User manual of the Alpha Scheduler

Tanguy Risset
April 29, 1999

This documentation provides help for the user of the ALPHA scheduler. It is available in the file
$MMALPHA/doc/user/Scheduler user manual.ps

1 Introduction

The scheduler is a package of MMALPHA that attempt to to find a schedule for given ALPHA program. An
ALPHA program [Wil94, Mau89] has no sequential ordering indicated: any sequential or parallel ordering of
computations is semantically valid as soon as it respect the data dependencies of the program.

The basic goal of the scheduler is to find a valid execution order that is good with respect to a particular
criterion. The theoretical basis for the scheduling process is inherited from the systolic array synthesis
researches and from the automatic parallelization researches. Currently two techniques are implemented
for the computation of a schedule function, we will call them the Farkas method [Fea92b] (method used by
default), and the vertex method [MQRS90]. Scheduling an ALPHA program consists in giving a computation
date for each variable of the program. The time is considered as a discrete single clock.

For computing a schedule, we have to gather all the constraints that must verify the schedule in a linear
programming problem (LP) and to solve it with a particular software. the two methods implemented proceed
their computation differently but both give a mono-dimensional affine by variable schedule. They can also
provide multidimensional affine by variable schedule by changing the options of schedule (see section 2).

A mono-dimensional affine by variable schedule assign to each computation: A[i,j] = ..., an execution
date T4 (4,) which is given by an affine function of the indices (i, j) and the parameters (IV):

Ta(i,j) =7hi+ 147+ 7Y N+ aa
(rh, 7%, 7Y) is called the scheduling vector. for instance: Ta(i,§) = 2i + j + 3 is a mono-dimensional affine
schedule for variable A, the corresponding scheduling vector is (2,1). One important subset of such schedules
are the affine with constant linear part schedules, where the value of the scheduling vector is the same for
each local variable of the program (in this case, all variables must have the same number of indices):

Multidimensional schedules are necessary when program do not have linear execution time (for instance,
if the execution time is N?). In that case, the schedule function is a vector of linear function and the order
is the lexicographic order on the components (see [Fea92a] for details).

2 The schedule function

The function to be called in order to schedule a program is: schedule. Its effects is to schedule the ALPHA
program contained in $result by default, and to put the result in the global variable $schedule (see 4 for
the structure of the resulting schedule). Options allow to set several parameters (see section 3). The possible
forms of the use of the function schedule are:

e schedule[]
finds an affine by variable schedule for $result which minimizes the global execution time and assign
this schedule to $schedule

e schedule[sys]
finds a schedule affine by variable for the ALPHA system sys which minimizes the global execution
time and assign it to $schedule

e schedule[option_1->value_1,...,optionn->valuen]
find a schedulee for $result which respects the chosen options and assign it to $schedule

e schedule[sys,option_1->value_1,...,optionn->value n]
find a schedulee for the ALPHA system sys which respects the chosen options and assign it to $schedule

3 Important options of schedule

These options have default values indicated hereafter. To change these values, put one of the corresponding
rules as a parameter to the schedule function. the Farkas method and the vertex method rely on completely
different implementations, hence, some options are only implemented in one of the method. Choosing between
the Farkas method and the vertex method is done with the schedMethod option.

schedMethod

this option allow to switch from the Farkas method to the vertex method. Its type is symbolic. Changing
the value of this option greatly influence the other options (for instance, it changes default values of some
options: durationByEq,...), be sure to check the others options you use.

the possible values are:

e schedMethod -> farkas (default) select the Farkas method.
e schedMethod -> vertex select the vertex method.

One of the differences between the two methods is that the Farkas method uses the Pip software to solve
the LP while the vertex method uses Mathematica linear solveur.

scheduleType
This option gives the type of schedule found. Its type is symbolic, the possible values are:

e scheduleType -> affineByVar (default) affine by variable scheduling;

e scheduleType -> sameLinearPart affine by variable scheduling with constant linear part. this option
is often used for systolic designs.

e scheduleType -> samelLinearPartExceptParam affine by variable scheduling with constant linear
part except for the parameters.

multidimensional

This indicates whether we look for a mono-dimensional schedule (default value) or a multidimensional sched-
ule. Of course, searching for a multi-dimensional schedule may end up with a mono-dimensional schedule,
but we cannot use all the options available (for instance, we cannot optimize the global time because multi-
dimensional schedule tries to minimize the number of dimension of the schedule). The type of this option is
boolean, hence the possible values are:

e multidimensional -> False the schedule will be mono-dimensional.

