A Certified Data Race Analysis for a Java-like Language

Frédéric Dabrowski and David Pichardie

INRIA Rennes - Bretagne Atlantique
TPHOLs 2009, I 8 August 2009, Munich

Data Races

- A fundamental issue in multi-threaded programming
- Definition: the situation where two different processes attempt to access to the same memory location and at least one access is a write.
- Leads to tricky bugs
- difficult to reproduce and identify via manual code review or program testing
- Java Memory Model is a complex thing...
- Data-race-free programs are sequentially consistent
- We need to prove the data-race-freeness of a program before safely reasonning on its interleaving semantic.

Example

$$
\begin{gathered}
C \cdot f=C \cdot g=0 ; \\
1: \mathrm{x}=\mathrm{C} \cdot \mathrm{~g} ; \| \mathrm{I}: \mathrm{y}=\mathrm{C} \cdot \mathrm{f} ; \\
2: \mathrm{C} \cdot \mathrm{f}=1 ; \| 2: \mathrm{C} \cdot \mathrm{~g}=1 ;
\end{gathered}
$$

Example

$$
\begin{gathered}
C \cdot f=C \cdot g=0 ; \\
1: x=C \cdot g ; \| 1: y=C \cdot f ; \\
2: C \cdot f=1 ; \| 2: C \cdot g=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

Example

$$
\begin{gathered}
C \cdot f=C \cdot g=0 ; \\
1: x=C \cdot g ; \| 1: y=C \cdot f ; \\
2: C \cdot f=1 ; \| 2: C \cdot g=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

```
1: x = C.g;
2: C.f = 1;
1: y = C.f;
2: C.g = 1;
```


Example

$$
\begin{gathered}
C \cdot f=C \cdot g=0 ; \\
1: x=C \cdot g ; \| 1: y=C \cdot f ; \\
2: C \cdot f=1 ; \| 2: C \cdot g=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

```
1: x = C.g; 1: y = C.f;
2: C.f = 1; 2: C.g = 1;
1: y = C.f; 1: x = C.g;
2:C.g=1; 2: C.f = 1;
```


Example

$$
\begin{gathered}
C \cdot f=C \cdot g=0 ; \\
1: x=C \cdot g ; \| 1: y=C \cdot f ; \\
2: C \cdot f=1 ; \| 2: C \cdot g=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

1: $\mathrm{x}=\mathrm{C} \cdot \mathrm{g}$;	1: $\mathrm{Y}=\mathrm{C} \cdot \mathrm{f}$;	1: $\mathrm{Y}=\mathrm{C} \cdot \mathrm{f}$;
2: C.f = 1;	2: C.g = 1;	1: $\mathrm{x}=\mathrm{C} . \mathrm{g}$;
1: $\mathrm{y}=\mathrm{C} . \mathrm{f}$;	1: $\mathrm{x}=\mathrm{C} \cdot \mathrm{g}$;	2: C.g = 1;
2: C.g = 1;	2: C.f = 1;	2: C.f $=1$;

Example

$$
\begin{gathered}
\text { C.f }=C . g=0 ; \\
1: \mathrm{x}=\mathrm{C} \cdot \mathrm{~g} ; \| 1: \mathrm{y}=\mathrm{C} \cdot \mathrm{f} ; \\
2: \mathrm{C} . \mathrm{f}=1 ; \| 2: \mathrm{C} \cdot \mathrm{~g}=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

```
1: x = C.g; 1: y = C.f; 1: y = C.f;
2: C.f = 1; 2: C.g = 1; 1: x = C.g;
1: y = C.f; 1: x = C.g; 2: C.g = 1;
2:C.g=1; 2: C.f = 1; 2: C.f = 1;
```

but such program may also lead to sequentially inconsistent execution.

