15oNN 1100-0006/

THE HA COMPILER AND UNCOMPILER

TECHNICAL REPORT

DORAN K. WILDE AND ANDREW SNODDY

™ IRISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

Campus de Beaulieu — 35042 Rennes Cedex — France
Tél. : (33) 99 84 71 00 — Fax : (33) 99 84 71 71

“m IRISA

The ALPHA Compiler and Uncompiler
Technical Report

Doran K. Wilde* and Andrew Snoddy

Programme 1 — Architectures paralléles, bases de données, réseaux et systémes distribués
Projet API

Note technique n “ 9401 — May 1994 — 25 pages

Abstract: The ALPHA parser translates an ALPHA source program into an abstract syntax tree
(AST). The ALPHA unparser, or pretty printer, does the opposite translation from an ALpHA AST
back to a source program. These two translators are an integral part of the ALPHA environment.
This report 1s both a user’s guide and techical documentation for these two programs.

Key-words: recurrence equations, systolic arrays, hardward design language

(Résumé : tsvp)

*email: wilde@irisa.frThis work was partially supported by the Esprit Basic Research Action NANA 2, Number
6632 and by NSF Grant No. MIP-910852.

%}7// BlINRIA

Cantra Nlatinnal AdAe |1a Rarharcrhe Qeiantificaiia Inctitiit Nlatinnal de Rarharcrhe an Infoarmaticiie

Le compilateur et décompilateur de ALPHA
Rapport Technique

Résumé : Le compilateur d’ALPHA traduit un programme écrit en ALPHA vers un arbre de
syntaxe abstract (AST). Le décompilateur d’ALPHA fait I'inverse traduction & partir d’'un ALPHA
AST en retour vers un programme de source. Ces deux traducteurs font un role integral dans ’en-
vironnement d’ALPHA. Ce rapport est 4 la fois, un guide d’utiliseur et la documentation technique

pour ces deux programines.

Mots-clé : équations récurrentes, réseaux systoliques, langage de description de matériel

The ALPHA Compiler and Uncompiler Technical Report 3

1 Introduction

The ALPHA parser translates an ALPHA source program into an abstract syntax tree (AST). The
ALPHA unparser, or pretty printer, does the opposite translation from an ALPHA AST to a source
program (see figure 1). These two translators are an integral part of the ALPHA environment which
is illustrated in figure 2.

read_alpha

Alpha
Program
Code

Alpha
Abstract Syntax

Tree

write_alpha

Figure 1: The read_alpha and write_alpha programs

2 User Guide

This section presents information on how to use the programs described in this document.

2.1 The read alpha program

This program reads and ALPHA source code and produces an abstract syntax tree. The current
version at the time of this writing is version 3. The version number can be checked by looking
at the first line of the output which says: (* ALPHA Tree produced by read_alpha v.3 *). By

o Alpha
Program
P Polyhedral
arser Library
,,,,,,,,,,,,,,,, .,,,,,,,,,,,,Mﬁthﬁm@!l@ﬁ,,,,,,,,,,,¢,,,,,,,,,,,,,,,,
i Alpha < AST
|Abstract Syntax Treg Transformations Ny
Static Analysis
Unparsler ™ Simulation
(Pretty Printer)
Ly, Visualization

Figure 2: The ALPHA environment

NT n " 9401

4 Doran K. Wilde and Andrew Snoddy

default, input 1s from stdin and output is to stdout, which can be overriden with switches. Parsing
errors are always reported to stderr.

Switches

—i filename open filename as the source file

—I integer open file descriptor integer as the source file

—o filename open filename as the destination file

—O integer open file descriptor integer as the destination file

—d turn on debugging of parser (generates lots of output)
-E parse source file as an Alpha expression
-D parse source file as an Alpha domain

Description

Normally, the compiler tries to compile an entire ALPHA program. However, the —E and —D switches
allow the compilation of small pieces of ALPHA source code, by entering the parser at the expres-
ston and domain parse rules, respectively. This is used by the ALPHA environment to do mini-
compilations of domains and expressions written in ALPHA code which are used as arguments to
transformation functions.

The —d switch i1s generally used to locate a bug in the compiler.

Error messages

The parse error messages are very terse. However, the line number of the error is reported. This is
an area where the compiler needs a lot of improvement.

2.2 The write_alpha program

Switches

—i filename open filename as the source file

—I integer open file descriptor integer as the source file

—o filename open filename as the destination file

—O integer open file descriptor integer as the destination file

—d turn on debugging of parser (generates lots of output)
—-a write ALPHA code in array notation
- write ALPHA code using parameters

Description

The switch —a produces a program in array notation, where the equation: A = expression.(z —
Az +b); is written as: A[z] = expression[Az + b]; Array notation is described more in section 6.2.2.

The switch —p produces a program using parameterized notation, where parameter index va-
riables listed in the <param_ domain> of the AST are defined in the system header using the keyword
parameter and are used in the body of the system (in domains and affine functions) without ha-
ving to be explicitly declared. For example, if N and M are parameters, then an affine function
(4,j,NN4M — N —i N+ M — j, N, M) can be written as: (i, — N — i, N + M — j). Parameter
notation is described more in section 6.2.3.

Irisa

The ALPHA Compiler and Uncompiler Technical Report 5

3 AST

This section contains brief descriptions of the files containing general procedures to read, represent
and operate on ALPHA Abstract Syntax Trees (AST).

