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CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.
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Goal: Make the semantics of C more defined

Why did C leave some behaviors undefined?

• Portability

• Performance

Why do we want to make it more defined?

• real-life programs use features that are undefined, according to C

• the compilation theorem will be more useful

What kind of undefined behaviors do we aim at?

• undefined pointer arithmetic, i.e. bitwise operators

• use of uninitialised memory

Our starting point: CompCert
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An example of low-level C program in CompCert
int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

bp

bq

br

b

Bitwise operators on pointers are
undefined behavior!

CompCert [JAR’09], KCC [POPL’12], Krebbers [POPL’14], Norrish [PhD’98]:
undefined behavior
Kang et al. [PLDI’15]: don’t model bitwise operators
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Contributions

• Previous work [APLAS’14]:
A memory model for low-level programs

• This work:

• integration of the memory model inside CompCert
• correctness proofs of the memory model
• correctness proofs of the transformations of the frontend (up to Cminor)
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New features of the memory model

Symbolic expressions
val ::= i | (b,o) not expressive enough
We change the semantic domain to:

expr ::= val | op1 expr | expr op2 expr

Alignment constraints
We need information about some bits of the concrete address of a pointer
The alloc primitive takes an extra parameter mask , such that:

A(b) & mask = A(b)
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Interaction with the memory model

What is the semantics of reading from memory: *p ?

In CompCert, p is evaluated into a pointer (b, i), then we can use load(M,b, i)

In our model, p is a symbolic expression. It needs to be transformed into a pointer
so that we can use load .

normalise : mem → expr → bvalc

We need to modify the semantics to include calls to normalise

• memory accesses (load and store)

• conditionnal branches
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Back to the example

int main(){
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Normalisation specification: concrete memories

Abstract memory m
(b2,2)

5

cm1

cm2

cm3

cm4

cm5

cm6

0 8 16 24 32 40 48 56

Concrete memories of m

cmi ` m

• range : ]0;55[

• no overlap

• alignment
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Normalisation: example 1

e = ((( b ,0) | 5)� 3)�3

cm1 8 = J(b,o)Kcm1

cm2 8 = J(b,o)Kcm2

cm3 16 = J(b,o)Kcm3

cm4 24 = J(b,o)Kcm4

cm5 32 = J(b,o)Kcm5

cm6 32 = J(b,o)Kcm6

0 8 16 24 32 40 48 56
JeKcm1 = (((cm1(b)+0) | 5)� 3) = ((8 | 5)� 3)

= ((0b1000 | 5)� 3)�3 = (0b1101 � 3)�3
= 0b0001�3 = 0b1000 = 8 = cm1(b)

∀i,JeKcmi = cmi(b), hence e normalises into (b,0)
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Normalisation: example 2

e = ( b ,0)> ( b′ ,0)

cm1 true

cm2 true

cm3 true

cm4 false
cm5 false
cm6 false

0 8 16 24 32 40 48 56

There is no v such that ∀i,JeKcmi = JvKcmi , hence e doesn’t normalise
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CompCert with symbolic expressions

C Clight Cminor RTL ASM

Memory model

(b2,2)

5

0

5

7

(b,o) | 5

b1

b3

b2

expr ::= val | op1 expr | expr op2 expr

S S S S S
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How does our model compare to CompCert?

t

x(t)

t

x(t)

Behaviors in CompCert Behaviors with symbolic expressions

We are an extension of CompCert
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How does our model compare to CompCert?

Formally,

Lemma expr_add_ok : ∀ v1 v2 m v ,
sem_add v1 v2 m = bvc →
∃ e , sem_add_expr v1 v2 m = bec ∧

normalise m e = v .

If the addition of v1 and v2 succeeds in CompCert,
Then it should succeed in our model as well,
And the expression we compute should normalise into the same value.
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Discovery of bugs

2 cases where our model disagrees with CompCert

• Bug in CompCert 2.4: Pointer comparison to NULL
(fixed in CompCert 2.5)

• Bug in our model: incorrect handling of pointers one past the end
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Incorrect pointer comparison to NULL

In CompCert:

• pointers are pairs (b,o)

• the NULL pointer is represented as the integer 0

p == 0 was incorrectly defined to always evaluate to false when p is a pointer.

0 8 16 24 32 40 48 56

b

But we need to check that o is a valid offset of b

• J(b,o)Kcm = cm(b)+o is not zero only in that case

• otherwise (b,−8) evaluates to zero
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Overview of CompCert architecture

C Clight C]minor Cminor

frontend
backend

CminorSelRTLLTLLinear

Mach ASM
: conserves the memory layout
: modifies the memory layout
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Memory injections: a generic memory transformation
In CompCert C, each local variable has its own block.
During the compilation these variables are merged into a stack frame.

mem_inject f m m′

m m′

1

(b3,o)

37

b1

b2

b3

1

b′

(b′,o+δ2)

37

δ1

δ2

f

f

f

Adapting to symbolic expressions:
• generalization of the injection over values
• lots of proofs to adapt (relation with normalisation)
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Memory injections - Central theorem

Theorem norm_inject : ∀ f m m ’ e e ’
(Minj : inject f m m ’) (Einj : expr_inject f e e ’),

val_inject f (normalise m e) (normalise m ’ e ’).

• We can show that: ∃v ,val_inject f (normalise m e) v

• Let’s now prove that: normalise m′ e′ = v

• ∀cm′ ` m′,Je′Kcm′ = JvKcm′

• From the specification of the normalisation of e in m we know:

∀cm ` m,JeKcm = Jnormalise m eKcm

• We need a theorem relating evaluations in cm and cm′!
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Memory injections - Evaluation
mem_inject f m m’

8 16 24 32 40 48

Concrete memories of m

8 16 24 32 40 48

Concrete memories of m′

pre_cm(f,cm’) : recovers a concrete memory as it was before injection

Definition pre_cm f cm ’ := fun (b : block) ⇒
let (b ’, delta) := f b in cm ’ b ’ + delta .

Theorem expr_inject_eval : ∀ f cm ’ e e ’
(Einj : expr_inject f e e ’),
J e ’K cm ′ = J eK pre_cm(f,cm ′).
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Memory injections - Central theorem
Theorem norm_inject : ∀ f m m ’ e e ’

(Minj : inject f m m ’) (Einj : expr_inject f e e ’),
val_inject f (normalise m e) (normalise m ’ e ’).

Concrete memories of m Concrete memories of m′

expr_inject_eval :
expr_inject f e e′ ⇒
Je′Kcm′ = JeKpre_cm(f ,cm′)

• We are left to prove:

∀cm′ ` m′,Je′Kcm′ = JvKcm′

• We rewrite both sides using expr_inject_eval , the goal becomes:

∀cm′ ` m′,JeKpre_cm(f ,cm′) = Jnormalise m eKpre_cm(f ,cm′)

• From the specification of the normalisation of e in m we know:

∀cm ` m,JeKcm = Jnormalise m eKcm

which solves our goal.
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Conclusion

A semantics for C

• more precise than CompCert’s

• compatible with CompCert

• nearly as proven correct as CompCert

Future directions

• finish the proof by adapting the last remaining unproven pass

• add a more concrete assembly language to the certified compilation chain

• plug back in optimizations at RTL level (precision improvement?, still
sound?)
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Questions?
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