
I
 R

 I
 S

IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

828

USING STATIC ANALYSIS TO DERIVE IMPERATIVE CODE
FROM ALPHA

PATRICE QUINTON, SANJAY RAJOPADHYE, DORAN
WILDE

I R I S A
INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France

Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

Using Static Analysis to Derive Imperative Code from

ALPHA�

Patrice Quinton��, Sanjay Rajopadhye���, Doran Wilde����

Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux

et syst�emes distribu�es

Projet API

Publication interne n�828 | May 1994 | 18 pages

Abstract: In this article, we demonstrate a translation methodology which transforms a

high level algorithmic speci�cation written in the Alpha language to an imperative data

parallel language. Alpha is a functional language which was designed to facilitate the

kinds of static analyses needed for doing regular array synthesis. We show that the same

methods which are used for solving regular array synthesis problems can be applied to the

compilation of Alpha as a functional language.

We informally introduce the Alpha language with the aid of examples and explain

how it is adapted to doing static analysis and transformation. We �rst show how an Al-

pha program can be naively implemented by viewing it as a set of monolithic arrays and

their �lling functions, implemented using applicative caching. We then show how static

analysis can be used to improve the e�ciency of this naive implementation by orders of

magnitude. We present a compilation method which makes incremental transformations

on the abstract syntax tree of an Alpha program in order to make performance improve-

ments and optimize it for a given architecture. The compilation steps described include

scheduling, alignment, partitioning, allocation, loop nest generation, and code generation

and they are illustrated with a running example. We discuss some of the static analysis

issues which come up at each of these steps and brie
y describe what static analysis tools

are used.

Key-words: parallelizing compilers, a�ne recurrence equations, polyhedra, linear pro-

gramming, a�ne dependencies, dependency analysis, static control programs, monolithic

arrays, applicative caching.

(R�esum�e : tsvp)

�Supported by NSF grant MIP-910852 and Esprit Basic Research Action NANA2, Number 6632
��email: quinton@irisa.fr
���email: rajopadh@irisa.fr
����email: wilde@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique

(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

L'application de l'analyses statique �a la derivation de code

d'une programme fonctionelle

R�esum�e : Ce papier pr�esente une m�ethodologie de transformation d'une sp�eci�cation

algorithmique de haut niveau cod�ee en Alpha en un langage imp�eratif �a parall�elisme

de donn�ees. Alpha est un langage fonctionnel d�edi�e aux types d'analyse statique requis

pour la synth�ese de r�eseaux r�eguliers. Nous montrons que les m�ethodes de r�esolution des

probl�emes li�es �a la synth�ese de r�eseaux r�eguliers peuvent être appliqu�ees �a la compilation

de Alpha en tant que langage fonctionnel.

Pour cela, apr�es avoir introduit de mani�ere informelle le langageAlpha, son adaptation

�a l'analyse statique et aux transformations de programmes est explicit�ee. Ensuite, nous

pr�esentons une impl�ementation na��ve d'un programme Alpha sous forme d'un ensemble

de tableaux monolithiques dont les fonctions de remplissage font appel �a la technique de

cache applicative. Grâce �a l'analyse statique, l'e�cacit�e de cette premi�ere impl�ementa-

tion est am�elior�ee de plusieurs ordres de grandeur. En�n, nous pr�esentons une m�ethode

de compilation qui utilise des transformations successives sur l'arbre syntaxique abstrait

du programme Alpha en vue d'en am�eliorer les performances et de l'optimiser pour une

architecture cible donn�ee. Les �etapes de cette compilation sont constitu�ees par l'ordon-

nancement, l'alignement, le partitionnement, l'allocation, la g�en�eration de nids de boucles

et la g�en�eration de code. Elles sont illustr�ees �a travers le d�eroulement d'un exemple. Pour

chaque �etape, les probl�emes pos�es par l'analyse statique sont discut�es et, une br�eve pr�e-

sentation des outils utilis�es pour les solutionn�es est donn�ee.

Mots-cl�e : parall�elisation de compilateurs, �equations r�ecurrentes a�nes, polyh�edres,

d�ependances a�nes, analyse des d�ependances, programmes de contrôle statique, tableaux

monolithique, cache applicative

Using Static Analysis to Derive Imperative Code from ALPHA 1

1 Introduction

It has long been known that functional programming languages are inherently parallel

[35, 3]. However the translation of a functional program to an e�cient parallel imperative

program has proven to be a very di�cult problem [34]. In this paper, we demonstrate a

translation methodology which transforms a high level algorithmic speci�cation written

in Alpha, a functional language, to an imperative parallel language.

Alpha is a single assignment, equational language based on the formalism of systems

of a�ne recurrence equations which have proved useful in the design of regular array

architectures. Being a functional language, Alpha implicitly supports concurrency and

communication. Algorithms can be represented at a very high level in Alpha, as a set of

parallel mutually recursive equations, close to how one might specify them mathematically.

Alpha programs tend to be short, intuitive, and easy to verify, although their naive

execution is ine�cient in both speed and the use of memory. The strength of the Alpha

language lies in the fact that any Alpha program can be analyzed statically in order

to deduce certain information useful for doing optimization. This paper will demonstrate

that based on this static analysis, an Alpha program can be optimized to execute on a

target parallel machine by selecting appropriate transformations.

Alpha was originally developed as a speci�cation language for synthesizing regular

arrays from a�ne recurrence equations. In order to �nd timing and allocation functions,

or map registers and communication links to hardware, all domains and dependencies

must �rst be statically known. Then, the above problems can be cast in terms of doing

operations on polyhedra and solving linear programming problems. Alpha was designed

to facilitate these kinds of analyses. Now we are investigating the the simulation of Alpha

programs, and we are encountering the same issues that are found in the compilation of

arrays in function languages. We �nd that the same methods which are used for solving

regular array synthesis problems can be used for the compilation of Alpha as a functional

language.

