
Getting started with Alpha

Api, then Cosi, then R2D2 and Compsys, then Cairn∗

Revision of January 2, 2009

June 2004

Abstract

This document is an introduction to the Alpha language and to its use for regular
program description, transformation, evaluation, and hardware implementation in the
MMAlpha software. The Alpha syntax is presented by means of examples. Basic
manipulations of Alpha programs are first shown. Then hardware generation and
several advanced transformations – pipelining, change of basis, substitution, normal-
ization, and scheduling, – are introduced and illustrated. Finally, the use of Alpha
subsystems and the AlpHard hardware description language are presented.

1 Introduction

This document1 should be read by all Alpha beginners. It briefly presents the main features
of the Alpha language and the basic transformations of Alpha programs which are available
in the MMAlpha environment.

MMAlpha is a free software, available under the Gnu Public License. What is said here
applies to Version 2.0 or MMAlpha, which currently you may get by sending a mail to

patrice.quinton@irisa.fr

To be run, it requires Mathematica version 3.0 or later.
If you have any problem while reading this document or while trying the MMAlpha

software, please send an e-mail to alpha@irisa.fr

∗Api, Cosi, R2D2 and Cairn are the names of the research groups that successively hosted research related
on Alpha and MMAlpha at Irisa, Rennes, France. From 2001, Compsys in ENS Lyon also participated in
the development of MMAlpha. Recently, Tanguy Risset moved to Insa de Lyon.

1The source of this document is in:
$MMALPHA/doc/Quickstart/AlphaStart.tex
and this file is in
$MMALPHA/doc/QuickStart/AlphaStart.pdf

1

What is Alpha?

Alpha is a functional data parallel language invented at Irisa in Rennes (France). The
first definition of Alpha was proposed by Mauras [Mau89] in 1989. The original motivation
was to provide a language for expressing algorithms in an extended version of the formalism
of recurrence equations proposed by Karp, Miller and Winograd [KMW67]. Other basic
references are [Mol82, Qui84, RF86]. The goal of Alpha is to provide a high-level tool for
the synthesis of parallel regular vlsi architectures.

Although Alpha stands for the language itself, it is often also associated with the envi-
ronment in which it is currently developed: MMAlpha. MMAlpha is an interface based
on the Mathematica software from which one can manipulate Alpha programs.

MMAlpha is still under development at Irisa and at INSA in Lyon (France).

What is Alpha for?

Alpha is a research tool for various computer science fields such as functional language
semantics, parallelization, code generation, optimization, polyhedral theory, vlsi synthesis,
systolic arrays, etc.

One important long term goal of Alpha is to promote the use of high-level functional
languages for the synthesis of (parallel) vlsi architectures. From the short term, Alpha can
be useful for:

• Providing a correct recurrence equation specification for a particular algorithm (see
Sections 4 and 5).

• Simulating such a specification (see Section 5.6).

• Transforming and simplifying a recurrence equation specification (see Sections 5 and 7).

• Computing on convex polyhedra (see also http://www.irisa.fr/polylib).

• Scheduling programs and detecting parallelism (see Section 5.7).

If you are ready to invest a little more time on MMAlpha, you will probably be able
to:

• Generate vhdl from this description.

• Provide a design path from the high-level functional specification of an algorithm to
the layout description of a vlsi algorithm which implements it.

The remaining of this document is organized as follows. Section 2 presents the MMAl-
pha interface; Section 3 explains the installation procedure; in Section 4, the Alpha lan-
guage is briefly presented, while in Section 5, basic operations on Alpha programs are
described; hardware generation is presented in Section 6; in Section 7, other transformations
of Alpha programs are explained, and in Section 8, we explain how structured Alpha
programs can be structured and transformed. Finally, Section 9 concludes and gives some
additional references for further exploration of MMAlpha.

2

2 How does MMAlpha work?

MMAlpha is written in C and in Mathematica, but a user should only see it through its
Mathematica interface.

Mathematica provides an interpreted language with high-level built-in functions for sym-
bolic computations: MMAlpha uses these facilities for transforming Alpha programs.
Mathematica embeds also a general-purpose programming language.

The basic principle of the MMAlpha environment is the following one: Mathematica
stores an internal representation of an Alpha program (called Abstract Syntax Tree or AST)
and performs computations on this internal representation via the user’s commands or func-
tions. These commands can be for example: view an Alpha program, check its correctness,
generate C code to simulate it, generate vhdl code, etc. All these transformations are done
on the AST which is stored in a Mathematica variable named $result.

Specific C functions are used for two purposes: parse and unparse Alpha programs
or expressions, and perform computations on polyhedra. All C functions are called via
Mathematica. Most of them are available separately in the polylib polyhedral library
which constitutes the computationnal kernel of the MMAlpha environment. Mathematica
also uses the PiP software designed by Paul Feautrier (See http://www.piplib.org/).

3 Installing MMAlpha

Before going on, you should install the MMAlpha environment. The installation procedure
is explained in Appendix 3 of this document. MMAlpha can be downloaded from the
MMAlpha web site (http://www.irisa.fr/cosi/ALPHA).

The easiest way to use MMAlpha is to access it through its notebook interface. To do
so, type mathematica under Unix, or start Mathematica in the Programs menu of Windows
NT2. We assume in the following that you use Mathematica through its Notebook interface.

Once MMAlpha is installed, open a new Mathematica notebook and evaluate the com-
mand start[] in this notebook3. This command opens a demonstration notebook which is
part of the MMAlpha distribution.

Then open the synthesis notebook by clicking on the Synthesis button (in the Section
called New: synthesis notebooks4). In this notebook, you will find several demonstrations
examples: a FIR filter, a distance calculation program, a matrix-vector multiplication, a
matrix-matrix multiplication, and a string alignment program called Samba. Currently, the
documentation on the syn command is available in

$MMALPHA/doc/Synthesis/Synthesis.pdf

2Any Mathematica version later than 3.0 will work.
3Type the command, then press simultaneously the Shift and Enter keys.
4For the reader who is not yet familiar with Mathematica’s notebooks, notebooks are organized as a tree

of cells. Each cell is delimited by a brackets at its right. Selecting a cell (and all its subcells) is done by
clicking once its bracket. To open a cell, double-click the bracket once the cell is selected.

3

Another possibility is to open the cell named ”Introduction Notebooks”, and click on
button ”Getting started”. This opens a notebook where all the examples of this document
are shown.

4 The Alpha language

In this section, we present the syntax of the Alpha language.

4.1 Alpha through examples

We introduce here the basic features of the language on the matrix-vector multiplication
example shown in Fig. 1.

system prodVect: {N | N>1}

(a : {i,j|1 <= i,j <= N} of integer;

b : {i|1 <= i <= N} of integer)

returns (c : {i|1 <= i <= N} of integer);

var

C : {i,j|1 <= i <= N; 0<= j <=N} of integer;

let

C[i,j] =

case

{|j=0} : 0[];

{|j>=1} : C[i,j-1] + a[i,j] * b[j];

esac;

c[i]=C[i,N];

tel;

Figure 1: Alpha program describing the matrix vector product

Systems, variables, domains and parameters

An Alpha program is a system. Alpha variables5 are generalized arrays which can have
any shape (not just rectangles). The set of indices of the array is called the domain of the
variable. Example 4.1 below shows the declaration of a variable a whose domain is the set
of points (i, j) in the triangle {0 ≤ i ≤ j; j ≤ 10}.

Exemple 4.1

5In Alpha, identifiers are case sensitive. Undescores are accepted, as in A 1 but should be avoided, as
Mathematica identifiers cannot contain undescores and in some situations, this may result in unexpected
errors. Moreover, avoid using variables that are distinguished only by there case, as in x and X; since
eventually, your program will be translated in vhdl that is not case sensitive.

4

a : {i,j | 0<= i <= j; j <=10} of integer

In the example of Fig. 1, domains are indexed by a parameter N which is declared, together
with its domain, right after the system name. The values of the parameters can be con-
strained by any kind of affine constraints. In general, parameters allow generic descriptions
of algorithms to be specified.