Example

$$
\begin{gathered}
\text { C.f }=C . g=0 ; \\
1: \mathrm{x}=\mathrm{C} \cdot \mathrm{~g} ; \| 1: \mathrm{y}=\mathrm{C} \cdot \mathrm{f} ; \\
2: \mathrm{C} . \mathrm{f}=1 ; \| 2: \mathrm{C} \cdot \mathrm{~g}=1 ;
\end{gathered}
$$

Interleaving semantics gives only sequentially consistent execution,

1: $\mathrm{x}=\mathrm{C} . \mathrm{g}$;	1: $\mathrm{Y}=\mathrm{C} . \mathrm{f}$;	1: $\mathrm{y}=\mathrm{C} . \mathrm{f}$;	2: C.g = 1;
2: C.f = 1;	2: C.g = 1;	1: $\mathrm{x}=\mathrm{C} . \mathrm{g}$;	2: C.f = 1;
1: $\mathrm{y}=\mathrm{C} . \mathrm{f}$;	1: x = C.g;	2: C.g = 1;	1: $\mathrm{x}=\mathrm{C} . \mathrm{g}$;
2: C.g = 1;	2: C.f = 1;	2: C.f = 1;	1: $\mathrm{y}=\mathrm{C} . \mathrm{f}$;

but such program may also lead to sequentially inconsistent execution.

Certified program verification

Certified program verification

- There is a growing interest in machine checked semantics proofs
- Program verification framework can be certified in a proof assistant
- Example :MOBIUS project
- All component are proved correct

Certified program verification

- There is a growing interest in machine checked semantics proofs
- Program verification framework can be certified in a proof assistant
- Example :MOBIUS project
- All component are proved correct
- In a multi-threaded context
- Using an interleaving semantics is unsound

Certified program verification

- There is a growing interest in machine checked semantics proofs
- Program verification framework can be certified in a proof assistant
- Example :MOBIUS project
- All component are proved correct
- In a multi-threaded context
- Using an interleaving semantics is unsound

- Reasoning directly on the JMM is very painful

Certified program verification

- There is a growing interest in machine checked semantics proofs
- Program verification framework can be certified in a proof assistant
- Example : MOBIUS project
- All component are proved correct
- In a multi-threaded context
- Using an interleaving semantics is unsound

- Reasoning directly on the JMM is very painful
- We need a certified verifier that checks if program are datarace free

Certified program verification

- There is a growing interest in machine checked semantics proofs
- Program verification framework can be certified in a proof assistant
- Example : MOBIUS project
- All component are proved correct
- In a multi-threaded context
- Using an interleaving semantics is unsound
- Reasoning directly on the JMM is very painful
- We need a certified verifier that checks if program are datarace free

A least one good news:
The verifier can be proved correct wrt. to an interleaving semantics

This work

- We specify and proved correct in Coq a state-of-the-art data race analysis for a representative subset of Java.
- J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded objectoriented programs. Tech. report, IBM Research Division, 200I.
- M. Naik,A.Aiken, and J.Whaley. Effective static race detection for java. PLDI '06
- M. Naik and A.Aiken. Conditional must not aliasing for static race detection. POPL’07
- M. Naik. Effective static race detection for java. PhD thesis, Stanford university, 2008.
- We propose an extensible framework for certified points-to based data race analyses.

Running example

```
class List{ T val; List next; }
class Main() {
    void main(){
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f = ...i}
        return;
        }
}
class T extends java.lang.Thread {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```


Running example

```
class List{ T val; List next; }
class Main() {
    void main(){
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = l;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T extends java.lang.Thread {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

I. We create a link list 1

Running example

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
            T t = new T();
            t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T extends java.lang.Thread {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

I. We create a link list 1
2. We create a bunch of thread that all share the list 1

Running example

```
class List{ T val; List next; }
class Main() {
    void main(){
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T extends java.lang.Thread {
    A f;
    List data;
    void run(){
        while(*){
            while (*) { m = m.next; }
            synchronized(m){m.val.f = ...;}}
        return;}}
```

I. We create a link list 1
2. We create a bunch of thread that all share the list 1
3. Each thread chooses a cell, takes a lock on it and updates it.