It is organised into four files. One file gives the node type structure, and the other three files
contain libraries of related utility procedures. For each of the library files, there is a source file (.c),
and two files created by the makefile (.h and .0).

The procedures in any of the library files may be used in another program by including the
required .h file in the source code and linking using the .o file.

Below 1s a list of the files created by the makefile in this directory.

/AST/nodeprocs.h
/AST/nodeprocs.o
/AST/node2item.h
/AST/node2item.o

/AST/nodepoly.h
/AST/nodepoly.o

3.1 /AST/node.h

A node tree 1s used to represent an ALPHA AST in memory. The data structure of the node tree
is contained in the file node.h, which is reproduced here.

/* node types */
typedef enum { none,
/* Number and Id */ num, id,

/* Lists */ list,
/* System */ system, decl,
/* Equation */ equation, cases, restrict, var, affine,

iconst, bconst, rcomnst,

/* binop subtypes */ addop, subop, mulop, divop, idivop,
modop, eqop, leop, ltop, gtop, geop, neop,
orop, andop,

/* unop subtypes */ negop, notop,

/* ifop */ ifop,
/* Domains */ dom, pol,
/* Matrices */ mat

} nodetype;

/* data types */
typedef enum { inttype, booltype, realtype, notype } datatype;

typedef struct node_
{ nodetype type; /* node type */
/* all nodes are listable, and have the following fields */
struct node_ *next; /* next node in list */
int index;
union
{
/* I. General Specifications */
struct
{ int value;

NT n " 9401

6 Doran K. Wilde and Andrew Snoddy

} number; /* <number> */
struct

{ char name[2];

} id; /* <id> */
struct

{ struct node_ *first;
struct node_ *last;
int count;

} list; /* <1list> */
/* II. System specifications */

struct

{ struct node_ *id; /* <system.id> */
struct node_ *in; /* <system.in_var> */
struct node_ *out; /* <system.out_var> */
struct node_ *local; /* <system.local_var> */
struct node_ *equations; /* <system.equation_list> */

} system; /* <system> */

struct

{ struct node_ *id; /* <decl.id> */
datatype type; /* <decl.data_type> */
struct node_ *domain; /* <decl.domain> */
int *1, *w; /* <decl.1l> <decl.w> */

/* abv used in C simulator only */
} decl;
/* III. Equation and Expression specifications */

struct

{ struct node_ *id; /* <equation.id> */
struct node_ *cases; /* <equation.case> */

} equation; /* <equation> */

struct

{ struct node_ *list; /* <case.list> */

} cases; /* <case> */

struct

{ struct node_ *domain; /* <restrict.domain> */
struct node_ *exp; /* <restrict.exp> */

} restrict; /* <restrict> */

struct

{ struct node_ *id; /* <var.id> */

} var; /* <var> */

struct

{ struct node_ *var; /* <affine.var> */
struct node_ *matrix; /* <affine.matrix> */

} affine; /* <affine> */

struct

{ int value; /* <const.number> */

} icomst; /* <const> */

struct

{ int value; /* <const.number> */

} bconst; /* <const> */

struct

{ int value; /* <const.number> */
int fraction; /* <const.fraction> */

Irisa

The ALPHA Compiler and Uncompiler Technical Report

} rcomst; /* <const> */

struct

{ struct node_ *lexp; /* <binop.left_exp> */
struct node_ *rexp; /* <binop.left_exp> */

} binop; /* <binop> */

struct

{ struct node_ *exp; /* <unop.exp> */

} unop; /* <unop> */

struct

{ struct node_ *expl; /* <if.expl> */
struct node_ *exp2; /* <if.exp2> */
struct node_ *exp3; /* <if.exp3> */

} ifop;

/* IV. Domain specifications */

struct

{ int dim; /* <domain.dimension> */
struct node_ *index; /* <domain.id_list> */
struct node_ *pol; /* <domain.pol_list> */

} dom; /* <domain> */

struct

{ int conum; /* <pol.constraints_num> */
int raynum; /* <pol.ray_num> */
int eqnum; /* <pol.eqn_num> */
int linum; /* <pol.line_num> */

struct node_ *constraints;
struct node_ *rays;
/* constraints,rays = list of list of icomnst */

} pol; /* <pol> */
/* V. Matrix specifications */
struct
{ int rows; /* <matrix.rows> */
int cols; /* <matrix.cols> */
struct node_ *id; /* <matrix.id_list> */
struct node_ *matrix; /* <matrix.matrix> */
/* matrix = list of list of const */
} mat; /* <matrix> */
} the;

} node;

3.2 /AST /nodeprocs.c

This section describes procedures used to create node tree.

extern node * add_to_list (node *n, node *e);
extern void free_node (node *n);

extern node * new_id (char *s);

extern node * new_list (node *e);

extern node * new_node (nodetype t);

NT n " 9401

8 Doran K. Wilde and Andrew Snoddy

add_toldist(n.e)

This procedure takes two input parameters. The first must be a pointer to a node of type list
and the second must be a pointer to a node. It returns a pointer to the list, with the new node
appended to the end of the list. If the list is empty, a new list containing only the new node is
returned. If the new node is empty, then the original list is returned.

free node(n)

This procedure takes a node pointer and if memory has been allocated for it, frees the memory for
re-use. Nothing is returned.

new_id(s)

This procedure takes a string as it’s input parameter. It returns a new node of type ‘id’ where the
input string becomes the textual content of the node.

new list(e)

The procedure takes a node pointer as it’s input parameter and returns a list type node, with the
input node as the sole item on the list. If the node pointer is empty, then an empty list is created
and returned.

new_node(t)

This procedure takes a node type as it’s input parameter. It allocates the required memory, ini-
tialises the type to the input type and returns this node. Memory overflow will result in an error
message being displayed.