e multiDimensional -> True the schedule will be multidimensional. If you set this options, be aware
that it greatly influence the value of other options: addConstraints, durations must be of type list
of list (one list by schedule dimension, this means that you have to know the number of dimension of
the resulting schedule). Options optimizationTime is automatically set to multi.

optimizationType
This option gives the objective function chosen. Its type is symbolic, the possible values are:

e optimizationType -> time (default) the total latency is minimized (In the Farkas method, this mini-
mization always correspond to the lexicographic minimization of the coefficients of the global execution
time which is an affine function of the parameters. In the vertex method the way this minimization is
performed can be changed by the option objFunction).

e optimizationType -> Null no objective function (the coefficients of the scheduling vectors are min-
imized in a lexicographic order)

e optimizationType -> delay tries to minimize the delays on the dependencies (not implemented
currently).

e optimizationType -> multi is for internal use, when a multidimensional scheduling is computed,
just be aware that the three above value for this option are not compatible with multi-dimensional
scheduling.

addConstraints

This option allows to add some constraints to the LP generated. Adding constraints is very important if you
want to control the resulting schedule. Its type is a list of string, each string representing a constraint. The
type of constraints authorized are affine constraints on scheduling vectors. There are two types of constraint
added, one can force a scheduling vector value or simply set linear constraints on its components:

e forcing a variable A[i, j] to be scheduled at time i+2j+2 can be done with the constraints: "TA[i, j1=i+2j+2".

e for more precise constraint, one can directly access to each components of the schedule functions of
each variable. For instance TAD2 will represent the variable 7% (and CA will represent the variable
a4). With these names, one can set linear constraints on these variable using operators == or >=. For
instance, {"TAD1 == 1","TAD2 == 2", "CA >= 2" } isthe same constraint as above except that the
constant is allowed to be greater than two.

This options can also be used during a multidimensional scheduling process. In that case, its value is a
list of list of string, each list of string corresponding to a dimension of the schedule. Example of use for
mono-dimensional scheduling:

schedule[addConstraints->{"TA[i,j,N]=i+2j-2", "T1D2==2","T1D1+2T1D3>=1"}]

durations

Allow the user to define exactly the execution time for each equation or for each dependence. This is very
useful for hardware design, for instance, some trivial equation like A=B should not last one top but zero
because it is just a different name for the same signal. its type is list of integer. This options is affected by
the value of the option durationByEq.

The possible values for the durations option are:

e durations -> {} each equation (if durationByEq is True) is 1 (resp. each dependence is 1 if dura-
tionByEq is False), whatever complex is the computation (default value).

e duration -> {0,0,1,1,0,...0,3,1} (List of integer),

— If the durationByEq option is set to True (default in farkas method): integer number ¢ indicates
the duration of the equation defining variable number ¢ of the Alpha program (the numbering of
the variables is done in this order: starting with input variable, then output variable, and finally
local variable, hence in declaration order).

— If the durationByEq option is set to False (default in vertex method), integer number 7 indicating
the duration of dependence number i.

outputForm

This options allow to have a non standard schedule output. the standard schedule output is described in
section 4. You can also obtain as a result the LP to solve in various format or the schedule polytope, i.e.
the polytope which contains all the valid solutions in Alpha‘domain format. Its type is symbolic

e outputForm -> scheduleResult (default) standard schedule output form (Alpha‘ScheduleResult struc-
ture, see section 4).

e outputForm -> 1pSolve output the linear programming problem to solve in order top find the schedule
in the format of the Ip_solve software.

e outputForm -> 1pMMA output the linear programming problem to solve in order top find the schedule
in the format of the linear resolver of Mathematica.

e outputForm -> domain output the schedule polytope, i.e. Alpha‘domain which is composed of all the
constraints of the LP to solve. WARNING, this works only for SMALL programs (3 instructions),
otherwise the domain is too big to be handled by polylib.

debug

Print more information and do not destroy the temporary files build for the interface with PIP. the type of
this option is boolean, possible value are:

e debug —-> False (default) debug mode not set;

e debug -> True debug mode set.

verbose
indicate not to print anything, just to return the result. its Type is boolean, possible value are:
e verbose -> True (default) normal printing;

e verbose -> False nothing is printed out.