Running example

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T extends java.lang.Thread {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
I. We create a link list 1
2. We create a bunch of thread that all share the list 1
3. Each thread chooses a cell, takes a lock on it and updates it.
```


Our Java-like language

- We consider a bytecode language with
- unstructured control flow,
- operand stack,
- objects,
- virtual method calls,
- lock and unlock operations for thread synchronisation.

```
inst \(::=\) aconstnull \(\mid\) new cid \(\mid\) aload \(x \mid\) astore \(x \mid\) getfield \(f \mid\) putfield \(f\)
    areturn \(\mid\) return | invokevirtual mid: \(\left(\right.\) cid \(\left.^{n}\right)\) rtype \(\quad(n \geq 0)\)
    | monitorenter \(\mid\) monitorexit \(\mid\) start \(\mid\) ifnd \(\ell \mid\) goto \(\ell\)
```


Semantics

- Semantic domains

$$
\begin{array}{rlrl}
\mathbb{O} & \ni \ell & & \text { (memory location) } \\
\mathbb{O}_{\perp} & \ni v \quad::=\ell \mid \mathrm{Null} & & \text { (value) } \\
s \quad::=v:: s \mid \varepsilon & & \text { (operand stack) } \\
\mathbb{V} \rightarrow \mathbb{O}_{\perp} & \ni \rho & & \text { (local variables) } \\
\mathbb{O} \rightharpoonup \mathbb{C}_{i d} \times\left(\mathbb{F} \rightarrow \mathbb{O}_{\perp}\right) & \ni \sigma & & \text { (heap) } \\
P P T=\mathbb{M} \times \mathbb{N} & \ni p p t::=(m, i) & \text { (program point) } \\
C S & \ni c s & ::=(m, i, s, \rho):: c s \mid \varepsilon & \text { (call stack) } \\
\mathbb{O} \rightharpoonup C S & \ni L & & \text { (thread call stacks) } \\
\mathbb{O} \rightarrow\left(\left(\mathbb{O} \times \mathbb{N}^{*}\right) \cup\{\text { free }\}\right) & \ni \mu & & \text { (locking state) } \\
& \text { st } & ::=(L, \sigma, \mu) & \text { (state) } \\
& e & ::=\tau\left|\left(\ell, ?_{f}^{p p t}, \ell^{\prime}\right)\right|\left(\ell,!_{f}^{p p t}, \ell^{\prime}\right) & \text { (event) } \\
\text { Transition system } & &
\end{array}
$$

$$
\frac{L \ell=c s \quad L, \ell \vdash(c s, \sigma, \mu) \xrightarrow{e}\left(L^{\prime}, \sigma^{\prime}, \mu^{\prime}\right)}{(L, \sigma, \mu) \xrightarrow{e}\left(L^{\prime}, \sigma^{\prime}, \mu^{\prime}\right)}
$$

Semantics

- Transition rules (excerpt)

$$
\begin{gathered}
(m . \text { body }) i=\text { new } c_{i d} \quad \ell^{\prime} \notin \operatorname{dom}(\sigma) \\
L^{\prime}=L\left[\ell \mapsto\left(m, i+1, \ell^{\prime}:: s, \rho\right):: c s\right] \\
\frac{\tau}{L, \ell \vdash((m, i, s, \rho):: c s, \sigma, \mu) \xrightarrow{\tau}\left(L^{\prime}, \sigma\left[\ell^{\prime} \mapsto \operatorname{new}\left(c_{i d}\right)\right], \mu\right)} \\
\text { (m.body) } i=\operatorname{start} \quad \neg\left(\ell^{\prime} \in \operatorname{dom}(L)\right) \\
L o o k u p\left(r u n:() \text { void) class }\left(\sigma, \ell^{\prime}\right)=m_{1} \quad \rho_{1}=\left[0 \mapsto \ell^{\prime}\right]\right. \\
L^{\prime}=L\left[\ell \mapsto\left(m, i+1, s^{\prime}, \rho\right):: c s, \ell^{\prime} \mapsto\left(m_{1}, 0, \varepsilon, \rho_{1}\right):: \varepsilon\right] \\
L, \ell \vdash\left(\left(m, i, \ell^{\prime}:: s^{\prime}, \rho\right):: c s, \sigma, \mu\right) \rightarrow\left(L^{\prime}, \sigma, \mu\right) \\
\text { (m.body) } i=\text { monitorenter } \quad \mu \ell^{\prime} \in\{\mathrm{free},(\ell, n)\} \quad \mu^{\prime}=\text { acquire } \ell \ell^{\prime} \mu \\
L^{\prime}=L[\ell \mapsto(m, i+1, s, \rho):: c s] \\
L, \ell \vdash\left(\left(m, i, \ell^{\prime}:: s, \rho\right):: c s, \sigma, \mu\right) \rightarrow\left(L^{\prime}, \sigma, \mu^{\prime}\right)
\end{gathered}
$$

- Races
$s t \in \operatorname{ReachableStates}(P) \quad s t \stackrel{\ell_{1}!_{f}^{p p t_{1}} \ell_{0}}{\rightarrow} s t_{1} \quad s t \xrightarrow{\ell_{2} \mathcal{R} \ell_{0}} s t_{2} \quad \mathcal{R} \in\left\{?_{f}^{p p t_{2}},{ }_{f}^{p p t_{2}}\right\} \quad \ell_{1} \neq \ell_{2}$
$\operatorname{Race}\left(P, p p t_{1}, f, p p t_{2}\right)$

Data Race Analysis

- We start from a large set of all potential race pairs.
- We successively remove pairs that are proved to be false races.
- Each potential races sets are proved sound:
$\forall\left(p p t_{1}, f, p p t_{2}\right)$,
$\operatorname{Race}\left(P, p p t_{1}, f, p p t_{2}\right) \Rightarrow$
$\left(p p t_{1}, f, p p t_{2}\right) \in \operatorname{PotentialRacePairs}(P)$

Data Race Analysis

- We start from a large set of all potential race pairs.
- We successively remove pairs that are proved to be false races.
- Each potential races sets are proved sound:

$$
\begin{aligned}
& \forall\left(p p t_{1}, f, p p t_{2}\right) \\
& \quad \operatorname{Race}\left(P, p p t_{1}, f, p p t_{2}\right) \Rightarrow \\
& \quad\left(p p t_{1}, f, p p t_{2}\right) \in \text { PotentialRacePairs }(P)
\end{aligned}
$$

Original pairs