3.3 /AST/nodepoly.c

This section describes the procedures used to do computation with domains. These procedures rely
on functions in the polyhedral library [2].

extern Polyhedron **compute_loop (Polyhedron #D, Polyhedron *C);
extern void compute_W (Polyhedron *D, int numP, int #*valP,

int #*11, int **wl);

extern Polyhedron *node2Polyhedron (node *D);

extern node *Polyhedron2node (Polyhedron *p);

compute loop(D,C)

This procedure does loop synthesis on the domain D in the context of domain C' [1]. The domain
D 1s factored into a list of domains which are suitable as nested loop domains. This list is returned
by the function.

compute_W (D, numP,valP,11,w1)

This procedure computes the doping vector W used to compute the offset into a memory array
storing the values in domain D [4]. The variable numP and the vector valP contain the number
and values of the parameters respectively. The result is returned in the integer vectors w and [.

Irisa

The ALPHA Compiler and Uncompiler Technical Report 9

Using these two results, both the amount of memory needed and a linear offset function for a given
point can be determined.

node2Polyhedron(D)

This function takes node pointer D as i1t’s input parameter, and converts i1t into a Polyhedron
pointer. The same data is contained in both but in different formats. The conversion is effected to
enable calculations on data by functions in the Polyhedral library.

Polyhedron2node(P)

This does the inverse translation to the procedure above.

3.4 /AST/lex.]

This is a lexical analyzer to read AST files as described in section 5.

4 Pretty

This section contains brief descriptions of the files used for reading, manipulating and printing
item trees, along with a description of the item structure. Item trees represent a hierarchy of text
formatting commands.

It is organised into four main files. Firstly a file to describe the item structure. Secondly a
file containing the relevant procedures, and finally two files to deal with reading and writing. The
makefile creates from the source files .h and .o files for the procedure and write files, and also
creates a file called pretty, which is the executable pretty printer. The file pretty may be used
separately on any box language program to produce pretty printed output.

The following files are created by the makefile

/Pretty/itemprocs.h
/Pretty/itemprocs.o
/Pretty/writeitem.h
/Pretty/writeitem.o
/Pretty/pretty

To use any of the procedures in another piece of source code, include the .h file and link using

the .o file.

4.1 Pretty Printer Description

This section describes the pretty printer formatting commands and the implementation of the
program to produce pretty—printed ALPHA code. The main objectives in the design of the pretty
printer engine were to :

1. Facilitate the translation of an ALPHA AST into ALPHA code format. This meant that the
language needed to be able to format block structured text and be able to show blocks using
indentation and enclosure in keywords. The pretty printer also needed to be able to print lists in
a variety of ways.

2. Format the output, using a small set of commands, to ensure flexibility of output format,
ease of implementation and aesthetically pleasing output.

NT n " 9401

10 Doran K. Wilde and Andrew Snoddy

3. Increase the maintainability of the pretty printer in view of the continuing developement of
the Alpha language.

It should be noted, that the scope of the box language 1s not limited to formatting ALPHA code.
The box language is highly flexible, and is capable of formatting text to satisfy a wide variety of
desired output requirements. The pretty printer is suitable for formatting and printing any block
and list oriented text.

4.1.1 The Item Box Language

The item box language is used to format ASCII programs and consists of a small number of print
templates (patterns, or stencils) which are called “boxes” (to denote a place to put things). The
box language consists of ten different items, each with it’s own parameters.

The item types are :

item = Text(string)
Number(value)
Hspa(wvalue)
Vspa(value)

|
|
|
|
Hsep(indent, sep, item_list) |
Hlis(indent, sep, item_list) |
Vsep(indent, sep, item_list) |
Vlis(indent, sep, item_list) |
Venc(indent, open, close, body) |

Henc(indent, open, close, body)

iwem_list = item, ---

value := NUMBER

mdent := NUMBER

sep = “a quoted list separator”
string = “a quoted text”

open = ilem

close = item

body n= item

Notice that item_list, open, close and body, are all themselves items. Thus, the arguments of an
item may themselves be items, recursively. Therefore, the associated item processing procedures
must also be recursive.

4.1.2 Description of item boxes

In this section, each kind of item box is described and it’s parameter types and function are defined.

Text(string)

A text box i1s an item which contains only a string as parameter. It may contain anything from
an empty string to a string of many characters, such as “qwertyuiop”. All combinations of digits,
letters and keyboard symbols are valid contents for the text box.

Examples of text items are: Text(“case”) and Text(“;”).

Irisa

The ALPHA Compiler and Uncompiler Technical Report 11

]

Figure 3: Text Item Box

Number(value)

A number box is an item for displaying any integer value. It does not allow for the representation
of real numbers. This item is similar to the text box, except it prints a number instead of a string.
Examples of number items are Number(12), Number(0), and Number(-18765).