3.1 Advanced options of schedule

These options are here for advanced users of the schedule function.

resolutionSoft
indicates which software is used for the resolution of the LP. its type is symbolic, the possible values are:
e resolutionSoft->pip use P. Feautrier’s PIP software (only available for the Farkas method).

e resolutionSoft->mma use the ConstrainedMin function of Mathematica (only implemented in the
vertex method).

e resolutionSoft -> lpSolve use the 1p_solve software(not implemented yet)

objFunction

This option is used to indicate how the minimization of the objective function (which is usually a function
of the parameters) is performed. its type is symbolic, the possible values are:

e objFunction->lexicographic minimize lexicographically the coefficient of this function in the order
of the declaration of the corresponding parameters in the Alpha program (default in Fakas implemen-
tation).

e objFunction->lexicographic["N","P","M"] (not implemented anywhere)
e objFunction->2"N" + "P" minimize 2 time the coefficient of parameter "N plus one time the coef-
ficient of parameter ”P” (only implemented in the vertex resolution).
onlyVar

indicates which variables to schedule (useful if you have a very long program and which to schedule only
part of it. its type is a list of string, the possible values are:

e onlyVar->all (default value) schedule all the variables.

e onlyVar->{"a","B","c"} (list of string) schedule only the specified variables, Warning, if some vari-
able are needed for the computation of the one indicated, the function will try to find their execution
dates in $schedule (only implemented in the Farkas method)

onlyDep

indicates which variables to schedule (used for multidimensional scheduling). its type is a list of integer the
possible values are:

e onlyDep->all (default value) schedule all the dependencies.

e onlyDep->{1,4,5} (list of integer) schedule only the specified dependencies, the number correspond
to their position in the list of dependencies which is returned by the dep[] function (only implemented
in the Farkas method)

subSystems

indicates whether or not he schedule takes into account the calls to other systems.
e subSystems->False (default value).

e subSystems->True.

subSystemsSchedule

indicates where are the schedules of the subsystems used in the system we schedule. its type is a list of
schedule

e subSystemsSchedule->$scheduleLibrary (default value).

e subSystemsSchedule->List [schedule..].

4 Result form

The result given by the function schedule has a special form. Two new head names are introduced:
Alpha‘scheduleResult and Alpha‘sched. The outermost structure is a structure starting with the head
Alpha‘ScheduleResult, where the first argument is the name of the system (string) and where second
argument is the schedule itself. The Last argument of Alpha‘scheduleResult is for internal use. The
syntax of the structure is described here.
<schedResult>=Alpha‘ScheduleResult [scheduleType_Integer,<sched3List>,objFunc_]

{{ nameVar String,
<sched3>= indices_List,

Alpha‘sched[tauVector List,constCoef _Integer] }

example:

scheduleResult["test1",
{{"a", {"i", "k"}, sched[{2, 2}, -41},
{"p", {"j"}, sched[{0}, 01}, {"c", {"i"}, sched[{0}, 151},
{nAn’ {"i", "k"}, sched[{2, 2}’ _3]}’
{"c", {"i", "k"}, sched[{2, 2}, -2]}}, {15}]

Other examples are given in section 6.

5 Technical settings

The packages is called Schedule.m, it uses packages FarkasSchedule, VertexSchedule and scheduleTools.m.
The Farkas implementation uses the pip software (version D.1 [Fea88]) which must be present in the binary
directory. the communication between mathematica and pip is done by files. These files are written in the
directory indicated by $tmpDirectory. Currently, all method should work on solaris and Windows plateform.

6 Examples

Consider the program of figure 1, in the following, we give the result of the schedule with different options.

default use

If you type the following command (after having loaded the program of figure 1):
schedule[]
the output written on the screen session should look like:

In[14]:= schedule[]

Dependence analysis...

Building LP...

LP: 154 variables, 140 Constraints
Writing file for PIP....

Writing line 100

Solving the LP...