```
class List{ T val; List next; }
class Main() {
    void main(){
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = l;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run(){
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```


Original pairs

```
class List{ T val; List next; }
class Main() {
    void main(){
        List l = null;
        while (*) {
            List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
        l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
                t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run(){
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}

Java's strong typing dictates that a pair of accesses may be involved in a race only if both access the same field.

Here : we start with 13 potential races.
```

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
    (4,data,4),(5,f,5), (2,f,5),
    (4,data,4),(5,f,5), (2,f,5),
    (5,f,8),
    (5,f,8),
    (4,data, 6),(3,next,7),(1,val, 8),(2,f,8),
    (4,data, 6),(3,next,7),(1,val, 8),(2,f,8),
    (8,f,8)
```

```
    (8,f,8)
```

```

\section*{Original pairs}
```

class List{ T val; List next; }
class Main() {
void main(){
List l = null;
while (*) {
List temp = new List();
temp.val = new T();
temp.val.f = new A();
temp.next = 1;
l = temp }
while (*) {
T t = new T();
4: t.data = l;
t.start();
t.f = ...;}
return;
}
}
class T {
A f;
List data;
void run(){
while(*){
List m = this.data;
while (*) { m = m.next; }
synchronized(m){ m.val.f = ...;}}
return;}}
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(4,data, 6),(3,next,7),(1,val, 8),(2,f,8),
(8,f,8)

```

Java's strong typing dictates that a pair of accesses may be involved in a race only if both access the same field.