Input, output and local variables

An Alpha system has input and output variables. Here inputs are a and b, and output is
c. It may have local variables, such as C here. Local variables are declared after the keyword
var.

Equations and expressions

Each variable is defined by a unique equation which usually has the form of a recurrence
equation.

The case construct allows one to define different values in different parts of the domain.

Exemple 4.2

a[i,j] =

case

{| j = 0 } : 0[];

{| j > 0 } : a[i,j-1]+1[];

esac;

The Alpha expression of example 4.2 defines the values of a[i,0] to be zero6 and
recursively defines a at all other points in its domain. This equation defines a variable a

such that a[i,j]=j.
In Fig. 1, variable C is also defined as a recurrence equation, and its value at point (i, j)

is
∑j=i

j=1 ai,j × bj.

4.2 Array notation and standard notation

The above equations use the so-called array notation of Alpha. The real syntax of Alpha
is sligthly less readable but more consistent and logical from a semantic point of view. To
illustrate this, example 4.3 shows the same definition of a in standard notation.

Exemple 4.3

6Syntactic note: constants are zero dimensional arrays hence the empty brackets in 0[].

5

a =

case

{i,j | j = 0 } : 0.(i,j ->);

{i,j | j > 0 } : a.(i,j -> i,j-1) + 1.(i,j ->);

esac;

In such an expression, a denotes a variable, i.e., a function whose type is

integer× integer→ integer .

Expression (i,j->i,j-1) denotes a dependence function, i.e., the affine function

integer× integer→ integer× integer

which maps (i,j) to (i,j-1). Expression expr = a.(i,j->i,j-1) denotes the composi-
tion of a and the dependency function (i,j -> i,j-1). In other words, expr[i,j] has the
value a[i,j-1] at each point (i,j) such that (i,j-1) is in the domain of a.

Similarly expr2 = 0.(i,j->) means that expr2[i,j] has value 0 for all (i,j). This
notation describes the extension (or broadcasting) of the constant 0 to all integral points
(i,j) of the space.

An expression such as {i,j | j > 0 } : a.(i,j->i,j-1) + 1.(i,j->) represents
the restriction of expression a.(i,j->i,j-1) + 1.(i,j->) to the domain {i,j | j > 0}
(functions of Alpha are partial).

Finally, expr = case exp1; exp2; esac denotes a case definition, where exp1 and exp2

are expressions on disjoint domains.
In summary, any Alpha expression is either a variable, the composition of a variable

and of a dependence function, a restriction, or a case statement7.
Note that the order of the equations as well as the order of the expressions in a case

statement is meaningless as Alpha is declarative: interchanging the two branches of the
case in example 4.2 would define exactly the same value for a.

The evaluation order is implicit and there are tools for finding schedules for a given
program. As Alpha is a functional language, the only constraint that any evaluation order
must follow is that data dependencies between instances of variables must be respected. In
example 4.2, obviously a[i,j] must be computed after a[i,j-1].

4.3 More on the syntax of Alpha

Section 8 describes structured Alpha programs. More details on the syntax of Alpha can
be found in appendix A. Note that Alpha is case sensitive, and that underscores are allowed
in identifiers. Avoid using underscores, as you might get into trouble when trying to generate
vhdl for example.

7There exists another construct, the use statement, which allows calls to subsystems to be written. This
statement is explained in section 8.

6

5 Basic operations on Alpha programs

This section presents the first commands that you should learn in order to deal with Alpha
programs.

Write an Alpha program (such as the one of Fig. 1 for instance) using your favourite
text editor.

Let us say you called this file prodVect.alpha. The commands described in this section
allow you to load your program in Mathematica, view the program in Mathematica (array
notation or standard notation), save the program in another file, perform a static analysis
and simulate the program.

All these examples are also available in the Getting started notebook accessible by
the Master notebook of MMAlpha (after starting Mathematica, type the Mathematica
command start[] in your notebook to access the Master notebook of MMAlpha.)

If you are not familiar with Mathematica, the Introduction notebooks section of the
Master notebook points towards a brief introduction to Mathematica.

5.1 Loading and viewing an Alpha program

Once Mathematica has been started, commands can be send to the kernel through Input

cells. The name of the working directory can be printed out by typing:

Directory[]

If you see that this directory is not the one where you have put prodVect.alpha, change
it by typing:

SetDirectory["pathname"]

where pathname is the directory that you want to become the current directory of MMAlpha
(see the Mathematica Help or type ?Directory).

You can now load the Alpha program into Mathematica by typing:

load["prodVect.alpha"];

Note that most often, it is useful to end MMAlpha commands with a semi-colon.
Indeed, MMAlpha commands are Mathematica functions, which return the AST of
a transformed Alpha program. If you forget the ; symbol, Mathematica just displays
the result of the function evaluation, which may sometimes take a few pages...

As a side effect, the load command assigns the AST of the parsed program to the global
Mathematica variable $result. In general, $result contains the result of the most recent
transformation.

7

Troubleshooting Syntax errors in Alpha programs are sometimes difficult to understand.
Here is a list of frequent errors.

• In domains, inequalities are separated by semicolons, not colons. For example: {i
| i<10 ; i> 20 }. Notice that the domain {i,j | 1< i,j <20 } represents the
domain {i, j|1 < i < 20∧1 < j < 20}, as the colon allows inequalities to be factorized.

• Input variables are separated by semicolons.

• All equations (even the last one) are ended by a semicolon.

• All branches of a case (even the last one) are ended by a semicolon.

• In the array notation, indexes of a right-hand side expression should appear in the right-
hand side variable. For example, a[i,j] = b[k] is wrong, as k is not an index of a.
Note that indexes represent positions, not absolute names. It is perfectly possible to
use different index names in the declaration of a variable, and in its definition, although
this is a bad practice...

• Constants, such as 1[] end up with brackets; boolean constants are true[] and
false[].

• Restrictions on branches of a case expression start with {|.

Bugs The div operator is available, but should be replaced by a simple /. The asave func-
tion forgets to add a space after the div operator, so that a div 2[] becomes a div2[]...

5.2 Viewing Alpha programs

You can view the program that has been stored in $result by evaluating:

ashow[]

By default, ashow pretty prints the program contained in $result in array notation, but
more generally, ashow[var] pretty prints the program contained in the Mathematica
variable var.

To display a program in standard notation use the show[] command.

5.3 On-line documentation and options

All Mathematica functions have an on-line documentation: ?ashow gives the help on ashow.
Commands may also have options. Type Options[command] to list the options of command
together with their default value.

The documentation of MMAlpha is far from complete. Documentation notebooks are
in directory

8

$MMALPHA/doc/packages/

and demos notebooks are available in

$MMALPHA/demos/NOTEBOOKS/

Documentation notebooks can be accessed using the command docLink["topic"], and
demos can be open using demoLink["demo"]: both commands paste an active button in
the current notebook. Try for example

demoLink["Getting-started"]

5.4 Saving a program

To save the Alpha program in a file, use the command asave (or save which saves in
standard notation). For instance:

asave["myFile.alpha"]

writes the program of Fig. 1 in file myFile.alpha in the current directory. This command
is useful in order to save the content of $result after some transformations.

5.5 Analyzing an Alpha program

Now that you have loaded an Alpha program, you can start working on it. Your first action
should always be to check it for so-called static errors by using the analyze command:

analyze[]

Information about potential errors in the Alpha program is printed out.
If the analysis is successful, the result is True. The static analyzer of Alpha does

essentially two kinds of verification: it checks the type of all expressions – this is not a
fantastic novelty – but it also checks that variables are defined in any point of their definition
domain. This second kind of verification is very powerful, and is much more original.

Notes.

• It is very important that your program passes successfully the analyze test. Indeed,
some transformations assume that the program is correct.

• Correcting the mistakes of an Alpha program may sometimes be difficult. Especially
hard to fix are errors involving values of the parameters. Do not hesitate to send a
program to alpha@irisa.fr if you have some trouble: experts will try to help you!

