
Writing a test file for MMAlpha

Patrice Quinton

Version of December 26, 2008

1 Introduction

Testing programs is recommended by everybody... and done only by a few
people. MMAlpha is no exception...

The purpose of this document is to explain what policy is to be followed
when one wants to develop a new package for MMAlpha.

A companion document, located in $MMALPHA/doc/Tests explains how
to test the MMAlpha.

In a few words, here are the recommendations:

1. All packages must be provided with a Mathematica test file. Let
myPack.m by a brand new MMAlpha package (the same policy ap-
plies to C program). Then, a MMAlpha program, TestmyPack.m

must be written, and placed in the directory $MMAlpha/tests in a
new directory TestmyPack. If you follow these recommendations, your
test program will be called when evaluating the MMAlpha expression
tests["myPack"].

2. Your test program, TextmyPack.m must return a value True if all tests
have been passed, False otherwise.

3. Test your test program! A good policy is to incorporate all examples
you have used when developing your code. Remember that your tests
are going to be run among several thousands, so make sure that your
tests are correct.

In what follows, we present quickly facilities provided for testing by MMAl-
pha, and we give an example.

1

2 Functions for testing

Two functions are used: tests, and testFunction. These functions were
improved in the V2 version of MMAlpha.

2.1 The tests function

This function is part of the Alpha.m package. Evaluating tests[] runs all
test files which are in the test directory. This may take a few hours... We
use it only to check a new version1.

Evaluating tests["myPack"] runs the test program for package myPack.
You can therefore run tests for various MMAlpha packages, for example,
tests["Alpha"] (try it!). Notice that Mathematica error messages may
happen during the test; this does not mean that the test has failed. Indeed,
some test programs test that MMAlpha detects abnormal situations.

2.2 The testFunction

A function, called, testFunction, is provided in the Alpha.m package, as a
means to organize tests in a systematic way. Using this function is recom-
mended. Its operation is as follows.

testFunction[exp, result, testID]

compares the evaluation of exp to result. It returns True if they are equal,
False and emits a message if they are different. testID is a string which
identifies the test.

This function can be used in many different ways. For example, here is a
test of the Alpha.m package, which checks the MMAlpha parser:

testFunction[load["Test1.alpha"];$result,<<"RTest1","Alpha 1"]

The evaluation of this expression loads the file Test1.alpha which is sup-
posed to be in the test directory, and compares the value of $result, the
MMAlpha variable which contains the current AST, with the content of
the file RTest1, in the same directory. This test is identified as "Alpha 1".

1This may change...

2

3 An example

Fig. 1 gives an example of test file.

3

Module[{dir, res1, testresult},

dir = Directory[]; (* Save current directory *)

(* Go in test directory *)

SetDirectory[Environment["MMALPHA"]<>"/tests/TestAlpha/"];

Print["Test for Alpha.m"];

(* Build a list of boolean values *)

res1=

{

testFunction[load["Test1.alpha"];$result,<<"RTest1","Alpha 1"],

testFunction[load[22],Null,"Alpha 2"],

testFunction[Check[show[],$Failed],Null,"Alpha 3"],

testFunction[show[22],Null,"Alpha 4"],

(* ... *)

ReadList["MV1.c",Record,RecordSeparators->{}]===

ReadList["MV1.c",Record,RecordSeparators->{}],True,"writeC 1"],

DeleteFile["MV1.c"];True

}

(* And the list *)

testResult = Apply[And,res1];

(* Back to initial dir *)

SetDirectory[dir];

(* Diagnostic *)

If[testResult,

Print["**** Test OK for Alpha.m "],

Print["**** Something was wrong for Alpha.m"]];

(* Do not forget to return the result *)

testResult

] (* End module *)

Figure 1: Example of test, adapted from the file Alpha.m

4