In this paper, we discuss some of the static analysis issues which come up during the

development of an Alpha compiler. To illustrate these issues, we present an example in

which we translate an Alpha program into an imperative data parallel program [13]. This

target was chosen because recurrence equations are data parallel by nature. We use a

transformational approach to derive an imperative data parallel program which is equiva-

lent by construction to the source program. The transformations are speci�ed according to

the results of doing static analysis and information about the target architecture, in order

to optimize the program for a speci�c machine. This methodology separates the issues of

algorithm design from the management of architecture dependent parallelism and commu-

nication. It allows the programmer to focus on designing the algorithm while delegating

the management of parallelism and communication to the compiler.

The paper is organized as follows. In section 2, we present an informal introduction to

the Alpha language and introduce the example. In section 3, we describe the compilation

of Alpha and in section 4, we illustrate it with the aid of an example. In section 5, we

2 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

describe brie
y what static analysis tools were used. In section 6, we make observations

about the compilation of function languages and summarize the work.

2 Introduction to the Alpha Language

Alpha was originally designed in the context of systolic array synthesis [18, 21]. It is a pure

functional language and as such, is referentially transparent. Alpha is similar to Crystal

[6, 42], another functional language. However, Alpha is more restricted than Crystal and

is based on denotational semantics which allow the index domain of anyAlpha expression

to be statically computed. The restrictions in Alpha were designed into the language to

guarantee closure on a set of important program transformations, and also ensure that any

Alpha program may be put into a prede�ned normal form. In most functional languages,

linear lists are the dominant data structures used in a program. In Alpha, there are no

lists and no streams. Instead, all variables are type declared at the beginning of a program

as polyhedral data �elds.

system Fibonacci ()

returns (fib : { i | 0<=i } of integer);

let

fib[i] = case

{i | i<2 } : 0[];

{i | i>=2 } : fib[i-1] + fib[i-2];

esac;

tel;

Example 1 : Fibonacci

system ForwardSubstitution (parameter : { N | N>0 };

A : { i,j | 0< i<N; 0<=j<i } of integer;

B : { i | 0<=i<N } of integer)

returns (X : { i | 0<=i<N } of integer);

var b : { i,j | 0<=i<N; 0<=j<i } of integer;

let

b[i,j] = case

{i,j | j = 0 } : A[i,j] * X[j];

{i,j | j > 0 } : b[i,j-1] + A[i,j] * X[j];

esac;

X[i] = case

{i | i = 0 } : B[i];

{i | i > 0 } : B[i] - b[i,i-1];

esac;

tel;

Example 2 : Forward Substitution

Figure 1: Two Alpha programs

In this section, we informally introduce the Alpha language with the aid of the two

examples in �gure 1. Example 1 is a system of recurrences for the Fibonacci series and

example 2 is a system of recurrences which solve a lower triangular (with unit diagonal)

Using Static Analysis to Derive Imperative Code from ALPHA 3

system of linear equations by forward substitution. An Alpha program is a system of

recurrence equations. A system declaration consists of a name with a set of input variable

declarations and a set of output variable declarations. For instance:

system ForwardSubstitution (parameter : { N | N>0 };

A : { i,j | 0<i<N; 0<=j<i } of integer;

B : { i | 0<=i<N } of integer)

returns (X : { i | 0<=i<N } of integer);

A fundamental feature of Alpha, which sets it apart from other functional languages, is

that all variables in Alpha are strongly typed and based on polyhedral index domains.

A variable denotes a mapping from an index domain (the set of all integral points within

a speci�ed polyhedron) to values in the value domain (integers, reals, or booleans). A

polyhedron is bounded by a �nite number of linear inequalities, fz 2 ZnjAz � bg. The

syntax of a polyhedron in Alpha is (for example):

f i,j | 0<i<N; 0<=j<i g

and the syntax of the declaration of an integer variable A based on that index domain is:

A : f i,j | 0<i<N; 0<=j<i g of integer;

A system may also have local variables, which are declared after the system header using

the keyword var. The system of equations that de�ne the variables follow the declarations

and are delimited by the pair of keywords let and tel. The language is equational,

and each equation variableLHS= expression
RHS

names a variable on the LHS and has

an expression on the RHS. The denotational semantics of Alpha [21], specify that, like

variables, every Alpha expression also denotes a function from indices to values. These

semantics are fully compositional, and form the basis of a transformational system.

Another important concept used in Alpha is the notion of a dependency, which is

an a�ne function of indices relating the index domain of the LHS variable to the index

domain of a RHS variable. Syntactically, a dependency function is written as:

(index, index, ... ! index-expr, index-expr, ...)

where each index-expr is an a�ne expression of the indices to the left of the arrow and

of system parameters. Examples of a�ne dependency functions are (i->i-2) and

(Z,i,k->Z-1,2Z-k-1,k-1). An example of an equation which uses a�ne functions to re-

late domains on the RHS to the domain on the LHS is written explicitly, using dependence

functions as: X = B.(i->i) - b.(i->i,i-1); or equivalently, it could also be written im-

plicitly, using the so{called array notation of Alpha : X[i] = B[i] - b[i,i-1];

The syntax for Alpha an expression is presented below1.

1Vertical bar is an alternate, square bracket is an optional construct and the asterisk is a Kleene star.

