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Une biblioth�eque pour Faire les Op�erations Poly�edrales

R�esum�e : Les poly�edres sont des repr�esentations g�eom�etriques de syst�emes d'�equations ou d'in�e-
quations lin�eaires utilis�es pour d�ecrire le domaine d'it�eration des nids de boucles. Les proc�edures
de calculs sur les poly�edres sont donc n�ecessaires pour transformer des boucles; elles servent aussi
dans de nombreuses transformations e�ectu�ees par les compilateurs parall�eliseurs. C'est pourquoi le
besoin d'une biblioth�eque de calculs sur les poly�edres se fait sentir dans la communaut�e scienti�que
int�eress�e par la parall�elisation.

Les poly�edres sont aussi utilis�es pour repr�esenter les domaines des variables dans les syst�emes
d'�equations r�ecurrentes a�nes (SARE). Dans le langage Alpha, bas�e sur ce formalisme, les do-
maines des variables sont des unions �nies de poly�edres. Ce rapport d�ecrit une biblioth�eque de
fonctions de calcul sur les poly�edres, d�evelopp�ee pour le langage Alpha. Cette biblioth�eque est
assez g�en�erale pour satisfaire les besoins de chercheurs en parall�elisation.

Dans ce rapport, on d�ecrit les structures de donn�ees utilis�ees pour repr�esenter les domaines,
on donne les raisons des principaux choix e�ectu�es, et on pr�esente les algorithmes permettant les
calculs sur les poly�edres.

Cette biblioth�eque a �et�e programm�ee et test�ee, et est utilis�ee depuis le d�ebut de 1993 par
plusieurs centres de recherche en Europe et au Canada. Elle est distribu�ee librement par ftp.
Mots-cl�e : Poly�edres, Dualit�e, G�eometrie, Chernikova, Fonctions Bool�eanes



Chapter 1

INTRODUCTION

Much work has been done recently in the development of methods to do synthesis, analysis and
veri�cation of systems of recurrence equations in order to �nd equivalent parallel forms of these
algorithms suitable for implementation. The ultimate goal is to transform an algorithm from a
mathematical type of description into an equivalent form that can be implemented either with
special purpose hardware (with systolic arrays for instance) or implemented as a program which
is able to run on a multiprocessor system. The Alpha language was invented to be able to do just
this kind of program transformation [Mau89, in French] [LMQ91, in English].

The work presented here was done in connection with the implementation of anAlpha environ-
ment based on the commercially availableMathematica system. This environment is illustrated
in �gure 1.1.

The Alpha environment is a toolchest from which di�erent transformations can be selected to
move a program from its current state toward a target state. A change of basis of a program variable
is an example of an Alpha program transformation. Transformations such as loop reindexing (e.g.
index skewing, loop exchanges), uniformalization of communication and space-time mapping are
all examples of doing changes of bases of program variables. Time schedules may be re
ected back
into the program by performing a change of basis on program variables, transforming one (or
more) of the variable indices into time indices. To perform these transformations, there are certain
computations involving unions of polyhedral domains that have to be performed.

1.1 The Role of the Polyhedral Library

In �gure 1.1, there is a block labeled \Polyhedral Library". This is a library which operates on
objects called domains made of unions of polyhedra [Wil93]. When specifying a system of a�ne
recurrence equations, unions of polyhedra are used to describe the domains of computation of
system variables. Whereas a polyhedron is a region containing an in�nite number of rational1

points, a domain, as the term is used in this report, refers to the set of integral points which are
inside a polyhedron (or union of polyhedra). Figure 1.2 illustrates this di�erence.

De�nition 1.1 A polyhedral domain of dimension n is de�ned as

D : fi j i 2 Zn; i 2 Pg = Zn \ P (1:1)

where P is a union of polyhedra of dimension n.

1Polyhedra may also be de�ned over the reals, however, only rationals are considered in this report.
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Figure 1.2: Comparison of Polyhedra, Domain, and Variable

In a�ne recurrence equations of the type considered here and in theAlpha language, every variable
is declared over a domain. Elements of a variable are in a one-to-one correspondence with points
in a domain. Again, �gure 1.2 illustrates this. Here, we formalize the de�nition of a variable.

De�nition 1.2 A variable X of type \datatype" declared over a domain D is de�ned as

X ::= f Xi : Xi 2 datatype; i 2 D g (1:2)

where Xi is the element of X corresponding to the point i in domain D.

X can also be thought of as a function: X : i 2 D 7! Xi 2 datatype.
In order to be able to manipulate Alpha variables, a library of \domain functions" is needed.

This library is the geometric engine of the language and provides the capabilities needed for
programs to be analyzed and transformed. Examples of domain operations which can be performed
by the library are: Image, Preimage, Intersection, Di�erence, Union, ConvexHull, and Simplify. The
implementation of these and other library functions are described in detail in chapter 4.

Even though the library was written to support the Alpha environment, it is also general
purpose enough to be used by other applications as well.

1.2 Summary of Chapters

Chapter 2 is background information and a review of the fundamental de�nitions relating to poly-
hedra. Chapter 3 discusses issues relating to how a polyhedron is represented in memory, and the
polyhedron data structure is developed and presented in detail. Chapter 4 describes the polyhedral
library itself, giving the basic algorithms for all of the operations. Chapter 5 is a conclusion and
summary of the report.



Chapter 2

POLYHEDRA

Polyhedra have been studied in several related �elds: from the geometric point of view by compu-
tational geometrists [Gru67], from the algebraic point of view by the operations research and linear
programming communities [Sch86], and from the structural/lattice point of view by the combina-
torics community [Ede87]. Each community has a di�erent view of polyhedra so the notation and
terminology are sometimes di�erent between the di�erent disciplines.

This chapter is a review of fundamental de�nitions relating to polyhedra and cones. I have taken
the majority of this summary from the works of Grunbaum, \Convex Polytopes" [Gru67], and of
Schrijver, \Theory of Linear and Integer Programming" [Sch86], and of Edelsbrunner, \Algorithms
in Combinatorial Geometry" [Ede87]. Other references used are [Weh50, KT56].

2.1 Notation and Prerequisites

In this presentation, polyhedra are restricted to being in the n-dimensional rational Cartesian
space, represented by the symbol Qn. All matrices, vectors, and scalars are thus assumed to be
rational unless otherwise speci�ed.

De�nition 2.1 The scalar product a � b is de�ned as a � b = aT b =
Pn

i=1 aibi

where a =

0
@ a1

...
an

1
A and b =

0
@ b1

...
bn

1
A.

a � b = 0 i� vectors a; b are orthogonal.

De�nition 2.2 Given a vector x and a scalar coe�cient vector �, the following di�erent combi-
nations are de�ned:
A linear combination

P
�ixi

A positive1 combination
P

�ixi where all �i � 0
An a�ne combination

P
�ixi where

P
�i = 1

A convex combination
P

�ixi where
P

�i = 1 and all �i � 0.

Figure 2.1 shows the geometries generated by the di�erent combinations of two points in 2-space
(with origin marked `+').

1Also called non-negative or conic combination

4
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Linear Positive A�ne Convex
Combination Combination Combination Combination

Figure 2.1: Geometric Interpretations of the Combinations of Two Points

2.2 Sets

A set, in this context, always refers to a set of points in space Qn. Most de�nitions have meanings
on any set of points (not necessarily polyhedral). These de�nitions are introduced in this section.

De�nition 2.3 Given a non-zero vector y and a constant �, the following objects (sets of points)
are de�ned:
A hyperplane H = fx j x � y = �g
A open half-space H = fx j x � y > �g
A closed half-space H = fx j x � y � �g

De�nition 2.4 A vertex of a set K is any point in K which cannot be expressed as a convex
combination of any other distinct points in K.

De�nition 2.5 A ray of K is a vector r, such that x 2 K implies (x+ �r) 2 K for all � � 0.

A ray is not a set of points, but a direction in which K is in�nite. A ray may be considered as a
point at in�nity in the direction of r.

De�nition 2.6 A ray of K is an extreme ray if and only if it cannot be expressed as a positive
combination of any other two distinct rays ofK. The set of extreme rays form a basis which describes
all directions in which the convex set is open. Extremal rays are unique up to a multiplicative
constant.

An extreme ray may be considered as a vertex at in�nity in the direction of r.

De�nition 2.7 A line (or bidirectional ray) of K is a vector l, such that x 2 K implies (x+�l) 2
K for all �.

Allowing � to have both positive and negative values creates a bidirectional ray in the direction
of l and �l. Two rays in exactly opposite directions, therefore make a line. The de�nition of line
is very much like the de�nition of ray (2.5), however, there is no such thing as an extreme line in
general. Lines are used to describe n-spaces which are described in de�nition 2.12 and property 2.3.

De�nition 2.8 Given two points x; y, the closed (line) segment Seg(x; y) is de�ned as the set of
all convex combinations of x and y.

De�nition 2.9 An a�ne transformation is a function T which maps a point x to a point
x:T = Ax+ b where A is a constant matrix and b is a constant vector.
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De�nition 2.10 A set K is convex i� every convex combination of any two points in K is also a
point in K.

Alternate de�nition:
A set K is convex i� for each pair of points a; b 2 K, the closed segment with endpoints a,b is also
included in set K.

Alternate de�nition:
A set K is convex i� its intersection with any line is either empty or a connected set (line, half-line,
line-segment).

The following are important closure properties held by convex sets.

Property 2.1 (Closure under intersection)
The intersection of convex sets is convex.

Property 2.2 (Closure under a�ne transformations)
A�ne transformations of convex sets are convex.

De�nition 2.11 A set of points are linearly independent i� no point in the set can be expressed
as an linear combination of any other points in the set. A set of points are linearly dependent
i� they are not linearly independent. A basis of a set is a linearly independent subset such that
all points in the original set can be expressed as a linear combination of points in the basis. In
general, the basis is not unique. The rank of a set is the size of its basis. Similary de�nitions for
a�nely independent and a�nely dependentmay be given in terms of a�ne combinations.

De�nition 2.12 A set K is called a linear subspace, (also subspace or space), if it has the
property: x; y 2 K implies all linear combinations of x; y are in K. The dimension of a space is
the rank of a set of lines which span the space. A space of dimension n is called an n-space.

Property 2.3 Each n-space contains n linearly independent lines. Any n + 1 membered set of
lines in an n-space is linearly dependent.

De�nition 2.13 A set K is called a 
at if it has the property: x; y 2 K implies all a�ne combi-
nations of x; y are in K. The dimension of a 
at is the rank of a set of lines which span the 
at.
A 
at of dimension n is called an n-
at. A 0-
at, 1-
at, and 2-
at are called respectively a point,
line, and plane.

