
Structuration

of the Alpha language

Florent de Dinechin, Patrice Quinton, Tanguy Risset

IRISA

Rennes, France

Abstract

This paper presents extensions to Alpha, a lan-
guage based upon the formalism of a�ne recurrence
equations (AREs). These extensions address the need
for parametric and structured systems of such AREs.
Similar to, but more general as the map operator of
classical functional languages, the Alpha structura-
tion techniques provide a dense and powerful descrip-
tion of complex systems referencing each other. Such
structured systems of AREs may be interpreted as (or
translated into) sequential function calls, hierarchical
hardware description, or any SIMD
avour of struc-
tured programming. With the help of examples, we
give an overview of these techniques, and their substi-
tution semantics based on the homomorphic extension
of convex polyedra and a�ne functions.

Introduction

The Alpha Language [3, 6] is a strongly typed
functional language which embodies the formalism of
a�ne recurrence equations (AREs) �rst introduced by
Karp, Miller and Winograd [2]. An environment has
been developped around this language to provide a
set of automatic and semi-automatic tools to analyze
or transform systems of AREs expressed as Alpha
programs. These tools include the static analysis of
the data domains and dependences, the pipelining (or
localization) of computations, their space/time rein-
dexing, and others. Using these tools, the high-level
description of a regular problem may be transformed,
in a correct proven manner, into an implementation-
level description such as a VLSI regular array [1], im-
perative code [5], or a collection of loop nests aimed
at a massively parallel architecture [4].

We present here an extension to the language allow-
ing the parametrization and structuration of Alpha
programs into subsystems of AREs. In addition to
the possibility of parametrizing Alpha programs, we

introduce in the language the usual structuration of
a program into functions, but also more complex pro-
gram structures in a very straightforward and regular
manner. These poweful structures rely heavily on the
homomorphic dimension extension of polyhedra and
a�ne functions, and thus are speci�c to systems of
AREs, but they may be interpreted in terms of loop
nests in imperative languages, or as an extension to
the map operator of functional languages.

The paper is organized as follows : we �rst brie
y
introduce the language, then we present parametric
Alpha and its simplest structuration. We then de-
scribe the principles of structuration with homomor-
phic extension. The last section presents the detailed
semantics of structured Alpha.

1 The Alpha language

The purpose of this section is only to introduce
the principles and syntax of the language to the non-
familiar reader. An extensive presentation may be
found in [3], and [7] will provide the interested reader
with a complete description of the language in its cur-
rent version.

Basics Unlike most functional language, the domi-
nant data structure in Alpha is not the list but the
polyedral data array. Such an array is a mapping from
some convex polyedron of some integer space ZZn to a
scalar value space (integer, boolean or real).

A convex polyedron P is a convex subspace of ZZn

bounded by a �nite set of hyperplanes. In other terms,
P is the intersection of a �nite family of closed linear
halfspaces and may be speci�ed by a system of con-
straints :

D = fz 2 ZZn j Az � bg

Systems A standard Alpha program has the over-
all syntax :

system <system-name> (<input-var-declarations>)

returns (<output-var-declarations>) ;

var <local-var-declarations> ;

let

<equations>

tel;

The system is a mapping from input variables to
output variables de�ned by a set of equations relating
input, output and local variables. Alpha is an equa-
tional language, and thus obeys the single assignment
rule : there is at most one equation de�ning each vari-
able.

Variables Alpha is strongly typed, and each vari-
able is declared with the syntax :

<var-name> : <domain> of <type> ;

The type may be either integer, real or boolean. The
domain may be any convex integer polyedron. The
syntax of a domain is :
f<indices-list> | <equations/inequations-list>g

where the identi�ers appearing in the equations and
inequations are those declared in the index list. Thus
the index names are unsigni�cant, as their scope is
restricted to the space between the curly braces.

Example : B:{i,j| 1<=i<=10; i<=j} of boolean;

declares a boolean triangular matrix;

Expressions One may build expressions in Al-

pha. Their terminals are either variables or constants
(which are de�ned over the domain ZZ0). The opera-
tors are either pointwise operators (relating the values)
or spatial ones (transforming the domains).