4 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

data-variable | constant

[expression] op expression op is a binary or unary operator
expr . dep an expression composed with an a�ne dependency function
domain : expr an expression restricted to a particular (sub)domain
case expr* esac a union of expressions de�ned over disjoint subdomains

There is also a strict If operator which is simply considered as a 3-ary op and a reduction

operator which applies an associative and commutative binary operator and a many to

one index mapping function to a variable [17].

As mentioned above, Alpha restricts the kinds of programs which can be represen-

ted to those where the index domains of variables are unions of convex polyhedra, and

data dependencies are a�ne index functions. These restrictions limit the expressive power

of Alpha, though not to the point of rendering it trivial. A proper subset of the lan-

guage (uniform Alpha) is Turing complete, and there are analysis issues about an Alpha

program that are undecidable [31]. A great number of linear algebra and digital signal

processing algorithms fall within these limitations. In return for this reduced expressive

power, we can make use of a set of powerful static analysis tools that enable us to deduce

optimizations to dramatically improve the performance of a program.

2.1 Alpha Transformations

2.1.1 Change of Basis

Of all the transformations which can be done on an Alpha program, the change of basis

is the most common. It is similar to the reindexing of loop variables [40] and other loop

transformations done in vectorizing and parallelizing compilers. Given a valid program

and a change of basis of a variable, a new, provably equivalent program is derived which

not only includes the change of basis of the variable, but also the reindexing of all array

references to that variable.

A change of basis of variable A using the a�ne transformation function F can be

performed if there exists another a�ne function G, such that2 8y 2 D : (F � G)(y) = y,

and is done by syntactically rewriting an Alpha program as follows:

A : D of integer;

let

A = � � � A � � �;
� � �= � � �A� � �;

tel;

�!

A : Preimage[D, F] of integer;

let

A = (� � �A.F � � �).G ;
� � �= � � �A.F � � �;

tel;

2.1.2 Substitution

An immediate consequence of referential transparency it that equality is substitutive |

equal expressions are always and everywhere interchangeable. An equation speci�es an

2Clearly, if F is invertible, then G = F�1 and (F �G)(y) = y for all y. This is unnecessarily restrictive.
All that is really needed is for F to have a right inverse for the points in the domain of F .

Using Static Analysis to Derive Imperative Code from ALPHA 5

assertion on a variable which must always be true. Reasoning about Alpha programs can

thus be done in the context of the program itself, and relies essentially on the fact that

Alpha programs respect the substitution principle. Thus, any instance of a variable on the

left hand side of any equation may be replaced with the right hand side of its de�nition.

This transformation is done by rewriting an Alpha program as follows:

A : D of integer;

let

A = expression;
� � �= � � �A� � �;

tel;

�!

A : D of integer;

let

A = expression;
� � �= � � �(D:expression) � � �;

tel;

2.1.3 Normalization

There is also an Alpha transformation that \normalizes" any Alpha program into a

prede�ned syntactic form which �xes the nesting order of Alpha constructs to : (going

from outermost to innermost) case statements, restriction operations, binary and unary

operations, and �nally dependency functions, variables and constants. This transforma-

tion consists of about 35 rewrite rules which among other things change the nesting order

of incorrectly nested operations,
atten nested cases, and combine restriction and a�ne

functions where possible. The rewrite rules are con
uent and guaranteed to terminate at

a stable �x{point [21]. This transformation is often used as a follow up to other transfor-

mations (such as the change of basis and substitution transformations presented above)

and is where the computation of new domains and dependency functions is done.

any

Alpha

program

�!

var : D of integer;

let

var =

case

D1 : f1(var.dep, � � �);
D2 : f2(var.dep, � � �);
� � �

esac;
� � �

tel;

3 The Alpha Compiler

The Alpha language and transformation system has proved very useful for the synthe-

sis of systolic arrays. In order to enable a user to debug the initial speci�cation and to

make the system more useful, we investigated making Alpha executable, and are working

on a compiler. We have encountered many issues that also arise in general compilation,

particularly in the e�cient implementation of arrays in functional languages. Because of

the simplicity of the language, many of these issues can be solved elegantly, using the

polyhedral library [38] and linear programming.

6 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

In functional languages, arrays are treated as either incremental or monolithic [36].

Programmers may view incremental arrays as a conventional (and hence, persistent) data

structure, manipulated explicitly with an update operation, whose semantics denote a

function that returns a new array, thereby retaining referential transparency. If implemen-

ted naively, incremental arrays require unacceptably high amount of copying, and there

has been a body of work to ameliorate this [14, 33, 32]. On the other hand, monolithic

arrays [36] consider an array to be simply a map from indices to values. This leads to

an elegant programming style which remains declarative and is easy to use. Given that

every expression in Alpha denotes a function from a polyhedral domain to a value, it is

natural to consider a program as a collection of monolithic arrays, and its main body as

a speci�cation of the \�lling" function.

A standard approach to e�cient implementation of recursive programs is tabulation

[4, 11], also called applicative caching [16]. Here, recomputation is avoided by maintaining

a table (or cache) of previously computed values. This makes the underlying implemen-

tation imperative, but preserves a purely applicative interface to the user (i.e., referential

transparency is retained). This technique is particularly attractive when all the possible

arguments to the function, are known statically. It is thus, an obvious method for imple-

menting monolithic arrays: one simply allocates an empty table of the appropriate size,

and �lls it as needed. This enables the compiler to generate code (albeit naive) when no

static analysis information is available (or when the analysis yields a negative result). The

code �rst allocates storage (arrays or tables) for the entire domains of all �nite variables,

and then �lls up this storage by computing the values, using demand-driven evaluation.