Property 2.4 Each n-
at contains n a�nely independent lines and n + 1 a�nely independent
points. Any n+ 2 membered set of points in an n-
at is a�nely dependent. Any n+ 1 membered
set of lines in an n-
at is a�nely dependent.

2.3 Hulls

Table 2.1 summarizes the four kinds of hulls (containers) corresponding to the four kinds of com-
binations. Also shown in the table are the largest contained subsets.

De�nition 2.14 The convex hull of K is the convex combination of all points in K. It is the
smallest convex set which contains all of K.

De�nition 2.15 The a�ne hull of K is the 
at consisting of the a�ne combination of all points
in K. It is the smallest dimensional 
at which contains all of K.

De�nition 2.16 The linear hull of K is the subspace consisting of the linear combination of all
points in K. It is the smallest dimensional linear subspace which contains all of K.
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type # Smallest Container Largest Contained Subset

Linear Linear Hull (de�nition 2.16) Lineality Space (de�nition 2.22)

Positive Conic Hull (de�nition 2.17) Characteristic Cone (de�nition 2.21)

A�ne A�ne Hull (de�nition 2.15)

Convex Convex Hull (de�nition 2.14)

Table 2.1: Comparison of Containers

De�nition 2.17 The conic hull of K is the cone consisting of the positive combination of all
points in K. It is the smallest cone which contains all of K.

De�nition 2.18 A convex set C is a cone with apex 0 provided �x is in C whenever x is in C
and � � 0. A set C is a cone with apex x0 provided C � fx0g is a cone with apex 0. A cone with
apex x0 is pointed provided x0 is a vertex of C.

Property 2.5 If a cone C is pointed, C is generated by a positive combination of its extremal rays.

2.4 The Polyhedron

The following theorem was �rst published in 1894 by Farkas and has been sharpened through the
years. It provides us the basis upon which to build a theory for polyhedra.

Theorem 2.1 Fundamental Theorem of Linear Inequalities
Let a1; � � � ; am; b be vectors in n-dim space.
Then either:
1. b is a positive combination of linearly independent vectors a1; � � � ; am; or,
2. there exists a hyperplane fx j cx = 0g, containing t�1 linearly independent vectors from among
a1; � � � ; am; such that cb < 0 and ca1; :::; cam � 0, where t := rankfa1; � � � ; am; bg.

For a proof, refer to [Sch86, page 86].
Stated in more familiar terms, given a cone generated by a set of rays fa1; � � � ; amg, then given

another ray b, either
1. b is in the cone and is therefore a positive combination of rays fa1; � � � ; amg, or
2. b is outside the cone, and there exists a hyperplane containing (t� 1) extreme rays from the set
fa1; � � � ; amg which separates b from the cone.

2.4.1 The dual representations of polyhedra

De�nition 2.19 A polyhedron, P is a subspace of Qn bounded by a �nite number of hyper-
planes.

Alternate de�nition:
P is the intersection of a �nite family of closed linear halfspaces of the form fx j ax � cg where a
is a non-zero row vector and c is a scalar constant.

Property 2.6 All polyhedra are convex.
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A result of the fundamental theorem is that a polyhedron P has a dual representation, an
implicit and a parametric representation. The set of solution points which satisfy a mixed system
of constraints form a polyhedron P and serve as the implicit de�nition of the polyhedron

P = fx j Ax = b; Cx � dg (2:1)

given in terms of equations (rows of A, b) and inequalities (rows of C, d), where A, C are matrices,
and b, d and x are vectors. This form corresponds to de�nition 2.19 above, where the set of closed
halfspaces are de�ned by the inequalities: Ax � b, Ax � b, and Cx � d.
P has an equivalent dual parametric representation (also called the Minkowski characterisation

after Minkowski| 1896 [Sch86, Page 87]) :

P = fx j x = L�+ R�+ V �; �; � � 0;
X

� = 1g (2:2)

in terms of a linear combination of lines (columns of matrix L), a convex combination of vertices2

(columns of matrix V ), and a positive combination of extreme rays (columns of matrix R). The
parametric representation shows that a polyhedron can be generated from a set of lines, rays, and
vertices. The fundamental theorem implies that two forms (eq. 2.1 and eq. 2.2) are equivalent.

Procedures exist to compute the dual representations of P, that is, given A; b; C; d, compute
L; V;R, and visa versa. Such a procedure is in the polyhedral library and will be described later
in section 4.2.

2.5 The Polyhedral Cone

Polyhedral cones are a special case of polyhedra which have only a single vertex. (Without loss of
generality, the vertex is at the origin.) A cone C is de�ned parametrically as

C = fx j x = L� +R�; � � 0g (2:3)

where L and R are matrices whose columns are the lines and extreme rays, respectively, which
specify the cone with rays fR;�L;Lg as de�ned in de�nition 2.18 and property 2.5. If L is empty,
then the cone is pointed.

Since the origin is always a solution point in Eq. 2.1, the implicit description of a cone has the
following form

C = fx j Ax = 0; Cx � 0g (2:4)

the solution of a mixed system of homogeneous inequalities and equations.

2.6 The structure of polyhedra

In this section, let P be a polyhedron as described in section 2.4.1.

De�nition 2.20 A set is a (convex) polytope i� it is the convex hull of �nitely many vertices.
A set K is a polytope i� K is bounded (contains no rays or lines).

De�nition 2.21 char.coneP, called the characteristic cone (or recession cone) of P is the cone
fy j x+ y 2 P; 8x 2 Pg = fy j Ay � 0g.

Theorem 2.2 Decomposition Theorem for Polyhedra A set P is a polyhedron i� P = V+C,
where V is a polytope, and C = char.coneP is a polyhedral cone. [Motzkin 1936]

2I am taking liberty with the term vertices. Here I use the term to mean the vertices of P less its lineality space.
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The proof is in [Sch86, Page 88].

De�nition 2.22 The lineality space of P is de�ned as
lin.spaceP := char.coneP\�char.coneP = fy j Ay = 0g. The lineality space of a polyhedron is the
dimensionally largest linear subspace contained in the polyhedron. If lineality space of P is empty
then P is pointed.

A lineality space is represented as a fundamental set of lines which form a basis of the subspace.
The lineality space of a polyhedron is unique, although it may be represented using any appropriate
basis of lines. The dimension of a lineality space is the rank of a set of lines which span the space
(property 2.3).

2.6.1 Decomposition

In 1936, Motzkin gave the decomposition theorem (2.2) for polyhedra. Any polyhedron P can be
uniquely decomposed into a polytope V = conv.hullfv1; � � � ; vmg generated by convex combination
of the extreme vertices of P, and a cone C = char.coneP as follows3

P = V + C � (2:5)

A non-pointed convex cone can in turn be partitioned into two parts,

C = L+R (2:6)

the combination of its lineality space L generated by a linear combination of the lines (bidirectional-
rays) of P, and a pointed cone R generated by positive combination of the extreme rays of P.
Combining equations 2.5 and 2.6, a polyhedron may be fully decomposed into

P = V +R + L � (2:7)

Decomposition implies that any polyhedron may be decomposed into its vertices, rays (unidirec-
tional rays) and lines (bidirectional rays) which can be clearly seen in the parametric description
in equation 2.2.

A decomposition of a polyhedron which has a practical application in the polyhedron library,
is the decomposition of a polyhedron into its lineality space (de�nition 2.22) and its ray space.
This division separates lines (bidirectional rays) from vertices and rays (unidirectional rays). In
the alternate conic form of a polyhedron, developed in section 3.1, both rays and vertices are
representable as unidirectional rays in the cone. In a cone, this decomposition simply separates
lines and rays (equation 2.6). Table 2.2 summarizes all of the decompositions of a polyhedron.

2.7 Duality of Polyhedra

In this section, the concepts of combinatorial equivalence and duality are presented. These two
concepts are used in developing a memory representation of a polyhedron in chapter 3. Then the
idea of the polar mapping is presented along with its properties which are used in chapter 4 in the
development of operations on polyhedra.

2.7.1 Combinatorial Types of Polytopes

De�nition 2.23 Two polyhedra, P and P0 are combinatorially equivalent (or isomorphic)
provided there exists a 1-1 mapping between the set F of all faces of P, and the set F 0 of all faces

3The symbol `+' in the equation is called the Minkowski sum, and is de�ned: R+ S = fr+ s : r 2 R; s 2 Sg.
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Decomposition Description

V +R + L P = fx j x = L� + R�+ V �; �; � � 0;
P

� = 1g, (eq 2.2)

V polytope = fx j x = V �; � � 0;
P

� = 1g, (de�nition 2.20)

R pointed cone = fx j x = R�; � � 0g, (de�nition 2.18)

L lineality space = fx j x = L�g, (de�nition 2.22)

V +R ray space of P

V + L set of minimal faces of P

R+ L char.coneP, a non-pointed cone, (de�nition 2.21)

Table 2.2: Table of Decompositions

of P0, such that the mapping is inclusion preserving. In other words, F1 is a face of F2 i� map(F1)
is a face of map(F2). Equivalently, the face lattices of P and P0 are isomorphic. Combinatorial
equivalence is an equivalence relation.

De�nition 2.24 Two d-polytopes, P and P� are said to be dual to each other provided there
exists a 1-1 mapping between the set F of all faces of P, and the set F� of all faces of P�, such
that the mapping is inclusion-reversing. in other words, F1 is a face of F2 i� map(F2) is a face of
map(F1).

2.7.2 Polar mapping

De�nition 2.25 (Polar)
Given a closed convex set P containing the point 0, then the polar P� is de�ned as
P� = fy j 8x 2 P : x � y � 0g.

Property 2.7 (duality of polars)
If P� is the polar of P , then P and P� are duals of each other.

Given P
DUAL
 ! P� where P is a closed convex set containing 0, then the following properties hold:

(i) if P = conv.hullf0; x1; � � � ; xmg+ conefy1; � � � ; ytg
then P� = fz j zTxi � 1 for i = 1 � � �mg+ fz j zTyi � 0 for i = 1 � � � tg

(ii) P has dimension k i� lin.space(P�) has dimension n� k

(iii) P � � = P

(iv) A� = B� i� A = B

(v) A� � B� i� A � B

(vi) (A[ B)� = A � \B�

(vii) (A\ B)� = convex.hull(A � [B�)

(viii) if A is a face of B then B� is a face of A�.

(ix) there is a 1-1 correspondance between k-faces of P and (n � k)-faces of P�.