Here : we start with I3 potential races.
```

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),

```
```

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),

```

\section*{Original pairs}
```

class List{ T val; List next; }
class Main() {
void main(){
List l = null;
while (*) {
List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
l = temp }
while (*) {
T t = new T();
4: t.data = l;
t.start();
t.f = ...;}
return;
}
}
class T {
A f;
List data;
void run(){
while(*){
List m = this.data;
while (*) { m = m.next; }
synchronized(m){ m.val.f = ...;}}
return;}}

Java's strong typing dictates that a pair of accesses may be involved in a race only if both access the same field.

Here : we start with I3 potential races.

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
```

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(5,f,8),
(4,data, 6),(3,next, 7),(1,val, 8),(2,f,8),
(4,data, 6),(3,next, 7),(1,val, 8),(2,f,8),
(8,f,8)

```
```

(8,f,8)

```
```


Data Race Analysis

Original pairs

Reachable pairs

Aliasing pairs

Escaping pairs

Unlocked pairs

Potential Races

Data Race Analysis

Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
            List temp = new List();
            temp.val = new T();
            temp.val.f = new A();
            temp.next = l;
            l = temp }
        while (*) {
            T t = new T();
4: t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
            synchronized(m){m.val.f=...;}}
        return;}}
```

Points-to analysis computes a finite abstraction of the memory where locations are abstracted by their allocation site

Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run(){
        while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
            synchronized(m){m.val.f=...;}}
        return;}}
```

Points-to analysis computes a finite abstraction of the memory where locations are abstracted by their allocation site

Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronized(m){ m.val.f = ...;}}
        return;}}
```

Points-to analysis computes a finite abstraction of the memory where locations are abstracted by their allocation site

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){m.val.f=...;}}
        return;}}
```

Points-to analysis computes a finite abstraction of the memory where locations are abstracted by their allocation site

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = l;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

For all these potential races, all accesses correspond to a same thread.

- h is a single-instance allocation site

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
        h2 temp.val = new T();
        h3 temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f=...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

For all these potential races, all accesses correspond to a same thread.

- h is a single-instance allocation site

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(5,f,8),
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = 1;
        l = temp }
        while (*) {
        h4 T t = new T();
4: t.data = l;
                t.start();
            t.f=...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronized(m){m.val.f = ...;}}
        return;}}
```

For all these potential races, accesses correspond to different locations.
-t points-to h4
-m.val points to h2

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4, data,4),(5, f,5), (2, 5,5),
(5,f,8),
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Points-to analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
1: h2 temp.val = new T();
2: h3 temp.val.f = new A();
3: temp.next = 1;
        l = temp }
        while (*) {
        h4 T t = new T();
4: t.data = l;
                t.start();
            t.f=...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronized(m){m.val.f = ...;}}
        return;}}
```

For all these potential races, accesses correspond to different locations.
-t points-to h4
-m.val points to h2

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5, 5,5), (2, f,5),
(5, f,8),
    (4,data,6),(3,next,7),(1,val,8),(2,f,8),
    (8,f,8)
```


Points-to analysis in Coq

The analysis is parameterized by an abstract notion of context which captures a large variety of points-to context.

```
Module Type CONTEXT.
Parameter pcontext : Set. (* pointer context *)
Parameter mcontext : Set. (* method context *)
Parameter make_new_context : method -> line -> classId -> mcontext -> pcontext.
Parameter make_call_context : method -> line -> mcontext -> pcontext -> mcontext.
Parameter get_class : program -> pcontext -> option classId.
Parameter class_make_new_context : forall p m i cid c,
    body m i = Some (New cíd) ->
    get_class p (make_new_context m i cid c) = Some cid.
Parameter init_mcontext : mcontext.
Parameter init_pcontext : pcontext.
Parameter eq_pcontext : forall c1 c2:pcontext, {c1=c2}+{c1<>c2}.
Parameter eq_mcontext : forall c1 c2:mcontext, {c1=c2}+{c1<>c2}.
```

End CONTEXT.

Points-to analysis in Coq

We prove the soundness of the analysis with respect to an instrumented points-to semantics.

Must-Not Thread Escape analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
        h2 temp.val = new T();
        h3 temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
4: t.data = l;
            t.start();
            t.f = ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run(){
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

For all these potential races, the main thread access location that are not (yet) shared

- We uses a flow sensitive thread-escape analysis
- The analysis is iteration sensitive

