
Periodic System Generation in Mmalpha

Anne-Marie Chana Patrice Quinton

Version of February 20, 2009

Contents

1 Introduction 2

2 The synPeriodic function 2

3 Generation of vhdl Programs 3
3.1 Generalities . 3
3.2 How to Write a Periodic System 3
3.3 Step 1: Solve the Balance Equations 4
3.4 Step 2: Schedule the System 5

A The genVhdl Function 5

B Read-only Memories 5

C Periodic enable signals 6

D Finite-state machine 7

E The FIR Filter 7
E.1 The Module . 8
E.2 The Controller . 10

To do list

• Separate the types in a separate component

• Assign values to the coefficients of the filter

• Infrer le type de ovsfaddress etc... partir de celui de la ROM

1

1 Introduction

This document presents the current state of development of an extension
of Mmalpha to generate multi-dimensional periodic systems. The theory
underlying this work is described in [?].

2 The synPeriodic function

This function is located in the Synthesis.m package. Ils goal is to analyze
a data-flow periodic systems and to find out the periods of each one of its
components. It also generates vhdl files for such a system.

Recall that such a system is a special case of alpha system where all
variables are indexed with an infinite first dimension. This means that all
variables of such a system have a domain of the form {i, j, k...|0 ≤ i, ...}.
The first index, i, is considered as a time index. It also uses subsystems,
which have all the property that all their variables are also indexed with a
first infinite dimension.

Now the time dimension of each variable may be stretched or contracted
depending on a fixed period. This means that for some variables, the first
index i is in fact an affine function at + b of an underlying, commun time
clock, t. For another variable, this affine function might be of the form ct+d,
where c and d are different from a and b.

Some particular subsystems are oversamplers and undersamplers. They
have the property of changing the rate of the time dimension, i.e., the values
of the periods a or c of the variables.

All other subsystems have the property of being monochronous: all their
variables have the same period. We expect these subsystems to represent
hardware components that may be run at various periods, depending on the
way they are instanciated (we shall return to this point later on.)

In [?], it is shown how one can compute the value of the periods of each
individual signal or component of such a periodic system, and from there,
if a solution to this problem exists, to schedule in detail the full system.

The synPeriodic function analyzes the graph of the Mmalpha data-
flow system, and from its dependencies, it groups signals that have the same
period (returned as list of list). Each one of the groups has un period, say
λi, which is calculated by this function. It then schedules the full system,
and generates the vhdl components of it. We describe hereafter how this
is done.

2

3 Generation of vhdl Programs

3.1 Generalities

The generation of vhdl programs is implemented as the synPeriodicMmal-
pha function of the Synthesis.m package.

The parameters of this function are not fully determined yet.

synPeriodic[]

generates a vhdl file in the directory $MMALPHA/VHDL and provides some
other results.

This function makes use of the genVhdl function, included in the Vhdl2.m
package, and that we describe in appendix A.

Its operations are currently as follows:

Step 1: Built the graph of periods, and solve the balance equations of this
graph.

Step 2: Schedule the whole system, by injecting the value of the periods in
the schedule patterns of each component.

Step 3: Generate the delayed enable signals.

Step 4: Generate the enable signals.

Step 5: Generate the FSM that controls the periodic system.

Step 6: Generate the vhdl code for the called systems.

Step 7: Generate the vhdl code for the calling system.

We consider successively each one of these steps.

3.2 How to Write a Periodic System

Recall that all signals that are manipulated by periodic systems have a
domain whose first index is an infinite half-line. The other indexe can be
anything (provided this matches the type of the subsystems).

A periodic system is made out of either:

• Connexions between periodic signals.

A = B;

3

• Combinatorial elements.

A = B + (C * D);

• Over-samplers.

use overSampling[6] (A) returns (B);

The number inside brackets is the over-sampling factor. It is a fixed
integer. Variable A is the input, and variable B is the output.

• Under-samplers.

use underSampling[6] (A) returns (B);

Same remark as for the over-samplers.

• Calls to monochronous subsystems, among which, ROM and address
generators.

use subsystem[pm] (A, B, etc.) returns (X, Y, etc.)

