
Theoretical basis of the Pipeline package

Tanguy Risset

May 30, 2006

Introduction

This document is intended to provide the precise semantics of the functions
of the Pipeline.m package, together with their implementation details and
examples of use. These functions are: pipeline, pipeall, pipeInput,
pipeOutput, pipeIO.

1 Pipeline

1.1 Explanation of the transformation

The pipeline transformation is used to transform a program with a definition
of a variable var1 which contains an expression expr implying a non uniform
dependence f (Ker(f) 6= ∅): var1[z] = F (expr[f(z)]), into an equivalent1

program which contains a uniform dependence d2 for the definition of the
same variable var1.

The principle of the transformation is the following, the user gives :

• the name of a new variable to be created (pipeline variable: pipeExpr);

• the exact instance of the expression to be pipeline (expr[f(z)] in var1);

• and a pipeline vector d.

In the transformed program, the variable pipeExpr is defined on the whole
domain D where the expression expr[f(z)] is used. pipeExpr[x] is initialized
to expr[f(x)] on the border3 of D along d (we call this border B). This
value is duplicated (we say pipelined) along d on the rest of the domain
D (pipeExpr[z] = pipeExpr[z − d]). Then, the corresponding part of the
definition of var1 is replaced by: var1[z] = pipeExpr[z] (see figure 1).

1equivalence to be proved
2or several uniform dependencies
3at the points where we cannot retrieve one more pipeline vector without getting out

of D

1

expr[f(z)]expr[f(z)]

V ar1(z)
V ar1(z)
pipeV ar(z)

D

B

Figure 1: Example of pipeline Transformation

This transformation cannot be done for every pipeline vector. Note that
the transformation imply that the values pipeExpr[z + kd] ∀z ∈ B, k ∈ N
will correspond to the instance expr[f(z)], thus we must have expr[f(z)] =
expr[f(z + kz)] ∀z ∈ B, k ∈ N . This is verified if d ∈ Ker(f). This
imply that f must be non invertible. Note that the pipeline vector may be
a not primitive vector, but this may induce warning during analysis of the
resulting program because it correspond to the assumption that the domain
of use of the expression is not flat.

1.2 Implementation

The pipeline function should be used by programmers only, the users
should use pipeall. In the parameter of the function, the name of the vari-
able and the pipeline vector are catched in the same expression :"Name.function"
where the function is the translation in the direction of the pipeline vector.

At the moment, the domain of the new variable build is the intersection
of the context domain of the expression to pipeline (getContextDomain)
with the domain of the expression to pipeline (expDomain). If the pipeline
vector is not in the kernel of the dependence function, the transformation is
aborted.

1.3 pipeall

pipeall is like a pipeline more convivial. If an expression is present in
several places in the definition of a variable, or even in several definition of
different variables, pipeall will pipeline all occurrences of this expression.
In that case, the domain on which is defined the variable is the union of

2

all the domains which would result of each individual pipelines. The main
difference with pipeline are the way the arguments are asked (see ?pipeall).
Be careful, you cannot expressed the expression to be pipelined using the
array notation, you must specify expr.(x->f(x)) instead of expr[f(x)].

2 Pipeline of Inputs and Outputs

the pipeline transformation pipelines a dependance which was originally
a broadcast (dependence non invertible). We may need to pipeline an ex-
pression even if it is not broadcasted, this is particularly useful when the
expression to pipeline must be input (resp. output) in an architecture, in
which they must go through some cells before being used in a computation
(array with a loading phase). This can be done with the pipeIO function,
which should be used through the functions pipeInput and pipeOutput.
pipeIO perform a routing. It takes some data at some place of the iteration
space and bring it into another place of the iteration space.

2.1 PipeInput

expr[f(x)] pipeV ar(y)

V ar1(x)V ar1(x)

expr[f(x)]

D

B

A

H

H

Figure 2: Example of input pipe with pipeInput

3

The user gives:

• the name of a new variable to be created (pipeline variable: pipeExpr);

• the exact instance of the expression to be pipeline (expr[f(z)] in
var1[f(z)], note that f may be non-singular);

• a pipeline vector d;

• and the half space in which the pipeline is to be performed (bounded
by an hyperplane H).

Pipelining an expression as an input consists in the following transforma-
tion: we suppose the expression expr[f(x)] is used an expression somewhere
x (V ar[x] = expr[f(x)] on domain A, see figure 2). After the transfor-
mation, the expression expr is used somewhere else y (along the bounding
hyperplan H) and the value is propagated to location x by the pipeline
variable (V ar[x] = pipeExpr[x] on the original domain A, pipeExpr[z] =
pipeExpr[z−d] inside the pipeline Domain D, and pipeExpr[y] = epxr[f [x]]
on the border B). This transformation is very close to the usual pipeline
transformation

This transformation is illustrated on figure 3 and 4. figure 3 represents
the original program and figure 4 represents the program after the execution
of the command: pipeInput["C", "b.(i,j->i)","B1.(i,j->i+1,j+1)",
" {i,j | i >= 0 } "] and normalization. The example also corresponds
to the illustration of figure 2. V ar1 is C, expr[f(x)] is b.(i,j->i), d is
(1,1) (represented by (i,j->i+1,j+1)), pipeV ar is B1, and H is {i,j |
i >= 0}.

