Structured Systems of Affine Recurrence Equations
and their Applications

FLORENT DE DINECHIN
IRISA

Methodologies based on systems of affine recurrence equations (SAREs) may be used in the fields
of computer-aided parallel programming and hardware synthesis, allowing automatic program
analysis and refinement. This paper addresses a current limitation of these methodologies: the
lack of the SARE equivalent to program structures. We therefore introduce structured systems of
affine recurrence equations in the framework of the ALPHA language. We show how a a complex
SARE may be structured into several SAREs of simpler dimensionality, while retaining the possi-
bility of analyzing and automatically transforming such a program using polyhedral computation.
This leads to new methodologies for both hardware synthesis and parallel programming, some of
which are demonstrated in this paper.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Automatic Synthe-
sis and Hardware Description Languages; D.3.3 [Programming Languages]: Language Con-
structs and Features—Concurrent Programming Structures; J.6 [Computer-aided engineer-
ing]: Computer-aided design

General Terms: Design, Languages

Additional Key Words and Phrases: affine recurrence equations, polyhedral computation, program
and data structures, regular processor arrays, static analysis

Introduction

Context. A computation, in the most general sense, may be viewed as a set of
basic operations relating a set of data. In order to express a computation in a form
which is more compact than the extensive enumeration of these operations, these
sets are usually given a structure: vectors, arrays, lists and trees are example of
data structures while do...loop constructs are examples of computation structures.
Modern programming languages express this need for structures.

Implementing an computation may be a different issue from expressing it: the
formula ¢;; = Efcvzl a;rb; is a high-level expression of the matrix product, with
a range of possible implementations. In particular, when looking for a parallel
implementation, there are usually several ways to schedule the basic operations
(here additions and multiplications), some of which being simply impractical, and
some other yielding a variety of tradeoffs between software and hardware. The
exploration of this implementation space is a very complex issue. The language
and tools described in this paper address this issue.

We see at least two requirements for this exploration to be possible. The first
is that the computation or algorithm is expressed at the highest possible level of
abstraction, which means in particular that it is disconnected from any specific
implementation. The previous sum for the matrix product is valid whatever the
number or type of processors or multipliers we will use to implement it, and in

Structured Systems of Affine Recurrence Equations . 1

this respect is a high-level description. The second requirement is that we need to
be able to analyze algorithms in an automatic (or at least assisted) way, in order
to automate (or at least guide) the synthesis of their implementation. Such an
analysis is only computationally possible on strongly structured algorithms, and
here comes another tradeoff: the more structured the data and the computations,
the easier their analysis but the more restricted the set of expressible algorithms.
One of the reasons for the inefficiency of current “parallelizing compilers” is the
large expressive power of their input (general-purpose sequential languages such as
C or Fortran) which makes it difficult to analyze programs accurately.

In this paper we chose the complimentary approach: we restrict the language —
and thus the class of algorithms which can be efficiently expressed — to favor pro-
gram analysis and manipulation. More precisely, the data structures are restricted
to have an Euclidean topology; this includes vectors and matrices, for example, but
no trees nor graphs. The dependencies between computations are also restricted to
have a certain regularity in this topology. These are significant restrictions, but any
of the remaining algorithm may then be analyzed and transformed automatically in
an efficient interactive parallelization process. This restricted class of algorithm still
contains a significant part of the computation-intensive application cores needed in
fields such as signal and image processing and scientific computation.

Affine Recurrence Equations. This philosophy is the basis of the formalism of
affine recurrence equations (AREs) first introduced by Karp, Miller and Winograd
[1967]. AREs relate data arrays of arbitrary dimension, using classical compu-
tational operator to express and transform the values held by these arrays, but
also spatial operators to express and transform their shapes. An algorithm is then
expressed as a system of such equations, or SARE. There have been several refine-
ments of this model, mostly defining the possible shape of the data arrays and the
related restrictions on the spatial operators. This paper deals with the polyhedral
SARE model, where the data arrays are defined over unions of convex polyhedra,
while the spatial operators are basically affine functions in the index space. Since a
convex polyhedron can be expressed as the intersection of several affine half-spaces,
both polyhedral domains and affine spatial operators will be subject to analysis and
transformations using classical linear algebra and linear programming tools.

In this paper, we will express SAREs in the ALPHA language which was de-
signed as a convenient syntax for the polyhedral SARE formalism. An environment,
MMALPHA, built on top of Wolfram’s Mathematica, provides automatic tools for
the analysis and transformation of programs. This environment may be used for ex-
ample to engineer hardware and software as follows: an algorithm is first expressed
at a very high level as a SARE (for example as the previous sum ¢;; = chvzl Qikbrj)-
Then this SARE is analyzed and transformed in order to synthesize a lower-level
— but semantically equivalent — implementation which matches the requirements
of the application. A complete example of such a design process will be given in
section 3.5. Automatic or semi-automatic program transformations may lead to
VLSI regular arrays [Dezan et al. 1991], imperative code [Rajopadhye and Wilde
1995], or a collection of loop nests aimed at a massively parallel architecture [Quin-
ton et al. 1995]. The theoretical and technical bases for such a refinement process
are the result of researches spread over thirty years [Karp et al. 1967; Kung and

2 . Florent de Dinechin

Leiserson 1978; Kung 1982; Moldovan 1982; Quinton 1984; Rao 1985; Delosme and
Ipsen 1986; Rajopadhye and Fujimoto 1987; Yang and Choo 1991; Teich and Thiele
1993], demonstrated and validated thanks to simple core examples (simple matrix
operations, filters, convolutions...).

Motivations and goals. Automated tools like MMALPHA now make it possible to
handle algorithms of a complexity much greater than those core examples studied
by paper and pencil in the literature. However, in order to deal with real-world
problem, the SARE formalism lacks structuring techniques which would allow to
break up a complex specification into a hierarchy of simpler entities: so far any
program or algorithm, whatever its complexity, has to be expressed as one single
system of equations. The number of equations, but also the high dimensionality of
the data arrays may make the writing of such a system a very difficult task. For
example, the singular value decomposition (SVD), a matrix computation commonly
used in signal processing applications, involves data arrays of dimension 5 (this
number is the depth of the loop nests in a sequential implementation).

The purpose of this paper is therefore to extend the formalism to handle more
complex SAREs, thanks to hierarchical structuring techniques. The main moti-
vation is to benefit from the well-known advantages of structured programming.
Some other benefits, however, are more specific to the SARE world:

—The analysis of a SARE, when carried on separate, smaller units, may be both
simpler and more powerful.

—When translating a SARE into some target language for implementation, it is
possible to exploit the structures of this language and match them to the struc-
tures of the SARE.

—It is possible to define libraries of SAREs with all the advantages of libraries of
code or libraries of hardware component, and more: such libraries are much more
flexible because their components may be refined in context, as this paper will
show.