This involves the following steps:

� Visit each integer point in the domain of each output variable. This is a classic pro-
blem called scanning a polyhedron. A loop program that does this can be generated
using the well known Fourier-Motzkin elimination and has been implemented in the
polyhedral library of the Alpha system [1, 19] (the order of scanning being the
lexicographic order). At each point, the value of the variable at that index point is
computed using demand driven evaluation:

{ Get the arguments: i.e., read the values in the corresponding tables. If these
values are not yet known (indicated by a tag bit) we suspend and �rst evaluate
the argument.

{ Apply the �lling function, i.e., the RHS of the Alpha equation. Store the result
in the table (with tag set) and also return the value.

This naive code su�ers from two drawbacks, namely the overhead of context swit-

ching for the demand driven evaluation, and memory ine�ciency. Also, if the program

has in�nite domains, we will need dynamic memory management, and may not be able to

completely avoid reevaluation. The compilation can be viewed as a transformation process

to incrementally improve this naive code. The following analysis questions are posed:

Using Static Analysis to Derive Imperative Code from ALPHA 7

� Can a schedule be statically determined? If so, the domains can be scanned in an
order consistent with this schedule, without any context switching. This problem is
a generalization of the scheduling problem in systolic synthesis [29, 27] to multidi-
mensional schedules [9, 10], and can be cast in terms of linear programming and
polyhedral problems.

� An immediate consequence of scheduling analysis is that if a schedule exists, we can
immediately detect any parallelism (the dimension of the schedule is strictly smaller
than the dimension of the system). In such a case, we may partition the domains of
di�erent variables and assign each partition to a di�erent processor. A static analysis
of the communication is needed to choose the best partitioning. This can also be cast
into the framework of linear programming and polyhedra [28].

� Regardless of whether parallelism is possible or not, the code that is generated so
far is memory ine�cient, since each table entry is written exactly once. Knowing a
schedule, one can perform static lifetime analysis to determine whether and when
the memory can be reused. Once again, this analysis can be cast in terms of (linear
and nonlinear) optimization problems using the polyhedral domains and a�ne de-
pendencies of Alpha. This is a generalization of the linear allocation functions used
in systolic array synthesis.

Transform Analyze

?

�

6

?

?

?

6 6

6

-

Parameters
Hardware

Generate Code

AST

Imperative
Parallel
Program

ALPHA

ALPHA

Program

Parse

ALPHA Transformation Speci�cations

Figure 2: Process Flow for Compiling Alpha

Based on the above discussion, we are developing a transformational compiler for

Alpha. To simplify the �nal mapping to imperative parallel code (code generation), an

Alpha program is �rst transformed into a form which is close to the target language. This

is possible since Alpha has the expressive power to represent a program at many levels.

Program transformations are facilitated by the Alpha language environment, which has

8 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

a rich set of proven transformations which can be performed on a program, such as the

change of basis, substitution, and normalization transformations described above. When

these transformations are thoughtfully and artfully combined, the Alpha environment

becomes a synthesis tool. Figure 2 is a simple diagram of the two-stage synthesis process

of Alpha. The analysis|transformation synthesis loop is followed by the code generation

phase. This is the model we use to compile an Alpha program.

The compilation method shown here operates at a high level of abstraction by per-

forming transformations on the abstract syntax tree (AST) of an Alpha program. The

transformational compiler is based on the following steps which have been introduced

above, and which are illustrated in the next section.

1. Parse Alpha into an internal representation
2. Independent scheduling of variables and computation
3. Alignment of variables
4. Partitioning and Allocation of variables and communication
5. Loop Nest Generation
6. Code Generation

4 Compiling the Forward Substitution Example

In this section, we illustrate the above compilation strategy using the forward substitution

program (Example 2, Figure 1).

During the �rst step, Alpha is read and parsed, producing an AST which is read

into a symbolic algebra system where it is analyzed and transformed symbolically. The

static analysis of the AST is simpli�ed by employing the dependency table, which is

extracted from the AST and which enumerates the
ow dependencies between variables.

The dependency table holds the same information as the data
ow graph used in [37]. The

dependency table for this example is shown below. (The notation D : A! B means that

over the index domain D, the computation of A depends on B).

{i,j | i-j-1>=0;j>=0;-i+N-1>=0} : b[i,j] -> b[i,j-1]

{i,j | i-j-1>=0;j>=0;-i+N-1>=0} : b[i,j] -> A[i,j]

{i,j | i-j-1>=0;j>=0;-i+N-1>=0} : b[i,j] -> X[j]

{i |-i+N-1>=0;i>=0 } : X[i] -> B[i]

{i |-i+N-1>=0;i>=0 } : X[i] -> b[i,i-1]

In the following subsection, we show how an Alpha program can be naively imple-

mented. The transformations presented in subsequent subsections can thus be thought of

as optimizations on this naive code.

4.1 Naive code generation

We �rst describe a naive implementation which is guaranteed to be correct, regardless

of e�ciency concerns. We allocate a table for each variable in the Alpha program, the

size of which is determined by the variable's domain. We traverse all the points in the

domain(s) of the output variable(s) using any standard technique [1]. At each point, we

Using Static Analysis to Derive Imperative Code from ALPHA 9

compute the value using a demand driven strategy. If a domain is in�nite, we only allocate

storage for a �nite convex subset which is derived from the original domain by some simple

operation such as projection, or \slicing" between two hyperplanes. When a value outside

this subdomain is needed, one has to make room for it by discarding a part of the table and

this may imply recomputation. The issues such as replacement policies, etc, are similar to

those studied in classic tabulation [4], and all those results can be used. Clearly, this is the

best implementation that we can do in the absence of any static information, and reduces

to the standard applicative caching [11, 16].

4.2 Scheduling

The goal of scheduling is to �nd a timing function for each variable which maps each point

in the variable's index space to a positive integer representing a relative execution time [9].