Hspa(wvalue)

The horizontal space item prints horizontal blank space on a line. This box type has as it’s single
parameter value, an integer variable, which defines the number of spaces which are to be printed. If
Hspa overflows the line, a newline is forced, the rest of the spaces are ignored by the formatter, and
printing continues with the next item at the margin of the next line. The arrow shows a horizontal

[|

Figure 4: Hspa Item

space between two items.

Vspa(wvalue))

The vertical space item is used when one or more blank lines need to be printed. The item takes
a parameter value, an integer representing the number of whole lines to be left blank. The arrow

Figure 5: Vspa Item

shows a vertical space between two 1tems.

Hsep (indent, sep, item_list)

The horizontally separated item is a means of printing lists of items, separated by a constant string
sep. For example, the item tree:

Hsep(O, " | ", Hsep(O, ",", Text("Z"), Text("t"), Text("p"))
Hsep(8, "; ", Text("2Z-t-p+4=0"), Text('-p+4>=0"),
Text ("p>=0"), Text("-t-p+14>=0")
)
)

would be printed as:

NT n " 9401

12 Doran K. Wilde and Andrew Snoddy

Z,t,p | 2Z-t-p+4=0; -p+4>=0; t+p-4>=0; p>=0;
-t-p+14>=0

This example illustrates the recursive nature of item trees. In this case, we have Text items
inside of Hsep items inside of an Hsep item.

The problem of what to do when a list overflows onto a new line is resolved by specifying indent,
an integer parameter which gives the relative indention of additional lines of the list, if they are
required. On all subsequent new lines, the list text would be indented to this value, until the end
of the list was reached.

This produced a box which would have a pattern similar to where the arrow signifies the indent,

L

—=

.

Figure 6: Hsep Item Box

after the first new line. There is great flexibility about the exact shape of a box, as the contents
will decide the specific dimensions and pattern.

Hlis(indent, sep, item_list)

The horizontal list item is only slightly different from the Hsep item. It formats the list with a
separator sep like Hsep with the addition of one last separator after the final item on the list.
Hlis(indent, sep, item_list) is roughly equal to Hsep(0, ”” | Hsep(indent, sep, item_list), Text(sep)).

Vsep(indent, sep, ilem_list)

The vertically separated item is similar to the horizontally separated item, except each item on
the list appears on a new line and thus vertically separated. The separator sep is printed after and
on the same line as each item on the list except the last item.

The general box shape is as follows:

[

—_——

Figure 7: Vsep Item Box

Vlis(indent, sep, item_list)

The vertical list item is similar to the horizontal list box (Hlis) in that also it prints a separator
after the last item in the list. It is similar to the vertically separated item in that each item and
its separator are printed on a new line.

Venc(indent, open, close, body)

Vertically enclosed items are used to format blocks of text delimited by open and close items. The
body item 1s placed vertically in between the delimiters with an indentation of indent relative to

Irisa

The ALPHA Compiler and Uncompiler Technical Report 13

the delimiters. Examples of such a box is: Venc(2, Text(”case”), Text("esac”), Vlis(0, ”;”, ...))
which is printed as:

case
{Z,t,p | Z=0}: True.(Z,t,p—>);
{Z,t,p | Z-1>=0}: False(Z,t,p—>);
esac

The box shape for a Venc item is shown below. As usual the arrow denotes the indent.

—
Figure 8: Venc Item Box

Henc(indent, open, close, body)

The horizontally enclosed item 1s similar to the vertically enclosed items and is also used to format
blocks of text delimited by open and close items. The difference is that the body item is placed
horizontally in between the delimiters. If the line overflows, new lines will be indented with a
relative indentation of indent. As can be seen from the diagram, the body continues on the same

L]

—=

—

Figure 9: Henc Item Box

line as the open, and the close item follows the body on the same line if possible. No new lines
separate the open, close and body. If one of the items length’s is such that it requires starting a
new line, it simply continues to the next line (with suitable indent), and continues as normal.

4.2 /Pretty/item.h

This data structure defines the internal representation used by the print engine. It is contained in
the file item.h which is shown below :

#define TEXTLENGTH 128
#define SEPLENGTH 8

typedef struct item_

{ int type;
int prec;
struct item_ *next;
union { struct { struct item_ *item_list;
char sep [SEPLENGTH] ;
int width;
int indent; } hsep;
struct { struct item_ *item_list;

NT n " 9401

14 Doran K. Wilde and Andrew Snoddy

char sep [SEPLENGTH] ;

int width;

int indent; } hlis;
struct { struct item_ *item_list;

char sep [SEPLENGTH] ;

int indent; } vsep;
struct { struct item_ *item_list;

char sep [SEPLENGTH] ;

int indent; } vlis;
struct { int indent;

struct item_ *open;

struct item_ *close;

struct item_ *body; } venc;
struct { int indent;

struct item_ *open;

struct item_ *close;

struct item_ *body; } henc;
struct { char string [TEXTLENGTH]; } text;
struct { int value; } number;
struct { int n; } hspa;
struct { int n; } vspa;

} the;
} item;

typedef enum { hsep, hlis, vsep, vlis, venc, henc, text, number, hspa, vspa
} item_type;

4.3 /Pretty/itemprocs.c

This section describes procedures used to create an item tree.