The principle of duality is used in sections 3.2 and 3.3 when showing the duality between the
parametric and implicit de�nitions of a polyhedron and in chapter 5 when discussing the lattices
of dual polyhedra.



Chapter 3

REPRESENTATION OF

POLYHEDRA

3.1 Equivalence of homogenous and inhomogenous systems

We want to be able to represent a mixed inhomogeneous system of equations as given in equa-
tions 2.1 and 2.2 and which is the most general type of constraint system. A memory representation
of an n dimensional mixed inhomogeneous system of j equalities and k inequalities would require
the storage of the following arrays: A(j�n); b(j�1); C(k�n); d(k�1). The dual representation
would require the storage of R, V , and L, the arrays representing the rays, vertices, and lines. The

representation in memory can be simpli�ed however, with a transformation x!

�
�x
�

�
, � � 0 that

changes an inhomogeneous system P of dimension n into a homogenous system C of dimension
n+ 1, as shown here:

P = fx j Ax = b; Cx � dg

= fx j Ax� b = 0; Cx� d � 0g

C =

� �
�x
�

�
j �Ax� �b = 0; �Cx� �d � 0; � � 0

�

=

� �
�x
�

�
j
�
A j � b

�� �x
�

�
= 0;

�
C �d
0 1

��
�x
�

�
� 0

�

= fx̂ j Âx̂ = 0; Ĉx̂ � 0g

The transformed system C is now an (n + 1) dimensional cone which contains the original n

dimensional polyhedron. Goldman showed that the mapping x!

�
�x
�

�
is one to one and inclusion

preserving [Gol56] and thus by de�nition 2.23 the two are combinatorially equivalent. The original
polyhedron P is in fact the intersection of the cone C with the hyperplane de�ned by the equality
� = 1. Given any P as de�ned in equation 2.1, an unique homogeneous cone form exists de�ned as
follows:

C = fx̂ j Âx̂ = 0; Ĉx̂ � 0g

= homogoneous.cone P;

where x̂ =

�
�x
�

�
; Â =

�
A j � b

�
; Ĉ =

�
C �d

0 1

�
(3.1)

11
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The storage requirement for the homogenous system is Â(j � (n+ 1)); Ĉ((k+ 1)� (n+ 1)) which
is about the same amount of memory needed for the original system (compare (j + k)(n+ 1) + n)
words for the cone versus (j + k)(n + 1) words for the polyhedron) and the cone representation
is simpler (two matrices versus two matrices and two vectors). Likewise the dual representation
of the cone is simpler. The decomposition of a cone is R + L, and thus only rays and lines have
to be represented. During the transformation process from a polyhedron to a cone, vertices get
transformed into rays. The vertices and rays of an inhomogeneous polyhedron have a uni�ed and
homogenous representation as rays in a polyhedral cone. Thus the rays of the cone represent both
the vertices and rays of the original polyhedron. As before, the amount of memory needed to store
the dual representation is the same, however the representation itself is simpler (two matrices
versus three matrices). Table 3.1 shows the equivalent forms of inhomogenous and homogenous
systems, polyhedra and cones, along with their dual implicit and parametric representations. The
table highlights the fundamental relationships between the polyhedron and cone.

Using the homogeneous cone form not only simpli�es the data structure used to represent the
polyhedron, but also simpli�es computation. From practical experience with the implementation
of polyhedral operations, it is known that fewer array references have to be done and fewer `end
cases' have to be handled when computing with the homogeneous form. This results in slightly
smaller and more e�cient procedures.

A mixed system may also be transformed to a non-mixed systems of constraints by using
the the transformation: ax = 0 ! ax � 0 and ax � 0 along with its dual: a line l can be
represented as two rays l and �l. This reduces the entire representation to a non-mixed set of
homogeneous inequalities (no equalities) and its dual to just an array of rays (no line or vertices).
This simpli�cation is tempting, however, it would increase the size of the memory representation
(each equality and line require twice the storage). There is another advantage of keeping equalities
and inequalities separate: there are di�erent (and much more e�cient| polynomial time) methods
for solving equalities. Thus, by keeping equalities and inequalities distinct and separate, the memory
requirement is kept at a minimum, and equalities can be treated specially using standard, e�cient,
and well loved methods such as Gauss elimination.

3.2 Dual representation of a polyhedron

A polyhedron may be fully described as either a system of constraints or by its dual form, a
collection of rays and lines. Given either form, the other may be computed. However, since the
duality computation is an expensive operation (see section 4.2) and since both forms are needed
for computation of di�erent operations, a decision to represent polyhedra redundantly using both
forms was made. Even though the representation is redundant, keeping both forms in the data
structure reduces the number of duality computations that have to be made and improves the
e�ciency of the polyhedral library. It is a basic memory / execution time tradeo� made in favor
of execution time.

3.3 Saturation and the incidence matrix

After being transformed to a homogeneous coordinate system, a polyhedron is represented as a
cone (equation 3.1). The dual representations of the cone are:

C = fx j Ax = 0; Cx � 0g (implicit form)

= fx j x = L�+ R�; � � 0g (parametric form)
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Inhomogenous System Homogenous System

Structure Polydedron P, dimension d Cone C, dimension d+ 1

Implicit Represen-

tation using

Hyperplanes

P = fxjAx = b; Cx � dg C = fx̂ j Âx̂ = 0; Ĉx̂ � 0g

x̂ =

0
@ �x

�

1
A

Â =
�
A �b

�

Ĉ =

0
@C �d

0 1

1
A

Parametric Repre-

sentation using Ver-

tices and Rays

P = fx j x = L� +R�+ V �;

�; � � 0;
X

� = 1g

C = fx̂ j x̂ = L̂�+ R̂�;

� � 0g

Vertices v =

0
BBBB@

v1
v2
...

vd

1
CCCCA ; v 2 V r̂v =

0
BBBBBB@

�v1
�v2
...

�vd
�

1
CCCCCCA
; � > 0; r̂v 2 R̂

Rays r =

0
BBBB@

r1
r2
...

rd

1
CCCCA ; r 2 R r̂r =

0
BBBBBB@

r1
r2
...

rd
0

1
CCCCCCA
; r̂r 2 R̂

Lines l =

0
BBBB@

l1
l2
...

ld

1
CCCCA ; l 2 L l̂ =

0
BBBBBB@

l1
l2
...

ld
0

1
CCCCCCA
; l̂ 2 L̂

Table 3.1: Duality between Polyhedra and Cones
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Parametric Description Implicit Description

Lineality Space System of equalities

Ray Space System of inequalities

Ray r Homogeneous Inequality rTx � 0

Vertex r=k Inhomogeneous Inequality rTx+ k � 0

Line r with Vertex at 0 Homogeneous Equality rTx = 0

Line r with Vertex not at 0 Inhomogeneous Equality rTx+ k = 0

Convex union of rays Intersection of inequalities

Point at origin Positivity Constraint

Universe Polyhedron Empty set of Constraints

Empty Polyhedron Overconstrained system

Table 3.2: Dual Concepts

Substituting the equation for x in the parametric form into the equations involving x in the implicit
form, we obtain:

8(� � 0; �) :

�
AL�+ AR� = 0
CL�+ CR� � 0

=)

�
AL = 0; AR = 0
CL = 0; CR � 0

(3:2)

where rows of A and C are equalities and inequalities, respectively, and where columns of L and
R are lines and rays, respectively.

Using the above, we can show the duality of a system of constraints with its corresponding
system of lines and rays. Let C be a cone and C� be another cone created by reinterpreting the
inequalities and equalities of C as the lines and rays, respectively, of C�. Then the two cones are
de�ned as:

C = fx j x = L� +R�; � � 0g

C� = fy j y = AT�+CT
; 
 � 0g

then the inner product of a point x 2 C and a point y 2 C� is:

x � y = yTx = (AT�+ CT
)T � (L�+ R�)

= (�TA+ 
TC)� (L� + R�)

= �T (AL� +AR�) + 
T (CL� +CR�)

� 0 (by application of equation 3.2)

C� = fy j 8x 2 C : x � y � 0g

and thus C and C� are duals by property 2.7.

Before discussing the incidence matrix, the notion of saturation needs to be de�ned.

De�nition 3.1 A ray r is said to saturate an inequality aTx � 0 when aT r = 0, it veri�es the
inequality when aT r > 0, and it does not verify the inequality when aT r < 0. Likewise, a ray r
is said to saturate an equality aTx = 0 when aT r = 0, and it does not verify the equality when
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Operation # Polyhedra Finite Unions of Polyhedra

Intersection Closed Closed

Convex Union Closed Closed

A�ne Transformation Closed Closed

Union Not Closed Closed

Di�erence Not Closed Closed

Table 3.3: Closure of Operations

aT r 6= 0. Equalities and inequalities are collectively called constraints. A constraint is satis�ed
by a ray if the ray saturates or veri�es the constraint.

The incidence matrix S is a boolean matrix which has a row for every constraint (rows of A
and C) and a column for every line or ray (columns of L and R). Each element sij in S is de�ned
as follows:

sij =

�
0; if constraint ci is saturated by ray(line) rj, i.e. cTi rj = 0
1; otherwise, i.e. cTi rj > 0

From the demonstrations in equation 3.2 above, we know that all rows of the S matrix associated
with equations (A) are 0, and all columns of the S matrix associated with lines (L) are also 0. Only
entries associated with inequalities (C) and rays (R) can have 1's as well as 0's. This is illustrated
in the following diagram representing the saturation matrix S.

S L R

A (0) (0)
C (0) (0 or 1)

3.4 Expanding the model to unions of polyhedra

Polyhedra are closed under intersection (property 2.1), convex union (convex.hull(A [ B), de�ni-
tion 2.14), and a�ne transformation (property 2.2). However, they are not closed under (simple)
union since the union of any two polyhedra is not necessarily convex. Likewise, polyhedra are not
closed under the di�erence operation. To obtain closure of these two operations (union and di�e-
rence), it is necessary to expand the model from a simple polyhedron to a �nite union of polyhedra.
The table 3.3 shows the closures of di�erent library operations. The polyhedral library supports
the extended model of a union of polyhedra. Thus, all operations in the polyhedral library are
closed.