Why not use classical program structuring techniques? There is a wide range of
structure constructs available in the two major computational models: sequential
programs may be structured as procedures and functions, while functional pro-
grams are intrinsically structured as functions, which may be used through well
studied higher-order operators such as map. In addition, in the field of VLSI syn-
thesis, there are hardware description languages which are structured in terms of
components. None of these approaches, however, suits well the SARE formalism:
we need program structures to be constrained within the affine/polyhedral world
in order to retain the strong point of the formalism, the ability to automatically
analyze and transform programs.

This paper thus introduces a program structuring technique specifically adapted
for SAREs: we show how a computation may be described as a structure of systems
of affine recurrence equations (SSARE), in such a way that the structure is very
high-level (implementation-independent) and subject to formal manipulation by the
existing analysis and refinement tools. Besides, the structures we introduce will be
interpretable as:

Structured Systems of Affine Recurrence Equations . 3

—function or procedure calls within affine loop nests, if the SSARE is interpreted
as sequential code,

—regular component instantiation if it is interpreted as parallel hardware,

—constructs similar to, but more general than those of the languages based upon
map-like parallelism, if it is interpreted as a data-parallel program.

Outline. This paper is organized as follows: the first section introduces the clas-
sical SARE formalism in the polyhedral model, using the ALPHA language as a
syntax. It emphasizes the strong points of the model, the ability to analyze and
transform programs, and how it allows to transform formally a high-level spec-
ification into an implementation. The second section presents the extensions to
this model, defining structured systems of affine recurrence equations within the
polyhedral model. The last section discusses the use of SARE structures in pro-
gram refinement and gives several examples of their applications in the current
MMALPHA tool.

1. SIMPLE SARES IN ALPHA

This section gives a definition of the syntax and semantics of the ALPHA language.
ALPHA being basically a convenient notation for the formalism of polyhedral affine
recurrence equations, we first define polyhedra and space variables, the basics of
this formalism. Then we introduce in 1.2 the ALPHA expressions and give their
compositional semantics. Subsection 1.3 defines the syntax and semantics of an
affine recurrence equation, and subsection 1.4 defines a system of such AREs.

The first parts of this section are illustrated by the very classical example of an
ALPHA matrix-vector product given below as Prog. 1.

1 system matvect (M : {i,j | 1<=i<=10; 1<=j<=10} of real;
2 V : {j | 1<=j<=10} of real)

3 returns (R : {i | 1<=i<=10} of real);

4 var

5 C : {i,j | 1<=i<=10; 0<=j<=10} of real;

6 let

7 C = case

8 {i,5 | j=0} : 0.(i,j->);

9 {i,j | j>0F : C.(i,j->i,j-1) + M * V.(i,j->j);
10 esac;

11 R = C.(i->i,10);

12 tel;

Program 1: Matrix-vector product

In the description of the syntax of the language, we use the following conventions :

phrase* denotes zero or more repetitions of phrase.
phrasel | phrase2 denotes alternation, either phrasel or phrase2.
[--] denotes optional phrase.

(...) denotes syntactic grouping.

courier denotes a terminal.

4 . Florent de Dinechin

Italic denotes a non-terminal.

1.1 Basics: array domains and variables

The main data structure in ALPHA is the polyhedral data array. Such an array is a
function of some integer vector space Z™ to a scalar value space (integer, boolean
or real). The domain of this function is a convex polyhedron of Z", which has in
ALPHA the following syntax:

Domain :: { IndexList | ConstraintList }

Intuitively, this data structure enables to represent vectors, matrices, any n-
dimensional array, but also more complex data shapes such as triangular matrices
(e.g. {1,jl 1<=1i,j<=10; j<=i}). Infinite domains are also allowed to represent,
for example, infinite data-streams (e.g. {t| t>=0}).

A1LPHA variables hold such polyhedral data arrays: thus a variable v is declared
by specifying its domain and the type of its values. For example, in Prog. 1, line 5
declares a variable named C which is a square 10 x 10 matrix.

Actually the domains in ALPHA may be the union of finitely many convex poly-
hedra. The set DOM of all the finite unions of integral convex polyhedra has the
following fundamental property [Wilde 1993]:

PrROPERTY 1. DOM is closed under intersection, union, set difference, preimage
by an affine function, and convex hull of the image by an affine function.

This property is at the core of program analysis and refinement, as the rest
of this section will show. Besides the domain operations listed here have been
implemented in Wilde’s polyhedral library [1993] which is the main engine of the
MMALPHA environment.

ALPHA is also strongly typed with respect to the scalar type of the values held in
polyhedral data arrays (integer, real or boolean), but we will not detail this scalar
typing, which is based on very basic and classical type inference techniques.

1.2 Expressions

ALPHA expressions are built out of the previous variables, and constants, the latter
being also considered as polyhedral data arrays of dimension zero. An expression
also holds a polyhedral data array, which is defined compositionally from those of
its subexpressions thanks to property 1.

There are two kinds of operators: pointwise computation operators transform
the values, and spatial operators manipulate the domains of the data arrays. In
addition, the reduction operator is both computational and spatial.

1.2.1 Pointwise operators. A pointwise operator describes a computation ap-
plied to all the points of a data array. For example, if £; and E- are two expres-
sions of the same dimension, then F; + F» is an expression of the same dimension,
defined anywhere where both E; and E, are defined, and whose value at each point
is the sum of the values of E; and E5 at this point.

More formally, the domain of E; + E5 is the intersection of the domains of E;
and F,, and its value function is the sum of those of E; and E,.

Structured Systems of Affine Recurrence Equations . 5

Other pointwise operators include most unary and binary arithmetic and logical
operators, comparison operators, plus the ternary if then else operator.

1.2.2 Spatial operators. The restriction of the expression E to the domain D is
noted D : E. It is an expression whose values are those of E, but whose domain is
the intersection of the domain of E with D.

The case operator allows the piecewise definition of an expression by several
subexpressions defined over disjoint domains. For example caseF;; Ey;esac is an
expression whose domain is the union of the domains of F; and E>. Its values are
defined as those of F; over the domain of E;, and those of Es over the domain
of Es. If both values are defined on some point, this expression is undefined. To
avoid this situation, the restriction operator is usually needed to restrict F; and
E5 properly. See Prog. 1 for an example.

Finally, the dependence operator establishes an affine mapping from the points
of a domain to the points of another domain. Typical affine dependencies are
translations or value broadcast. If f is an affine function, E.f is an expression
whose value at a point z is the value of E at the point f(z), and whose domain is
therefore the preimage by f of the domain of E.

The ALPHA syntax of affine functions is:

AffineFn :: (IndexList -> IndexExpList)

where the index expressions relate the indices in the index list.