• The analyze command allows structured systems to be checked by means of the
recurse option. See ?recurse.

9

Troubleshooting If you use non conventional types, such as signed or unsigned short inte-
ger (denoted as integer[S,5] for example), analyze is unable to check the type correctness
of expressions. Use the option scalarTypeCheck -> False option to avoid error messages.

More information A notebook giving more details on the static analyzer can be accessed
using demoLink["Static"].

5.6 Simulating a program

The second step of your design flow should be a simulation. To do so, you should first
schedule the program, then generate a C program 8.

First, schedule the program by evaluating the command

schedule[]

This command should give you a schedule of the program, unless there is a dependence cycle
in the program, or the program does not have a unidimensional schedule (see section 5.6 for
more information on the scheduler.)

If the scheduler is successful, a C program can be generated using cGen:

cGen["prodVect.c", {"N"-> 10}]

The {"N"-> 10} argument indicates that the value of the parameter N will be set to 10
(the C code generator is not parameter independent). If there are more than one parameter,
they are given in a list such as {"N"-> 10, "M" -> 32, ... }. By default, this program,
once compiled, reads its input from the standard input (stdin) and prints its results on the
standard output (stdout).

On Unix, gcc -o prodVect prodVect.c followed by ./prodVect will compile, then ex-
ecute the simulated program in the current directory. By default, this program will prompt
you for the values of the input instances.

Notes Options of cGen allow various forms of C programs to be generated. See the docu-
mentation notebook on code generation (demoLink["cGen"]).

Troubleshooting As already mentioned, the scheduled may fail for several reasons.
If your program describes an infinite calculation (for example, a filter), the scheduler will

fail to find a schedule, as by default, it tries to minimize the total computation time. You
can get a schedule by using the command

schedule[optimizationType -> Null]

8Several C code generators are available. As of the date of the current revision of this document, the
simplest one is cGen, and we do not present the other ones here.

10

Note that infinite calculations can also be represented by Alpha programs where the itera-
tion domain is bounded by a parameter. This avoids the above problem.

Your program may not admit a unidimensional schedule. To check this, call it with the
appropriate option

schedule[multiDimensional -> True];

You may then get a result, where variables are ordered with a multi-dimensional time. The
C-code generator also works with multi-dimensional schedules.

If this is not successful, your program may contain a dependence cycle. Checking this
property is undecidable, and therefore, nothing can be done to help you. In general, this
happens because the program contains an error, and a careful check of the equations reveals
it. (Removing some equations before scheduling may help localizing the fault(s).)

More on C program generation See the demoLink["CodeGen"] notebook.

5.7 Scheduling

Principles The schedule command looks for a schedule for an Alpha program. The
basic goal of the scheduler is to find a valid and good evaluation order. Here, the term good
depends on the optimization criterion chosen: most often, it is the total evaluation time of
the program, but one may also consider other criteria.

The time is considered as a discrete single rate clock. The overall idea of the scheduling
process is to build a linear program (LP) and to solve it with a software tool: this may
be PiP[FT90], or LP-Solve, or even the Mathematica linear solver. The Alpha scheduler
provides several options to schedule a program. We consider here the simplest one (by
default), called monodimensional affine-by-variable schedule. This esoteric name means
that the evaluation date TA(i, j) of a given variable instance A[i,j] is given by an affine
function of the indices and parameters:

TA(i, j) = τ i
Ai + τ j

Aj + τN
A N + αA

where N is a parameter of the Alpha program. The coefficients τ j

A of this function are (in
general) different for each variable in the system.

As already seen, the Mathematica command to schedule a program is:

schedule[]

By default, it schedules $result and the resulting schedule is placed in a global vari-
able named $schedule. To visualize the current content of the $schedule variable, use
the command showSchedResult[]. The schedule function has many options. Type
Options[schedule] for further information. Type schedule[opt1->value1] to change the
default value of a particular option opt1.

11

Refining the schedule Once a monodimensional schedule is found, the scheduler may be
used to refine the schedule, in order to obtain a ”good” architecture. Two options can be
used to do so.

The addConstraints option allows one to fix the values of the coefficients of a particular
timing-function, or even to set the timing-function of a variable. Say for example, that you
want the a variable to be available at time τa(i, j) = i+ j, and the b variable to be available
at time τb(i) = i, then use the command

schedule[addConstraints -> {"Ta[i,j,N]=i+j", "Tb[i,N]=i"}]

where Ta[i,j,N]=i+j sets the schedule of a and Tb[i,N]=i sets the schedule of b. Notice
that the parameters – here N – must be included in the indexes of the timing-functions.

The addConstraints option allows also coefficients to be set. Coefficient τ j

A of the
timing-function of a variable A is named TADj, and constant αA is named CA. To constrain
the scheduler to set the first coefficient of the timing-function of a and the constant of the
same timing-function to be 1, evaluate:

schedule[addConstraints -> {"TaD1==1", "Ca==1"}]

The durations option allows one to fix the number of cycles needed to evaluate a given
equation of the Alpha program. With the current version of the scheduler, the durations

option allows you to specify how many time steps you allocate to the evaluation of one
equation. Say for example that you would like to associate a duration of 7 to the evaluation
of C and of 19 to the evaluation of c. Then you should use

schedule[durations -> {0, 0, 19, 7}]

The list of integer values corresponds to the input variables first, then the output variables
(in their order of appearance in the header of the program), then the local variables (in their
order of declaration), {a, b, c, C} in our example. (Notice that assigning a duration to
input variables is meaningless.)

How to schedule Here is a typical approach to schedule a program.

• Use the plain schedule[] command first. It will immediately reveal if the program
has a unidimensional schedule, in which case, la vie est belle...

• Remember that if your program describes an infinite calculation, you should set the
optimizationType parameter to Null, or bound your iteration space in the Alpha
program.

• If this does not provide a schedule, use the multi-dimensional option to find a multi-
dimensional schedule. But notice that MMAlpha cannot generate hardware for a
multi-dimensional schedule... At least, you will be able to simulate the Alpha pro-
gram.

• Once a schedule has been found, refine it by adding constraints to the coefficients.

12

Troubleshooting The scheduler is probably the most important step of the design flow.
As already seen, the scheduler is unable to find out a schedule if the program does not admit
a mono-dimensional schedule, or, if the program contains dependence cycles.

Currently, MMAlpha does not generate hardware for multi-dimensional scheduled pro-
grams9.

The scheduler is quite robust, and not too slow. For very big programs, it is better to
use structered programs, and to use the structured scheduler (see section 8).

Be careful if you use additional constraints or durations: you may specify constraints
that cannot be met by the scheduler...

A frequent mistake: if you specify in the additional constraints a wrong coefficient, the
scheduler fails badly with a quite non specific message. For example, say you add a constraint
such as:

TAD4 == 1

although variable A has only 2 dimensions, then the scheduler fails, since it does not check
the correctness of this constraint and therefore, calls Mathematica’s optimizer with wrong
arguments.

More information The schedule function is explained in more detail in the scheduler
documentation given in file:

$MMALPHA/doc/Users/Scheduler_user_manual.pdf

5.8 Mapping the program to a parallel array

Once a schedule (either mono or multi-dimensional) has been found, the program can be
mapped to an architecture using the appSched function, for example:

appSched[]

The plain form rewrites the $result program by applying space-time transformations to
all variables in such a way that the first component of the index is the time, and the other
components represent the coordinates of a processor (also called, the allocation function).

Notes When appSched is called in its simplest form, the allocation function is chosen
automatically by MMAlpha. Sometimes, this allocation is not convenient. For example,
it may happen that the processor dimension is mapped to an infinite dimension of the
calculation domain.

Some options of appSched allow one to set the allocation direction. The projMatrix

option allows one to define the projection matrix, that is to say, the linear function which
defines the indices where the processor are mapped. For example:

9This is planned, but not yet realized...