This mapping must respect the causality rule that states that if A[p] �! B[q], (variable

A at index point p is dependent on variable B at index point q) then tA(p) > tB(q), that

is the computation of A[p] follows the computation of B[q]. Multidimensional time can be

used when a�ne schedules cannot be found in which case the causality rule states that

tA(p) � tB(q), where � means \lexicographically greater" [10]. The scheduling problem

in its full generality is undecidable [30]. Hence, we try to �nd timing functions within

the restricted class of a�ne schedules, for which necessary and su�cient conditions exist

[27, 29]. Extra
exibility is accorded by allowing di�erent a�ne schedules for each variable

[22].

For the forward substitution algorithm (Example 2, Figure 1), separate schedules for

variables b and X are : tb(i; j) = 2j + 1 and tx(i) = 2i for a minimum system latency of

2N�1, (0 � t � 2N�2). The inputs are all assumed to available at t = 0. Alternately, the

schedules tb(i; j) = i+ j and tx(i) = 2i also yield the same latency. Static analysis shows

that the �rst schedule requires a one to many broadcast communication X [i]! b[i; j]; i <

j < N , where as the second schedule allows X [i] to be propagated to b[i; j]; i < j < N

sequentially in a systolic array fashion. If the target architecture better supported row

broadcasting than chained sequential communication, the �rst schedule would be chosen,

otherwise, the second schedule would be chosen. Here, we choose the �rst. We introduce an

intermediate local variable3 x which is placed between the variable X and its computation.

Then, the change of basis (i ! 2i) is performed on variable x and (i; j ! 2j + 1; i) is

performed on variable b to incorporate their respective schedules. The time index variable

is renamed to t to remind us that it is now a temporal dimension. The resulting Alpha

code is4 :

3Since X is an output, and we cannot do a change of basis on it without changing the system de�nition.
4The index Z is induced because the change of base is non{unimodular. It is a redundant temporal

index (= b t

2
c), but necessary to keep the system a�ne.

10 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

system ForwardSubstitution (parameter : { N | N>0 };

A : { i,j | 0< i<N; 0<=j<i } of integer;

B : { i | 0<=i<N } of integer)

returns (X : { i | 0<=i<N } of integer);

var

x : {Z,t | 2Z=t; 0<=t<=2N-2 } of integer;

b : {Z,t,i | 2Z=t-1; 1<=t<=2i-1; i<=N-1 } of integer;

let

X[i] = x[i,2i];

b[Z,t,i] = case

{Z,t,i|Z=0} : A[i,Z] * x[Z,t-1];

{Z,t,i|Z>0} : b[Z-1,t-2,i] + A[i,Z] * x[Z,t-1]

esac;

x[Z,i] = case

{Z,t,N|Z=0} : B[Z];

{Z,t,N|Z>0} : B[Z] - b[Z-1,t-1,Z];

esac;

tel;

Causality can be quickly hand checked by observing that dependencies are now of the

form (t, � � � -> t ��, � � �).

4.3 Alignment and Virtual Allocation

The alignment problem is to �nd a mapping from the domain of each variable and com-

putation to a common virtual domain for the entire system [7]. Thus the variables are

aligned with respect to each other and are placed on a common grid. Alignment also af-

fects communication and thus, can be done with a goal of reducing communication. When

a computation is mapped to the same point as the variable on the left{hand side of the

equation, it is called using the owner computes rule for aligning computation. Variables

and computation can also be separately mapped to the common grid by using di�erent

mapping functions for computation and for variables.

For the forward substitution algorithm (Example 2, Figure 1), the variable x is a one{

dimensional variable and b is a two{dimensional variable. During alignment, these two

variables are placed on a common two dimensional grid. This is illustrated in �gure 3. We

map b to the virtual grid using the identity function (i; j! i; j). We place x on the virtual

grid with b. The dependence x[Z; t] ! b[Z � 1; t � 1; Z] suggests that (Z; t ! Z; t; Z)

mapping x to a diagonal would be a good change of basis, since it aligns x with the

points on the virtual grid with which it communicates (see �gure 3). After alignment, the

resulting Alpha program is:

Using Static Analysis to Derive Imperative Code from ALPHA 11

� � � �

6 6 6� � �

6 6� �

6�

�

�

�

�

� � � �

6 6 6� � �

6 6� �

6�

6

6

6

6

1 2 N-1

2N-3

2N-2

3

2

1

0

t

i

Z=0

Z=1

Z=N-2

Z=N-1

1 2 N-1

2N-3

2N-2

3

2

1

0

t

i

Z=0

Z=1

Z=N-2

Z=N-1

0

x

b b b b

x

x

x

x

b b b

b b

b

b

x

x

x

x

x

bbb

b b b

b b

b

Figure 3: Alignment of variables in Forward Substitution

system ForwardSubstitution (parameter : { N | N>0 };

A : { i,j | 0< i<N; 0<=j<i } of integer;

B : { i | 0<=i<N } of integer)

returns (X : { i | 0<=i<N } of integer);

var

x : { Z,t,i|2Z=t; t = 2i; 0<=i<=N-1 } of integer;

b : { Z,t,i|2Z=t-1; 1<=t<=2i-1; 0<=i<=N-1 } of integer;

let

X[i] = x[i,2i,i];

b[Z,t,i] = case

{Z,t,i|Z=0} : A[i,Z] * x[Z,t-1,Z];

{Z,t,i|Z>0} : b[Z-1,t-2,i] + A[i,Z] * x[Z,t-1,Z];

esac;

x[Z,t,i] = case

{Z,t,i|Z=0} : B[Z];

{Z,t,i|Z>0} : B[Z] - b[Z-1,t-1,i];

esac;

tel;

4.4 Partitioning and Physical Allocation

Partitioning is the problem of mapping variables and computations to physical processors

[5]. The virtual grid is partitioned or tiled into groups which are to be mapped to physical

processors. This partitioning has a profound e�ect on communication. It is therefore done

so as to minimize communication while maximizing parallelism.