An expression also describes a polyedral data array,
and thus has a type and a domain inherited from its
subexpressions.

Pointwise operators They are the Alpha gener-
alization of the classical scalar operators. As an ex-
ample, we describe the pointwise addition : if E1 and
E2 are two expressions of the same dimension, then
E1+E2 is an expression of the same dimension whose
domain is the intersection of the domains of E1 and
E2, and whose value in each point is the sum of the
values of E1 and E2 at this point.

Other pointwise operators include most unary and
binary arithmetic operators, comparison operators,
logical connectors, plus the ternary if then else op-
erator.

Spatial operators The case operator allows the
piecewise de�nition of an expression by several subex-
pressions de�ned over disjoint domains. Its syntax is :

case <exp>; ...; <exp>; esac

It is an expression whose domain is the convex hull of
the union of the domains of the subexpressions, and
whose value at one point is the only value de�ned at
this point.

It usually needs the restriction operator, which re-
stricts the inherited domain of an expression to a given
subdomain. Its syntax is :

<domain> : <exp>

Finally, the dependence operator establishes an
a�ne mapping from the points of a domain to the
points of another domain. Its syntax is :

<exp> . <affine-function>

If we call f the a�ne function, this is an expression
whose domain is the preimage by f of the domain of
exp, and whose value at a point z is the value of exp
at the point f(z). The syntax of a�ne functions is :

(<index-list> -> <affine-expression-list>)

In most cases, the dependence operator may be ren-
dered with an easier-to-read array notation (as demon-
strated in the example below).

Example The following example program describes
in Alpha the classical matrix-matrix product de�ned
as :

Ri;j =

8X
k=1

aik:bkj

system MatMat (A,B: {i,j| 1<=i,j<=8} of real)

returns(R: {i,j| 1<=i,j<=8} of real);

var c : {i,j,k| 1<=i,j,k<=8} of real;

let

c[i,j,k] =

case

{|k=1} : 0[];

{|k>1} : A[i,k] * B[k,j] + c[i,j,k-1];

esac;

R[i,j] = c[i,j,8];

tel;

Remark that this example uses the array notation
of Alpha [7], where the referential locality of the in-
dices is lost to improve readability. Here is the stan-
dard notation of the equation de�ning c :

c = case

{i,j,k | k=1}: 0.(i,j,k->);

{i,j,k | k>1}: A.(i,j,k->i,k) * B.(i,j,k->k,j)

+ c.(i,j,k->i,j,k-1);

esac;

Also remark that the last equation, de�ning R, may
be read as : for all (i; j) in the range de�ned at the
declaration of R, R[i,j] equals c[i,j,8]. There is no
order of iteration on i or j speci�ed in this equation.

Such an order will depend on the dependences present
in the equation (see the equation de�ning c) and on
the interpretation aimed at (loop nest for sequential
or parallel machine, hardware).

The Alpha environment Currently developped
on top of the Mathematica environment, it o�ers
a wide set of automatic and semi-automatic transfor-
mations of programs in an interactive manner. It also
provides tools to translate subsets of Alpha into C
and soon VHDL, and to derive VLSI designs of paral-
lel regular architectures.

2 The extensions

Parametric Alpha

The �rst extension to the language allows us to have
size parameters appearing in the language.

As an example, here is a general matrix-matrix
product :

system MatMat:{M,N,P| M>0; N>0; P>0 }

(A:{i,k| 1<=i<=M; 1<=k<=N} of real;

B:{k,j| 1<=k<=N; 1<=j<=P} of real)

returns(R:{i,j| 1<=i<=M; 1<=j<=P} of real);

var c:{i,j,k| 1<=i<=M; 1<=k<=N; 1<=j<=P} of real;

let

c[i,j,k] =

case

{|k=1} : 0[];

{|k>1} : A[i,k] * B[k,j] + c[i,j,k-1];

esac;

R[i,j] = c[i,j,N];

tel;

We declare here in the header of the system three
size parameters as a parameter domain. These param-
eters may then appear anywhere in the system where
indices are allowed.