Notice that a constant is a data array of dimension zero, and therefore usually
needs a dependence function to be turned to a data array of greater dimension. For
example, if A is a matrix and we want to add 42 to each element of A, then A + 42
is incorrect, for it is the pointwise sum of an object of dimension 2 and an object of
dimension 0. The correct way to express this is to build a two dimensional array of
42s using a dependency operator, as in A + 42.(i,j->). See also line 8 of Prog. 1.

1.2.3 The reduction operator. This operator allows to write high-level expres-
sion such as the summation of the introduction. Let us take another example, our

matrix-vector product of Prog. 1. It could be expressed in a more abstract manner
N

as R; = Z M;;V;. This sum is expressed in ALPHA as the following line, which
j=1
could replace lines 7 to 11:
R = reduce(+, (i,j->1), M*V.(i,j->3));

The reduce operator needs a binary associative and commutative operator (here
+), an ALPHA expression (here M*V. (i,j->j)) of domain D (here a matrix) and
an affine projection f (here (i,j->i)) specifying in which direction(s) of D the
reduction is to take place. The domain of this reduce expression is the image of D
by this projection, and the value of each point of this image is the combination of
all its antecedents by f in D.

Reduction operators allow high-level algorithmic expression. An automatic pro-
gram transformation, called serialization, expands the line above into lines 7-11 of
Prog. 1. This transformation is an example of program refinement: it specifies an
order of the computations (here along increasing j) which is an implementation
choice (serializing along decreasing j would also be possible).

6 . Florent de Dinechin

Finally the general syntax of an expression is:

Expression ::
Variable | Constant (Terminals)
| UnOp Expression (Pointwise unary)
| Expression BinOp Expression (Pointwise binary)

| if Expression then Expression

else Expression (Pointwise if)
| Domain : Expression (Restriction)
| case ExpressionList esac (Disjunction)
| Expression . AffineFn (Affine dependency)
| reduce(BinOp , Expression , AffineFn) (Reduction)
| (Expression)

1.2.4 Static analysis of expressions. The previous definitions have shown infor-
mally that, using property 1, it is possible to compute, for any ALPHA expres-
sion, the polyhedral domain where it is defined (for a more formal approach see
[de Dinechin and Robert 1996]). This key feature of the language is implemented
in the MMALPHA environment, and is the groundstone of most tools for program
analysis and refinement. We illustrate it here by demonstrating one of these tools
for the detection of bounds errors. Another example will be given in section 3.5.1.

In an array language such as ALPHA, most errors which are not purely syntactic
are bound errors. For example, the branches of a case statement should have
disjoint domains, for if they do not, then there are conflicting definitions of the
value of the case expression for the corresponding points. Here is a trivial example
of this situation:

A = case
{i,j,kl i<=k} 0.(i,j,k->);
{i,j,kl i>k; j<=k} : 1.(i,j,k->); -- defined for j=k
{i,j,kl i>k} j>=k} : 2.(i,j,k->); -- also defined for j=k
esac;

What should be the value for j=k, 1 or 27 Obviously this equation, although
syntactically correct, is ill-defined.

Now thanks to property 1, it is always possible, for such a case expression, to
compute the pairwise intersections of the domains of the branches. It is also possible
to check that this intersection is empty. If it is not, as in our example, then there is
a definition conflict. The domain of this confict is precisely this intersection, which
allows for very accurate error messages.

In our example, invoking the MMALPHA analyze[] tool yields the following
message:

ERROR: in case statement, domains of subexpressions overlap on
{i,j,k | j=k}

This trivial example shows that, thanks to accurate polyhedron computation, the
error message is helpful enough to spot the problem easily. Several other similar
checks have been implemented in the extensive analyze[] tool [de Dinechin and
Robert 1996].

Structured Systems of Affine Recurrence Equations . 7

1.3 Equations

An ALPHA program is basically a system of equations, each equation having a
variable as left-hand side and an expression as right-hand side.
The usual syntax of an equation is therefore:

Equation :: Identifier = Expression ;

It is important to distinguish such an equation from an affectation: the ALPHA
equation expresses an identity between both sides. In particular, to be valid, an
equation must define the whole of the variable, that is, the domain of the expression
must at least cover the domain declared for the variable.

1.3.1 Array notation. In most cases, the dependence operator may be rendered
with an easier-to-read array notation [Wilde 1994]. This notation is nothing but a
simpler syntax for an equation which has several index declarations within domains
affine functions on its right-hand side (e.g. i,j in lines 8-9 of Prog. 1). If the di-
mensions are coherent, then these declarations are similar (the names of the indices
may differ, but their number is the same), and the equation may be simplified by
putting them on the left-hand side. An example of this is Prog. 2, which is the core
of Prog. 1 written in array notation.

7 C[i,j] = case

8 {1 j=0} : oll;

9 {I j>0} : C[i,j-11 + M[i,j]1 * V[jl;
10 esac;

11 R[i] = C[i,10];

Program 2: Array notation for the matrix-vector product

This array syntax is no longer compositional, and thus may not be used in all
cases, but it will be adequate for the rest of this paper. The reader, however, should
keep in mind that square bracket are nothing but a convenient notation for affine
dependency functions.

1.3.2 Equation analysis. There are several possible analyses which can be per-
formed on equations. For example, it is possible to compare the domain of the
variable and the expression to check whether the variable is defined on the whole of
its declared domain. For this purpose, we compute the set difference of the domain
of the expression minus the domain of the variable (the set of finite unions of convex
polyhedra is closed under domain difference). If this difference is not empty, then
an error is issued, pointing this very domain as being the set of points lacking a
definition [de Dinechin and Robert 1996].

The converse is also possible: using similar techniques, we may check whether
the domain of the expression is bigger than that of the variable. If it is, then the
equation describes useless computations. Fore some interpretations (or implemen-
tations) of ALPHA programs, this is the basis for automatic optimization.

These examples show again that exact domain computation is central to the
language and should be preserved by the program structures we will introduce in
section 2.

8 . Florent de Dinechin

1.4 Systems

An ALPHA system is a set of mutually recursive equations. All the variables are
declared in the header. There are three classes of variables. Input variables only
appear on the RHS of the equations: their domain is declared in the header of
the system, but they do not have an equation defining them. Output variables are
returned by the system. Local variable are auxiliary variables. The syntax of a
system is thus:

SystemDecl
system Name (InputDeclList)
returns (QutputDeclList) ;
[var LocalDeclList ; |
let
EquationList
tel

Each declaration list contains declarations of variables as described in 1.1.

1.5 A simple example of program refinement

This section does not intend to give an extensive overview of manipulating SAREs,
but rather to show how the affine/polyhedral model makes it possible to automate
program transformation (the previous section showed how it yielded powerful and
accurate analysis techniques). Our example of program refinement leads from an
abstract specification to a processor array suitable for VLSI synthesis. The main
purpose, however, is to justify the rather exotic definition, in the next section, of
program structuring constructs based purely on polyhedra and affine function to
retain this possibility.