For the forward substitution algorithm (Example 2, Figure 1), the following new de-

pendence table is generated:

12 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

{i |0<=i<=N-1} : X[i] -> x[i,2i,i] (1)

{Z,t,i|Z=0; 1<=i<=N-1} : b[Z,t,i] -> A[i,Z] (2)

{Z,t,i|Z=0; 1<=i<=N-1} : b[Z,t,i] -> x[Z,t-1,Z] (3)

{Z,t,i|1<=Z<=i-1; i<=N-1} : b[Z,t,i] -> b[Z-1,t-2,i] (4)

{Z,t,i|1<=Z<=i-1; i<=N-1} : b[Z,t,i] -> A[i,Z] (5)

{Z,t,i|1<=Z<=i-1; i<=N-1} : b[Z,t,i] -> x[Z,t-1,Z] (6)

{Z,t,i|Z=0} : x[Z,t,i] -> B[Z] (7)

{Z,t,i|1<=Z<=N-1} : x[Z,t,i] -> B[Z] (8)

{Z,t,i|1<=Z<=N-1} : x[Z,t,i] -> b[Z-1,t-1,i] (9)

Each dependence represents a potential communication. With static analysis, the amount

and cost of the communication can be estimated [28]. This information can be used to

choose an allocation function for the virtual array. Dependency 1 represents the writing of

the result X . It would represent a communication with the host, or I/O system. Likewise,

dependencies 2,5,7, and 8 represent the inputs to the system which are also communications

with the host, or I/O system. That leaves dependencies 3,4,6, and 9 as possible processor to

processor communications. If the processor allocation function is chosen to be p(Z; t; i) = i

then dependencies 4 and 9 are between processor i and itself, and hence have no cost. That

leaves communications 3 and 6 which are a set ofN one to many broadcasts: 0 <= Z < N :

(from x[Z; t� 1; Z] to fZ < i <= N � 1 : b[Z; t; i]g). Thus the projection p(Z; t; i) = i is

chosen. The transformed index is renamed p to represent the physical processor dimension.

The resulting Alpha code is similar to the last result, except the i-index is replaced with

p in the equations for x and b.

4.5 Loop Nest Synthesis

This is the problem of converting recurrence equations which have been mapped to the

same processor to loop nests, or sequences of loop nests. The result is code which resembles

sequential imperative code encoded in Alpha. This step is lumped in with code generation

much of the time. However, we separate the steps of loop placement, computation of loop

bounds, and the ordering of code from code generation since these steps can be done as

transformations of an Alpha program.

For the forward substitution algorithm (Example 2, Figure 1), the loop over processor

space is factored out to be the outermost loop and the inner temporal loops are separated

and ordered. The resulting Alpha program is:

Using Static Analysis to Derive Imperative Code from ALPHA 13

system ForwardSubstitution (parameter : { N | N>0 };

A : { i,j | 0< i<N; 0<=j<i } of integer;

B : { i | 0<=i<N } of integer)

returns (X : { i | 0<=i<N } of integer);

var

x : { Z,t,p|2Z=t; t = 2p; 0<=p<=N-1 } of integer;

b : { Z,t,p|2Z=t-1; 1<=t<=2p-1; 0<=p<=N-1 } of integer;

let

{Z,t,p | 0<=p<=N-1} :

let

{Z,t,p | t=0; Z=0; p=0}: x[Z,t,p] = B[0];

{Z,t,p | t=1; Z=0; p>0}: b[Z,t,p] = A[p,0] * x[Z,0,0];

{Z,t,p | 2<=t<2N-1; 1<=Z<N }:

let

{Z,t,p | 2Z=t; p=Z }:

x[Z,t,p] = {Z,t,p|Z>0} : B[Z] - b[Z-1,t-1,p];

{Z,t,p | 2Z=t-1; p>Z }:

b[Z,t,p] = {Z,t,p|Z>0} : b[Z-1,t-2,p] + A[p,Z] * x[Z,t-1,Z];

tel;

tel;

{p | 0<=p<N } :

X[p] = x[p,2p,p];

tel;

4.6 Code Generation

Code generation, as presented here, is translating code structures in an Alpha program

with equivalent code structures in the target language in order to create a valid target

language program.

An important problem in doing code generation is the generation of variable declara-

tions in the target language to replace the polyhedron based variable declarations in the

Alpha language. Certain optimizations may be done on an Alpha program to reduce

the amount of memory required to represent a variable. For instance, if it can be shown

that for a certain dimension of the variable that the variable element lifetimes are disjoint,

then that dimension can be projected out when allocating memory. For the remaining

dimensions, a change of basis may be found which reduces the rectilinear embedding of

the variable [39].

For the forward substitution algorithm (Example 2, Figure 1), rectilinear bounding

boxes where found for each of the domains. By using lifetime analysis, local variable b was

reduced from a vector to a scalar in each processor. The �nal resulting imperative data

parallel code is:

14 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

ForwardSubstitution

declarations

parameter N | N>0;

processors proc[0..N-1];

global

int A[1..N-1][0..N-2], B[0..N-1], X[0..N-1], p;

local

int Z,x,b;

begin

for {p | 0<=p<N }

in proc[p]

begin parallel

if (p==0) x = B[0];

if (p>0) b = A[p,0] * proc[0].x;

for {Z | 1<=Z<N}:

begin

if (p==Z) x = B[Z] - b;

if (p>Z) b = b + A[p,Z] * proc[Z].x;

end;

X[p] = x;

end parallel;

end;

5 Analytical Tools Used

The Alpha environment is a toolchest from which di�erent transformations can be used to

transform a program from its current state toward some target state. If a transformation

is needed which does not exist, it can be written and easily integrated into the system.