3.3 Step 1: Solve the Balance Equations

Each variable and each component are assigned a period which is computed
by solving the so-called balance equations. The rules that are applied are
the following ones:

• Connected signals have the same period.

• Inputs and outputs of a subsystem have the same period (subsystems
are assumed to be monochronous).

• The period of the output of an over-sampler is equal to x times that
of its input, where x is the sampling factor.

• The opposite is true for an under-sampler.

The algorithm consists in finding out the connected components of the de-
pendence graph (whose elements have necessarily the same period), and
solve the balance equations. This returns one or several solutions. Cur-
rently, only the case of one single solution is handled properly.

4

3.4 Step 2: Schedule the System

We assume that each subsystem has a parameterized schedule, which is put
in the schedule library. Building a parameterized schedule is explained in
Appendix ??.

Then, step 2 consists in scheduling the whole system.

A The genVhdl Function

The genVhdl functions allows one to generate component parts and architec-
ture parts of several elements needed for the generation of periodic systems.
Currently, this function allows the generation of:

• read-only memories,

• finite-state machines,

• periodic enable signals.

The principle of the generation is in all cases the same: it is made from
vhdl pattern files available in $MMALPHA/VHDL. Place-holder are filled by the
parameters given to genVhdl, depending on the type of vhdl program to
be generated. Place-holders are character strings of the form $string$.

B Read-only Memories

Although this vhdl element is not specific to periodic systems, we describe
here the use of genVhdl to generate a read-only memory.

genVhdl["ROM" , "$wordLength$" -> "5",
"$name$" -> "kasami", "$size$" -> "7",
"$comment$" -> "Memory for Kasami coefficients",
"$values$" -> "{1,1,0,0,1,8,2}"];

The first parameter, "ROM", identifies the type of block generated. Other
parameters are given as string replacement rules. The second parameter,
gives the number of bits of the words of the memory (it is mandatory). The
third (mandatory) parameter is the name given to the element. The fourth
(mandatory) parameter is the number of words of the memory. A comment
place-holder allows one to add a comment to the produced program. Finally,
the last parameter is the values assigned to each word of the memory. Its
number should be equal to the size. There exist another place-holder in the

5

ROM, namely, to define the address size, but it is computed automatically
by the generator.

String rewriting rules can be given in any order.
This command, when executed, returns a list of 2 strings: the first one

is the component corresponding to the ROM, and the second one is its
architecture.

COMPONENT kasami IS
PORT
(
address : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
data : OUT STD_LOGIC_VECTOR(5 DOWNTO 0)

);
END COMPONENT;

Figure 1: Component of a ROM, as generated by the genVhdl command
of B.

Figure 1 gives an example of memory generated.

C Periodic enable signals

In periodic systems, each component is driven by a clock-enable signal
that controls its execution. The genVhdl function allows one to produce a
vhdlcomponent that generates a periodic signal that can be used to control
such components.

genVhdl["PeriodicEnable" , "$name$" -> "genEnable10",
"$period$" -> "10",
"$comment$" -> "Periodic enable generator with period 7"];

The first component identifies the type of block produced. The second one,
gives the name of the generated component. The third one gives the period
of the corresponding clock. Finally, the last one gives a comment.

Fig. 2 shows an example of component for a 10 period enable. Notice
that this component has 3 inputs: the basic clock of the system, clk, a reset
signal rst, and a global enable signal, ceGen. This signal, when false, has
the effect of freezing the generation of the periodic enable during at least
one clk clock cycle.

6

--
-- Component for a periodic enable of period 10
--

COMPONENT genEnable10 IS
PORT(
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
ceGen : IN STD_LOGIC;
periodicGe : OUT STD_LOGIC

);
END COMPONENT;

Figure 2: Component of a periodic enable signal generator, as produced by
the genVhdl command in C.

D Finite-state machine

The third element that the genVhdl function allows one to generate is a
finite-state machine. Fig. 3 displays the form of the genVhdl command
to produce a finite-state machine. The first three parameters are position
parameters: the first one identifies the type of block generated, the second
one gives the list (of strings) of the outputs of the fsm. The type of these
outputs are assumed to be STD LOGIC. The third parameter describes the
fsm. It is a list, the element of which are made of an integer and a string. The
integer gives the time when a given action happens, and the string presents
this action, in vhdl code. Usually, this action involves setting values to the
outputs.