The meaning of such a parameter domain is sim-
ply to extend all the domains and all the dependences
with these parameters. For example, in this system
parametrized by

fM,N,P| M>0; N>0; P>0g

the declaration domain of A, written as
fi,k| 1<=i<=M; 1<=k<=Ng

is actually a syntactic shortcut for
fi,k,M,N,P| 1<=i<=M; 1<=k<=N; M>0; N>0; P>0g

which is referentially closed. Similarly, the last de-
pendance function, written (i,j->i,j,N), is actually
a shortcut for (i,j,M,N,P->i,j,N,M,N,P) which is

standard Alpha. This process is called right homo-
morphic extension of domains or a�ne functions and
will be formalized in section 3.

Complex conditions (any a�ne equation or inequa-
tion) may be speci�ed in the parameter domain and
also between the parameters and the indices. It will
be shown later that these conditions can be statically
veri�ed, with warnings to the user when one of them
is violated.

Since a parametrized Alpha system may be
straightforwardly rewritten as a standard Alpha one
(where all the dimensions are greater), we ensure that
all the theoretical framework of the language remains
untouched by this extension. Therefore, we may now
focus the structuration of Alpha into subsystems of
AREs.

Simple structuration

An example To introduce the syntax, we use the
previous matrix product to perform the square of a
matrix.

system SquareMat:{N | N>0}

(X: {i,j| 1<=i,j<=N} of real)

returns (S: {i,j| 1<=i,j<=N} of real);

let

use MatMat[N,N,N] (X,X) returns (S);

tel;

The notation MatMat[N,N,N] gives the values of the
size parameters N,M,P of the subsystem MatMat as an
a�ne function of the size parameters of the caller (here
the function N ! N;N;N).

Substitution We see that a use statement appears
at the same level as an equation (of course it may be
surrounded by equations or other use statements be-
tween the let and the tel). In fact, the semantics of
such use statement is simply a straightforward sub-
stitution with the body of the sub), with some ad-
ditional work to handle the input/output passing, as
illustrated in the following program which is equiva-
lent to the previous by de�nition of this semantics :

system SquareMat:{N | N>0}

(X: {i,j| 1<=i,j<=N} of real)

returns (S: {i,j| 1<=i,j<=N} of real);

var

--variables added for substitution of MatMat

A_MatMat1:{i,j| 1<=i<=N; 1<=j<=N} of real;

B_MatMat1:{i,j| 1<=i<=N; 1<=j<=N} of real;

R_MatMat1:{i,j| 1<=i<=N; 1<=j<=N} of real;

c_MatMat1:{i,j,k| 1<=i<=N; 1<=j<=N;

0<=k<=N} of real;

let

-- Inputs

A_MatMat1[i,j] = X[i,j];

B_MatMat1[i,j] = X[i,j];

-- Body of Matvect

c_MatMat1[i,j,k] =

case

{|k=0}: 0[];

{|k>0}: A_MatMat1[i,k]*B_MatMat1[k,j]

+ c_MatMat1[i,j,k-1];

esac;

R_MatMat1[i,j] = c_MatMat1[i,j,N];

-- Outputs

S[i,j] = R_MatMat1[i,j];

tel;

Note that, in addition to inlining the equations of
the subsystem, its input, output and local variables
have been declared as local, with some renaming to
avoid name con
icts. Inputs and outputs passing are
handled thanks to additional equations. Thus the ac-
tual inputs may be any Alpha expression, but the
actual output must be variables. Moreover, all the
domains and a�ne functions appearing in the sub-
system have been properly modi�ed to take into ac-
count the parameter assignation. These modi�cations
are based on basic domain operations (intersection,
preimage) and a�ne function composition. They will
be described in full detail in section 3.