A program like that of Prog. 1 is first uniformized [Rajopadhye et al. 1986; Yaa-
coby and Cappello 1988] to remove the data broadcasts and non-local communica-
tions. Such non-uniform data dependencies are simply detected as non-translation
affine functions, which may be replaced with a pipeline of values. Reduction op-
erators are serialized as well. In both cases, there may be several choices for the
directions of the pipelines introduced, which are currently left to the user.

When the program is uniform, all the computations live in the same index space
and only depend on neighboring computations. It is then possible to compute a
schedule of these operations: each point of this index space is assigned an affine
execution date consistent with the data dependencies. For this purpose the de-
pendencies are automatically extracted from the ALPHA program and expressed
as affine constraints, the polyhedral computation domains give other affine con-
straints, yielding a linear integer programming optimization problem solvable by
computer [Feautrier 1992; Darte and Robert 1994].

Then an affine change of basis is performed on the index space of each variable:
their domains are transformed (still using property 1) so that one of the indices
becomes the time at which this variable is computed, and the other indices specify
the processor on which the computation is performed, in some processor array
whose shape is given by the resulting domains of the variables.

When this process is carried on Prog. 1, we get Prog. 3, which is an abstract
description of the architecture pictured by Fig. 1.

Structured Systems of Affine Recurrence Equations . 9

1 system matvect (M : {i,j | 1<=i,j<=10} of real;
2 V : {j | 1<=j<=10} of real)

3 returns (R : {i | 1<=i<=10} of real);

4 var

5 ML : {t,p | p+1<=t<=p+10; 1<=p<=10} of real;
6 VS : {t,p | p+1<=t<=p+10; 1<=p<=10} of real;
7 C : {t,p | p<=t<=p+10; 1<=p<=10} of real;

8 let

9 ML[t,p] = M[p,t-pl;

10 VSlt,pl =

11 case

12 {l p=1} : V[t-1];

13 {l p>1} : VS[t-1,p-11;

14 esac;

15 Clt,pl =

16 case

17 {l t=p} : 0[1;

18 {l t>p} : C[t-1,p] + ML[t,p] * VS[t,p]l;
19 esac;

20 R[i] = C[i+10,i];

21 tel;

Program 3: ALPHA program interpreted as a systolic circuit

In this program, the data arrays are still two-dimensional as in Prog. 1, but
now the index t represents the time and the index m is the processor index in the
linear array of Fig. 3. The declaration domains of the variables show that there
are 10 processors (indexed by p such that 1<=p<=10), and that the m-th processor
computes for p<=t<=p+10. Line 12 shows how V is input at time t on the first
processor (p=1), and line 13 shows how it is then propagated from processor p-1 to
processor p through one register (implied by the t-1 dependency). In the figure,
the registers are drawn as boxes. The computation equation of line 18 is interpreted
as hardware operators, whereas the data translation equations are interpreted as
registers. Finally the last equation shows that the i-th bit of the result is output
by the i-th processor at time i+10. The complete program thus describes a virtual
linear array (Fig. 1).

This design is still very abstract. Additional lower-level program transforma-
tions are needed to turn control information present in the domains into systolic
control variables [Teich and Thiele 1991]. The resulting ALPHA program may then
be translated [Le Moénner et al. 1996] into structural VHDL for synthesis by com-
mercial VLSI CAD tools like Compass or Synopsys. We will come back on this
translation later in 3.3.

2. STRUCTURED SARES

This section extends the SARE formalism and the ALPHA language to allow pro-
gram structuring. For this we first address in 2.1 the issue of genericity of a system.
Then in 2.2 we introduce SARE structures, their syntax in ALPHA and their se-

10 . Florent de Dinechin

R 1]
- R[2]
- - R3] ‘
SSS —] ‘ > ‘ > ‘ - +
RO p:]_ p= N LJ
I I T
M1, 1] - -
M1, 2] M 2, 1] - \
M1, 3] M 2, 2] M 3, 1]
M 2, 3] M 3, 2]
M 3, 3]

Fig. 1. Systolic array for the matrix-vector product

mantics.

2.1 Size parameters

Section 1 showed a matrix-vector product of fixed size 10. This obviously prevents
a system like Prog. 1 to be used in a more complex application in an useful way, for
an other application will need matrix-vector products of different size, the size even
varying within the application. What is needed is therefore a more generic system,
describing a matrix-vector product of arbitrary size, say IN. The actual size should
be an implementation detail.

The polyhedral SARE model allows for a simple but powerful parameter scheme:
all we need is add an index N to each polyhedron of the system, and consider this
index as a size parameter. For example the domain {i,j | 1<=i,j<=10} becomes
{i,j,N | 1<=i,j<=N}. This index also needs adding in affine functions to replace
the 10s there. Thus the dependency (i->i,10) becomes (i,N->i,N,N). The N on
the right-hand side is needed for dimension consistency. It is easy to show that
the modified system is a valid ALPHA program, and that it can be analyzed and
transformed as well (we will come back on this later).

Now we have added a “,N” to all the index lists of polyhedra, and to the left-hand
and right-hand sides of all the affine functions. There is a lot of redundancy there,
because this parameter index actually stands for a global constant. Therefore it
makes sense to declare it only once, in the beginning of the system, and then omit
its declaration in the rest of the system. Besides, when declaring it, we may as
well declare a domain of values permitted for this parameter, as a usual polyhedral
domain.

This defines the syntax for parameterized ALPHA systems, exemplified by Prog. 4.
More generally, the parameter domain may be any ALPHA domain, in particular
there is no limit on the number of parameters, and it is possible to express any
affine constraint between the parameters. For example, {M,N | M<2N} is a valid
parameter domain. Parameters may then appear anywhere in the system where
indices are allowed, that is, in domains (see lines 2-4 of Prog. 1) as well as in
affine functions (see line 12). This parameterized syntax obviously retains all the
properties of the language, since it is always possible to write the parameterized
system as a non-parameterized one.

Structured Systems of Affine Recurrence Equations . 11

1 system matvect {N| N>1}

2 M : {i,j | 1<=1i,j<=N} of real;
3 V : {j | 1<=j<=N} of real)

4 returns (R : {i | 1<=i<=N} of real);

5 var

6 C : {i,j | 1<=i,j<=N} of real;

7 let

8 C = case

9 {i,j | j=0} : 0.(i,j->);

10 {i,j | j>0F : C.(i,j->i,j-1) + M * V.(i,j->j);
11 esac;

12 R =C.(i->1i,N);

13 tel;

Program 4: Parameterized matrix-vector product

2.1.1 Parameter related analysis. With respect to program analysis and trans-
formation, however, parameterization is more than simply syntactic sugar: param-
eters are syntactically mere indices, but their semantic is that of a constant in
a system. For example, the parameterized affine function (i,j->i+N, j+N) is a
translation and should be considered as such in the uniformization process, although
its closed affine form (i,j,N->i+N, j+N, N) is not a translation.