The Alpha environment is build on top of a symbolic algebra system where the abstract

syntax tree of an Alpha program can be symbolically manipulated. For this, we employ

Mathematica [41] which supports imperative, functional, and rule-based programming

paradigms built on top of a symbolic calculator. Transformations also rely heavily on the

polyhedral library [38] which provides the capability for doing fundamental operations on

polyhedra. This is a library of functions such as Image, Intersection, Di�erence and Union

which operate on unions of convex polyhedra.

6 Discussion and Conclusions

In this paper, we have illustrated our approach for the compilation ofAlpha, a functional,

data-parallel language which was originally developed for systolic array synthesis. We

have built on the ideas of applicative caching and monolithic arrays, and showed how

static analysis can be used to improve the e�ciency of applicative caching by orders of

magnitude. This analysis is directly extensible to parallelization for shared memory and

distributed memory computers. We anticipate that it can enable the compiler to determine

the grain size, and make decisions such as the throttling of parallelism when it does not

Using Static Analysis to Derive Imperative Code from ALPHA 15

yield any performance gain. In e�ect, we aim to be able to generate code that is as e�cient

as parallel imperative code.

Recent work on loop parallelization has focused on extracting the exact data
ow in-

formation from loop programs [8, 23]. In this context, the program is �rst converted into

a system of a�ne recurrence equations. This is used as the intermediate representation

which the compiler analyses to produce �nal parallel code. Since we start with a func-

tional program already, we are able to avoid this (often expensive) �rst step. Moreover,

functional programs are much easier to write and prove correct, are close to mathematical

speci�cations and are easy to understand. A subtle point to note is that the scheduling

problem is undecidable in general [30], and hence the naive demand driven code has to be

a fall back position for our compiler. On the other hand, for a system of AREs obtained by

analyzing a loop program it is guaranteed that the original lexicographic order is a valid

(completely sequential) schedule.

Because of the elegance of functional languages, one would expect them to be naturally

suited for numeric and scienti�c computing. One of the reasons that this has not come

about, notwithstanding e�orts such as SISAL and others [24, 25], seems to be because of

e�ciency, particularly in dealing with arrays. Typical compiler optimizations [2, 15, 26],

such as common subexpression elimination depend on pattern matching and do not extend

to interprocedural analysis. Since function application is the fundamental operation in

program evaluation, this means that a lot of redundant computation cannot be avoided.

Functional languages treat arrays either as incremental or as monolithic. The latter view

is well suited to Alpha and is also consistent with data parallel programming [12]. In

spite of the expressive power of monolithic arrays, the problem of e�ciency remains. The

work presented here shows how functional programming can tap into the large body of

work on imperative loop parallelization.

We feel that the research in three somewhat disparate areas|functional program-

ming, loop parallelization and systolic array synthesis has shared many concerns, without

building on each others' results. Functional languages have been clean but ine�cient, im-

perative loop programs are dirty but e�cient, and systolic arrays are overly specialized

and often ignore the practical reality of partitioning, control generation, I/O, etc. We feel

that there is much to be gained by cross fertilization of these issues across the di�erent

communities.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Third Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages 39{50, ACM
SIGPLAN, ACM Press, 1991.

[2] L. Augustsson. A compiler for lazy ML. In ACM Symposium on Lisp and Functional
Programming, pages 218{227, ACM, Austin, TX, August 1984.

16 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

[3] J. Backus. Can programming be liberated from the von neumann style ? a functional
style and its algrebra of programs. Communications of the ACM, 21(8):613{641,
August 1978. 1978 Turing Award Lecture.

[4] R. S. Bird. Tabulation techniques for recursive programs. Computing Surveys,
12(4):403{419, Dec 1980.

[5] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen){ultimate tiling ? Technical
Report 93-36, Ecole Normale Sup�erieure de Lyon, Nov 1993.

[6] M. Chen, Y. Choo, and J. Li. Crystal: theory and pragmatics of generating e�-
cient parallel code. In B.K. Szymanski, editor, Parallel Functional Languages and
Compilers, page Chapter 7, ACM Press, 1991.

[7] A. Darte and Y. Robert. A Graph{Theoretic Approach to the Alignment Problem.
Technical Report 93-20, Ecole Normale Sup�erieure de Lyon, Jul 1993.

[8] P. Feautrier. Data
ow analysis of array and scalar references. International Journal
of Parallel Programming, 20(1):23{53, Feb 1991.

[9] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, Part I,
One-dimensional Time. International Journal of Parallel Programming, 21(5), 1992.

[10] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, Part II,
Multidimensional Time. International Journal of Parallel Programming, 21(6), 1992.

[11] D. P. Friedman, D. S. Wise, and M. Wand. Recursive programming through table
lookup. In Symposium on Symbolic and Algebraic Computation, pages 85{89, ACM,
New York, NY, 1976.

[12] G. Hains and X. Mullin, editors. ATABLE 92: Second International Workshop on
Array Structure, DIRO, Univ de Montreal, Montreal, 1992.

[13] Philip J. Hatcher and Michael J. Quinn. Data{Parallel Programming on MIMD
Computers. The MIT Press, Cambridge, Mass., 1991.

[14] P. Hudak and A. Bloss. The aggregate update problem in functional programming
systems. In ACM Symposium on Principles of Programming Languages, pages 300{
314, ACM, New Orleans, LA, January 1985.