3.5 Data structure for unions of polyhedra

In the previous sections, the motivations for the major design decisions made in de�ning the
data structure have been presented. The data structure should represent polyhedron in the ho-
mogeneous cone format (section 3.1), in the redundant form (both constraints and rays represen-
ted)(section 3.2), and support the representation of a union of polyhedra (section 3.4). With these
objectives in mind, a C-structure for a polyhedron was de�ned. The term \Ray" , as used in the
library, needs some explaination. The term \Ray" is used to represent the vertices, rays, and lines
in a polyhedron. Indeed in the homogenous cone form, vertices and rays are both representable as
unidirectional rays and line is simply a bidirectional ray. Since no other good term really exists for
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the ensemble of geometric features of a polyhedron, the term \Ray" is used. The reader needs to
di�erentiate it from a simple ray (de�nition 2.5) by context. The C-structure for a polyhedron is
de�ned as:

typedef struct polyhedron

{ struct polyhedron *next;

unsigned Dimension, NbConstraints, NbRays, NbEqualities, NbLines;

int **Constraint;

int **Ray;

int *p_Init;

} Polyhedron;

The �elds of the Polyhedron structure are described as follows:

Dimension the dimension of the space in which the inhomogeneous polyhedron resides.

NbConstraints the number of equalities (NbEqualities) and inequalities constraining the polyhe-
dron.

NbRays the number of lines (NbLines), rays, and vertices in the geometry of the polyhedron.

NbEqualities the number of equalities in the constraint list.

NbLines the number of lines in the ray list.

Constraint[i] the i-th constraint (equation or inequality).

Ray[i] the i-th geometric feature (ray, vertex, or line).

p Init for library use to do memory management.

next a link to another polyhedron, supporting domains which are �nite unions of polyhedra.

The data structure is detailed in �gure 3.1. Along with the main structure, three other arrays
need to be allocated: an array of constraint pointers, an array of ray pointers, and �nally the data
array that holds the actual constraints and rays themselves. This entire data structure is created
by the library function:

Polyhedron *Polyhedron_Alloc ( unsigned Dimension,

unsigned NbConstraints,

unsigned NbRays )

and is replicated by the library function:

Polyhedron *Polyhedron_Copy ( Polyhedron *p )

and is destroyed ( and memory freed ) by the library function:

void Polyhedron_Free ( Polyhedron *p )

Using the next pointer �eld, the several polyhedra whose union form a domain can be put
into a single linked list structure. Thus the data structure works equally well for domains as well
as for a single polyhedron. Accordingly, the procedures Polyhedron_Copy and Polyhedron_Free

described above have domain equivalents which copy and free an entire linked list of polyhedra.

Polyhedron *DomainCopy ( Polyhedron *d )

returns a copy of the linked list of polyhedra (domain) pointed to by d.

void DomainFree ( Polyhedron *d )

frees memory allocated to the linked list of polyhedra (domain) pointed to by d.
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Figure 3.1: Data Structure for Polyhedron

Constraint Format

Each constraint (equality or inequality) consists of a vector of Dimension+2 elements and has the
format:

(S; X1; X2; � � � ; Xn; K) representing the constraint:
if S = 0: X1i +X2j + :::+Xnk +K = 0
if S = 1: X1i +X2j + :::+Xnk +K � 0

which are de�ned over the n-space with coordinate system (i; j; � � � ; k). The element S is a
status word de�ned to be 0 for equalities and 1 for inequalities.

In an n dimensional system, the i-th constraint (0 � i < NbConstraints) is referenced in the
following manner:
Constraint[i][0] = S
Constraint[i][1] = X1

Constraint[i][2] = X2

...
Constraint[i][Dimension] = Xn

Constraint[i][Dimension+1] = K

Ray Format

Each ray consists of a vector of Dimension+2 elements and has the format:

(S; X1; X2; � � � ; Xn; K) representing the geometric object:
if S = 0: line in direction (X1; X2; � � � ; Xn)
if S = 1: K 6= 0: vertex (X1

K
; X2

K
; � � � ; Xn

K
)
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if S = 1: K = 0: ray in direction (X1; X2; � � � ; Xn).
The element S is a status word de�ned to be 0 for lines and 1 for vertices and rays.

In an n dimensional system, the i-th ray (0 � i < NbRays) is referenced in the following
manner:
Ray[i][0] = S
Ray[i][1] = X1

Ray[i][2] = X2

...
Ray[i][Dimension] = Xn

Ray[i][Dimension+1] = K
The example in �gure 3.2 shows the internal representation for a polyhedron.

fi; j; k j 7k = 4; 2i + 3j � 5g

Polyhedron

----------

Dimension = 3

NbConstraints = 3

NbRays = 3

NbEqualities = 1

NbLines = 1

Constraint[0] = ( 0 0 7 -4 ) Equality 7k = 4

Constraint[1] = ( -2 -3 0 5 ) Inequality 2i+3j <= 5

Constraint[2] = ( 0 0 0 1 ) Inequality 1 >= 0

Ray[0] = ( 3 -2 0 0 ) Line (3,-2, 0)

Ray[1] = ( 0 -1 0 0 ) Ray (0,-1, 0)

Ray[2] = ( 0 35 12 21 ) Vertex (0, 35/21, 12/21)

= (0, 5/3, 4/7)

6

-

?

k

s

?

.
.

.
.

.
.

.
.

.
.

.
.

..

.

.

.

.

.

.

.. . . . . . . . . . .

4

3

2

1

2 31

i

j

(0,5/3)

k=4/7

Plane

Figure 3.2: Example 1

3.6 Validity rules

All polyhedra (including empty and universe domains) generated by the polyhedral library satisfy
three general rules. In this section, the consistency rules which govern the polyhedral data structure
are described.

Given a polyhedron P = L+R+V, the following meanings of the term dimension are de�ned:

1. The dimension of a lineality space L is n where L is an n-space (see de�nition 2.12).

2. The dimensionof the ray space ism where a�ne.hull(R+V) is anm-
at (see de�nition 2.13).

3. The dimension of the polyhedron P is p where a�ne.hull P is an p-
at.

Property 3.1 (Dimensionality Rule)

a. The dimension of the lineality space is the number of irredundant lines.

b. The dimension of the polyhedron is the dimension of the ray space plus the dimension of
the lineality space.
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c. The dimension of the ray space is the dimension of the system minus the number of irre-
dundant lines minus the number of irredundant equalities.

Proof:

Part (a). The dimension of the lineality space is the rank of a set of lines which span it (de-
�nition 2.12). The rank is the number of irredundant lines in a basis for the space. Any
additional line is necessarily redundant (property 2.3).

Part (b). The dimension of a polyhedron is the dimension of the smallest 
at which contains it
(de�nition of dimension). That 
at can be partitioned as follows:

convex.hull(P) = convex.hull(L+R+ V)

= convex.hull(L) + convex.hull(R+ V)

= lineality.space(P) + convex.hull(ray.space(P))

dimension(P) = dimension(lineality.space(P)) + dimension(ray.space(P))

The dimensions of the lineality space and ray space are unique and separable since no
irredundant ray is equal to a linear combination of lines (else the ray is redundant) and
no line is a linear combination of rays (else the basis of ray space is redundant). Thus, the
lineality space and ray space of a polyhedron are dimensionally distinct and the sum of their
dimensions is the dimension of the polyhedron.

Part (c). The set of equalities determine the 
at in which P lies. Since each irredundant equality
restricts the 
at which contains the polyhedron by one dimension, thus

dimension(P) = (Dimension of system) � (Number of equalities)

[from part b.] = dimension(lineality.space(P)) + dimension(ray.space(P))

and from part a. we have:

dimension(lineality.space(P)) = Number of lines

and combining the above three statements:

dimension(ray.space(P)) = (Dimension of system)

�(Number of equalities)� (Number of lines)

and thus the dimension of the ray space is the dimension of the system less the number of
equalities and less the number of lines.

2

The dimension of the ray space is an important number and is used in the determination of
redundant rays and inequalities. It is the key number n used in the saturation rule, property 3.2.
It is computed according to part{c of property 3.1, which when written in the library (C-code) is:

p->Dimension - p->NbLines - p->NbEqualities

Property 3.2 (Saturation Rule)
In an n-dimensional ray space,

a. Every inequality must be saturated by at least n vertices/rays.

b. Every vertex must saturate at least n inequalities and a ray must saturate at least n � 1
inequalities plus the positivity constraint.

c. Every equation must be saturated by all lines and vertices/rays.
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d. Every line must saturate all equalities and inequalities.

Proof:

All parts rely on the de�nition of saturate 3.1.

Part (a). In general, every k-face is the convex union of a minimum of k+ 1 vertices/rays since
each k-face lies on a k-
at which is determined by any k + 1 a�nely independent points
in the 
at (property 2.4) and since vertices/rays are a�nely independent (property 2.6),
a minimum of k + 1 of them can be used to determine a k-face. Since each inequality is
associated with a (n � 1)-face (facet) of the polyhedron and each (n � 1)-face is saturated
by n� 1 + 1 = n vertices/rays, each inequality is also saturated by at least n vertices/rays.

Part (b). Each vertex is the intersection of at least n facets, and therefore saturates at least n
inequalities. Each ray is the intersection of at least n � 1 facets, and therefore saturates at
least n � 1 inequalities plus the positivity constraint (described in section 3.6.1) which is
saturated by all rays (property 3.4).

Part (c) and Part(d). Shown by the derivation of equation 3.2.

2

The independence rule is an invariant of library in which only a minimal representation of a
polyhedron is stored.

Property 3.3 (Independence Rule)

a. No inequality is a positive combination of any other two inequalities or equalities.

b. No ray is a linear combination of any other two rays or lines.

c. The set of equalities must be linearly independent.

d. The set of lines must be linearly independent.

Proof:

Part (a). Assume ar = a1� + a2�, with � � 0, and � � 0. Given the inequalities aT1 x � 0, and
aT2 x � 0, then (a1�+a2�)

T � 0 and thus aTr � 0, and ar is a redundant inequality and may
be omitted from the system.

Part (b). By the de�nition of extreme ray 2.6.

Part (c) and (d). From de�nitions of 
ats (2.13) and subspaces (2.12), the dimension attribute
is de�ned in terms of the basis of the lines, and by convention redundant lines and equalities
are removed to keep the basis at a minimum. The number of lines and equalities are known
and have be discussed in connection with the dimensionality rule (property 3.1).

2

De�nition 3.2 (Redundancy)
Inequalities that don't satisfy property 3.2.a or property 3.3.a are redundant.
Vertices/rays that don't satisfy property 3.2.b or property 3.3.b are redundant.