Parameters also increase the efficiency of the previous static analysis tools: al-
though the main techniques of domain inference are the same, it is possible for
example to project the domain where an error occurs on the parameter subspace
(such a projection also yields a domain) and compare this domain with the declared
parameter range. Thus it is possible to verify that a property holds on the whole of
the parameter range, or to compute precisely the set of parameters where it holds
[de Dinechin and Robert 1996].

Optimization of the actual value of a parameter, in a given program refinement
context, will also be possible in this framework, although this possibility has not
been studied in depth yet.

2.2 Structures

The issue of structuring a complex algorithm into a hierarchy of SAREs is more
complex than it seems. Obviously, it is partly addressed by the decomposition of
the problem into equations: it is always possible to break an equation into two
simpler equations, using an auxiliary variable to hold a subexpression of the initial
expression. The reverse operation, replacing a variable appearing in an expression
with its definition, is also always possible. The MMALPHA environment provides
assistance for both these operations, thus ensuring that the resulting system is
equivalent to the initial one (these operations are similar to the S-conversion in the
lambda-calculus).

2.2.1 The need for higher-order program structures. Structuring using equa-
tions, however, basically remains first-order structuring (in the usual functional
meaning), and is thus limited. These limits appear more clearly on the following
example: suppose we want to write in ALPHA an algorithm for a signal-processing

12 . Florent de Dinechin

Fig. 2. Linear collection of bidimensional matrices

application, which involves time-varying matrices. Such matrices are represented
in ALPHA as three-dimensional data arrays (two matrix dimensions, and one —
possibly unbounded — time dimension) as represented on Fig. 2.

Now let us try to re-use the equations of the matrix-vector product to operate
on these time-varying matrices. Obviously it is not possible in a straightforward
manner, for the inputs don’t have the proper dimension. For example we will need
to rewrite the whole of the equation defining C to add one dimension to the domains
and the affine functions, as shown by Prog. 5.

8 C = case

] {i,j,t | j=0}: 0.(i,j,t->);

10 {i,j,t | j>0}: C.(i,j,t->i,j-1,t) + M * V.(i,j,t->j,t);
11 esac;

Program 5: Using the matrix-vector product on time-varying matrices

Structuring using variable will never be adequate when such a dimension exten-
sion is needed, which is a very common case: it corresponds to a procedure or
function call within a loop nest in imperative languages, or to a map structure in
functional languages.

2.2.2 Introductory example. As another, more concrete example, let us try and
write ALPHA SAREs for the addition and multiplication of two integers (or fixed-
point numbers) written in binary notation. These numbers will be coded as arrays
of booleans in ALPHA.

The base block of these operation is the full adder function which takes three
binary inputs A, B and Cj, and expresses their sum on two bits X and C,;:

A+B+Ciyp = X +2Cou

Prog. 6 is a full adder function written in ALPHA. In this system, the domains
of all the variables are Z° (one point).

An adder is classically described as a sequence of full adders with carry propa-
gation, (hence the names C;, and C,yt, for ”carry”) as shown on Fig. 3.

In order to re-use the system given as Prog. 6, we need to keep the same equations,
but to change the domains of the variables so that they become arrays of bits:

A,B,Cin,Cout,X : {b| 0<=b<W} of boolean;

Structured Systems of Affine Recurrence Equations . 13

system FullAdder (A,B,Cin : boolean)
returns (X,Cout : boolean);

let
X= A xor B xor Cin; Gn Cout

Cout= (A and B) or (A and Cin) or (B and Cin);
tel;

A B

X

Program 6: Full Adder system

AL0] B[O] A1l B[1] Al2] B[2] AL3] B3]

" FAr~FA>~FA> FA

= Y Y Y Y

S[0] S[1] s12] s3] ST 4

Fig. 3. An adder

The structure construct use in ALPHA allows precisely that: it allows a system
to be used by another one with an extension of the dimensionality of the subsys-
tem. This dimension extension is expressed as an ALPHA domain, in our example
{bl 0<=b<W}. An example of this feature is Prog. 7.

1 system Plus: {W|Ww>1} (A,B: {b| 0<=b<W} of boolean)
2 returns (S : {b| 0<=b<=W} of boolean);
3 var

4 Cin, Cout, X : {b| 0<=b<W} of boolean;

5 let

6 Cin[b] =

7 case

8 {1 b=0} : 0[];

9 {l >0} : Cout[b-1];

10 esac;

11 use {b| 0<=b<W} FullAdder[] (A,B,Cin) returns(X, Cout);
12 S[b] =

13 case

14 {l b<W} : X;

15 {|] b=W} : Cout[W-1];

16 esac;

17 tel;

Program 7: Addition using subsystem FullAdder

In this system, the line 11 reads as follows: “Use a collection of instances of
the subsystem FullAdder. This collection has the shape of the extension domain
{bl 0<=b<W} and is thus indexed by index b. Let the inputs of the b-th instance be
the variables A, B and Cin at point b, and similarly let the outputs of this collection
of instances be the variables X and Cout.”

14 . Florent de Dinechin

1100 A =0.75
x 1010 B =0.625
b 0000
m; + 1100 p
+ 0000
+ 1100
011111000 X =0.46875

Fig. 4. Product of two fixed point reals in binary representation

The lines 6-10 describe the carry propagation, and lines 12-16 define the output
of this binary adder.

2.2.3 Inputs and outputs. In Prog. 7, the actual inputs given to the system (4,
B and Cin) are all variables. In general, however, they may be any expression: their
semantic is that of a right-hand side of expression, and the link between actual and
formal inputs is a virtual equation (in the usual ARE sense) [de Dinechin et al.
1995].

Actual outputs, on the other hand, have a left-hand side semantics, and so they
have to be variables only.

Here is the general syntax of a use construct. It should be noted that this
construct appears at the syntactic level of an equation, for its intuitive semantics
is that of a set of equations (those of the subsystem).

Equation ::
Identifier = Expression ;
| wuse [ExtensionDomain | Identifier
[[ParamAssignment] |
(ExpressionList)
returns (IdentifierList) ;

Why not give a subsystem use an expression syntax instead of this equation
syntax, so that it may appear in any expression just as a function call in usual
languages? A simple answer is that it would need a major change in the syntax in
the case when a system has several output variables, as FullAdder: we would have
to introduce list of expressions, making the syntax much more complex as well as
the domain analysis. A deeper reason is that it would be very difficult to replace
such an expression subsystem call with its definition: the subsystem is basically a
set of equations, with a fixed point semantics which cannot always be expressed as
an expression.