13

appSched[projMatrix -> {{1,0,0}, {0,0,1}}]

says that the processor indexes will be the first and the third one (assuming that there is no
parameters.)

The projVector option is another way of specifying the allocation function:

appSched[projVector -> {{0,1,0}}]

also projects on indexes 1 and 3.
Both projVector and projMatrix can be used only when all variables have the same

dimension and are in the same space.
If necessary, one can apply appSched variable by variable, by using the variables option.

For example:

appSched[variables -> {"A", "b"}, projMatrix -> {{1,0,0}, {0,0,1}}]

applies the projection only on variables A and b.
Another way of specifying the allocation function is to define what index has to be

replaced by the schedule. For example:

appSched[timeDimensions -> {2}]

says that the second dimension of the variables can be replaced by the schedule.
This way of specifying the projection can be combined with the variables option:

appSched[variables -> { {"A",{2}}, {"b",{1}}, {other,{3}}]

specifies that for variable A, the second dimension has to be replaced by the schedulig, for
variable b, the first dimension, and for the other variables, the third dimension.

If none of these possibilities works, the ultimate solution is to do the change of basis by
hand. Help may be obtained by running

appSched[verbose->True]

as this command will list the changes of bases that are applied.

Troubleshooting Remember that no change of basis can be done on input or output
variables ! Indeed, the change of basis preserves the semantics of an Alpha program, and
this is not compatible with a reindexing of inputs or outputs. If you really want to reindex
inputs or outputs, just add local variables where you copy the inputs or store the outputs.

14

6 Generating Hardware

Once a system is scheduled and allocated, generating hardware can be done in the following
way.

First, transform the program into Alpha0, a subset of the language:

toAlpha0v2[];

After execution of toAlpha0v2, $result contains one single program, whose expressions can
be interpreted as hardware components.

It is often a good idea to clean-up a little bit the program after execution of
toAlpha0v2. One can simplify the system by the command

simplifySystem[alphaFormat -> Alpha0]

Be careful not to forget the alphaFormat option, as otherwise, the simplification would
destroy the case expressions which represent multiplexers.

Warning: do not remove identity equations using

removeIdEqus[];

as it would remove the so-called mirror equations that were added by toAlpha0v2 for
the outputs of the system.

Then rewrite it into AlpHard, using the command:

alpha0ToAlphard[];

After this command, the program becomes a set of structured systems contained in $library,
and $result contains the main subsystem (see also Section 8 for more information on struc-
tured systems). Fix the value of the parameters:

fixParameter["N", 10];

Finally, generate vhdl code

a2v[]

Function a2v generates in the current directory one vhdl file for each subsystem of
$library, except maybe the main subsystem which cannot be translated into vhdl.

To see the vhdl code in the notebook, get as the current system the subsystem that you
want to see (getSystem[name]), then evaluate showVhdl[].

15

Troubleshooting Functions toAlpha0v2 and alpha0ToAlphard require the program in
$result to meet very specific constraints, and fail if these constraints are not met.

toAlpha0v2 requires that $result has been scheduled and allocated.
alpha0ToAlphard has to be executed after toAlpha0v2 (and cannot be executed twice!).

If the outputs of the system are not mirror equations (of the form out = var or out =

var.dep) it will fail. If all equations do not have the same dimension, both toAlpha0v2 and
alpha0ToAlphard will fail.

a2v will almost always fail on the main calling system which cannot be translated into
vhdl: you can just ignore this error message. An alternative is to remove the calling
subsystem of $library, before calling a2v.

The most common problem with a2v is that the parameter values are not fixed: then a2v

fails to produce the controler and the modules. To see this, just display the current system
using ashow.

To generate a vhdl file for only one subsystem of the library, get this subsystem as the
current system using getSystem, then run a2v[$result].

Notes Recently, toAlpha0v2 and alpha0ToAlphard were extended in order to accept that
some subsystems and/or variables are kept untouched. For example

toAlpha0v2[exceptions -> {sys, var}]

ignores all uses of subsystem sys as well as the definition of var. In a similar fashion

alpha0ToAlphard[exceptions -> {sys, var}]

will put in the interface system (i.e., the calling program) all uses of subsystem sys as well
as the definition of var. This works only if the use is without extension, and if the inputs
of the use are simple variables.

7 Other transformations of Alpha programs

In this section we briefly review a few more advanced manipulations of Alpha.

7.1 Pipelining

Pipelining is a transformation widely used in systolic synthesis. It is also called localization
or uniformization. It consists basically of replacing a broadcasted value by the pipeline of
this value through all the computations that need it.

For instance, in the program of Fig. 1, we see (last term in the second branch of the
case expression) that b[j] is used for the computation of C[i,j] for all i, 0 ≤ i ≤ N . This
means that b[j] will be broadcasted to all processors computing C[i,j].

To introduce a new variable B1 which will pipeline the b[j] value from the computation
of C[j,0] to C[j,1], ... , C[j,N], we use the following command:

16

pipall["C","b.(i,j->j)","B1.(i,j->i+1,j)"];

In this expression, the first argument is the variable whose equation is to be modified, and
the second argument is the expression to be pipelined (standard notation is mandatory here)
and the last argument indicates the direction of the pipeline (i,j->i+1,j) as well as the
name B1 of the new variable introduced. After the execution of this command, the program
contained in $result is the one shown in Fig. 2. Note that the direction of pipeline gives
the dependence vector of the pipeline, and not the flow direction of the pipelined variable
(see the definition of B1 in Fig. 2.)

system prodVect :{N | 2<=N}

(a : {i,j | 1<=i<=N; 1<=j<=N} of boolean;

b : {i | 1<=i<=N} of boolean)

returns (c : {i | 1<=i<=N} of boolean);

var

B1 : {i,j | 1<=i<=N; 1<=j<=N; 2<=N} of boolean;

C : {i,j | 1<=i<=N; 0<=j<=N} of boolean;

let

B1[i,j] =

case

{| i=1; 1<=j<=N; 2<=N} : b[j];

{| 2<=i<=N; 1<=j<=N} : B1[i-1,j];

esac;

C[i,j] =

case

{| j=0} : False[];

{| 1<=j} : C[i,j-1] + a[i,j] * B1;

esac;

c[i] = C[i,N];

tel;

Figure 2: Alpha program of Fig. 1 after pipelining of b in the definition of C

Unlike previous transformations, pipelining changes the Alpha program, but the result-
ing program is equivalent to the initial one. The modifications performed automatically by
pipeAll are:

1. Determine the domain of B1 and add a declaration for it.

2. Build the definition of B1 based on the dependency (i,j->i+1,j) and the given ini-
tialization equation (here, b.(i,j->j)).

3. Replace the original expression b.(i,j->j) by B1.

17

Related functions pipeline, pipeInfo, pipeVars.

Troubleshooting The pipeline transformations are difficult to use, as they are not intu-
itive.

7.2 Change of basis

The change of basis is another important transformation in systolic array design. It allows
variables to be re-indexed, and is often used to map indices to time and space.

In the example of Fig. 2, suppose that we wish to express the computations in a new
index basis i’,j’ such that i’=i+j, j’=j. We can perform the following change of basis:

changeOfBasis["C.(i,j->i+j,j)"];

This simply indicates that the transformation is to be applied to variable C and that the new
coordinates in term of the old ones are given by the linear function (i,j->i+1,j). Note that
a change of basis is meaningful only if this linear function admits an integral left inverse: in
this example, its left inverse is obviously (i,j->i-1,j). The resulting program is shown in
Fig. 3 (after its normalization).

system prodVect :{N | 2<=N}

(a : {i,j | 1<=i<=N; 1<=j<=N} of boolean;

b : {i | 1<=i<=N} of boolean)

returns (c : {i | 1<=i<=N} of boolean);

var

B1 : {i,j | 1<=i<=N; 1<=j<=N; 2<=N} of boolean;

C : {i,j | j+1<=i<=j+N; 0<=j<=N} of boolean;

let

B1[i,j] =

case

{| i=1; 1<=j<=N; 2<=N} : b[j];

{| 2<=i<=N; 1<=j<=N} : B1[i-1,j];

esac;

C[i,j] =

case

{| j=0} : False[];

{| 1<=j} : C[i-1,j-1] + a[i-j,j] * B1[i-j,j];

esac;

c[i] = C[i+N,N];

tel;

Figure 3: Alpha program of Fig. 2 after the change of basis on C

18

Notes The changeOfBasis transformation can be used to rename the indexes of a variable,
for example:

changeOfBasis["C.(t,p->t,p)"]

It can also be used to place a local variable in a higher-dimensional space. For example

changeOfBasis["C.(i,j->i,j,1)", {"i","j","k"}]

will add one dimension to the local C variable, and let its indexes become i, j and k.
Finally, note that changeOfBasis returns an non normalized program.

