmp"]

In general it is not recommended to interrupt the evaluation of the schedule
function.

13

References

[Fea88] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22:243–268, September 1988.

[Fea92a] P. Feautrier. Some efficient solution to the affine scheduling
problem, part II, multidimensional time. Int. J. of Parallel Pro-
gramming, 21(6), December 1992.

[Fea92b] P. Feautrier. Some efficient solutions to the affine scheduling
problem, part I, one dimensional time. Int. J. of Parallel Pro-
gramming, 21(5):313–348, October 1992.

[Mau89] C. Mauras. Alpha : un langage équationnel pour la conception
et la programmation d’architectures parallèles synchrones. Thèse
de doctorat, Ifsic, Université de Rennes 1, December 1989.

[MQRS90] C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter. Schedul-
ing affine parameterized recurrences by means of variable de-
pendent timing functions. In S.Y Kung, Jr. E.E. Swartzlander,
J.A.B. Fortes, and K.W. Przytula, editors, Application Specific
Array Processors, pages 100–110. IEEE Computer Society Press,
September 1990.

[Wil94] D. Wilde. The Alpha language. Technical Report 827, Irisa,
Rennes, France, Dec 1994.

14