2.2.4 Giving values to the subsystem’s size parameters. In Prog. 7 the subsystem
FullAdder has no parameter. In the general case, the parameters of the subsystem
need to be given a value, which may be any affine function of the parameters of the
caller and the extension indices.

This feature is best explained using some examples. Consider the binary multi-
plication algorithm, which is very similar to the decimal usual algorithm performed
“by hand”. Fig. 4 shows that such a multiplication is basically a collection of
additions.

Structured Systems of Affine Recurrence Equations . 15

0
.
o_| 0_|
L | -
0| 0_| 0_|
Cout | [=0
_la - s iy
1B x_ . — 4 -
an - = =
A P P PR] e
Ful | Adder — — -
Pl us[4] Pl us[5] Pl us[6] Plus[7]

Fig. 5. Binary numbers accumulation.

Prog. 8 is the ALPHA incarnation of Fig. 4. Line 8 performs the binary product of
all the bits of the first operand by each bit of the second. Line 10 describes a linear
collection of additions, indexed by m which is the row index in Fig. 4. Lines 12-17
link the result of one additions to the input of the following.

1 system Times: {W|W>2} (A,B: {b| 0<=b<W} of boolean)
2 returns (X : {b| 0<=b<W} of boolean);
3 var

4 P : {b,m| 0<=b,m<W } of boolean;

5 Si : {b,m| 0<=b<W; 0<m<W } of boolean;

6 So : {b,m| 0<=b<=W; 0<m<W } of boolean;

7 let

8 P[b,m] = A[b] and B[m];

9

10 use {m| 0<m<W} Plus[W] (Si,P) returns (So);

11

12 Si[b,m] =

13 case

14 {l m=1} : P[b,m-1];

15 {l m>1} : So[b+1,m-1];

16 esac;

17 X[b] = Sol[b+1,W-11;

18 tel;

Program 8: Binary multiplication in ALPHA

Here the parameter assignment W just equates the bit size parameter of the sub-
system Plus and that of the multiplication. In the general case, however, this
parameter assignment may be any affine function: Fig. 5 addresses for example the
problem of accumulating binary numbers without overflow: the sum of two N-bits
numbers may be a N + 1 bits number, therefore it is needed to use additions of
increasing sizes to avoid overflows.

Program 9 exhibits a use construct which corresponds to this figure. Another
example where the “natural” structuring of an algorithm makes use of a param-

16 . Florent de Dinechin

eter assignment depending on the extension indices is the Gaussian elimination
[de Dinechin and Robert 1996].

use {i| 1<=i<N} Plus[W+i-1] (A1,A2) returns (Acc);

Program 9: Parameter assignment depending on extension index

In all our examples, the extension domain is mono-dimensional, but in the general
case the extension domain may be any arbitrary ALPHA domain. A typical example
where it is useful is, in an image processing application, applying some function to
all the points of an image. Another detailed application will be demonstrated in
3.5.

2.2.5 A substitution semantics. The semantics of a subsystem use is more subtle
than it seems. The main difference with a more conventional function or procedure
call is that the use expresses a set of computations which is not monolithic: line
10 of Prog. 8 hides a two-dimensional collection of instances of full-adder functions
without implying any order on the evaluation or execution of these instances. In
particular, all the inputs need not being defined on the whole of their domains for
the use to have a semantic. In this program it wouldn’t be possible, since the input
Si is defined as a function of the output So. From this point of view, the use is to
the procedure call what the recurrence equation is to the affectation.

For this reason, it is difficult to give a compositional semantics to the use (the
problem is addressed in [Dupont de Dinechin 1997]). It is much easier and intuitive
to define this semantics by substitution: a program containing a use is equivalent to
a program in which this use has been replaced with the equations of the subsystem,
plus equations for actual/formal input/output linking. These equations are usually
deeply modified because of dimension extension, but the modifications are based
on the usual and well-defined domain computations. This substitution semantics
is detailed in [de Dinechin et al. 1995] and has been implemented as the inline[]
program transformation in the MMALPHA environment.

3. MANIPULATING STRUCTURED SARES

Thanks to the inline[] transformation, any SSARE may be transformed into an
equivalent SARE by inlining recursively all of its subsystems, until there is no more
use instruction. Therefore any of the already existing tools, transforming a SARE
into an equivalent one, may be straightforwardly extended to a tool transforming
a SSARE into an equivalent SARE. This ensures that the existing MMALPHA
environment may be used as well for algorithms expressed initially as SSAREs.

However, this approach obviously discards all the structure information, which
could otherwise be usefully exploited. This section explores and demonstrates more
clever uses of the SSAREs in MMALPHA.

3.1 Unchanged tools

First, the global inlining approach is sometimes uselessly brutal, for some of the
tools need only minor change to adapt to structured SAREs. For example, the
localization of a dependency is intrinsic to a given system, and may therefore be
extended very straightforwardly to handle use statements as well as equations.

Structured Systems of Affine Recurrence Equations . 17

Such are also the change of basis transformation and the serialization of reduce
constructs, among others.

3.2 Tools with new features

In general, however, handling structures involves major changes in a given trans-
formation, hopefully offering new opportunities.

Consider for example the chain of transformation leading from an ALPHA SARE
to a sequential C program. Presently the C program is a single-assignment one, and
is therefore very memory inefficient. The translation to a sequential program with
memory reuse will be eased by the ability to manipulate structures (interpreted, in
this case, as sequential procedures). Of course none of the involved computations
absolutely needs SSARE, but they help making interpretations explicit.

Another complex example is the scheduling of a SSARE, which may be done
at several levels: one one side, there is a global scheduling of a SSARE, which is
that of the equivalent, completely inlined one. On the other side, it is possible to
consider some subsystems as atomic, and schedule a SSARE accordingly. Such a
scheduling is needed for the previous problem of memory reuse in sequential code.
A third possibility is to schedule each system separately, inheriting constraints on
the schedule from its subsystems and caller systems. Subtle problems arise in this
case, and these questions are the subject of ongoing research.

3.3 New tools

Program structures also open a range of new possibilities in the classical SARE-
based program transformation environments. In the ALPHA project, a fruitful ex-
ample is the definition of the ALPHARD language [Le Moénner et al. 1996], a subset
of ALPHA which is straightforwardly interpretable as a hardware description, while
still subject to strong automatic analysis. In this context, this analysis ensures
the completeness and consistency of the connections and timings, making devel-
oping a parallel synchronous architecture easier in ALPHARD than in a standard
hardware description language such as VHDL (an input to most silicon compilers).
ALPHARD, however, is translatable into structural VHDL. The current MMALPHA
environment also provides the translation into ALPHARD of a scheduled ALPHA
program such as Prog. 3, and so ALPHARD is a convenient intermediate language
for the synthesis of this still abstract architecture.