Extension of dimension

Now, in most practical cases, a system is not de-
signed to be used with its declared I/Os, but with
I/Os of greater dimension. We usually want to use
regular collections of instances of a subsystem. For
example, a matrix operation, when used in a real-
time application, shall actually perform on collections
of matrices indexed by the time : although the I/Os
corresponding to a matrix are two-dimensional in the
declaration of the system, the actual I/Os will be
three-dimensional (the two dimensions of the matrix,
and the time dimension). As another example, in an
image-processing application, we will de�ne a subsys-
tem performing some computations over a window sur-
rounding a pixel, and use this subsystem for each pixel
of the image, that is with I/Os regularly extended by
the two dimensions of the picture.

Thus, what is needed in real applications is an op-
erator similar to the map operator of functional lan-
guages, i.e. applying to each point of a given collection
the functionality of the subsystem. In classical func-
tional languages, these collections are lists, for lists
are the basic data structure of such languages. In Al-

pha, on the other hand, they shall obviously be convex
polyedra.

Let us now describe the general features of such
a dimension extension process with the help of the
following toy example. We de�ne a subsystem which
performs the sum of the elements of a vector, with one
parameter which is the size of the vector, and we use it
in another system which performs a linear collection of
of such sums, for all the rows of some non-rectangular
matrix (�gure 1)

Figure 1: Toy exemple of subsystem dimension exten-
sion

system Sum:{N| N>0} (V : {j | 1<=j<=N} of real)

returns (R : real);

var S:{j | 1<=j<=N} of real;

let

S[j] =

case

{| j=1} : V[j];

{| j>1} : V[j] + S[j-1];

esac;

R = S[N]

tel;

system Toy (A: {j,i|1<=i<=4; 1<=j<=i+2} of real)

returns (X: {i|1<=i<=4} of real);

let

use {i|1<=i<=4} Sum[i+2] (A) return(X);

tel;

Consider the line containing the use. The exten-
sion domain, here {i|1<=i<=4}, may be any convex
polyedron. All the actual I/Os shall have their dimen-
sion greater than the formal ones by the dimension
of this extension domain. The corresponding indices
are the rightmost ones (rightmost homomorphic exten-
sion), and the projections of the actual I/Os on these
indices must of course contain this domain. The pa-
rameter assignation may be any a�ne function of the

callers' parameter, but also of the extension indices,
as illustrated in this example. This feature is very
powerful in real applications.

The semantics is also a substitution, but with all
the domains and a�ne functions processed according
to the extension of dimension. We brie
y explain here
this process; a complete and formal description will be
given is section 3.

� The dimensions of all the domains appearing
within the subsystem have to be increased.
In our example, the extension domain is 1-
dimensional, therefore the 1-dimensional input
variable V of Sum become 2-dimensional, and
its zero-dimensional output variable becomes 1-
dimensional. The same process is applied to all
the domains appearing in the subsystem.

� The a�ne functions appearing in the subsystem
are similarly modi�ed to handle the extra dimen-
sions. Here the a�ne function : (j->j-1), of Sum
shall be transformed into (j,i->j-1,i)

Here is our Toy system after inlining of its subsys-
tem :

system Toy (A: {j,i|1<=i<=4; 1<=j<=i+2} of real)

returns (X: {i|1<=i<=4} of real);

var

V_Sum1: {j,i| 1<=i<=4; 1<=j<=i+2} of real);

R_Sum1: {i| 1<=i<=4} of real);

S_Sum1: {j,i| 1<=i<=4; 1<=j<=i+2} of real;

let

V_Sum1[j,i] = A[j,i];

S_Sum1[j,i] =

case

{| j=1} : V_Sum1[j,i];

{| j>1} : V_Sum1[j,i] + S_Sum1[j-1,i];

esac;

R_Sum1[i] = S_Sum1[i+2,i]

X[i] = R_Sum1[i];

tel;

3 The semantics of system inlining

We present here the detailed semantics of system
use.

Notations

Let us de�ne a few notations :

� let Pcaller be the parameter space of the caller,
dcaller its dimension.

