About dataflow schedules

Patrice Quinton

April 9, 2007

1 Introduction

This short note describes some features that were added to the VertexSchedule.m
package during July 2004, in order to allow data-flow systems to be sched-
uled. The theory of it is described in [?]! and it is briefly recalled here.

This note should be read while executing the examples in the directory
WCDMA-Periodic. Currently, this directory is not part of the distribution of
MATHEMATICA but it soon will.

2 Dataflow systems

We call elementary dataflow system an ALPHA system where all symbols
have a first index, say i, whose domain is {i|i > 0}. For example:

-- This system computes the complex multiplication
-- of two infinite complex flows of data

system complexMult

(aRe, bRe, aIm, bIm : {i|0<=i} of integer) -- input signal
returns

(sRe, sIm : {i|0<=i} of integer); -- output signal
let

sRe[i] = aRe[i]*bRe[i] - aIm[i]l*bIm[i];

sIm[i] = aRe[i]l*bIm[i] + aIm[i]*bRel[i];
tel;

! Asap 2004 paper.

3 UP-SAMPLING AND DOWN-SAMPLING 2

is a dataflow system that describes a simple complex multiplication of two
infinite flows of data.

The schedule of such a system is easy to obtain, using for example the
following command

scd[optimizationType -> Null,
addConstraints -> {TaReD1 == TaImD1 == TbReD1 ==
TbImD1 == 1, Aalm == 1}]

Notice the options: the first one avoids trying to optimize for duration,
and the second one forces the value of the time component along first di-
mensions of variables to be 1.

The schedule a such a system can be saved in a file using the

saveScheduleLibrary[onlyMainSystem -> True]

command (see Section 4). The suffix of the created file is scdlib. The
structure of this file is a list of schedules; a schedule is a structure with
scheduleResult head; the fields of this structure are the name of the sys-
tem, a list corresponding to the parameters, and the list of variable schedules;
the schedule of a variable contains the variable name, the list of its indexes

(strings) and the schedule, in form sched[. 1.
Here is the schedule of complexMult as it appears in the WCDMA-Periodic
directory (this file is protected):

{scheduleResult ["complexMult", {}, {{"aIm", {"i"}, sched[{"$P"}, 01},
{"aRe", {"i"}, sched[{"$P"}, 01}, {"bIm", {"i"}, sched[{"$P"}, 01},
{"bRe", {"i"}, sched[{"$P"}, 01}}, {{"sIm", {"i"}, sched[{"$P"}, 113},
{"sRe", {"i"}, sched[{"$P"}, 11}}1}

In this example, there is a special feature: the schedule of the variables
contains a symbolic term "$P", which means that the schedule is given up
to a symbolic period factor $P. This factor was set manually in the schedule
file. It will allow a dataflow schedule to be computed later on.

3 Up-sampling and down-sampling

Two special systems are available: oversampling and undersampling?.
The text of these systems is given in appendix A and B, respectively. The
first system takes the up-sampling by a K factor of its input e and returns
it in its output s (the input is repeated K times). The second one gives the
down-sampling by a factor K of its input e and returns it in its output s.

2The correct name should be up and down sampling...

4 SAVING A SCHEDULE 3

The schedule of the up-sampler, as given in the file overSampling.scdlib
is:

{scheduleResult["overSampling", {"K"},
{{neu’ {"i", "K"}, sched[{“$P", O}, O]}},
{{"S", {"j", "K"}, sched[{"$P"/"K", O}, O]}}]}

It is actually a symbolic scheduling, given by the MATHEMATICA expression
$P/K. This means that if the input flow e is run at period $P, then the
output s is run at period $P/K.

In a symmetric way, the schedule of the down sampler is (as found in file
underSampling.scdlib:

{scheduleResult ["underSampling", {"K"},
{{nen’ {"i", "K"}, sched[{"$P"/"K", O}, O]}},
{{"S“, {"j"; "K"}, sched[{“$P", o}’ O]}}]}

4 Saving a Schedule

To obtain the schedule of a subsystem, the simplest way is to schedule it
(using either scd or schedule), then to save it using the command:

saveSchedulelibrary[onlyMainSystem -> True]

This creates a file name.scdlib where name is the current system name.
The schedule can be edited manually and changed in order to contain the
periodic factor "$P". It can be loaded in the $schedulelLibrary variable
using

loadSchedulelibrary["systemName"]

The saveScheduleLibrary command has an option onlyMainSystem, the
default option of which is False.
5 Scheduling a dataflow system

To schedule a system which contains a set of subsystems, one uses the scd
scheduler using the periods option

scd[optimizationType -> Null, periods -> {pl, p2, ... }, ...]