3.6.1 The Positivity Constraint

In the language of algebrists, the trivial constraint 1 � 0 is called the \positivity1 constraint". When
true, you know that positive numbers are positive (a nice thing to know). It was generated as a side

1Also called the non-negativity constraint. Here the term positive is used in a non-strict way to include zero.
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fx; y j 1 � x � 3; 2 � y � 4g

x>=1 x<=3 y>=2 y<=4

vertex(1,2) sat sat

vertex(1,4) sat sat

vertex(3,2) sat sat

vertex(3,4) sat sat

6

-

4

3

2

1

2 31

x

y

Every constraint saturates two vertices and every vertex saturates two inequalities. This is a per-
fectly non redundant system.

Figure 3.3: Example 2

fx; y j x � 1; y � 2g

x>=1 y>=2 1>=0

vertex(1,2) sat sat

ray(1,0) sat sat

ray(0,1) sat sat

. . . .

.

.

.

.
6

-

6
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2 31
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Here, every constraint saturates two vertices/rays and every vertex/ray saturates two inequalities.
This is also a non redundant system. However the positivity constraint is also irredundant... it is
needed to support the presence of the two rays. Without it, the two rays are not supported and
appear mistakenly to be redundant.

Figure 3.4: Example 3

e�ect of converting from an inhomogenous polyhedron to a homogeneous cone representation as
can be seen in equation 3.1. As stated earlier, rays may be thought of as points at in�nity. In this
vein of thought, the positivity constraint generates the face that connects those points, creating a
face at in�nity which \closes" unbounded polyhedra. The following property gives the reasoning
behind this.

Property 3.4 All rays are saturated by the positivity constraint and no vertex is saturated by
the positivity constraint.

Proof: In the homogeneous form, the positivity constraint is � � 0 represented by the vector
a = (0; � � � ; 0; 1), and rays are of the form r = (r1; � � � ; rn; 0). Since a � r = 0, for all rays, all
rays saturate the positivity constraint. Vertices are of the form v = (v1; � � � ; vn; d); d 6= 0.
Since a � v = d 6= 0, for all vertices, no vertex saturates the positivity constraint.

2

As surprising as it may seem, the positivity constraint is not always redundant, as was shown in
the examples in �gures 3.4 and 3.5. The following property gives a rule for when the positivity
constraint will be needed.

Property 3.5 The positivity constraint will be irredundant i� the size of the set of rays is � n,
the dimension of the ray space, and the rank of the ray set is n.

Proof: For the positivity constraint to be irredundant, it needs at least n vertices/rays which
saturate it (property 3.2). Since only rays saturate the positivity constraint, at least n
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fx j x � 1g

x>=1 1>=0

line(0,1) sat sat

vertex(1,2) sat

ray(1,0) sat

. . . .

. . . .
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A halfplane.

Figure 3.5: Example 4

fx; y j x = 2; y = 3g
Polyhedron consisting of a single point (2,3) is dimension 0. The dimension the system is 2, there
are two equalities, and the dimension of the lineality space is 0, thus the dimension of the ray space
is 2-2-0=0 (property 3.1).

Figure 3.6: Example 5

rays are needed (property 3.4). Thus in a system with n rays, the positivity constraint is
irredundant.

2

Positivity constraints are included so there aren't invalid polyhedra 
oating around (according
to properties 3.1 and 3.2). There are di�erent strategies involving the use of this constraint. One
strategy is to add the positivity constraint to all polyhedra (even if it is redundant) before doing
any operation{ and then �lter it out of the answer at the end. This works, but may not be very
e�cient. To add the positivity constraint may require allocating memory and then copying the
polyhedron plus the positivity constraint for each polyhedral operand before doing any operation.
Another alternative is to keep the positivity constraint in polyhedra where it is needed (according
to property 3.5). This works well for the library. The only problem is that it usually will have to
be �ltered out by the user when displaying the constraints (by a pretty printer).

3.6.2 Empty Polyhedra

An empty domain is a polyhedron which includes no points. It is caused by overcontraining a
system such that no point can satisfy all of the constraints. Empty polyhedra have the following
properties:

Property 3.6 In an empty polyhedron

a. the dimension of the lineality space is 0.

b. the dimension of the ray space is -1.

c. there are no rays (vertices, to be more speci�c).

Proof:

Part a. Since there are no points in an empty polyhedron, there are no lines, and the dimension
of the lineality space is the number of lines = 0.

Part b. To overconstrain a system of dimension n requires n+ 1 equalities. From property 3.1,
the dimension of the ray space is (dimension of system)-(number of equalities)-(number of
lines) = n� (n + 1)� 0 = �1

Part c. Since there are no points in an empty polyhedron, there are no vertices as well.
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fx; y j 1 = 0g
Empty Polyhedron, Dimension 2

Constraints ( 3 equalities, 0 inequalities )

x = 0

y = 0

1 = 0

Lines/Rays ( 0 lines, 0 rays )

-none-

dim(ray space) = dimension - numlines - numequalities

= 2 - 0 - 3

= -1

dim(lineality space) = numlines

= 0

Figure 3.7: Example 6 | Empty Polyhedron

fx; y j 1 � 0g
Universe Polyhedron, Dimension 2

Constraints ( 0 equalities, 1 inequality )

1 >= 0

Lines/Rays ( 2 lines, 0 rays)

line (1,0) (x-axis)

line (0,1) (y-axis)

vertex (0,0) (origin)

dim(ray space) = dimension - num_lines - num_equalities

= 2 - 2 - 0

= 0

dim(lineality space) = num_lines

= 2

Figure 3.8: Example 7 | Universe Polyhedron

2

A test for an empty polyhedron may be performed by either of the following C-macros:

#define emptyQ(P) (P->NbEqualities==(P->Dimension+1))

#define emptyQ(P) (P->NbRays==0)

An empty polyhedron can be created by the library by a call to the procedure:

Polyhedron *EmptyPolyhedron ( unsigned Dimension )

3.6.3 Universe Polyhedron

A universe polyhedron is one that encompasses all points within a certain dimensional subspace.
It is therefore unbounded in all directions. It is created by not constraining a system at all (except
with the positivity constraint). A universe polyhedron has the following properties:

Property 3.7 In an universe polyhedron

a. the dimension of the lineality space is the dimension of the polyhedron,
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b. the dimension of the ray space is 0,

c. there are no constraints, other that the positivity constraint.

Proof:

Part a. An unconstrained system of dimension n is a n-space with a basis of n lines.

Part b. From property 3.1, the dimension of the ray space is (dimension of system)-(number of
equalities)-(number of lines) = n� 0� n = 0

Part c. Any constraint other that the positivity constraint would exclude points from the system,
and is therefore inadmissable.

2

A test for a universe polyhedron may be performed by the following C-macro:

#define universeQ(P) (P->Dimension==P->NbLines)

A universe polyhedron can be created using the library with a call to the procedure:

Polyhedron *UniversePolyhedron ( unsigned Dimension )



Chapter 4

THE POLYHEDRAL LIBRARY

The polyhedral library creates, operates on, and frees objects called domains (described in sec-
tion 1.1) made up of unions of polyhedra. The data structure for these domains was described
in section 3.5 along with operations to create and free the data structure. This chapter builds on
chapter 3 and describes the operational side of the library in detail. The algorithms used to operate
on domains are fully described as well.

4.1 Description of Operations

The polyhedral library contains a full set of operations as described in this section.

External interface with library

In many operations there is a parameter called NbMaxRays which sets the size of a temporary work
area. This work area is allocated by the library using a call to malloc at the beginning of an
operation and is deallocated at the end. If the work area is not large enough, the operation will
fail and a fault 
ag will be set. The following external domain functions are supported:

Polyhedron *DomainIntersection ( Polyhedron *d1, Polyhedron *d2,

unsigned NbMaxRays )

returns the domain intersection of domains d1 and d2. The dimensions of domains d1
and d2 must be the same. Described in section 4.5.

Polyhedron *DomainUnion ( Polyhedron *d1, Polyhedron *d2,

unsigned NbMaxRays )

returns the domain union of domains d1 and d2. The dimensions of domains d1 and d2
must be the same. Described in section 4.6.

Polyhedron *DomainDifference ( Polyhedron *d1, Polyhedron *d2,

unsigned NbMaxRays )

returns the domain di�erence, d1 less d2. The dimensions of domains d1 and d2 must
be the same. Described in section 4.7.

Polyhedron *DomainSimplify ( Polyhedron *d1, Polyhedron *d2,

unsigned NbMaxRays )

25
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returns the domain equal to domain d1 simpli�ed in the context of d2, i.e. all constraints
in d1 that are not redundant with the constraints of d2. The dimensions of domains d1
and d2 must be the same. Described in section 4.8.

Polyhedron *DomainConvex ( Polyhedron *d, unsigned NbMaxRays )

returns the minimum polyhedron which encloses domain d. Described in section 4.9.

Polyhedron *DomainImage ( Polyhedron *d, Matrix *m,

unsigned NbMaxRays )

returns the image of domain d under a�ne transformation matrix m. The number of
rows of matrixm must be equal to the dimension of the polyhedron plus one. Described
in section 4.10.

Polyhedron *DomainPreimage ( Polyhedron *d, Matrix *m,

unsigned NbMaxRays )

returns the preimage of domain d under a�ne transformation matrix m. The number
of columns of matrix m must be equal to the dimension of the polyhedron plus one.
Described in section 4.11.

Polyhedron *Constraints2Polyhedron ( Matrix *m,

unsigned NbMaxRays )

returns the largest polyhedron which satis�es all of the constraints in matrix m. Des-
cribed in section 4.4.

Polyhedron *Rays2Polyhedron ( Matrix *m, unsigned NbMaxRays )

returns the smallest polyhedron which includes all of the vertices, rays, and lines in
matrix m. Described in section 4.4.

Polyhedron *UniversePolyhedron ( unsigned Dimension )

return the universal polyhedron of dimension n. Described in section 3.6.3.

Polyhedron *EmptyPolyhedron ( unsigned Dimension )

return the empty polyhedron of dimension n. Described in section 3.6.2.

Polyhedron *DomainCopy ( Polyhedron *d )

returns a copy of domain d. Described in section 3.5.

void DomainFree ( Polyhedron *d )

frees the memory used for domain d. Described in section 3.5.
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4.2 Computation of Dual Forms

An important problem in computing with polyhedral domains is being able to convert from a
domain described implicitly in terms of linear equalities and inequalities (equation 2.1), to a pa-
rametric description (equation 2.2) given in terms of the geometric features of the polyhedron
(lines, rays, and vertices). Inequalities and equalities are referred to collectively as constraints. An
equivalent problem is called the convex hull problem which computes the facets of the convex hull
surrounding given a set of points,

The algorithms to solve this problem are categorized into one of two general classes of algo-
rithms, the pivoting and non-pivoting methods. [MR80] The pivoting methods are derivatives of
the simplex method which �nds new vertices located adjacent to known vertices using simplex
pivot operations.