extern item
extern item
extern item
extern item

extern item
extern item
extern item
extern item
extern item
extern item
extern item
extern item
extern item
item *i5);

extern item

*add_to_ilist (item *il1l, item *i2);

*check_prec (item *a, int b);

*copy_item (item *anitem);

*new_henc (int indent, item *open, item *close,
item *body);

*new_hlis
*new_hsep
*new_hspa
*new_item
*new_listil
*new_list?2
*new_list3
*new_list4
*new_listh

*new_list6

item *ib, item *i6);

N AN

NN N AN

int indent, char sep[8], item *body);

int indent, char sep[8], item *body);

int val);

item_type spec_type);

item *il);

item *il, item *i2);

item *il, item *i2, item *i3);

item *il, item #*i2, item *i3, item *i4);
item *il, item *i2, item *i3, item *i4,

item *il, item *i2, item *i3, item *i4,

extern item *new_text (char *txt);

extern item *new_venc (int indent, item *open, item *close,

Irisa

The ALPHA Compiler and Uncompiler Technical Report 15

item *body);

extern item *new_vlis (int indent, char sep[8], item *body);
extern item *new_vsep (int indent, char sep[8], item *body);
extern item *new_vspa (int val);

add_todlist(il,i2)

This procedure takes two items as input parameters. It appends the second item to the first item,
before returning a pointer to the first.

check_prec(a,b)

This function takes two items as input parameters. It compares their respective precedences to
decide whether or not the first needs to be placed in parentheses, with respect to the second. If so,
then a new item is created.

copy-item(anitem)

This function takes an item and by recursive techniques, copies the item. Finally it returns a
pointer to the copied item.

new_henc(...) new_venc(...) etc.

These functions allocate memory for various kinds of item nodes. They take the input parameters
specific to that kind of item and return an item of the particular type suitable for inclusion in the
item tree.

new_list2(..) new_list3(...) etc.

Each of these functions are used to create lists suitable as the last parameter in Hsep, Vsep, Hlis
and Vlis items.

new_item(spec_type)

This functions allocates memory for a new item node. It takes as 1t’s input parameter an item type
(Vsep, Henc, etc.) and returns an empty item of this particular type.

4.4 /Pretty/writeitem.c

4.4.1 The item tree printer

The item tree printer is a single procedure called print_item capable of printing any kind of item.
It is defined in the file pretty.c along with all of the utility procedures that it calls. Since an
item tree is recursivly defined, print_item is a recursive procedure to print the item tree. A large
switch statement is used to decide what type of item to print and the code for each case prints the
item according to the specification. The print format of all types of items are encoded into this
one procedure, and this is where the definition of the output format is realised in code.

The printing 1s controlled by the current context, which includes:

e a current position marker which keeps a count of where the text is currently being positioned
on a line,

NT n " 9401

16 Doran K. Wilde and Andrew Snoddy

e a left margin to position the first character of a new line, and
e a right margin value to limit the size of each line.

All indentations are made relative to the current left margin. Thus, an indentation is “nested”
within the current context.

One of the main features of the pretty printer, was it’s ability to handle large items i.e. those
which ran over several lines, whilst maintaining the desired aesthetic qualities. The guiding rules
are (in priority):

1. if an item will fit entirely on the current line, then place 1t there, else

2. if an item will fit entirely the next line then force a new line and place the item on the next
line, else

3. start to place the item on the current line. It will need to be split on the boundaries between
the items contained within it, if possible.

Depending on the items and their lengths, the largest possible amount of text is fit on to each
line. Breaks in text are only made when necessary, and at the highest possible level in the item
tree. This result in breaks at logical points, which improves not only the asthetic quality, but also
readability.

extern void print_item (item *x);

print_item(item pointer)

This procedure takes the item pointer declared as the input parameter, and prints the item ac-
cording to its item format and according to the current context. A large switch statement is used
to decide what type of item to print and the code for each case prints the item according to the
specification.

First, all the necessary changes to the left margin are made by simply adding the indent value
found in the item to the current left margin. This ensures that on recursive calls, the left margin
will be correct.

Then according to the item type:

Vspa item: The specified number of newlines are printed and the cursor is left at the current left
margin.

Number or Text item: The item length is tested (forcing a newline if the item doesn’t fit), then
the item is printed and the current position counter augmented by the value of the length of
the item.

Hspa item: If the specified number of spaces will fit on the current line, then print the spaces
and update the current position counter, else force a newline.

Hsep and Hlis item: The length of each item and its separater are tested by the test procedure
to see if they will fit on the current line. If not, then a new line is printed. Each item on the
list 1s printed by a recursive call to the print_item procedure. This was repeated for each
item in the list. After the final item, Hlis prints a separator and Hsep does not. Finally, the
left margin variable is restored to its original value.

Irisa

The ALPHA Compiler and Uncompiler Technical Report 17

Vsep and Vlis item: Each item on the list is printed on a separate line by a recursive call to
the print_item procedure, followed by its separator. This was repeated for each item in the
list. Vlis prints a separator after the final item, whilst Vsep does not.

Henc item: The open item is printed by a call to the print_item procedure. The left margin
variable was augmented by the indent value to ensure that subsequent new lines will begin
at the correct margin value. Then the body and close items are printed by recursive calls to
the print_item. Finally, the left margin variable is restored to its original value.