Version D.1

cross : 2714096, alloc : 1, compa : O

nlul07’’ s 0

Shift coef: O

Total execution Time: 1 + 2 N
T_a{i, j, N} =
T_b{i, j, N} =
T_c{i, j, N} = + 2N
T B{i, j, k, N} = i
T_A{i, j, k, N} = j
T_C{i, j, k, N} =

= O O

|
~
+
=

Out[10]= scheduleResult[1, {{a, {i, j, N}, sched[{O0, O, 0}, 01},
{b, {i, j, N}, sched[{0, 0, 0}, 01}, {c, {i, j, N}, sched[{0, O, 2}, 11},
{B, {i, j, k, N}, sched[{1, 0, O, 0}, 01},
{A, {i, j, k, N}, sched[{0, 1, O, 0}, 01},
{c, {i, j, k, N}, sched[{0, 0, 1, 1}, 01}}, {2, 1}]

system prodVect : {N|N >2}
(a: {i,j|1<i<N;1<j< N} of integer;
b: {i,j|1<i<N;1<j<N} of integer)
returns (¢ : {i,j |1 <i< N;1<j <N} of integer);

var
B: {ij,k|1<i<N;1<j<N;1<k<N} of integer;
A {i,j,k|1<i<N;1<j<N;1<k<N} of integer;
C:{i,j,k|1<i<N;1<j<N;0<k<N} of integer ;
let
Bli,jk] =
case
{li=1}: blk,j};
esac;
Afijkl =
case
{17=1}: alik];
{12<j<N}: Aflj-1k]
esac;
ClLik] =
case
{1 k=0}: 0[]

esac;
cfij] = C[i,j,NJ;
tel;

)

Figure 1: Uniform matrix matrix product

The first lines indicates which computations are performed. the lines starting by Version are output by
Pip. Then the result is printed on the screen. Here, for instance the schedule is affine by variable. B[1i,j,k]
is computed at time i. The result (after Out [11]) is the corresponding Mathematica structure assigned to
$schedule.

Adding a constraint

Suppose that we want to impose that the variable A[1, j,k] is schedule at time i +j+2k+7 and that 7 = 5.

We have to add the two constraints: "TA[i,j,k]=i+j+2k+7" and "TAD1==TBD2", hence the command is:
In[15] := schedule[addConstraints->{"TA[i,j,k]=i+j+2k+7","TAD1==TBD2"}]
The result is

T_a{i, j, N} =0
T_b{i, j, N} =0
T c{i, j, N} =9 +i+ 3j+2N
T_B{i, j, k, N} = i + j

T_A{i, j, k, N} =7 +i+3j+2k
T_C{i, j, k, N} =8+ i+ j+ 2k

7 Problems

7.0.1 If no schedule is found

If no schedule is found, a message is output telling the user that there maybe several reasons for that:
e No schedule exists (no way of solving this problem).

e No schedule of the chosen type exists. In the case, you can try the old schedule which was more
powerful (ask a ALPHAdeveloper).

e No affine one dimensional schedule exists (no way of solving this problem)

e There exists a schedule but the time is not bounded. In this case try with the option objFunction set
to 1).

e The program is not Semantically correct, try analyze.

7.0.2 Awful error messages

In general, when something went wrong, the error is capture correctly. Sometime, the error may come with
the following message General::aofil: /tmp/mat.tmp already open as /tmp/mat.tmp.
OpenWrite::noopen: Cannot open /tmp/mat.tmp.

General::stream: $Failed is not a string, InputStream[], or OutputStream[].

This may come from the fact that you have interrupted the previous execution of schedule. Thus Math-
ematica tries to open file which are not closed. You can close these files (here /tmp/mat.tmp) by typing:
Close[/tmp/mat.tmp]. In general it is very dangerous to interrupt the evaluation of the schedule function.

References

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22:243-268,
September 1988.

[Fea92a] P. Feautrier. Some efficient solution to the affine scheduling problem, part II, multidimensional
time. Int. J. of Parallel Programming, 21(6), December 1992.

[Fea92b] P. Feautrier. Some efficient solutions to the affine scheduling problem, part I, one dimensional
time. Int. J. of Parallel Programming, 21(5):313-348, October 1992.

[Mau89] C.Mauras. Alpha : un langage équationnel pour la conception et la programmation d’architectures
paralléles synchrones. PhD thesis, Université de Rennes 1, IFSIC, December 1989.

[MQRS90] Christophe Mauras, Patrice Quinton, Sanjay Rajopadhye, and Yannick Saouter. Scheduling
affine parameterized recurrences by means of variable dependent timing functions. In S.Y Kung,
Jr. E.E. Swartzlander, J.A.B. Fortes, and K.W. Przytula, editors, Application Specific Array
Processors, pages 100-110. IEEE Computer Society Press, September 1990.

[Wil94] D. Wilde. The alpha language. Technical Report 827, IRISA, Rennes, France, Dec 1994.