This intermediate language is based on structured SAREs: an ALPHARD descrip-
tion is strongly structured into boards, each board consisting of several modules,
each module being a regular collection of elementary cells (a use with an exten-
sion domain defining this collection). Although possible without parameters and
structures, such a description would be much less convenient, and its translation
to VHDL would be much more difficult (VHDL is structured). The translation of
scheduled ALPHA to ALPHARD is also conceptually easy: it basically consists of
decomposing the declaration domains of computation variable into space domains
and time domains, and then making cells with the time domains, and use extension
domains in the modules from the space domains. Of course the actual transforma-
tions involved are much more complicated and beyond the scope of this paper.

18 . Florent de Dinechin

3.4 New applications (1): specialization of parallel code

Although most of our examples so far are taken from the VLSI world, SARE-
based formalisms are also useful in the connex fields of parallel programming and
automatic parallelization. A recent example is the use of structured SAREs for the
specialization of parts of the ScaL.aPack library.

ScaLaPack provides portable parallel routines for most linear algebra algorithms
on block-partitioned dense matrices. Sophie Robert used MMALPHA to optimize
some of these routines (including LU decomposition) for Hessenberg matrices, which
are triangular plus one lower diagonal. The idea was to remove all the computations
involving null values in such matrices.

The procedure was the following:

—first translate a hierarchy of ScaLaPack functions into an equivalent hierarchy of
ALPHA systems (using the structures defined in this paper),

—then cut out the null polyhedra (i.e. the triangle of zeroes below the diagonal)
from the input matrices of these systems,

—then propagate, using MMALPHA, the corresponding information thanks to poly-
hedra computations and more subtle inference techniques,

—and finally translate back the resulting hierarchy into the original ScaLaPack
code. Thanks to the hierarchical nature of this library, only parameters of func-
tion calls need changing.

These techniques are presented in detail elsewhere [de Dinechin et al. 1997]. In
the case of the LU decomposition they allowed an improvement of complexity from
O(n?) to O(n?) in very short time.

3.5 New applications (2): schedule-free component libraries

We address here the synthesis of digital circuits, that is circuits computing numer-
ical values. The design flow previously sketched in 1.5 yields parallel architectures
whose granularity is that of a numerical value. However, these values are imple-
mented as fields of bits (words), and there is often some potential parallelism at the
granularity of the bit which remains unexploited. Exploiting this bit-level paral-
lelism may lead to architectures with bit-level pipelines, which may be either more
efficient for a given silicon cost (bit-parallel architectures), or of much lower silicon
cost with roughly the same computational power (bit-serial architectures).

There are technological reasons which make such architectures difficult to synthe-
size, such as in some cases a higher clock frequency for the same computing power.
We believe, however, that the main obstacle to bit-parallel architecture synthesis
is simply the added degree of complexity of managing this parallelism: one has to
rely on libraries of arithmetic operators to lower development time (e.g. datapath
libraries), and it is these libraries that impose a word granularity.

We therefore introduce the concept of schedule-free operator libraries: a schedule-
free operator is simply a system of affine recurrence equations (SARE) describing
an arithmetic operation at the most abstract level. For example, Prog. 8 is a
schedule-free multiplier, because it does not impose an order on the various bit-
level computation involved, but for the implicit order due to data dependencies.
The originality of this approach is thus that this order or schedule is not cast in

Structured Systems of Affine Recurrence Equations . 19

silicon when designing the operator, as it would be if we were designing a silicon
(e.g. datapath) library. It will depend on the application in which the operator
is to be used, and so will be determined later thanks to program analysis in this
context.

The design process is then the following: a specification is written, simulated
and validated at the word level, i.e. using abstract data-types (real or integer). An
example of such a word-level specification is our matrix-vector product of Prog. 4.
Then an automatic program transformation refines it into a functionally equivalent
bit-level SARE, using a library of schedule-free arithmetic operators. The resulting
bit-level SSARE then undergoes the synthesis process sketched in 1.5, yielding a
regular array of bit-level processors.

The quality of the resulting circuits when implemented in silicon has been dis-
cussed elsewhere [de Dinechin 1997]. This method is mostly suited to programming
Field Programmable Gate Arrays (FPGA), which consist of a two dimensional grid
of programmable gates which can host our bit-level processors. We will however
only focus here on the language aspects.

3.5.1 Bit-level refinement transformation. We call bit-level refinement the au-
tomatic program transformation that replaces, in a word-level specification like
Prog. 1, the operators + and * with instances of the corresponding ALPHA SAREsS,
Prog. 7 and 8. The real variables need replacing with boolean ones, with one
more dimension holding the bit representation.

This transformation is detailed in [de Dinechin 1997]. Its core is the computation
of the domains of the operators, using automatic analysis tools as described in the
first section. For example consider the following equation:

var C,M: {i,jl| 1<=i<=N; 1<=j<=N};
C = case

{i,j | i=j} : M + C.(i,j—->i-1,3) ;
esac;

In this case the domain of the + — the set of additions described in this line — is
computed by translating the domain of C thanks to the (i,j->i-1,j) translation,
then intersecting it with the domain of M, then intersecting the result with the do-
main of C itself intersected with the {i,j| i=j} restriction domain. These domain
computations are all done automatically [de Dinechin and Robert 1996].

Once this domain D of the + operator is computed, we change all the real vari-
ables into boolean ones, and we replace this operator with a use of the subsystem
Plus, whose extension domain is exactly D, . Thus the resulting SSARE describes
exactly the same set of additions, but now at the bit-level.

It is here obvious that a more conventional program structure, say a map on a
list of arguments, would be inadequate, for it wouldn’t allow for the expression of
a collection of + of arbitrary polyhedral shape.

3.5.2 Synthesis of the bit-level architecture. The synthesis of the transformed
program is then similar as in section 1.5. Note, however, that here the scheduling
takes into account the dependencies at the bit level, therefore the operators are

20 . Florent de Dinechin

M: !
viz2 wE | . 07
s |
!
1
P]]]

G

| | I I o B B B | [PO B
i . (]] (1 | S 5
] 9 F ‘

N

T \ , |
Y - - - ’ A B
R3 L
Ry \ ’ T FA r
RL \ X
\
\
(=2 \ AE{ H H H }>

Fig. 6. Bit-parallel systolic array for the matrix-vector product

pipelined at the bit level. Besides, we still have at this point a parameterized
design where we may vary the word size W and the parameters of the problem (here
N, the size of the matrix).

In the case of the matrix-vector product, we get a regular processor array depicted
on Fig. 6. The figure shows the bit arrays for each matrix or vector element, input
and output in a parallel skewed manner (the isochrone lines are also shown).

Using similar techniques, other trade-offs will be possible, yielding for example
a bit-serial circuit with a latency linearly worse than that of this bit-parallel array,
but a linearly better silicon cost. This possibility is just evoked [de Dinechin 1997],
since its automation has not yet been studied in depth.