6 A FIRST EXAMPLE: THE WCDMA EMITTER 4

where periods is mapped to the list of (integer) periods of the use state-
ments of the calling system.

The order of these variables is that given in the dependence table and it
can be seen by printing the second part? of this table using the dep function:

ashow[dep[][[2]1] 1]

will print the second part of the dependence table.

For the moment, computing the periods is left to the user, but the
method is not difficult (see [?]): it amounts to solving a system of homoge-
neous equations of the form p2 = Kpl, where, for example, p2 is the period
of a subsystem which is down sampled from the output of a down sampler
(and symmetrically for up sampling).

In the current model, we assume that there exists only on level of hierar-
chy in the subsystems; we also assume that a given subsystem has a uniform
period. These hypothesis could be relaxed, by assuming that a data-flow
system has inputs and outputs with different dataflow periods.

6 A First Example: the WCDMA Emitter

In the example notebook, look at the WCDMA emitter example.
load ["WCDMAemitter.alpha"];
loads the full program. Then

loadScheduleLibrary["ComplexMult"];
loadScheduleLibrary["OverSampling"];
loadScheduleLibrary["0OVSF"];
loadScheduleLibrary ["KASI"];
loadScheduleLibrary ["Nyquist"];
loadSchedulelibrary["fir128_u"];

3The structure of the dependence table is as follows:
e dtable[list of depend, list of dependuse 1],

e a depend is a structure containing a domain, the dependent var, the rhs var and a
matrix that describes the dependence;

e a dependuse is a structure containing the subsystem name, the list of input name,
the list of output names, the rank of the use in the program, the domain of its
parameters, and the matrix of its parameters.

6 A FIRST EXAMPLE: THE WCDMA EMITTER 5

loads in $scheduleLibrary the schedules of the subsystems used in the
emitter. The scheduler is called by the following command

scd[optimizationType -> Null, duratiomns -> {0, 0, 1, 1, 1,
1, 0, 0}, periods -> {16,
1024, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1},
addConstraints -> {TscD1 == TscMirrD1l == TsdD1,
TkascontrolCodeD2 ==
TkascontrolCodeD3 == TkascontrolCodeD4 ==
TkasdataCodeD2 == TkasdataCodeD3 == TkasdataCodeD4 ==
TNyquistCodeD2 ==
TNyquistCodeD3 == TNyquistCodeD4 ==
TNyquistCodeD5 == TovsfControlCodeD2 ==
TovsfControlCodeD3 == TovsfControlCodeD4 ==
TovsfControlCodeD5 == TovsfDataCodeD2 ==
TovsfDataCodeD3 == TovsfDataCodeD4 == O,
TsccontrolD2 == TsccontrolD3
== TsccontrolD4 == TsccontrolD5 == TscdataD2 ==
TscdataD3 == TscdataD4 ==
TscdataD5 == 0, TscMirrD2 == TscMirrD3 ==
TscMirrD5 == 0, TsdMirrD2 ==
TsdMirrD3 == TsdMirrD5 == 0, TspcontrolD4 ==
TspcontrolD2 ==
TspcontrolD3 ==
TspcontrolD5 == 0, TspdataD4 == 0},
objFunction -> TscD1 + TscD2 +
TscD3 + TscD4 + TscD5 + TsdD1 + TsdD2 +
TsdD3 + TsdD4 + TsdD5]

This gives the following schedule. Here are some explanations about the
options.

e The optimizationType option allows a schedule to be found even
when the domain of the variables is infinite (the default option tries
to optimize the total scheduling time, and this would fail). This is
explained in the scheduler’s manual.

e The durationsoption allows one to assign different integral durations
to each dependence. The order of the integer in this list is given by
the order of the dependences given by the show[dep[]] command.