� let Psub be the parameter space of the subsystem,
dsub its dimension.

� let e be the number of extension indices, and Dext

be the extension domain. Note that this domain
is parametrized by Pcaller , thus in the case of a
simple use Dext = Pcaller , whereas in case of di-
mension extension dim(Dext) = dcaller + e.

� let f : Dext ! Psub be the a�ne parameter assig-
nation.

Validity of a use statement

De�ning the semantics of the use in terms of sub-
stitution has the advantage that all the type checking
over the inputs and outputs is de�ned by the seman-
tics of non-structured Alpha.

Except for this input/output type checking, the va-
lidity of a use statement only resumes to checking
that :

� The subsystem exists.

� The number of actual inputs (resp. outputs) ap-
pearing in the use statement is equal to the num-
ber of formal inputs (resp. outputs) declared in
the header of the subsystem.

� Parameter assignation compatibility : the dimen-
sions of f are dcaller + e� dsub.

� The values given to parameters by f belong to
the parameter space of the subsystem, that is :

f(Dext) � Psub

This check is di�cult and is currently not im-
plemented1

Note that the strong static semantics of the lan-
guage, which allowed to analyze a program in order
to check that all the variables are well de�ned over
their full domain, now makes it possible to check in-
diretly that the conditions on the parameters stated
within the parameter domains are full�lled by the use
statements. This feature as already proven invaluable
in developping large applications (an adaptive Singu-
lar Values Decomposition algorithm is curently beeing
implemented in Alpha). The parameter domains, if

1The best approach seems to perform this check only in the
special case of a caller system without parameter (physical im-
plementation are modelized by such systems). In this case, this
check reduces to checking that a point belongs to a domain,
which is very simple, and may be performed recursively over all
the subsystems of this system.

restricted enough, are in practice similar to precon-
ditions over iteration loops and their bounds in the
corresponding sequential program, as far as these con-
ditions are expressible in an a�ne way.

There is a real interface problem, however, concern-
ing the output of the static analysis : it is sometimes
very di�cult to infer the cause of the error from the er-
ror message, and there are intrisic reasons for it (which
won't be detailed here because of the lack of space).

Substitution

An Alpha system containing a valid use statement
is equivalent to the system in which this statement has
been replaced with :

� Additional declarations of all the input, output
and local variables of the subsystem (with re-
naming if needed). The declaration domains are
transformed according to the parameter assigna-
tion (see below).

� Input equations of the type :
FormalInput = ActualInput

� The body of the subsystem. Restriction domains
and a�ne functions appearing in this body are
transformed according to the parameter assigna-
tion (see below)

� Output equations of the type :
ActualOutput = FormalOutput

Remark that the added input and output equations
carry all the type checking over inputs and outputs.

Domain processing

Let D be a domain appearing either in the decla-
rations or in the body of the subsystem, n + dsub its
dimension. Let

n
 f : ZZn+e+dcaller ! ZZn+dsub

the a�ne function de�ned by the following block
matrix (right homomorphic extension of a�ne func-
tions) :

n
 f =

�
In 0
0 f

�

(In is the identity of size n.)
Let us also de�ne the right homomorphic extension

of a domain :

n
 fi1; ::ip j I1; ::Ikg = fj1; ::; jn; i1; ::ip j I1; ::Ikg

The domain D0 appearing in the inlined system is
then :

D0 = (n
 f)�1(D) \ (n
Dext)

Remarks

� D0 is the preimage of an Alpha domain, and as
such is a domain. Its dimension is n+ e+ dcaller .