Venc item: If the curser it not at the current margin, it is aligned by calling the align to margin
procedure. Then, the open item is printed followed by a new line. Then, the left margin is
adjusted to indent the body. Next, the body is printed followed by a new line. Then the left
margin is restored to its original value, and the close item is printed, leaving the cursor at
the end of the close item. The open, body, and close items are printed using a recursive call
to the print_item procedure.

The following internal procedures are used, but are not accessible outside the library which
contains the main printing procedure.

len_item(item pointer)

This procedure takes as it’s input an item pointer, and returns the length of the item, in terms of
characters required. For all items, except the Venc, Vsep and Vlis type, the value returned is the
sum of the constituent parts, including all appropriate instances of separators etc.

For a Venc type, the value considered for length purposes, is simply the length of the open
item, as a new line will be, by definition, forced after this. In the case of both Vsep and Vlis, the
value returned is the length of the first item on the list plus the separator value, as again a new
line will be forced after this.

newline()

This procedure takes no input parameters and returns nothing. It’s purpose is merely to condi-
tionally print a new line, provided the current position counter is not equal to the current left
margin already. After printing a new line, the number of spaces necessary to bring the current
cursor position to the left margin are printed, and the current position counter is set to the left
margin.

test(integer)

This procedure inputs an integer value and tests whether an item with that length will fit on a
line. This is done by comparing the value of the current position variable plus the length with the
right margin. If the value s greater than the right margin, a call is made to the newline procedure,
otherwise nothing is done.

When used in conjunction with the len_item procedure, this procedure tests if a particular
item will entirely fit on the current line.

align_to_margin(integer)

This function takes an input integer margin and tests if the current position is equal to this margin.
If it 1s greater, a new line is forced. Then the current position is spaced to the specified margin.

NT n " 9401

18 Doran K. Wilde and Andrew Snoddy

4.5 /Pretty/lex.l

This is a lexical analyzer to read the pretty command language which is described in detail in
section 4.1.1.

4.6 /Pretty/readitem.c

This is the source code for the program to read and print a pretty command file. After compilation,
the executable file is called pretty.

5 The ALPHA abstract syntax tree (external format)

This is the definition of the ascii form of the abstract syntax tree (AST) which is produced by
the parser and read and written by the symbolic algebra system. Semantic notes are placed in
parentheses. Non-terminals are enclosed in angle braces <> and the vertical bar | is used for
alternation. The starting non-terminal is <program>.

Terminal and General specifications

Numbers, ids, and lists are defined generally.

<*_number> ::= <number> (with <*> representing any nonterminal)
<*_id> 1i= <id> (with <*> representing any nonterminal)
<k_list> s L <>, k>, L, <>}

<number> ::= [0-9][0-9]*

<real> ::= <number>.<number>

<boolean> ::= True | False

<id> ::= "a name"

<comment> = (* blah blah blah *) (3)

Main System Specifications

<program> ::= system [<system_id>, (9)
<param_domain>, (4)
<in_vars>,
<out_vars>,
<local_vars>,
<equation_list>]

<param_domain>::= <domain>

<in_vars> ::= <declare_list>

<out_vars> ::= <declare_list>

<local_vars> ::= <declare_list>

<declare> ::= decl [<id>, <data_type>, <domain>] (5)
<data_type> ::= integer | boolean | real | notype (10)

Equation and Expression specifications

<equation> ::= equation [<id>, <exp>] (1)
<var> ::= var[<id>]
<exp> 1= <var>

| const[<number>]

Irisa

The ALPHA Compiler and Uncompiler Technical Report

19

<bop>

<unop>

const[<boolean>]
const [<real>]

binop [<bop>, <exp>, <exp>] (6)
unop [<uop>, <exp>] (8)
if [<exp>, <exp>, <exp>] (8)
affine [<exp>, <matrix>] (7)
restrict [<domain>, <exp>] (13)
case [<exp_list>] (14)

add | sub | mul | div | idiv | mod | min | max
eq | 1le | 1t | gt | ge | ne | or | and | xor
neg | not

Domain specifications

The domain specification closely follows the internal format of the domain defined in the polyhedral

library [2] to minimize the overhead of domain storage and of making library calls.

<domain>

<pol>

<constraint> :
<const_type> :

<ray>
<ray_type>

::= domain [<dimension_number>, (2)

<id_list>, (12)
<pol_list>]

::= pol [<constraints_number>,

<rays_number>,
<equations_number>,
<lines_number>,
<constraint_list>,
<ray_list>]

:= { <const_type>, <number>, ... , <number> } (8)
:= 0 (=equality) | 1 (=inequality)
1:= { <ray_type>, <number>, ... , <number> } (11)

::= 0 (=line) | 1 (=vertex/ray)

Matrix specifications

<matrix>

5.1 Semantics

::= matrix [<rows_number>,

<cols_number>,

<id_list>, (12)
{{ <number>,<number>, ... ,<number> 7},
{ <number>,<number>, ... ,<number> I},
{ <number>,<number>, ... ,<number> }}]