More information See the ChangeOfBasis notebook docLink["ChangeOfBasis"].

7.3 Substitution

Substitution allows a variable occurence to be replaced by its definition. For example:

substituteInDef["c", "C"]

substitutes the definition of C in equation defining c.

Notes. The substitution does not normalize the program.

Troubleshooting. The substitution should normally be restricted by the context domain
of the expression, but this is not done... Sometimes, the result is not correct.

More information ... available using docLink["Substitution"].

7.4 Normalization

The normalization transformation simplifies an Alpha program into a particular normal
form called case-restriction-dependency. This function is very useful when one performs
several automatic transformations that may render the program less and less readable. The
command is simply:

normalize[];

Another useful command is

simplifySystem[];

which normalizes and simplifies a program.

More information See the Normalization notebook (docLink["Normalization"].)

19

8 Structured Alpha programs

Alpha programs can be structured: this section explains how this can be done.

8.1 Simple structures

Let us write an Alpha program for the addition of two integers (or fixed-point numbers)
expressed as bit vectors. A binary adder is classically described as a sequence of full adder
operations with the propagation of a carry bit from one full adder to the next one, as shown
in Fig.4.

FA FAFA FA
S[0] S[3]S[1] S[2] S[4]

B[0] B[3]B[1] B[2]A[0] A[3]A[1] A[2]

Figure 4: Addition of two integers (coded as bit vectors), using full adders.

The following Alpha system describes a full adder :

system FullAdder (A,B,Cin : boolean)

returns (X,Cout : boolean);

let

X = A xor B xor Cin;

Cout = (A and B) or (A and Cin) or (B and Cin);

tel;

To build an adder using this program, we need to instanciate a collection of such systems,
as shown in Fig.4. The shape of this collection may be expressed as the Alpha domain
{ b | 0<=b<W } where W is a size parameter giving the number of bits of the adder.

The use construct of Alpha allows precisely that. The following system describes in
Alpha the adder given in Fig. 4:

system Plus: {W|W>1} (A,B: {b| 0<=b<W} of boolean) -- 1

returns (S : {b| 0<=b<=W} of boolean); -- 2

var -- 3

Cin, Cout, X : {b| 0<=b<W} of boolean; -- 4

let -- 5

Cin[b] = -- 6

case -- 7

{| b=0} : 0[]; -- 8

{| b>0} : Cout[b-1]; -- 9

20

esac; -- 10

use {b| 0<=b<W} FullAdder[] (A,B,Cin) returns(X, Cout); -- 11

S[b] = -- 12

case -- 13

{| b<W} : X; -- 14

{| b=W} : Cout[W-1]; -- 15

esac; -- 16

tel; -- 17

In this system, line 11 reads as follows:

”Use (or instantiate) a collection of instances of the subsystem FullAdder. This
collection has the shape of the extension domain { b | 0<=b<W } and is thus
indexed by index b. Let the inputs of the b-th instance be the variables A, B and
Cin at point b, and similarly let the outputs of this collection of instances be the
variables X and Cout.”

Lines 6-10 describe the carry propagation, and lines 12-16 define the output of this binary
adder.

In other words, line 11 is a shortcut for the following equations, which are those of the
system FullAdder whith the dimension of the variables extended from zero to one:

X[b] = A[b] xor B[b] xor Cin[b];

Cout[b] = (A[b] and B[b]) or (A[b] and Cin[b]) or (B[b] and Cin[b]);

Note. In general, the extension indexes are added to the left of the existing indexes. This
cannot be seen in this example, since the full adder subsystem has no indexes.

8.2 Handling structured programs

A structured program is stored in MMAlpha as a Mathematica list of systems called a
library. The default library is stored in the global variable $library.

A structured program may be written in one single file or several distinct files. In the
former case the load[] function returns a library composed of all the systems contained in
the file, and stores this library in $library.

In addition, two functions, putSystem[] and getSystem[], may be used to get a system
from a library as the current system $result, and conversely and to put back a modified
system into a library. Typically a system is extracted from the library as the current system,
modified by some program transformation, and then put back in the library.

The commands to be used are getSystem[] and putSystem[].

8.3 Program transformations associated with structures

Most MMAlpha functions handle parameterized programs and use statements. There are,
however, some major exceptions such as the cGen translator which generates code only for

21

flat Alpha programs without subsystems. MMAlpha provides functions to transform a
structured program into a flat equivalent one:

• assignParameterValue[] gives a value to a size parameter, i.e. it refines a generic
system into a specialized one.

• inlineSubSystem[] expands a use statement, replacing it with the equations of the
corresponding subsystem, properly modified to take the dimension extension into ac-
count.

• inlineAll[] recursively flattens a structured Alpha program.
inlineAll[exceptions->{sys}] inlines all subsystems but those whose names
appear in the exception list.

More on subsystems For more information see the subsystem documentation in file

$MMALPHA/doc/Users/SubSystems.pdf

If you are interested in scheduling structured subsystem, see an example in the More section
of the Master notebook.

Troubleshouting There is a nasty bug in inlineSubSystem and inlineAll. If you try to
inline, with extension, a scalar equation, this equation must be given in standard notation,
not in array notation. In Example 8.1, the equation in the called system must not be written
out[] = 2[] + in[].

Exemple 8.1

system called (in: integer) returns (out: integer);

let

-- This works

out = 2.(->) + in;

tel;

system caller : {N | N>=1}

(v: {i| 0< i <= N} of integer)

returns (w: {i| 0< i <= N} of integer);

let

use {i| 0<i<=N} called (v) returns (w);

tel;

9 And now?

In this document, we have presented a few possibilities of MMAlpha. You should now
know if you are interested in using the MMAlpha software.

If this is the case, you will find in the Alpha distribution some additional examples. See
appendix C.

22

References

[AC97] Api-Cosi. MMAlpha Reference Manual, 1997.

[BQRR98] S. Balev, P. Quinton, S. V. Rajopadhye, and T. Risset. Linear programming
models for scheduling systems of affine recurrence equations – a comparative
study –. In 10th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 1998.

[DQR95] F. D. De Dinechin, P. Quinton, and T. Risset. Structuration of the alpha lan-
guage. In W.K Giloi, S. Jahnichen, and B.D. Shriver, editors, Massively Parallel
Programming Models, pages 18–24. IEEE Conmputer Society Press, 1995.

[dRR97a] F. de Dinechin, T. Risset, and S. Robert. Hierarchical static analysis for improv-
ing the complexity of linear algebra algorithms. In Parallel computing, 1997.

[DRR97b] Florent Dupont De Dinechin, Sophie Robert, and Tanguy Risset. Structured
scheduling of recurrence equations. Technical Report 1140, IRISA, Rennes,
France, 1997.

[FT90] Paul Feautrier and Nadia Tawbi. Résolution de systèmes d’inéquations linéaires;
mode d’emploi du logiciel pip. Technical Report 90-2, Institut Blaise Pascal,
UPMC, Laboratoire MASI, January 1990.

[KMW67] R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the ACM, 14(3):563–590, July 1967.

[Mau89] C. Mauras. Alpha : un langage équationnel pour la conception et la programma-
tion d’architectures parallèles synchrones. PhD thesis, Université de Rennes 1,
IFSIC, December 1989.