� Remembering that the parameter space within D

was the universe polyhedron of dimension dsub,
this formula ensures that the parameter space ap-
pearing in D0 is also the universe polyedron

A�ne function processing

Let a be an a�ne dependence function appearing in
the body of the subsystem. There are two cases, due to
the fact that void dependence functions, typically used
along with scalar constants, don't carry the parameter
identity :

� if a is a void function :

a : ZZn+dsub ! ZZ0

The dependence function appearing after inlining
is then

a0 : ZZn+e+dcaller ! ZZ0

built as follows :

a0 = a � (n
 f)

� in the general case, a is a dependence function
with a parameter identity :

a : ZZn+dsub ! ZZm+dsub

a =

�
ar

0 Idsub

�

The dependence function appearing after inlining
is then

a0 : ZZn+e+dcaller ! ZZm+e+dcaller

build as follows : �rst, we build

ar : ZZn+dsub ! ZZm

by removing this parameter identity from a. Then
we build

a0r = ar � (n
 f) : ZZn+e+dcaller ! ZZm

and a0 is just a0r extended with an identity of the
rightmost indices, which are the the e extension
indices and the dcaller parameters.

Conclusion

The extensions to the language presented here
mainly adress two needs :

The �rst need is the reuseability of a system, and
corresponds to

� function application in functional languages,

� procedure calls in Pascal-like imperative language,

� component instanciation in hardware description
languages like VHDL.

In terms of recurrence equations, we want a means
to give a name to a set of equations, which we then
call a system, and then use this name as a shortcut for
the whole system. We don't need to enumerate here
the advantages of structured programming in terms of
readability and development costs.

Such structuration has to include some kind of para-
metrization of the systems.

The second need is speci�c to the world of recur-
rence equations. We want to be able to express a
collection of instances of a system in one simple ex-
pression.

� If the subsystem is viewed as a function of a func-
tional language, this corresponds to the map op-
erator. It is however more powerful : where the
map operator applies a function to all the terms
of a list, we may apply it to all the terms of any
integer polyedron.

� If the subsystem is viewed as a procedure in an
imperative language, this corresponds to a proce-
dure call within an a�ne loop nest [5, 4].

� If we compare Alpha to VHDL, this correspond
to nested for and generate loops.

The formalism of AREs allows to express such com-
plex structuration in a very simple and uniform man-
ner.

These power of description and interpretation has
still to be exploited. Future work include the de�ni-
tion of a subset of Alpha, called AlpHard, to de-
scribe structured hardware. This will allow to design
tools converting high-level Alpha into AlpHard,
and AlpHard into silicon or FPGA, through VHDL
and the MadMacs tool for synthesis of regular arrays
developped at IRISA. On the language side, we shall
try to improve the interpretability of the outputs from
the static analysis tools, and complete the process of
upgrading all the existing program transformations to
handle structured Alpha.

Acknowledgment

This work was supported by the EEC (Esprit BRA
project NANA 2 No.6632) and by the French ministry
of research (Project Paradigme and Asar)

References

[1] C. Dezan, E. Gautrin, H. Le Verge, P. Quin-
ton, and Y. Saouter. \Synthesis of systolic ar-
rays by equation transformations." In ASAP'91,
Barcelona, Spain, September 1991. IEEE.

[2] R.M. Karp, R.E. Miller, and S. Winograd. \The
organization of computations for uniform recur-
rence equations." Journal of the Association for
Computing Machinery, 14(3):563{590, July 1967.

[3] C. Mauras. \Alpha : un langage �equationnel pour
la conception et la programmation d'architectures
parall�eles synchrones". Th�ese de l'Universit�e de
Rennes 1, IFSIC, December 1989.

[4] P. Quinton, S. Rajopadhye, and D. Wilde.
\Derivation of data parallel code from a functional
program." In IPPS, Santa Barbara, USA, April
1995.

[5] S. Rajopadhye and D. Wilde. \The naive execution
of a�ne recurrence equations." In ASAP, Stras-
bourg, France, July 1995.

[6] H. Le Verge, C. Mauras, and P. Quinton. \The
ALPHA language and its use for the design of sys-
tolic arrays." Journal of VLSI Signal Processing,
3:173{182, 1991.

[7] Doran K. Wilde. \The alpha language." Internal
Report 999, IRISA, Campus de Beaulieu, 35042
Rennes Cedex, France, Januar 1994.