1. Single assignment semantics

2. Domains are unions of finite convex polyhedra

3. Comments may appear anywhere

4. Parameter domain defines the parameter space over which the system is defined.

5. Scalar domains are domains of dimension 0

NT n " 9401

20 Doran K. Wilde and Andrew Snoddy

6. Semantics of operators:

Operators Source Types— Destination Type
add sub div mul neg | int/real int/real

eq le 1t gt ge ne int/real boolean

and or not int/boolean int/boolean

if boolean, int/real/bool, int/real/bool | int/real/boolean

7. All dependencies are of the form: var1[i, j,k,...] --> var2[affine_function(i,j,k,...)]
This affine function may be represented as a transformation matrix T with d rows and d+1
columns, for example:

[i] [t11 t12 t13] [i]
[j1 = [t21 t22 t23] [j]
[1]

represents dependency:
[1,j] ——> [t11#i + t12%j + t13, t21*i + t22%j + £23]

8. Constraints may be either affine equalities or affine inequalities. Constraints represented as
a list of coefficients, for example:

{0, c1, ¢2, c3, c4 }
{1, c1, c2, c3, c4 }

(cil*i + c2*%j + c3%k + c4 = 0)
(cl*i + c2%j + c3*k + c4 >= 0)

9. Single (main) function programs, subsystems not supported.
10. Precision is unspecified.

11. “Rays” may be either vertices, rays, or lines. They are represented as a list of coefficients,
for example:

{0, c1, ¢2, ¢3, 0} ::= 1line(cl, c2, c3)
{1, c1, ¢2, ¢3, 0} ::= ray(ci, c2, c3)
{1, c1, c2, ¢c3, c4 } ::= vertex(cl/c4, c2/c4, c3/c4), c4'!'=0

12. <id_list> is a list of names of the indices, each of which is limited to be 8 characters long.
13. An expression <exp> is only defined within the restricted domain <dom>

14. The domains of the expressions within a case do not intersect each other.

6 The ALPHA Parser — read_alpha

The read_alpha program, described in this section, reads ALPHA source code and produces ALPHA
AST (whose format is described in section 5. The syntax and semantics of an ALPHA program are
fully described in [3].

Irisa

The ALPHA Compiler and Uncompiler Technical Report 21

6.1 Technical Guide
The Read_Alpha directory contains the following source files:

lex.1

yacc.y
node.c
nodetypes.h
read_alpha.c

The file 1ex.1 is a lexical analyzer and yacc.y is the parser to read ALPHA source programs. The
file nodetypes.h defines the internal data structure to represent the AST of an ALPHA program
and the file node. c is a library of procedures to operate on that data structure. This data structure
1s similar to the node tree described earlier in section 3, but has some important differences and is
more complex. (Tt actually is the forerunner to the node tree data structure.) And finally, the file
read_alpha.c is the source code of the main program, which simply reads in the command line
parameters and calls the parser.

6.2 ALPHA syntax

This section describes the most recent features added to the read_alpha program, version 3.0.
The new parser recognizes the following constructs: array notation, min and max lists in domain
constraints, an “include” facility, nesting of equations in restrictions, parameterized system sup-
port, and the reduce function. These features will be described and examples given based on the
convolution program:

system convolution (a : { j | 1<=j<=4 } of integer;
x {1 i>=1 } of integer)
returns (y : { 1| i>=1 } of integer);
var
Y : {i,j | 0<=j<=4 ; i>=1; i>=j } of integer;
let
Y = case
{i,j I j=0} 0 0.(1,3->);
{i,j | 1<=j<=4 } : Y.(4i,j—>i,j-1)
+a.(i,j—>3) * x.(i,j->i-j+1);
esac;
y = case
{11 i<=3 } : Y.(i—>1,1i);
{11 i>=4 3} : Y.(i—>1,4);
esac;
tel;
6.2.1 Constraints
The parser recognizes lists of expressions between relational operators (<, <,=,>,>). These lists

can be interpreted as minimum and maximum operations, depending on the context. For example,
the declaration for Y in the above program, can be rewritten as:

Y @ {i,7 | (1,j)<=1; 0<=j<=4} of integer; ‘

NT n " 9401

22 Doran K. Wilde and Andrew Snoddy

meaning that ¢ is greater than or equal to max(1,j). The words min and max are not explicitly
written.

In general, (a,b) < (¢,d) < (e, f) would mean max(a,b) < min(c,d) and max(c,d) < min(e, f).
It can also be interpreted as the list of constraints: a < ¢; a < d; b<e¢; b<d; c<e; e< f; d<
e; d< f.

6.2.2 Array Notation

Array notation is parsed and interpreted as follows:

Alz] = -+ - { | constraints} : expression[Az +b] - - ;
|
A = ... {z | constraints} : expression.(z — Az +b) - -

where expression is in normal (non-array) format.
The convolution example can be written in array notation as:

system convolution (a : {j | 1<=j<=43} of integer;
x @ {1 | 1<=1i} of integer)
returns (y : {i | 1<=i} of integer);
var
Y @ {i,j | (1,j)<=i; 0<=j<=4} of integer;
let
Y[i,j] =
case
{1j=0} : ofl;
{l1<=j<=4} : Y[i,j-11 + aljl * x[i-j+1]1;
esac;
y[i] =
case
{li<=3} : Y[i,i];
{l4<=1i} : Y[i,4];
esac;
tel;

6.2.3 Parameterized Systems

The parser recognizes a parameter list and associated constraints as the first entry in the input
declarations part of the system header. All parameters must be presented in a single parameter
declaration and the context domain constraining the parameters with respect to one another must
match the parameter list. The syntax for a parameter declaration 1s:

z : {2z | constraints} parameter ;