[Mol82] D.I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Trans-
actions on Computers, C-31(11), November 1982.

[QRR96] P. Quinton, S. V. Rajopadhye, and T. Risset. Extension of the alpha language
to recurrences on sparse periodic domains. In Int. Conf. on Application Specific
Array Processors, 1996.

[QRR97] P. Quinton, S. V. Rajopadhye, and T. Risset. On manipulating z-polyhedra using
a canonical representation. Parallel Processing Letters, 7(2):181–194, June 1997.

[Qui84] P. Quinton. Automatic synthesis of systolic arrays from recurrent uniform equa-
tions. In 11th Annual Int. Symp. Computer Arch., Ann Arbor, pages 208–214,
June 1984.

[RF86] S.V. Rajopadhye and R.M. Fujimoto. Systolic array synthesis by static analysis
of program dependencies. Technical report, University of Oregon, 1986.

23

A Definition of Alpha

A.1 Meta Syntax

phrase* === zero or more repetitions of phrase.
phrase1 | phrase2 === alternation, either phrase1 or phrase2.
[. . .] === optional phrase.
(. . .) === syntactic grouping.
bold === a terminal.
Italic === a non-terminal.

A.2 Systems

Program stands for a library of Alpha programs. PDecl (or SystemDecl) is a single system.
Name is a system name. ParamDecl is the declaration of a parameter domain. InputDe-
clList is the list of input declarations. OutputDeclList is the list of output declarations.
LocalDeclList is the list of local declarations.

Program :: PDecl PDecl *
PDecl :: SystemDecl

SystemDecl :: system Name [: ParamDecl] (InputDeclList)
returns (OutputDeclList) ;

[var LocalDeclList ;]
Equationblock ;

Name :: Identifier

ParamDecl :: Domain

InputDeclList :: VarDeclList
OutputDeclList :: VarDeclList
LocalDeclList :: VarDeclList

A.3 Declarations of variables

VarDeclList stands for a variable declaration. Notice that scalar types have been extended to
special hardware types, such as integer[S,10] – a signed 10 bit integer – or integer[U,10]
– an unsigned 10 bit integer.

VarDeclList :: VarDeclaration *

VarDeclaration :: IdentifierList : [Domain of] ScalarType ;

24

ScalarType :: integer | real | boolean

A.4 Domains

Domain stands for a domain declaration. IndexList is a list of indexes, and ConstraintList
a list of constraints.

Notice that operations on domains such as intersection (&), union (|), complement ()
and preimage by an affine function are allowed. The parser does the corresponding operation.

I am not sure that the convex syntax, nor the domain expressions fully work...
ConstraintList is a list of constraints, each one being an increasing constraint, a decreas-

ing constraint, or an inequality.

Domain :: { IndexList | ConstraintList }
| Domain | Domain
| Domain & Domain
| Domain .AffineFunction
| ~ Domain
| Domain .convex

| (Domain)

IndexList :: [IndexList ,] Identifier

ConstraintList :: [ConstraintList ;] Constraint
Constraint :: IncreasingSeq | DecreasingSeq | EqualitySeq
IncreasingSeq :: (IncreasingSeq | IndexExpList) (< | <=) IndexExpList
DecreasingSeq :: (DecreasingSeq | IndexExpList) (> | >=) IndexExpList
EqualitySeq :: (EqualitySeq | IndexExpList) = IndexExpList

A.5 Equations

Equationblock is the block of equation declarations. Equation represents an equation,
which can be either in array notation (when the lhs has the form var[...]) or in standard
notation. An equation can also be a use statement. 10

Equationblock :: let EquationList tel
EquationList :: [EquationList] Equation
Equation :: Identifier [IndexList] = Expression ;

| Identifier = Expression ;

| use [ExtensionDomain] Identifier [.ParamAssignation]
(InputList)
returns (IdentifierList) ;

10I am not sure of the syntax for the paramAssignation with the dot...

25

ParamAssignation :: AffineFunction

InputList :: [InputList ,] Expression

ExtensionDomain :: Domain

A.6 Expressions

Expressions can be case expressions, if statements11, restrictions, affine dependencies, binary
operations, unary operations, and reductions12

Expression :: case ExpressionList esac
| if Expression then Expression else Expression
| Domain :Expression
| Expression .AffineFunction
| Expression [IndexExpList]
| Expression BinaryOp Expression
| BinaryOp (Expression , Expression)

| UnaryOp Expression
| reduce (CommutativeOp , AffineFunction , Expression)

| (Expression)

| Identifier
| Constant

ExpressionList :: [ExpressionList] Expression ;

BinaryOp :: CommutativeOp | RelativeOp | - | div | mod
CommutativeOp :: + | * | / | and | or | xor | min | max
RelativeOp :: = | <> | < | <= | > | >=
UnaryOp :: - | not | sqrt

Constant :: IntegerConstant | RealConstant | BooleanConstant

A.7 Dependance Functions and Index Expressions

AffineFunction stands for affine functions.

AffineFunction :: (IndexList -> IndexExpList)

11Alpha conditional statements are strict, that is to say, both branches are evaluated, and moreover, the
domain of the statement is the intersection of that of the condition and of the expressions.

12Reductions are allowed, but few transformations are currently available.

26

IndexExpList :: [IndexExpList ,] IndexExpression | IndexExpression
IndexExpression :: IndexExpression (+ | -) IndexTerm | [-] IndexTerm
IndexTerm :: IntegerConstant Identifier | IntegerConstant | Identifier

A.8 Terminals

IntegerConstant :: [-] Number
RealConstant :: [-] Number .Number
BooleanConstant :: true | false |True | False
Number :: Digit Digit *
Digit :: 0 | 1 |...| 9
Identifier :: Letter (Letter | Digit) *

Letter :: a |...| z | A |...| Z | _

Note: avoid using underscores...

B Description of the internal format of ASTs

This section describes the format of Abstract Syntax Trees (AST) of Alpha programs,
as handled by Mathematica. In other words, the AST of a program is the Mathematica
expression that MMAlpha stores in variable $result when the load command is executed.
It can be displayed just by having Mathematica evaluate the expression $result.

In the following description, non terminals are written inside angle brackets <>. For read-
ability, keywords are written without the prefix Alpha‘ which is implicit. For example, the
keyword system is actually represented by the symbol Alpha‘system. The documentation
is presented in five sections: Systems, Domains, Equations, Matrices and General.

B.1 Systems

<library> ::= {<system> , ... , <system>}

<system> ::= system [<system_id>,

<param_space>,

<in_var>,

<out_var>,

<local_var>,

<equation_list>]

<param_space>::= <domain>

<in_var> ::= <declare_list>

<out_var> ::= <declare_list>

<local_var> ::= <declare_list>

<declare> ::= decl [<id>, <data_type>, <domain>]

<data_type> ::= integer | boolean | real | notype

27

B.2 Domains

The domain specification closely follows the internal format of the domain definition in the
domain library. This was done to minimize the overhead of domain storage and of making
library calls. In Mathematica, domains should only be changed by making calls to the
domain library.

<domain> ::= domain [<dimension_number>,

<id_list>,

<polyhedron_list>]

<polyhedron> ::= pol [<constraints_number>,

<rays_number>,

<equations_number>,

<lines_number>,

<constraint_list>,

<ray_list>]

<constraint> ::= { <const_type>,

<number>, ... , <number> }

<const_type> ::= 0 | 1

0 / 1 = constraint is equality / inequality

<ray> ::= { <ray_type>,

<number>, ... , <number> }

<ray_type> ::= 0 | 1

0 / 1 = ray is line / ray

B.3 Equations

<equation> ::= equation [<id>, <exp>]

| use [<id>,

<extension>,

<param_assign>,

<exp_list>,

<id_list>]

<extension> ::= <domain>

<param_assign> ::= <matrix>

<exp> ::= var[<id>]

| const[<number>] | const[<boolean>] | const[<real>]

| binop [<bop>, <exp>, <exp>]

| unop [<uop>, <exp>]

| if [<exp>, <exp>, <exp>]

| affine [<exp>, <matrix>]

| restrict [<domain>, <exp>]

28

| case [<exp_list>]

| call [<id>, <exp_list>]

| reduce [<casop>, <matrix>, <exp>]

<bop> ::= add | sub | mul | div | idiv | mod | min | max

| eq | le | lt | gt | ge | ne | or | and | xor

<unop> ::= neg | not | sqrt

<casop> ::= add | mul | and | or | xor | min | max

B.4 Matrices

<matrix> ::= matrix [<rows_number>,

<cols_number>,

<id_list>,

{ { <number>, <number>, ... , <number> },

{ <number>, <number>, ... , <number> },

...