[15] T. Johnsson. E�cient compilation of lazy evaluation. In ACM Conference on Com-
piler Construction, pages 58{69, ACM, Montreal, Canada, June 1984.

[16] R. M. Keller and M. R. Sleep. Applicative caching. ACM Transactions on Program-
ming Languages and Systems, 8(1):88{108, January 1986.

[17] H. Le Verge. Reduction operators in Alpha. In D. Etiemble and J-C. Syre, editors,
Parallel Algorithms and Architectures, Europe, pages 397{411, Springer Verlag, Paris,
June 1992. See also [20].

Using Static Analysis to Derive Imperative Code from ALPHA 17

[18] H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for the
design of systolic arrays. Journal of VLSI Signal Processing, 3(3):173{182, September
1991.

[19] H. Le Verge, V. Van Dongen, and D. Wilde. La synth�ese de nids de boucles avec la
biblioth�eque poly�edrique. RenPar`6, Jun 1994.

[20] Herv�e Le Verge. Un environnement de tranformations de programmes pour la synth�ese
d'architectures r�eguli�eres. PhD thesis, Universit�e de Rennes 1, Rennes, France, Oct
1992.

[21] Christophe Mauras. ALPHA: un langage �equationnel pour la conception et la pro-
grammation d'architectures parall�eles synchrones. PhD thesis, L'Universit�e de Rennes
I, IRISA, Campus de Beaulieu, Rennes, France, December 1989.

[22] Christophe Mauras, Patrice Quinton, Sanjay V. Rajopadhye, and Yannick Saouter.
Scheduling a�ne parameterized recurrences by means of variable dependent timing
functions. In S. Y. Kung and E. Swartzlander, editors, International Conference
on Application Speci�c Array Processing, pages 100{110, IEEE Computer Society,
Princeton, New Jersey, Sept 1990.

[23] D. Maydan, S. P. Amarsinghe, and M. Lam. Array data
ow analysis and its use
in array privatization. In Principles of Programming Languages, pages 2{15, ACM,
January 1993.

[24] J.R. McGraw, S.K. Skedzielewski, S. Allan, and D. Grit. SISAL|streams and itera-
tion in a single{assignment language. Language Reference Manual, Version 1.2, Jan
1985.

[25] Michael O'Boyle. Program and Data Transformations for E�cient Execution on
Distributed Memory Architectures. PhD thesis, University of Manchester, Jan 1992.

[26] Simon Peyton Jones. The Implementation of Functional Programming Languages.
PHI Series in Computer Science, (editor, Hoare, C. A. R.), Prentice Hall, 1987.

[27] Patrice Quinton and Vincent Van Dongen. The mapping of linear recurrence equa-
tions on regular arrays. Journal of VLSI Signal Processing, 1(2):95{113, 1989.

[28] S. V. Rajopadhye. Analysis of a�ne communication speci�cations. In IEEE Sympo-
sium on Parallel and Distributed Processing, IEEE, Dallas, Texas, December 1993.

[29] Sanjay V. Rajopadhye. Synthesis, Optimization and Veri�cation of Systolic Architec-
tures. PhD thesis, University of Utah, Salt Lake City, Utah 84112, December 1986.

[30] Y. Saouter and P. Quinton. Computability of recurrence equations. Theoretical
Computer Science, 114, 1993. (to appear: preliminary version available as IRISA
TR-1203, April, 1990).

[31] Y. Saouter and P. Quinton. Computability of Recurrence Equations. Technical Re-
port Internal Publication 521, IRISA, Rennes, France, Apr 1990. Also appeared as
INRIA report number 1203.

18 Patrice Quinton, Sanjay Rajopadhye, Doran Wilde

[32] A. V. S. Sastry, W. Clinger, and Z. Ariola. Order-of-evaluation analysis for des-
tructive updates in strict functional languages with
at aggregates. In Functional
Programming and Computer Architecture, Springer Verlag, LNCS, Copenhagen, Jun
1993.

[33] D. A. Schmidt. Detecting global variables in denotational speci�cations. ACM Tran-
sactions on Programming Languages and Systems, 7(2):299{310, April 1985.

[34] Wolfgang Schreiner. Parallel Functional Programming: An Annotated Bibliography.
Technical Report pfpbib.dvi.Z, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, A-4040 Linz, Austria, May 1993.

[35] D. A. Turner. Recursion equations as a programming language. In Darlinton, Hender-
son, and Turner, editors, Functional Programming and its Applications: an Advanced
Course, 1981, pages 1{28, Cambridge University Press, 1982.

[36] P. Wadler. A new array operation. In J. H. Fasel and R. M. Keller, editors, Graph
Reduction: Proceedings of a Workshop, pages 328{335, Springer Verlag, LNCS 279,
Santa Fe, NM, September 1986.

[37] M. R. Werth and P. Feautrier. On parallel program generation for massively parallel
architectures. In M. Durand and F. El Dabaghi, editors, High Performance Compu-
ting II, pages 115{126, Elsevier Science Publishers B.V. (North Holland), 1991.

[38] D. Wilde. A Library for Doing Polyhedral Operations. Master's thesis, Oregon State
University, Corvallis, Oregon, Dec 1993.

[39] D. Wilde and S. Rajopadhye. Allocating memory arrays for polyhedra. Technical
Report Internal Publication 749, IRISA, Rennes, France, Jul 1993.

[40] M.E. Wolf and M. Lam. Loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452{471,
Oct 1991.

[41] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer,
Second Edition. Addison{Wesley Publishing Company, Inc., 1991.

[42] Jui-Hsiang Allan Yang. Transformational Parallel-Program Derivations. PhD thesis,
Yale University, May 1993.