```
(1,Val,1),(1,Val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5),(2,f,5),
(5,f,8)%
(4,data,6),(3,next,7),(1,val,8),(2,f,8),
(8,f,8)
```


Must-Not Thread Escape analysis

```
class List{ T val; List next; }
class Main() {
    void main() {
        List l = null;
        while (*) {
        h1 List temp = new List();
        h2 temp.val = new T();
        h3 temp.val.f = new A();
            temp.next = 1;
            l = temp }
        while (*) {
        h4 T t = new T();
            t.data = l;
            t.start();
            t.f= ...;}
        return;
        }
}
class T {
    A f;
    List data;
    void run() {
        while(*){
            List m = this.data;
            while (*) { m = m.next; }
            synchronized(m){ m.val.f = ...;}}
        return;}}
```

For all these potential races, the main thread access location that are not (yet) shared

- We uses a flow sensitive thread-escape analysis
- The analysis is iteration sensitive

```
(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(4,data,4),(5,f,5), (2,f,5),
(5, 4,8),
(4,data,6),(3, next,7),(1,val,8),(2,f,8),
    (8,f,8)
```


The last one...

The last one...

synchronize(m)\{ m.val.f = ...;\} \| synchronize(m)\{ m.val.f = ...; \}

- If the two threads lock the same location OK

The last one...

synchronize(m)\{m.val.f = ...i\} \| synchronize(m)\{m.val.f = ...i\}

- If the two threads lock the same location OK
- If the two threads lock different locations, we must prove that they access different location with m.val

The last one...

$\operatorname{synchronize}(\mathrm{m})\{\mathrm{m} \cdot \mathrm{val} \cdot \mathrm{f}=\ldots \cdot \cdot ;\} \quad \| \operatorname{synchronize}(\mathrm{m})\{\mathrm{m} \cdot \mathrm{val} \cdot \mathrm{f}=\cdot \cdot \cdot ;\}$

- If the two threads lock the same location OK
- If the two threads lock different locations, we must prove that they access different location with m.val
- Disjoint Reachability: $h \in D R_{\text {Paths }}(H)$ for H a set of allocation sites, if and only if whenever an object o allocated at site h may be reachable by a field path in set Paths from two objects O_{1} and O_{2} allocated at any sites in H, then O_{1} and O_{2} are one and the same object.

Disjoint Reachability: example

- Disjoint Reachability: $h \in D R_{\text {Paths }}(H)$ for H a set of allocation sites, if and only if whenever an object o allocated at site h may be reachable by a field path in set Paths from two objects O_{1} and O_{2} allocated at any sites in H, then O_{1} and O_{2} are one and the same object.

$$
D R_{\{[\text {val }]\}}\left(\left\{h_{1}\right\}\right)=?
$$

Disjoint Reachability: example

- Disjoint Reachability: $h \in D R_{\text {Paths }}(H)$ for H a set of allocation sites, if and only if whenever an object o allocated at site h may be reachable by a field path in set Paths from two objects O_{1} and O_{2} allocated at any sites in H, then O_{1} and O_{2} are one and the same object.

$$
D R_{\{[\mathrm{val}]\}}\left(\left\{h_{1}\right\}\right)=\left\{h_{2}\right\}
$$

Disjoint Reachability

- We extend the formalisation made by Naik and Aiken for a While language to our bytecode language.
- Main steps:
I. Define an instrumented semantic with loop counters: at each allocation site, the new location is tagged with the current loop counter.