system silly: {N | N>1}
(a : {i,j|1 <= i,j <= N} of boolean;
b : {i|1 <= i <= N} of boolean)

returns (c : {i|1 <= i <= N} of boolean);
var

C : {i,j|1 <= i <= N; 0<= j <=N} of boolean;
let

C[i,j] = case
{|j=0} : b[i];
{| j>=1} : C[i,j-1] + a[i,j];

esac;
c[i]=C[i,N];

tel;

Figure 3: simple program before the use of pipeInput

4

......
var

B1 : {i,j | (j+1,0)<=i<=j+N; j<=0; 2<=N} of integer;
C : {i,j | 1<=i<=N; 0<=j<=N} of boolean;

let
B1[i,j] =

case
{| i=0; -N<=j<=-1; 2<=N} : b[i-j];
{| 1<=i<=j+N; j<=0; 2<=N} : B1[i-1,j-1];

esac;
C[i,j] =

case
{| 1<=i<=N; j=0; 2<=N} : B1;
{| 1<=j} : C[i,j-1] + a[i,j];

esac;
.......

Figure 4: Program of figure 3, after use of pipeInput: pipeInput["C",
"b.(i,j->i)","B1.(i,j->i+1,j+1)", " {i,j | i >= 0 } "]

2.2 PipeOutput

The user gives (as for pipeInput:

• the name of a new variable to be created (pipeline variable: pipeExpr);

• the exact instance of the expression to be pipeline (expr[f(z)] in
var1[f(z)], note that f may be non-singular);

• a pipeline vector d;

• and the half space in which the pipeline is to be performed (bounded
by an hyperplane H).

Pipelining an expression as an output consists in the following trans-
formation: we suppose we use at some place x an expression which was
produce at some place y (V ar[x] = expr[y] on domain A). In the trans-
formed program, we use this expression in another variable at place y
(V arP ipe[y] = expr[y]) and the value in pipelined in V arP ipe until an-
other place f(x) where it is consumed by V ar (V ar[x] = V arP ipe[f(x)] on
domain B, see figure 5 for example of output pipe).

This transformation is illustrated on figure 6. figure 3 represents the
original program and figure 4 represents the program after the execution of
the command: pipeOutput["c", "C","C1.(i,j->i+1,j+1)", "{i,j| i
<= N}"]. The transformation performed is illustrated on figure 5 where V ar

5

expr[y]

var[x]

V arP ipe[y]

var[x] V arP ipe[f(x)]

D

B

A

H

Figure 5: Example of output pipe with pipeOutput

6

var

C1 : {i,j | j-N+1<=i<=N; N<=j; 2<=N} of integer;
.........

C1[i,j] =
case
{| 1<=i<=N; j=N} : C;
{| j-N+1<=i<=N; N+1<=j} : C1[i-1,j-1];

esac;
c[i] = C1[N,-i+2N];

tel;

Figure 6: program of figure 3, after use of pipeOuput: pipeIO["c",
"C","C1.(i,j->i+1,j+1)","{i,j| i <= N}"]

is c, expr[f(x)] is C.(i,j->i,j), d is (1,1) (represented by (i,j->i+1,j+1)),
varP ipe is C1 and H is . {i,j| i <= N}.

2.3 Implementation

Both pipeOutput and pipeInput are implemented by the same function :
pipeIO, we will briefly described the implementation of this function here.
The fact that the pipeline is an input pipe or an output pipe is determined
by the scalar dot of the pipeline vector and the normal to the hyperplane
H bounding the half space. If the pipeline vector goes towards H then, this
must be an output pipe, if it comes from H, this must be an input Pipe

Three domains are distinguished:

• the domain of the original expression expr[f(z)] (that we will call
domExpr), which is the domain where the pipeline is initialized in the
case of an output pipe and the domain where the pipeline ends in the
case of an input pipe (domain A on figure 2 and 5).

• the pipeline domain (that we will call realDomPipe) which is the
domain on which the value is pipelined (domain D on figure 2 and 5).

• the domains where the pipeline ends (that we will call pipeEndDom),
which is in fact the domain where the pipeline is initialized in the case
of an input pipe (domain B on figure 2 and 5).

domExpr is computed as the intersection of the context domain of the ex-
pression to pipeline (getContextDomain) and the domain of the expression
itself (expDomain). realDomPipe is computed by adding to domExpr a
ray (which is the pipeline vector in the case of an output pipe and its op-
posite in the case of an input pipe) and then by intersection the resulting

7

domain with the half space bounded by H. pipeEndDom is computed by
shifting realP ipeDomain by the pipeline vector in case of input pipe (resp.
its opposite in case of output pipe) and retrieving the realDomPipe.

there remains the problem of founding, given on index point in pipeEndDom,
what is the corresponding point in domExpr (resp. the other way around in
the case of input pipe). This is done by observing the following fact. If we
find a function of the indices whose value is constant on the pipeline path
and which is perfectly determined by the pipeline path (unique for each
pipeline path), then giving this value will determine a unique antecedent
point z1 in exprDom and a unique antecedent point z2 in pipeEndDom.
Hence, we will be able to use the inverseInContext function is order to
find for a point in pipeEndDom the corresponding point in exprDom. the
function to build must have a square matrix thus we take a square n × n
matrix of rank n−1 for which the kernel is generated by the pipeline vector.
And it works... The use of inverseInContext impose that the domains of
the expressions to pipeline must be flat (dimension n− 1).

8