The algorithmused by the library belongs to the other class, that of the of nonpivoting methods.
These methods �nd the dual by �rst setting up a tableau in which an initial polyhedron (such as
the universe or the positive orthant) is simultaneously represented in both forms. The algorithm
then iterates by adding one new inequality or equality at a time and computing the new polyhedron
at each step by modifying the polyhedron from the previous step. The order in which constraints
are selected does not change the �nal solution, but may have an e�ect on the run time of the
procedure as a whole. The complexity of this problem is known to be O(nb

d

2
c), where n is the

number of constraints and d is the dimension. This is the best that can be done, since the size of
the output (i.e. the number of rays) is of the same order.

The nonpivoting methods are based on an algorithm called the double description method inven-
ted by Motzkin et al. in 1953 [MRTT53]. Motzkin described a general algorithm which iteratively
solves the dual-computation problem for a cone. (Since polyhedra may be converted to cones, it
works for all polyhedra.) In each iteration, a new constraint is added to the current cone in the
tableau. Rays in the cone are divided into three groups, R+ the rays which verify the constraint,
R0 the rays which saturate the constraint, and R� the rays which do not verify the constraint. A
new cone is then constructed from the ray sets R+, R0, plus the convex combinations of pairs of
rays, one each from sets R+ and R�. The main problem with the nonpivoting methods is that they
can generate a non-minimal set of rays by creating non-extreme or redundant rays. If allowed to
stay, the number of rays would grow exponentially and would seriously test the memory capacity
of the hardware as well as degrade the performance of the procedure. Motzkin proposed a simple
and rather elegant test to solve this problem. He showed that a convex combination of a pair of
rays (r� 2 R�; r+ 2 R+) will result in an extreme ray in the new cone if and only if the minimum
face which contains them both: 1) is dimension one greater than r� and r+, and 2) only contains
the two rays r� and r+. This test inhibits the production of unwanted rays and keeps the solution
in a minimal form.

Chernikova [Che65, Rub75] described a similar algorithm to solve the restricted case of the
mixed constraint problem with the additional constraint that variables are all non-negative (x � 0).
Chernikova's method was the same as Motzkin's method, except that she used a slightly smaller and
improved tableau. Fern�andez and Quinton [FQ88] extended the Chernikova method by removing
the restriction that x � 0 and adding a heuristic to improve speed by ordering the constraints. A
large portion of the computation time is spent doing the adjacency test. Le Verge [Le 92] improved
the speed of the redundancy checking procedure used in [FQ88], which is the most time consuming
part of the algorithm. Seidel described an algorithm for the equivalent convex hull problem [Sei91]

which executes in O(nb
d

2
c) expected running time where n is the number of points and d is the

dimension. This is provably the best one can do, since the output of the procedure is of the same
order. He solves the adjacent ray problem (the adjacent facet problem in his case) by creating and
maintaining a facet graph in which facets are vertices and adjacent facets are connected by edges.
It takes a little extra code to maintain the graph, but then he does not need to do the Motzkin
adjacency test on all pairs of vertices (facets).
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McMullen [McM70, MS71] showed that for any d-polytope with n vertices, the number of k-
faces, fk is upper bounded by the number of k-faces of a cyclic d-polytope with the same number
of vertices. One of the implications of this is that the number of facets, fd�1 = O(nb

d

2
c).

4.2.1 The Motzkin algorithm

The nonpivoting solvers successively re�ne their solution by adding one constraint at a time and
modifying the solution polyhedron from the previous step to re
ect the new constraint. An inequa-
lity aTx � 0 is co-represented by the closed halfspace H+ which is the set of points fx : aTx � 0g.
Likewise the equality aTx = 0 is co-represented by the hyperplane H which is the set of points
fx : aTx = 0g. At each step of the algorithm, a new inequality or equality (represented by either
H+ or H, respectively) is introduced into the system. The polyhedron P = L+R (the combination
of its lineality space and ray space) is constrained by the new constraint by intersecting P with
either H+ or H to produce a modi�ed polyhedron P0 = L0 +R0.

The algorithm Dual in �gure 4.1 gives the algorithm given by Motzkin to �nd the dual of a
set of constraints A. In Dual, there are three procedures which alter the polyhedron. They are
ConstrainL which constrains the lineality space, AugmentR which augments the dimension
of the ray space, and �nally ConstrainR which constrains the ray space. These procedures are
discussed below in greater detail.

The ConstrainL procedure shown in �gure 4.3 constrains the lineality space L by slicing it
with a new constraint, and if the new constraint cuts L, then L's dimension is reduced by one and
a new ray rnew is generated which is added to the ray space. It is fairly straightforward and runs
in O(n) time where n is the dimension of the lineality space.

There are two procedures which perform transformations on the ray space. The �rst one is
AugmentR shown in �gure 4.4 which adds a new ray rnew created by ConstrainL to the ray
space. When rnew is added to the ray space R, it increases the dimension of R by one. It is of
complexity O(r) time, where r is the number of rays.

The second operation ConstrainR shown in �gure 4.5 constrains the ray space by slicing it
with the hyperplane H and discarding the part of the ray space which lies outside of constraint.
For inequalities, the part of the polyhedron which lies outside of the halfspace H+ is removed. For
equalities, the part of the polyhedron which lies outside of the hyperplane H is removed. In either
case, the new face lying on the cutting hyperplane surface is computed. ConstrainR computes
a new pointed cone by adding a new constraint. Rays which verify and saturate the constraint
are added. Rays which do not verify the constraint are combined with adjacent rays which verify
the constraint to create new rays which saturate the constraint. Motzkins adjacency test is used
to �nd adjacent pairs of rays. The Motzkin adjacency test is used to test every pair of rays to
determine if that pair will combine to produce an extreme ray or not. This is done by computing
what constraints the pair of rays have in common and making sure that no other ray also saturates
that same set of constraints. Thus the list of rays produced by ConstrainR is always extreme
(non-redundant). The entire ConstrainR procedure has an O(n3k) complexity where n is the
number of rays and k is the number of constraints. Much of this time is spent in performing the
adjacency tests.

The procedure Combine shown in �gure 4.2 is where all of the actual computation takes place.
It uses as input two rays, r+ and r�, as well as a constraint a. It then computes the ray r= which
�rstly is a linear combination of r+ and r� (r= = �1r

++�2r
�), and secondly, saturates constraint

a, (aT r= = 0).
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Procedure Dual(A), returns L, R

L := basis for d-dimensional lineality space.
R := point at the origin.
For each constraint a 2 A Do

rnew := ConstrainL (L; a)
If rnew 6= 0 Then AugmentR (R; a; rnew) Else ConstrainR (R; a)

End
Return L and R.

Figure 4.1: Procedure to compute Dual(A)

Procedure Combine(r1, r2, a), returns r3

D = GCD(aT r1; aTr2)
�1 = aT r2=D
�2 = �aT r1=D
r3 = �1r1 + �2r2

Figure 4.2: Procedure to compute Combine(r1, r2, a)

Procedure ConstrainL (L, a), modi�es L, returns rnew

Find an l1 2 L such that aT l1 6= 0, (l1 does not saturate constraint a)
If l1 does not exist Then (L \H is L itself and rnew is empty) Return 0.
L0 := empty.
For each line l2 2 L such that l2 6= l1 Do

L0 := L0 +Combine (l1; l2; a)
End
If aT l1 > 0, (l1 veri�es constraint a) Then Create ray rnew equal to l1
Else (aT l1 < 0) Create ray rnew equal to �l1
L := L0

Return rnew

Figure 4.3: Procedure to compute ConstrainL(L, a)

Procedure AugmentR (R, a, rnew), modi�es R

Set R0 := empty.
For each ray r 2 R do

If aT r = 0 Then R0 := R0 + r
If aT r > 0 Then R0 := R0 +Combine (r; �rnew; a)
If aT r < 0 Then R0 := R0 +Combine (r; rnew; a)

End
If a is an inequality Then R0 := R0 + rnew
R := R0

Figure 4.4: Procedure to compute AugmentR(R, a, rnew)
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Procedure ConstrainR (R, a), modi�es R

Partition R = R+ + R0 + R�.
R0 := fr j r 2 R; aTr = 0g, the rays which saturate constraint a.
R+ := fr j r 2 R; aTr > 0g, the rays which verify constraint a.
R� := fr j r 2 R; aT r < 0g, the rays which do not verify constraint a.

If constraint a is an inequality, Then set R0 := R+ +R0.
Else (constraint a is an equality) set R0 := R0.
For each ray r+ 2 R+ do

For each ray r� 2 R� do
Adjacency test on (r+; r�)
c := set of common constraints saturated by both (r+; r�)
For each ray r 2 R j r 6= r+; r 6= r� Do

If r also saturates all of the contraints in set c Then
(r+ and r� are not adjacent.) Continue to next ray r�.

End
( r+ and r� are adjacent.) R0 := R0 +Combine (r+; r�; a)

End
End
R := R0

Figure 4.5: Procedure to compute ConstrainR(R, a)

4.2.2 Implementation

The procedure Dual is implemented in the polyhedral library as the procedure:

static int Chernikova ( Matrix *Constraints,

Matrix *Rays,

Matrix *Sat,

unsigned NbLines,

unsigned NbMaxRays,

unsigned FirstConstraint )

It is named \Chernikova" for historical reasons, however, a more suitable name would have been
\Motzkin", since the procedure is primarily due to him. It is somewhat di�erent than the basic
one described in section 4.2.1 in that it allows a new set of constraints to be added to an already
existing polyhedron (there may be preexisting constraints and rays). The entire list of constraints
(both the old and the new) is passed as the parameter Matrix *Constraints, with the parameter
unsigned FirstConstraint indicating which is the �rst \new" constraint. The preexisting lines
and rays are passed in as the parameter Matrix *Rays. The lines must be grouped together at
the beginning of the matrix, and the parameter unsigned NbLines indicates how many lines are
in the Rays matrix. The parameter unsigned NbMaxRays is the allocated dimension of the Rays

matrix and limits the number of lines and rays that can be stored at any one time. And �nally,
the parameter Matrix *Sat contains the incidence matrix (de�ned in section 3.3) between the
original constraints and rays of the input polyhedron. The procedure adds the new constraints to
the polyhedron, updating the Rays and Sat matrices. The updated matrices are returned by the
procedure. This procedure has been benchmarked and times published in [Le 92].
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4.3 Producing a minimal representation

After computing the dual of a set of constraints, the set of rays produced is guaranteed to be non-
redundant, by virtue of the adjacency test which is done when each ray was produced. However,
the constraints are still possibly redundant. There remain a number of simpli�cations which can
still be done on the resulting polyhedron, among which are:

1. Detection of implicit lines such as line(1,2) given that there exist rays (1,2) and (-1,-2).

2. Finding a reduced basis for the lines.

3. Removing redundant positivity constraints 1 � 0.

4. Detection of trivial redundant inequalities such as y � 4 given y � 3, or x � 2 given x = 1.

5. Detection of redundant inequalities such as x+ y � 5 given x � 3 and y � 2.

6. Solving the system of equalities and eliminating as many variables as possible.

The algorithm to do all of these reductions is sketched out below. In the procedure, each cons-
traint and each ray needs a status word which is provided for in the polyhedron structure (see
section 3.5).