{ <number>, <number>, ... , <number> } }]

B.5 General specifications

Numbers, ids, and lists, as used above, are defined generally (with <*> representing any
nonterminal).

<*_number> ::= <number>

<*_id> ::= <id>

<*_list> ::= { <*>, <*>, ... , <*> }

<number> ::= [0-9][0-9]* | Infinity

<real> := <number>.<number>

<boolean> ::= True | False

<id> ::= "a name"

<comment> ::= (* blah blah blah *)

Reserved Keywords

Alpha‘add Alpha‘affine Alpha‘and Alpha‘binop

Alpha‘boolean Alpha‘call Alpha‘case Alpha‘const

Alpha‘decl Alpha‘div Alpha‘domain Alpha‘eq

Alpha‘equation Alpha‘ge Alpha‘gt Alpha‘idiv

Alpha‘if Alpha‘integer Alpha‘le Alpha‘lt

Alpha‘matrix Alpha‘max Alpha‘min Alpha‘mod

Alpha‘mul Alpha‘ne Alpha‘neg Alpha‘not

Alpha‘notype Alpha‘or Alpha‘pol Alpha‘real

29

Alpha‘reduce Alpha‘restrict Alpha‘sqrt Alpha‘sub

Alpha‘system Alpha‘unknown Alpha‘unop Alpha‘use

Alpha‘var Alpha‘xor

C A brief description of the MMAlpha distribution

C.1 The Master notebook

The master notebook is open by the start[] command. It contains 6 sections.

• The welcome section.

• The introduction notebooks: the getting-started notebook, and the mma-intro

notebook.

• The simple examples section. It contains pointers to the matrix-vector, the Fir filter,
the Fifo, and the delay line demonstrations.

• The advances examples section. Here are presented a demonstration of the Delayed
Least-Mean Square filter, of the structured scheduler, and of the Samba architecture
for DNA sequence alignment. 13

• More contains an access to the Domlib notebook, and some suggestion about the
organization of your own notebooks. It explained how you can set the variables
$myNotebooks, $myMasterNotebook, then use the myStart[] and the link commands
to access directly your own working space.

• Finally, the Tests section gives access to a test notebook.

C.2 Documentation

To explore the MMAlpha distribution, you can follow the html files which are in each
subdirectory of the distribution. The structure of the distribution is as follows. The main
directory is called MMAlpha. It contains another directory called Mathematica which
is the MMAlpha distribution properly speaking. In the MMAlpha directory, the file
welcome.html gives access to the documentation.

The Mathematica directory is organized as follows:

• bin.cygwin and bin.solaris directories contain the binary files for execution of
MMAlpha on the Windows NT and Solaris system respectively.

• config contains the configuration files.

• demos contains the demonstrations notebooks.

13Do the DLMS... Check the structured scheduler...

30

• doc contains the documentation notebooks.

• lib contains the Mathematica packages which form MMAlpha.

• sources contains the source files of the C programs and of the latex documentation
files.

• tests containes the test programs for MMAlpha.

D Limitations of Mathematica

This section contains a few hints to overcome limitations of Mathematica or to cope with
known difficulties. Some of these hints are already mentioned in the document.

D.1 The vhdl translater

Some situations may lead to unexpected errors when using the a2v command. Some of them
are easy to avoid.

Parameters are forbidden!

First, remember that the main program should not contain parameters anymore. The value
of the parameters must have been set, before calling a2v, by the fixParameter command.
(Generating vhdl for parameterized programs is very difficult, except for very simple cases.)

Remove main program14!

Second, notice that after the alpha0ToAlphard command, the Alpha program is separated
into a controller, cells, and a module. All these elements are themselves called by a main
program – whose name is the name of the initial system – that cannot always be translated
into vhdl. When calling a2v, the vhdl translator may then fail on this main program.
This error has no consequence on the generation of vhdl for the other subsystems. If you
want to avoid it, just remove the main program from the library using the removeSystem

command before calling a2v.

Put a bound to your calculations!

Alpha allows unbounded programs to be written, filters for example. This happens for
example, by using variables with domains of the form

x : { k | 0 <= k } of integer;

Currently, the a2v translator fails when generating a controller for such programs. To
overcome this, write instead

14This is not a joke . . .

31

x : { k | 0 <= k <= B } of integer;

where B is a parameter that will be set before calling a2v.

E How to install MMAlpha

This section contains MMAlpha installation instructions for Unix users, Windows NT or XP
users, MacOsX and Linux users.15

The MMAlpha sofware can be downloaded at url http://www.irisa.fr/cosi/ALPHA/.
In case of problems, send a mail to patrice.quinton@irisa.fr .

E.1 Installing MMAlpha on Unix-like systems

By Unix-like, we mean Unix, Mac OS X, or Linux. The following procedure has been checked
for Unix and Mac OS X, not for Linux.

1. This first action must be done only if MMAlpha has not yet been installed on the
server or the computer you are using. If MMAlpha is already installed, go to step 2.

The current distribution, as obtained from the MMAlpha web site, is a file named
mmalphaV2-0-2.zip. Double-click on this file to expand this directory. You may also
run the following command

unzip mmalphaV2-0-2.zip

from a shell window.

2. Create a MMALPHA environment variable containing the path of the directory where
MMAlpha has been installed. If you use a csh shell, you have to type:

setenv MMALPHA path-of-mmalpha

and for a bash shell:

export MMALPHA=path-of-mmalpha

These commands may alternatively be added to your .cshrc or to your .bashrc file
(or to your .login file) in order to be executed automatically when starting a shell.

3. You have then to set the PATH environment variable to contain the directory
where the binary files of MMAlpha are. On Mac OS X, this directory is
path-of-mmalpha/bin.darwin. For a csh shell:

15The source of this document is in the doc/Install directory. It appears also as an appendix of the
AlphaStart document.

32

setenv PATH ${MMALPHA}/bin.darwin:${PATH}

and for a bash shell:

export PATH=${MMALPHA}/bin.darwin:${PATH}

Again, you may add this command to your .cshrc or .bashrc file.

4. Copy the file $MMALPHA/init.m to your Mathematica base directory16 (or append it
to your base init.m file if it already exists). For users unfamiliar with Mathematica,
recall that this init.m file is executed whenever Mathematica’s kernel is launched.

5. It’s ready! Run Mathematica by typing in a shell window the command:

mathematica

and once a notebook is started, type and evaluate in it the command

start[]

to launch the master notebook of MMAlpha. From this master notebook, examples
and explanations are available.

6. To check that everything is OK, evaluate successively the following commands

test1[]

test2[]

test3[]

test4[]

Each one of these command starts a set of tests and shoul return the value True. If
this is not the case, something in your installation is wrong. In case of problems, see
Section E.3.

Notice that executing these commands generates a lot of error messages, and even,
unexpected messages in the shell windows: as long as the final result of the test is
True, this is not a problem.

16The Mathematica base directory used to be the user home directory in Mathematica versions prior to
version 5. Under Mathematica, the home directory is given by evaluating the $HomeDirectory Mathematica
variable. Since version 5 (see documentation of Mathematica), the Mathematica base directory is given by the
$UserBaseDirectory variable. For example, in MacOS X, it is located in ~/Library/Mathematica/Kernel
directory: this is where you should put the init.m file.