Conclusions and future works

This paper introduces structured systems of affine recurrence equations in the
polyhedral model, and their use and applications in the ALPHA language and the
MMALPHA environment. These extensions to a classical model allow to use it for
non-trivial tasks, some of which are demonstrated in the field of VLSI synthesis
and parallel programming. These extensions are based on a very general property
of the set of array domains, which is its closure under a certain range of opera-
tions. Therefore, finer refinements of the polyhedral SARE model which preserve
this closure property (replacing polyhedra with linearly bounded lattices [Teich and
Thiele 1993] or Z-polyhedra [Quinton et al. 1996]) will benefit of this work with
only minor modifications.

Structured SAREs do not increase the power of expression of the language, just
as any program written in an object-oriented language could also be written in
assembler. We have shown, however, that most of the individual tasks involved
in the program refinement approach are made easier by the availability of SARE
structures: initial specification, program analysis, program transformation, trans-
lation of the final program into an implementation-specific target language. It also
opens new opportunities, the examples given in this paper being the easy special-
ization of hierarchical parallel code or the use of schedule-free operator libraries.
Several other applications exist, some of which have been studied thoroughly and
implemented, some are under implementation, and some other are only evoked and

Structured Systems of Affine Recurrence Equations . 21

still in the domain of future research.

REFERENCES

DARTE, A. AND ROBERT, Y. 1994. Constructive methods for scheduling uniform loop nests. I[EEE
Trans. Parallel Distributed Systems 5, 814-822.

DE DINECHIN, F. 1997. Libraries of schedule-free operators in Alpha. In Application Specific Array
Processors. IEEE Conmputer Society Press.

DE DINECHIN, F., QUINTON, P., AND RISSET, T. 1995. Structuration of the Alpha language. In
Massively Parallel Programming Models, W. Giloi, S. Jahnichen, and B. Shriver, Eds. IEEE
Computer Society Press, 18—24.

DE DINECHIN, F., RISSET, T., AND ROBERT, S. 1997. Hierarchical static analysis for improving the
complexity of linear algebra algorithms. In Parallel Computing. Elsevier, Bonn, Germany.

DE DINECHIN, F. AND ROBERT, S. 1996. Hierarchical static analysis of structured systems of affine
recurrence equations. In Application Specific Array Processors. IEEE Computer Society Press.

DELOSME, J. AND IPSEN, I. 1986. Design methodology for systolic arrays. In Proc. SPIE 30th
Ann. Int. Tech. Symp. on Optical and Optoelectronic Applied Sciences and Engineering. San
Diego (USA), 245-59.

DEzaAN, C. 1993. These de doctorat. Ph.D. thesis, université de Rennes I.

DEezAN, C., GAUTRIN, E., LE VERGE, H., QUINTON, P., AND SAOUTER, Y. 1991. Synthesis of
systolic arrays by equation transformations. In Application Specific Array Processors. IEEE,
Barcelona, Spain.

DUPONT DE DINECHIN, F. 1997. These de doctorat. Ph.D. thesis, université de Rennes I.

FEAUTRIER, P. 1992. Some efficient solutions to the affine scheduling problem, part I, one dimen-
sional time. International Journal of Parallel Programming 21, 5 (Oct.).

Karp, R. M., MILLER, R. E., AND WINOGRAD, S. 1967. The organization of computations for
uniform recurrence equations. Journal of the Association for Computing Machinery 14, 3
(July), 563-590.

KuNG, H. AND LEISERSON, C. 1978. Systolic arrays (for VLSI). In Sparse Matriz Proc. 1978.
Society for Industrial and Applied Mathematics, 256-282.

Kung, H. T. January 1982. Why systolic architectures? IEEE Computer 15, 1, 37-46.

LE MOENNER, P., PERRAUDEAU, L., RAJOPADHYE, S., RISSET, T., AND QUINTON, P. 1996. Gen-
erating regular arithmetic circuits with AlpHard. In Massively Parallel Computing Systems
(MPCS’96). 429-436.

MOLDOVAN, D. 1982. On the analysis and synthesis of VLSI algorithms. IEEE Transactions on
Computers C-31, 11 (Nov.).

QUINTON, P. 1984. Automatic synthesis of systolic arrays from recurrent uniform equations. In
11th Annual Int. Symp. Computer Arch., Ann Arbor. 208-214.

QUINTON, P., RAJOPADHYE, S., AND RISSET, T. 1996. Extension of the Alpha language to recur-
rences on sparse periodic domains. In Application Specific Array Processors. IEEE Conmputer
Society Press.

QUINTON, P., RAJOPADHYE, S., AND WILDE, D. 1995. Derivation of data parallel code from a
functional program. In IPPS. Santa Barbara, USA.

RAJOPADHYE, S. AND FuiimoTO, R. 1987. Systolic array synthesis by static analysis of program
dependencies. In Parallel Architectures and Languages Europe, J. de Bakker, A. Nijman, and
P. Treleaven, Eds. Springer-Verlag, 295-310.

RAJOPADHYE, S. AND WILDE, D. 1995. The naive execution of affine recurrence equations. In
Application Specific Array Processors. IEEE Computer Society Press.

RAJOPADHYE, S. V., PURUSHOTHAMAN, S., AND FujiMoTO, R. M. 1986. On synthesizing systolic
arrays from recurrence equations with linear dependencies. In Sizth Conference on Foundations
of Software Technology and Theoretical Computer Science. Springer Verlag, LNCS No 241, New
Delhi, India, 488-503.

RAo0, S. 1985. Regular iterative algorithms and their implementations on processor arrays. Ph.D.
thesis, Standford University, U.S.A.

22 . Florent de Dinechin

TEICH, J. AND THIELE, L. 1991. Control generation in the design of processor arrays. Journal of
VLSI Signal Processing 3, T7-92.

TEICH, J. AND THIELE, L. 1993. Partitionning of processor arrays: a piecewise regular approach.
Integration, the VLSI Journal 14, 3 (Feb.), 297-332.

WILDE, D. 1993. A library for doing polyhedral operations. Publication Interne 785, IRISA,
Rennes, France. Dec. Also published as INRIA Research Report 2157.

WILDE, D. K. 1994. The Alpha language. Publication Interne 827, IRISA, Campus de Beaulieu,
35042 Rennes Cedex, France. Jan.

YaacoBY, Y. AND CAPPELLO, P. R. 1988. Converting affine recurrence equations to quasi-uniform
recurrence equations. In AWOC 1988: Third International Workshop on Parallel Computation
and VLSI Theory. Springer Verlag. See also, UCSB Technical Report TRCS87-18, February
1988.

YANG, J. aND CHOO, Y. 1991. Parallel-program transformation using a metalanguage. ACM
Sigplan Notices 26, 7 (July), 11-20.