Reduce(Constraints, Rays, Sat), returns a Polyhedron structure.

Step 0 Count the number of vertices among the rays while initializing the ray status counts to 0. If
no vertices are found, quit the prodedure and return an empty polyhedron as the result.

Step 1 Compute status counts for both rays and inequalities. For each constraint, count the number
of vertices/rays saturated by that constraint, and put the result in the status words. At the
same time, for each vertex/ray, count the number of constaints saturated by it.
Delete any positivity constraints, but give rays credit in their status counts for saturating
the positivity constraint.

Step 2 Sort equalities out from among the constraints, leaving only inequalities. Equalities are cons-
traints which saturate all of the rays. (Status count = number of rays)

Step 3 Perform gaussian elimination on the list of equalities. Obtain a minimal basis by solving for
as many variables as possible. Use this solution to reduce the inequalities by elimating as
many variables as possible. Set NbEq2 to the rank of the system of equalities.

Step 4 Sort lines out from among the rays, leaving only unidirectional rays. Lines are rays which
saturate all of the constraints (status count = number of constraints + 1(for positivity cons-
traint) ).

Step 5 Perform gaussian elimination of on the lineality space to obtain a minimal basis of lines.
Use this basis to reduce the representation of the unidirectional rays. Set NbBid2 to the rank
of the system of lines.

Step 6 Do a �rst pass �lter of inequalities and equality identi�cation.
New positivity constraints may have been created by step 3. Check for and elimate them.
Count the irredundant inequalities and store count in NbIneq.
if (Status==0) Constraint is redundant.
else if (Status<Dim) Constraint is redundant.
else if (Status==NbRays) Constraint is an equality.
else Constraint is a irredundant inequality.
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Step 7 Do �rst pass �lter of rays and identi�cation of lines.
Count the irredundant Rays and store count in NbUni.
if (Status<Dim) Ray is redundant.
else if (Status==(NbConstraints+1)) Ray is a line.
else Ray is an irredundant unidirectional ray.

Step 8 Create the polyhedron. Allocate the polyhedron (using approximate sizes).
Number of constraints = NbIneq+NbEq2+1
Number of rays = NbUni+NbBid2
Partially �ll the Polyhedron structure with the lines computed in step 3 and the equalities
computed in step 5.

Step 9 Final pass �lter of inequalities.
Every `good' inequality must saturate at least Dimension rays and be unique.
The �nal list of inequalities is written to polyhedron.

Step 10 Final pass �lter of rays and detection of redundants rays.
The �nal list of rays is written to polyhedron.

Step 11 Return polyhedron.

In the polyhedral library, the Reduce algorithm described above is implemented as an internal
library procedure de�ned as:

static Polyhedron *Remove_Redundants ( Matrix *Constraints,

Matrix *Rays,

Matrix *Sat,

unsigned *Filter )

It takes the list of constraints and rays as generated by the Chernikova procedure, as well as
the incidence matrix Sat relating the two. It assumes that either the unidirectional rays are non
redundant, or that the inequalities are non redundant. This is guaranteed by the Chernikova

procedure. The procedure performs the reductions on the lists of constraints and rays, then builds
a Polyhedron structure from the results. The parameter unsigned *Filter, if non-zero, points to a
bit vector with one bit for each ray. The Remove_Redundants procedure sets the bits corresponding
to the rays which it �nds non-redundant. The Filter vector is used in the implementation of the
DomSimplify function.

4.4 Conversion of rays/constraints to polyhedron

Given a set of rays, the corresponding polyhedron is computed by simply running the Chernikova
procedure to get the dual list of constraints and then the Remove_Redundants procedure to reduce
the ray/constraint lists and create a polyhedron.

Likewise, starting from a list of constraints, the corresponding polyhedron is computed by
running the Chernikova procedure to get the dual list of rays, and then the Remove_Redundants
procedure to reduce the ray/constraint lists and create a polyhedron. The conversion of a list of
rays or a list of contraints to a polyhedron is the most basic application of the Chernikova and
Remove_Redundants procedures.

4.5 Intersection

Intersection is performed by concatenating the lists of constraints from two (or more) polyhedra
into one list, and �nding the polyhedron which satis�es all of the combined constraints. This is
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done by �nding the extremal rays which satisfy the combined constraints, (�nding the dual of the
list of constraints), and then reducing both the constraints and rays into one polyhedron. This
procedure is illustrated in �gure 4.6.
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Figure 4.6: Computation of Intersection

To intersect two domains, A and B, which are unions of polyhedra, A = [iAi and B = [jBj ,
the pairwise intersection of the component polyhedra from A and B must be computed, and the
union of the results is the resulting domain of intersection, as shown below:

A \B = ([iAi) \ ([jBj)

= [i;j(Ai \Bj)

4.6 Union

The domain (non-convex) union operation simply combines two domains into one. The lists of
polyhedra associated with the domains are combined into a single list. However, combining the
two lists blindly may create non-minimal representations. For instance, if in forming the union of
domains A = fi j i � 1g and B = fi j i � 2g, the fact that A � B is taken into consideration,
then the union can be reduced to simply A. The algorithm used in the library performs this kind
of simpli�cation during the union operation. Before adding any new polyhedron to an existing list
of polyhedra, it �rst checks to see if that polyhedron is covered by some polyhedron already in the
domain. If it is covered, then the new polyhedron is not added to the domain. Likewise, polyhedra
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in the existing list may be deleted if they are covered by the new polyhedron. In the new combined
list, no polyhedron is a subset of any other polyhedron.

The test for when one polyhedron covers another is performed by the library procedure:

int PolyhedronIncludes(p1, p2)

Polyhedron *p1;

Polyhedron *p2;

which returns a 1 if p1 � p2, (polyhedron p1 includes (covers) polyhedron p2), and returns a 0
otherwise. The test for when a polyhedron p1 covers or includes another polyhedron p2 is straight
forward using the dual representation of polyhedra in the library: p1 � p2 if all of the rays of
p2 satisfy (see de�nition 3.1) all of the constraints of p1. This is a case in point of when the dual
representation comes in handy. The constraint representation of p1 and the dual ray representation
of p2 are used to determine p1 � p2. Since both representations are kept in the data structure, the
dual does not need to be (re)computed in order to do this test.

4.7 Di�erence

Domain di�erence A�B computes the domain which is part of A but not part of B. It is equivalent
to A \ � B, where � B is the complement domain of B. If B is the intersection of a set of
hyperplanes (representing the equalities) and halfspaces (representing the inequalities), then the
inverse of B is computed as follows:

� B = � (\iHi)

= [i(� Hi)

where

� Hi =

�
fx j aTx < 0g when Hi = fx j a

Tx � 0g
fx j (aTx < 0 [ aTx > 0)g when Hi = fx j a

Tx = 0g

and normalizing for integer lattice domains :

=

�
fx j � aTx+ 1 � 0g when Hi = fx j aTx � 0g
fx j (�aTx+ 1 � 0 [ aTx� 1 � 0)g when Hi = fx j aTx = 0g

�

The computation of di�erence is the same as the computation of intersection after taking the
inverse of B. Since the inverse of B is a union of polyhedra, the di�erence of two polyhedra can
be a union of polyhedra. Thus, polyhedra are not closed under the operation di�erence, where as
unions of polyhedra are closed under this operation.

4.8 Simplify

The operation simplify is de�ned as follows:

Given domains A and B, then Simplify(A, B) = C, when C \B = A \B, C � A and
there does not exist any other domain C0 � C such that C0 \B = A \B.

The domain B is called the context. The simplify operation therefore �nds the largest domain set
(or smallest list of constraints) that, when intersected with the context B is equal to A \B. This
operation is used in Alpha to simplify case statements, as shown in the example in �gure 4.7.

The simplify operation is done by computing the intersection A \ B and while doing the
Remove_Redundants procedure, recording which constraints of A are \redundant" with the inter-
section. The result of the simplify operation is then the domainA with the \redundant" constraints
removed.
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The Alpha program fragment:

var A:{t,p | 0<=t; 1<=p<=4};

A = case

{t,p | t=0; 1<=p<=4} ... ;

{t,p | t>0; 1<=p<=3} ... ;

{t,p | t>0; p=4} ... ;

esac;

is operationally equivalent to the following fragment:

var A:{t,p | 0<=t; 1<=p<=4};

A = case

{t,p | t=0} ... ;

{t,p | t>0; p<=3} ... ;

{t,p | t>0; p=4} ... ;

esac;

which has simpli�ed case conditions on the domain A. The above simpli�cations can be found
using the simplify operation using the domain of A as the context, and simplifying the case
condition domains.

Figure 4.7: Application of DomSimplify

An interesting subproblem in the simplify operation occurs when the intersection of A and its
context B are empty. In this case, simplify should �nd the minimal set of constraints of A which
contradict all of the constraints of B. This is believed to be an NP-hard problem and a heuristic
is employed to solve it in the library.

4.9 Convex Union

Convex union is performed by concatenating the lists of rays and lines of the two (or more)
polyhedra in a domain into one combined list, and �nding the set of constraints which tightly
bound all of those objects. This is done by �nding the dual of the list of rays and lines, and
then reducing both the constraints and rays into one polyhedron. This procedure is illustrated
in �gure 4.8. This procedure is very similar to the intersection procedure which has already be
described in section 4.5. Convex union �nds the polyhedron generated from the union of the lines
and rays of the two input polyhedra. Intersection �nds the polyhedron generated from the union
of the equalities and inequalities of the inputs.