33

Remarks

• On MacOS X, Mathematica should be started from the Terminal application, as oth-
erwise, the $MMALPHA environment variable cannot be set (at least, I do not know how
to set this variable...). Moreover, after installing Mathematica, it is needed to add an
alias to start Mathematica. Usually, Mathematica is installed in directory

/Applications/Mathematica\ 5.1.app/Contents/MacOS/Mathematica

So, adding

E.2 Installing MMALPHA on Windows NT or Windows XP

Warning: version V2 has not been tested on Windows NT, since I do not hava currently
access to such a configuration. PQ, Jan. 2, 2009.

1. This first action must be done only if MMAlpha has not yet been installed in the
server you are using. If MMAlpha is already installed, go to step 2. The current
distribution is a file mmalphaV2-0-1.zip file. Double-click on this file to expand this
directory.

2. You have to set two environment variables: MMALPHAand Path. To do so:

(a) Open the system configuration panel (start -> configuration panel)

(b) Double click on the ”System” icon.

(c) Choose the ”Advance” panel.

(d) Click on ”Environment variables”.

(e) Consider the user variable panel (top part).

(f) Create a MMALPHA variable whose value is the path of the directory where MMAl-
pha is installed. Typically, the value of this variable should be

C:\...\mmalphaV2-0-2

To create such a variable, click on New, and fill the name and value. This step
allows Mathematica to know where MMAlpha is located.

(g) Append

;%MMALPHA%\bin.cygwin32

to the user Path environment variable. To do so, select the Path variable, click
Modify, place the cursor at the end of the string and type

;%MMALPHA%\bin.cygwin32

34

17This step allows the Domlib library to be launched.

3. Copy the file $MMALPHA/init.m to your Mathematica base directory18 (or append it
to your base init.m file if it already exists). For users unfamiliar with Mathematica,
recall that this init.m file is executed whenever Mathematica’s kernel is launched.

4. It’s ready! Start Mathematica. The first evaluation in the initial notebook should start
MMAlpha. Normally, the Messages window of Mathematica opens and contains a
few lines indicating that Mathematica was started successfully. Evaluate start[] in any
notebook to launch the master notebook of Mathematica. From this master notebook,
examples and explanations are available.

5. To check that everything is OK, evaluate successively the following commands

test1[]

test2[]

test3[]

test4[]

Each one of these command starts a set of tests and shoul return the value True. If
this is not the case, something in your installation is wrong. In case of problems, see
Section E.3. Notice that executing these commands generates a lot of error messages,
and even, unexpected messages in the shell windows: as long as the final result of the
test is True, this is not a problem.

E.3 In Case of Problems

Before reading this section, make sure that you have tried to evaluate the test1[] through
test4[] commands.

Here are a few difficulties you may encounter, and some ways to overcome them. Addi-
tional information is given in the test documentation, in file

$MMALPHA/doc/Tests/testing-MMALPHA.pdf

E.4 The MMALPHA environment variable is not set

To check this, evaluate

Environment["MMALPHA"]

17Or possibly, cygwin.
18The Mathematica base directory used to be the user home directory in Mathematica versions prior to

version 5. Under Mathematica, the home directory is given by evaluating the $HomeDirectory Math-
ematica variable. Since version 5 (see documentation of Mathematica), the Mathematica base direc-
tory is given by the $UserBaseDirectory variable. For example, in Windows, it is probably located in
~/Library/Mathematica/Kernel directory: this is where you should put the init.m file.

35

in your notebook. If it does not answer the proper value, there is a problem.
First, remember that you must start MMAlpha from a shell, otherwise, Mathematica

does not inherit from your environment variables (this is true on Unix-like systems, not on
Windows -like).

Second, it may be that your init.m file was not loaded: see next section.

E.4.1 The initialization file is not correctly installed

Most of the problems come with the fact that the init.m file may not be installed in
the correct directory. If this is the case, evaluating test1[] for example will just return
test1[] unevaluated, as Mathematica was not able to load MMAlpha: indeed, loading is
done through the init.m file.

After launching Mathematica, make sure that the Kernel is also launched by evaluating
any Mathematica expression (for example, 2+2). Before this evaluation is done, the Math-
ematica’s Kernel should evaluate the content of the init.m file, which results in a message
in the Messages window of Mathematica. This message ends with:

Alpha V2.0 Initialization

The Documentation can be found in ...

Current version in ...

Current directory is ...

If you use the notebook interface, you can open the master notebook:

In[1]:= start[];

If the Messages window is not opened, the init.m file was not called and may not be
in the proper directory. To check this, evaluate the expression $UserBaseDirectory in
Mathematica, and then check that the init.m file is in the $UserBaseDirectory/Kernel.

E.4.2 The Domlib does not start

This happen if in the Messages window, the following message appears:

Warning: could not install domlib

Also, if you run the test1[] command, you do have a True result.
Several reasons may be the cause of this problem.

1. Variable $PATH may not contain the directory where the Domlib is. The Domlib is
in the directory $MMALPHA/bin.ostype, where ostype is darwin for MacOS X, linux
for Linux, and cygwin32 for Windows. On Unix-like systems, check the value of this
variable by the command echo $PATH. On Windows, check the value of the PATH

environment variable.

2. The binary file for the domlib may not be in the proper directory. This means that
MMAlpha has not been installed properly, or altered. Again, check that the directory
$MMALPHA/bin.ostype contains domlib. If this is not the case, unzip the MMAlpha
distribution to get it (if you do not find it in the distribution... just send me a mail !)

36

3. The domlib binary does not fit with your configuration. You then have to recompile
it. I have not yet been able to configure MMAlpha so that recompiling is easy, but
I try. Please, refer to the test documentation first, then to the documentation about
domlib.

E.4.3 Other problems

You may encounter other problems, for example, some tests are corrects, some other are not.
After the execution of the test1[] through test4[] commands, you find a test report file
in the $MMALPHA/tests directory: send me this file, and I’ll try to find out what is wrong in
order to help you.

37

Contents

1 Introduction 1

2 How does MMAlpha work? 3

3 Installing MMAlpha 3

4 The Alpha language 4
4.1 Alpha through examples . 4
4.2 Array notation and standard notation . 5
4.3 More on the syntax of Alpha . 6

5 Basic operations on Alpha programs 7
5.1 Loading and viewing an Alpha program . 7
5.2 Viewing Alpha programs . 8
5.3 On-line documentation and options . 8
5.4 Saving a program . 9
5.5 Analyzing an Alpha program . 9
5.6 Simulating a program . 10
5.7 Scheduling . 11
5.8 Mapping the program to a parallel array . 13

6 Generating Hardware 15

7 Other transformations of Alpha programs 16
7.1 Pipelining . 16
7.2 Change of basis . 18
7.3 Substitution . 19
7.4 Normalization . 19

8 Structured Alpha programs 20
8.1 Simple structures . 20
8.2 Handling structured programs . 21
8.3 Program transformations associated with structures 21

9 And now? 22

A Definition of Alpha 24
A.1 Meta Syntax . 24
A.2 Systems . 24
A.3 Declarations of variables . 24
A.4 Domains . 25
A.5 Equations . 25

38

A.6 Expressions . 26
A.7 Dependance Functions and Index Expressions 26
A.8 Terminals . 27

B Description of the internal format of ASTs 27
B.1 Systems . 27
B.2 Domains . 28
B.3 Equations . 28
B.4 Matrices . 29
B.5 General specifications . 29

C A brief description of the MMAlpha distribution 30
C.1 The Master notebook . 30
C.2 Documentation . 30

D Limitations of Mathematica 31
D.1 The vhdl translater . 31

E How to install MMAlpha 32
E.1 Installing MMAlpha on Unix-like systems 32
E.2 Installing MMALPHA on Windows NT or Windows XP 34
E.3 In Case of Problems . 35
E.4 The MMALPHA environment variable is not set 35

E.4.1 The initialization file is not correctly installed 36
E.4.2 The Domlib does not start . 36
E.4.3 Other problems . 37

39