2. Formally prove that the instrumentation completely identifies locations: two location tagged with the same loop counter must be equal.
3. Define and prove correct a type and effect system that computes a set Σ of couples ($\mathrm{h} 1, \mathrm{~h} 2$) such that h 1 points to h 2 but the two corresponding objects were allocated in the same loop iteration.
4. Define and prove correct a sound under-approximation $D R_{\text {Paths }}^{\Sigma}$ of the disjoint reachability set, using the previous type system.

$$
D R_{\text {Paths }}^{\Sigma} \subseteq D R_{\text {Paths }}
$$

Using Disjoint Reachability

Disjoint reachability is mixed with two other analyses

- A must-lock analysis computes a must information: for all location targeted by a read or a write, which locks must be held by the current thread and from which the location is accessible wrt to the history of heaps?
- Points-to analysis gives standard may information: the set of locations that may be targeted by a read or a write.
- We mix all these analyses and remove the potential races $\left(p p t_{1}, f, p p t_{2}\right)$ such that $\operatorname{Must}\left(p p t_{1}\right) \neq \emptyset, \operatorname{Must}\left(p p t_{2}\right) \neq \emptyset$ and

$$
\operatorname{May}\left(p p t_{1}\right) \cap \operatorname{May}\left(p p t_{2}\right) \subseteq D R_{P a t h s}^{\Sigma}\left(\operatorname{Must}\left(p p t_{1}\right) \cup \operatorname{Must}\left(p p t_{2}\right)\right)
$$

Running Example

$$
\text { synchronize(m)\{ m.val.f = ...i\} } \| \text { synchronize(m)\{ m.val.f = ...;\} }
$$

$$
\begin{array}{ll}
\operatorname{May}_{1}=\operatorname{May}_{2}=\left\{h_{2}\right\} \\
\text { Must }_{1}=\operatorname{Must}_{2}=\left\{h_{1}\right\} \\
\text { Paths }=\{[\mathrm{val}]\} \\
D R_{\{[\mathrm{val}]\}}\left(\left\{h_{1}\right\}\right)=\left\{h_{2}\right\}
\end{array} \Longrightarrow \begin{aligned}
& \text { Must }_{1} \neq \emptyset \wedge \\
& \text { Must }_{2} \neq \emptyset \wedge \\
& \text { May }_{1} \cap \text { May }_{2} \subseteq D R_{P_{\text {aths }}^{\Sigma}\left(\text { Must }_{1} \cup \text { Must }_{2}\right)}^{\Sigma}
\end{aligned}
$$

The Big Picture

Conclusions and Perspectives

- Points-to static analyses give powerful tools to prove data-race-freeness.
- We need to assemble several complex blocks of this kind to obtain a good tool.
- Our current formalisation (10.000 line of Coq) should be sufficiently modular to handle new blocks without major reconstruction.
- Our ultimate goal is to build a powerful certified datarace verifier for bytecode Java.
- But the current formalisation is not executable.
- Building an efficient certified analyser/checker is a big challenge.
- Scalable implementations rely on BDDs.
- We could refine the current formalisation to something executable.

Summary of potential races

```
class Main() {
class List{ T val; List next; }
class T {
```

Original	Reachable	Aliasing	Unlocked	Escaping
$\begin{aligned} & (1, \text { val }, 1),(1, \text { val }, 2),(2, f, 2),(3, \text { next }, 3) \\ & (4, \text { data }, 4) \end{aligned}$		\checkmark	\checkmark	
($5, \mathrm{f}, 5$)		\checkmark	\checkmark	\checkmark
(2, f, 5)			\checkmark	
($5, \mathrm{f}, 8$)	\checkmark		\checkmark	\checkmark
(4, data, 6$),(3$, next, 7$),(1$, val, 8$),(2$, f, 8$)$	\checkmark	\checkmark	\checkmark	
(8, f, 8)	\checkmark	\checkmark		\checkmark