6 A FIRST EXAMPLE: THE WCDMA EMITTER

control[j]
controlMirr[j]
datal[i]
dataMirr[i]
kascontrolCode[j]
kasdataCode [i]
NyquistCode [j]
ovsfControlCode[j]
sclj]
sccontrol[i]
scdatali]
scMirr[j]

sd[i]

sdMirr[i]
spcontrol[j]
spdatalil
ssccontrol[i]
sscdatalil]
sscontrol[il
ssdatali]

45
j+2+ KN
4i+2
4i+2
j+2+KN
2+4i+ KN
2+i+ KN
4j
4i
i+2
i+2
4i
4i

Table 1: Schedules of the variables of the WCDMA emitter

7 HOW TO FIND A SCHEDULE IN PRACTICE 7

e The periods option is new. It allows one to provide an integral peri-
odic factor for each one of the subsystems. The order of the periods
corresponds to the order of the subsystems as given in the dependence
table, and as shown® by the show[dep[]]. To know more about how
to find the periods, see Section 8. Period values are assigned to the
$P parameter of each subsystem schedule, in such a way that this
schedule is adapted to the rate at which the system is able to run.

e Constraints to the schedule are given in the addConstraints option.
e Finally, the objective function is given in the objFunction parameter.

Another, more complex, example is given in the notebook.

7 How to Find a Schedule in Practice

When solving this example, I did not found immediately the right schedule
parameters. Here are some hints:

e Try to schedule a system in an incremental fashion: comment out
some subsystems until you find out a satisfying solution for some part
of the system, then add progressively new subsystems. Indeed, when
the scheduler fails, it is very difficult to find out which one of the
constraints is not met and the reasons why it failed.

e Setting the durations, the additional constraints, and the objective
function may be postponed until you find a solution to the whole sys-
tems with periods. Actually, the minimal parameters for the WCDMA
emitter are:

scd[optimizationType -> Null,
periods -> {16, 1024, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1}]

This does not provide the optimal schedule

8 How to Find Periods

4A recent modification done on April 9, 2007.

A UP-SAMPLING
A Up-sampling

-— This system oversamples an infinite integer
- input signal e with an over sampling factor K

system overSampling: {K|1<=K}

(e : {il0<=i} of integer) -- input signal
returns

(s : {jl0<=j} of integer); -- output signal
var

-- indexj[j] has value j
-- jmodk[j] has value j mod K
indexj, jmodk : {jl0<=j} of integer;
—— The trick... Build this infinite array...
E: {i,jl0<=1i; 0<=j} of integer;
let
-— Definition of indexj
indexj[j] =
case
{1j=0}: 0[];
{13>0}: indexj[j-11+1[];
esac;
-- Definition of jmodk
jmodk[j] =
case
{1j<K}: indexj[j];
{1j>=K}: indexj[j-KI;
esac;
-- Definition of E.
E[i,j] =
case
{1j=0}: elil;
{13>0}: if jmodk[j]1=0[] then E[i+1,j-1] else E[i,j-1];
esac;
-— The result : take the first row of this infinite array
s[jl = E[0,jl;
tel;

B DOWN-SAMPLING

B Down-sampling

system underSampling: {K|1<=K}

(e : {il0<=i} of integer) -- input signal
returns

(s : {jl0<=j} of integer); -- output signal
var

-- indexj[j] has value j
jmodk[j] has value j mod K
indexi : {i|0<=i} of integer;
kindexj: {jl0<=j} of integer;
kvalue: {k|0<=k<=K} of integer;

-— The trick... Build this array...
E: {i,jl0<=1i; 0<=j} of integer;

let
—— Definition of kvalue
kvalue[k] =
case
{1k=0}: 0O[];
{1k>0}: kvaluel[k-11+1[];
esac;
—— Definition of indexi
indexil[i] =
case
{1i=0}: 0[];
{1i>0}: indexili-1]1+1[];
esac;

-— Definition of kindexj
-— This variable has value K times j
kindexj[j] =

case
{1j=0}: 0I[1;
{1j>0}: kindexj[j-1]+kvalue[K];
esac;
-— Definition of E.
E[i,j] =
case
{1j=0}: elil;

{1j>0}: if indexil[il<kindexj[j] then E[i+1, j]
esac;

else E[i+1,j-1];

B DOWN-SAMPLING

—- The result : take the first row of this
s[j]l = E[0,j];
tel;

10