The first element of this list should always be { 0, "action" }, as the
initial state of the fsm is always named state0.

Fig. 4 displays the component generated for a finite-state machine. No-
tice that this fsm is controlled by a reset signal rst and a general clock-enable
signal CE gen.

E The FIR Filter

The filter was generated using Mmalpha. It consists of a controller, a
module that instanciates three types of cells.

7

genVhdl["Fsm" ,
{"fifo1_Out","fifo2_Out"},
{
{0,"BEGIN fifo1_Out <= ’0’; fifo2_Out <= ’1’ END"},
{4,"BEGIN fifo1_Out <= ’1’; fifo2_Out <= ’0’ END"},
{7,"BEGIN fifo1_Out <= ’0’; fifo2_Out <= ’1’ END"},
{22,"BEGIN fifo1_Out <= ’1’; fifo2_Out <= ’0’ END"}
},
"$name$" -> "myFsm",
"$comment$" -> "This is a Fsm"];

Figure 3: Command for generating a finite-state machine.

E.1 The Module

It has 6 parameters: the clock (clk), the clock-enable signal (CE), the reset
signal (Rst), the coefficients (wXMirr1In), the x input (xXMirr1In) and the
outputs (Yout).

Note: separate the package from the remaining of the filter. Insert a
return before the components...

The Module calls the controller, ControlfirModule. This controller has
the same signals (clock, clock-enable and reset) as the Module, and it returns
a control signal called pipeCw7ctl1PXInit.

It calls three types of cells. The simplest one is cellfirModule4, which
does almost nothing: initialize the value of Y – bounded to Y4(0) in the call
– to 0, and transmits the value of X (in the output signal pipeCx5, bounded
to pipeCx54(0) in the call.

The second cell is cellfirModule1. Besides the control signals (clock,
clock-enable and reset), it has four input signals:

• the w coefficient (wXMirr1, binded to wXMirr1(1)),

• the X input (pipeCx5Reg3Xloc), binded to pipeCx5Reg3Xloc(1)),

• the Y input (YReg5Xloc) binded to YReg5Xloc(1)),

• and the pipe signal (pipeCw7Xctl1PXInitXIn binded to pipeCw7Xctl1PXInitXIn(1)).

It outputs similar signals:

• the w coefficient (pipeCw7Xctl1P, binded to pipeCw7Xctl1P1(1)),

8

--
-- This is a Fsm
--
COMPONENT myFsm IS

PORT(
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
CE_gen : IN STD_LOGIC;
fifo1_Out : OUT STD_LOGIC;
fifo2_Out : OUT STD_LOGIC

);
END myFsm;

Figure 4: Component of a periodic enable signal generator, as produced by
the genVhdl command in Fig. 3.

• the X output (pipeCx5), binded to pipeCx51(1)),

• the pipe output signal (pipeIOCw9 binded to pipeIOCw91(1)).

• and the Y output (Y) binded to Y1(1)),

The second cell is cellfirModule3. Besides the control signals (clock,
clock-enable and reset), it has four input signals:

• the w coefficient (pipeCw7Xctl1PReg2Xloc, binded to pipeCw7Xctl1PReg2Xloc(p)),

• the X input (pipeCx5Reg3Xloc), binded to pipeCx5Reg3Xloc(1)),

• the Y input (YReg5Xloc) binded to YReg5Xloc(p)),

• and the pipe signal (pipeIOCw9Reg4Xloc binded to pipeIOCw9Reg4Xloc(p)).

It outputs similar signals:

• the w coefficient (pipeCw7Xctl1P, binded to pipeCw7Xctl1P1(1)),

• the X output (pipeCx5), binded to pipeCx53(p)),

• and the pipe output signal (pipeIOCw9 binded to pipeIOCw93(p)),
and

• the Y output (Y) binded to Y3(p)).

9

E.2 The Controller

At reset time (reset is active at value 0), the controller initializes a counter
to value −1, and enters state initState. It remains in this state until the
counter reaches the value 34. During the first 35 cycles, the output of the
pipe signal is 0. It gets the value 1 during cycle 36 (when the counter reaches
the value 34).

10