The convolution example can be extended from 4 to N, using the parameter notation as follows:

Irisa

The ALPHA Compiler and Uncompiler Technical Report 23

system convolution (N : { N | N>=0 } parameter;
a : { j | 1<=j<=N } of integer;
x {1 i>=1 } of integer)
returns (y : { 1| i>=1 } of integer);
var
Y : {i,j | 0<=j<=N ; i>=1; i>=j } of integer;
let
Y = case
{i,j | j=0}% 2 0.(3,5->);
{i,j | 1<=j<=N } : Y.(4i,j—>i,j-1)
+a.(i,j—>3) * x.(i,j->i-j+1);
esac;
y = case
{1 | i<=N-1 } : Y.(i->i,1i);
{1i | i>=N } : Y. (1i->1,0);
esac;
tel;

6.2.4 Reduction Operator

The reduction operator is parsed in its usually accepted format:
reduce(commutative-associative-op, projection, expression)

The commutative and associative operations allowed at are: 4+, *, and, or, xor, min, and max.
Using the reduction operator, the convolution can be specified (parametrically) as:

system convolution (N : { N | N>=0 } parameter;
a : { j | 1<=j<=N } of integer;
x {1 i>=1 } of integer)
returns (y : { 1| i>=1 } of integer);
var
Y : {1i,j | 0<=j<=N; i>=1; i>=j } of integer;
let
y = reduce(+, (i,j->1), a.(di,j->j)*x.(1,j->i-j+1));
tel;

6.2.5 File include directive

The compiler recognizes and obeys an “include” compiler directive. For example, the ALPHA pro-
gram consisting of the single lines:

--include convolution.alpha

Will cause the file “convolution.alpha” to be included and parsed. The include directive must start
at the beginning of the line and may be nested to any depth.

6.2.6 Prefix notation for binary operators

Binary operations can be written in either infix notation (e.g. A+ B, A max B) or in prefix notation
(e.g. +(A4, B), max(A, B)). The commutative binary operators are: +, *, and, or, xor, min, and
max and the non-commutative binary operations are: —, div and mod.

NT n " 9401

24 Doran K. Wilde and Andrew Snoddy

Alpha
Abstract Syntax Treq

(AST}

Pretty
Printer

Parse

Item Tree

Print Item

Pretty Printed
Alpha Code

Figure 10: Steps in Unparser

6.3 Parser operation

The parser creates a data structure called a node tree while parsing the source file. The node tree
is the internal memory representation of an ALPHA AST (see section 5) and it is described in
the next subsection. After the node tree has been created, it is printed using the node tree print
procedure.

7 The ALPHA Unparser — (write_alpha)

The unparser (pretty printer) operates in two steps as illustrated in figure 10. First, the generator
parses an ALPHA AST (defined in section 5) and at the same time, it creates an internal data
structure called an «tem tree which contains text and formatting commands. Each node in this
item tree is a template telling how to print that branch of the tree.

Secondly, the print engine scans the tree produced by the generator, and writes the formatted
ALPHA code to the output. The print engine is a general purpose formatter which carries out the
formatting commands contained in the nodes of the item tree. The kind of formatting done is
universal to the general problem of formatting structured code, and thus the pretty printer engine
is the “back end” of many of our programs that have to generate structured textual programs. The
print engine is described in detail in section 4.1.

Irisa

The ALPHA Compiler and Uncompiler Technical Report 25

7.1 /Write_Alpha/yacc.y (The tree generator)

This is the main program for the unparser. It uses a yacc parser to generate an item tree using
procedures in Pretty (see section 4.3). The generator parses the AST into a formatted item tree,
the internal data structure of the pretty printer engine. This data structure is defined in the file
item.h (see section 4.2). The main body of the generator is a parser found in the yacc.y file. Tt
gives the specific actions for creating the item tree for each grammatical rule needed to parse an
Arpua AST.

The item tree 1s then printed using the print_item procedure, as detailed in section 4.4.

7.2 Other Pretty Printers

Two other similarly structured pretty printers exist. These are called Write_C and Write_Tex.
Write_C outputs a C program capable of simulating an Alpha program.
Write_Tex outputs a LaTeX version for an Alpha program, i.e. a piece of code that may be
included in a Latex document to print Alpha code in LaTeX style.

References

[1] H. Le Verge, V. Van Dongen, and D. Wilde. Loop Nest Synthesis using the Polyhedral Library.
Technical Report Internal Publication 830, IRISA, Rennes, France, May 1994. Also published
as INRIA Research Report 2288.

[2] D. Wilde. A Library for Doing Polyhedral Operations. Technical Report Internal Publication
785, IRISA, Rennes, France, Dec 1993. Also published as INRIA Research Report 2157.

[3] D. Wilde. The ALPHA Language. Technical Report Internal Publication 828, TRISA, Rennes,
France, May 1994. Also published as INRIA Research Report.

[4] D. Wilde and S. Rajopadhye. Allocating memory arrays for polyhedra. Technical Report Internal
Publication 749, IRISA, Rennes, France, July 1993. Also published as INRIA Research Report
2059.

NT n " 9401

26

Doran K. Wilde and Andrew Snoddy

Irisa