4.10 Image

The function image transforms a domain D into another domain D0 according to a given a�ne
mapping function, Tx+ t (see de�nition 2.9 and property 2.2). The resulting domain D0 is de�ned
as:

D0 = fx0 j x0 = Tx+ t; x 2 Dg

In homogeneous terms, the transformation is expressed as

C0 = f

�
�x0

�

�
j

�
�x0

�

�
=

�
T t

0 1

��
�x
�

�
;

�
�x
�

�
2 Cg
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Figure 4.8: Computation of Convex Union

Thus in the homogeneous representation, an a�ne transfer function becomes a linear transfer
function (no constant added in). In the analysis that follows, we will treat the transfer function

from the linear point of view. The transformation function

�
T t
0 1

�
is a matrix dimensioned by

(n+1)� (m+1), where n and m are the dimensions of x and x0, respectively. This transformation
matrix is passed as a parameter to the image procedure. If n = m, x and x0 are the same dimension.
If n 6= m, the transformed space is of a larger (or smaller) dimension. The transformation does not
have to be one-to-one, and therefore may not be invertable. Also, if detT 6= 1, then the volume of
the domain (the number of points in the domain) will be scaled by the determinant. To compute
an image of D, given the full redundant representation:

D = fx j Ax � 0; x = �R; AR � 0; � � 0g

and given the transformation x0 = Tx, the result D0 is

D0 = fx0 j A0x0 � 0; x0 = TR�; A0TR � 0; � � 0g

= fx0 j A0x0 � 0; x0 = R0�; A0R0 � 0; � � 0g

A0 can be computed as the dual of R0. Thus, R0 = TR and A0 = dual(R0). This computation is
illustrated in �gure 4.10 The image of a domain is simply the union of the images of the component
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Figure 4.9: A�ne transformation of D to D0
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Figure 4.10: Computation of Image

polyhedra contained in the domain, as follows:

T:D = T:([iPi)

= [i(T:Pi)

4.11 Preimage

Preimage is the inverse operation of image. That is given a domain D0 de�ned as

D0 = fx0 j A0x0 � 0; x0 = R0�; A0R0 � 0; � � 0g

and a transformation T , �nd the domain D which when transformed by T gives D0. The relation
x = Tx0 still holds. (Refer again to �gure 4.9.) The result D is

D = fx j A0Tx � 0; x = R�; A0TR � 0; � � 0g

= fx j Ax � 0; x = R�; AR � 0; � � 0g

In the result, A = A0T and R = dual(A). This procedure is illustrated in �gure 4.11. The preimage
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of a domain is simply the union of the preimages of the component polyhedra contained in the
domain, as follows:

T�1:D = T�1:([iPi)

= [i(T
�1:Pi)

T�1 here is simple a notation for the preimage operation and does not mean to imply that T is
invertable.

4.12 The implementation of the polyhedral library

The polyhedral library has been implemented in the C-language and is currently in use in the
Alpha environment, as well as at other sites. The library code is composed of �ve �les: three
headers and two code �les as follows:

types.h The header �le de�ning the data structures used in the library.

vector.h The header �le containing the forward de�nitions of the external vector operation
procedures.

vector.c The code �le containing the code for vector operations.

polyhedron.hThe header �le containing the forward de�nitions of the external vector polyhedral
and domain procedures.

polyhedron.c The code �le containing the code for polyhedral and domain operations.

The code itself is too large to be included as part of this report, but is available by ftp at host
ftp.irisa.fr in the directory /local/API/. It has been nicknamed the Chernikova library by its
users.



Chapter 5

CONCLUSION

The polyhedral library described in this report implements basic geometrical operations on stuc-
tures called domains which consist of �nite unions of convex polyhedra [Wil93]. The domains are
described in a dual representation consisting of:

1. a set of constraints| inequalities and equalities, and

2. a set of geometric features| lines, rays, and vertices.

It is convenient to represent polyhedra in their pointed cone form, which results from the transfor-

mation x!

�
�x
�

�
. This transformation maps inhomogeneous constraints to homogeneous cons-

traints and maps both the vertices and rays of a polyhedron to rays in a pointed cone. The pointed
cone is thus stored as a list of rays, and the lineality space as a list of basis lines.

Domains can be created starting with a list of constraints or a list of geometric features. Given
one representation, the other is computed by the procedure Dual which has been described in
section 4.2.1. The library is written in the C{language and may be linked in with an application
to provide capability for doing geometric operations, such as union, intersection, di�erence, and
simpli�cation, on domains.

The library was originally written to support the Alpha environment in which all variables
are based on domains. Subsequently, the library was placed in the public domain (ftp.irisa.fr,
directory /local/API/).

In the Alpha environment, the library is used extensively in carrying out program transforma-
tions and in doing static analysis of Alpha programs. To support Alpha development, the library
has been interfaced to the Mathematica symbolic mathematics package.

The library is easy to interface to and use. Appendix A contains an example C{program which
demonstrates the use of the library. This sample program was written to show how a C{program
may be interfaced with the library.

The library code is composed of �ve �les: three headers and two code �les as follows:

types.h The header �le de�ning the data structures used in the library.
vector.h The header �le containing the forward de�nitions of the external

vector operation procedures.
vector.c The code �le containing the code for vector operations.
polyhedron.h The header �le containing the forward de�nitions of the external

vector polyhedral and domain procedures.
polyhedron.c The code �le containing the code for polyhedral and domain

operations.

The library is made available by ftp from ftp.irisa.fr and can be found in the directory
/local/API/.
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Appendix A

EXAMPLE C{PROGRAM

The following is an example program written to demonstrate how the library is called from a
C-program. The �rst section has the code itself, the second section has the input for the program,
and the last section has the output.

A.1 Program Code

/� main.c
This �le along with polyhedron.c and vector.c do the following functions:
� Extraction of a minimal set of constraints from some set of constraints
� Intersection of two convexes
� Application of a linear function to some convex
� Veri�cation that a convex is included in some other convex �/

#include "types.h"
#include "vector.h"
#include "polyhedron.h"

int main()
f Matrix �a, �b, �t;

Polyhedron �A, �B, �C, �D;

/� read in a matrix containing your equations �/
/� for example, run this program and type in these �ve lines:

4 4
1 0 1 �1
1 �1 0 6
1 0 �1 7
1 1 0 �2
This is a matrix for the following inequalities
1 = inequality, 0x + 1y �1 �0 ��> y � 1
1 = inequality, �1x + 0y +6 �0 ��> x � 6
1 = inequality, 0x + �1y +7 �0 ��> y � 7
1 = inequality, 1x + 0y �2 �0 ��> x � 2
If the �rst number is a 0 instead of a 1, then that constraint

is an 'equality' instead of an 'inequality'.
�/
a = Matrix Read();

/� read in a second matrix containing a second set of constraints:
for example :
4 4
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1 1 0 �1
1 �1 0 3
1 0 �1 5
1 0 1 �2

�/
b = Matrix Read();

/� Convert the constraints to a Polyhedron.
This operation 1. Computes the dual ray/vertex form of the
system, and 2. Eliminates redundant constraints and reduces
them to a minimal form. �/
A = Constraints2Polyhedron(a, 200);
B = Constraints2Polyhedron(b, 200);

/� the 200 is the size of the working space (in terms of number
of rays) that is allocated temporarily
�� you can enlarge or reduce it as needed �/

/� There is likewise a rays to polyhedron procedure �/

/� Since you are done with the matrices a and b, be a good citizen
and clean up your garbage �/
Matrix Free(a);
Matrix Free(b);

/� If you want the the reduced set of equations back, you can
get the matrix back in the same format it started in... �/
a = Polyhedron2Constraints(A);
b = Polyhedron2Constraints(B);

/� Take a look at them if you want �/
printf("\na ="); Matrix Print("%4d", a);
printf("\nb ="); Matrix Print("%4d", b);

/� To intersect the two systems, use the polyhedron formats...
Again, the 200 is the size of the working space. �/

C = DomainIntersection(A, B, 200);

/� This time, lets look a the polyhedron itself... �/
printf("\nC = A and B ="); Polyhedron Print("%4d", C);

/� The operations DomainUnion, DomainDi�erence, DomainConvex,
and DomainSimplify are also available �/

/� read in a third matrix containing a transformation matrix,
this one swaps the indices (x,y ��> y,x):
3 3
0 1 0
1 0 0
0 0 1

�/
t = Matrix Read();

/� Take the preimage (transform the equations) of the domain C to
get D. �/
D = Polyhedron Preimage(C, t, 200);

/� cleanup �/
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Matrix Free(t);

printf("\nD = transformed C =");
Polyhedron Print("%4d", D); Domain Free(D);

/� in a similar way, Polyhedron Image(dom, mat, 200), takes the image
of dom under matrix mat (transforms the vertices/rays) �/

/� The function PolyhedronIncludes(Pol1, Pol2) returns 1 if Pol1
includes (covers) Pol2, and a 0 otherwise �/

if (PolyhedronIncludes(A,C))
printf("\nWe expected A to cover C since C = A intersect B\n");
if (!PolyhedronIncludes(C,B))
printf("and C does not cover B...\n");

Domain Free(A);
Domain Free(B);
Domain Free(C);

return 0;
g

A.2 Program Input

4 4
1 0 1 -1
1 -1 0 6
1 0 -1 7
1 1 0 -2
4 4
1 1 0 -1
1 -1 0 3
1 0 -1 5
1 0 1 -2
3 3
0 1 0
1 0 0
0 0 1

A.3 Program Output

a =4 4
1 0 1 -1
1 -1 0 6
1 0 -1 7
1 1 0 -2

b =4 4
1 1 0 -1
1 -1 0 3
1 0 -1 5
1 0 1 -2

C = A and B =POLYHEDRON Dimension:2
Constraints:4 Equations:0 Rays:4 Lines:0
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Constraints 4 4
Inequality: [ 1 0 -2 ]
Inequality: [ -1 0 3 ]
Inequality: [ 0 -1 5 ]
Inequality: [ 0 1 -2 ]
Rays 4 4
Vertex: [ 3 5 ]/1
Vertex: [ 2 5 ]/1
Vertex: [ 2 2 ]/1
Vertex: [ 3 2 ]/1

D = transformed C =POLYHEDRON Dimension:2
Constraints:4 Equations:0 Rays:4 Lines:0

Constraints 4 4
Inequality: [ 0 1 -2 ]
Inequality: [ 0 -1 3 ]
Inequality: [ -1 0 5 ]
Inequality: [ 1 0 -2 ]
Rays 4 4
Vertex: [ 5 3 ]/1
Vertex: [ 5 2 ]/1
Vertex: [ 2 2 ]/1
Vertex: [ 2 3 ]/1

We expected A to cover C since C = A intersect B
and C does not cover B...
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