
A Certified Data Race Analysis for a Java-like Language 

Frédéric Dabrowski and David Pichardie

INRIA Rennes - Bretagne Atlantique 

TPHOLs 2009, 18 August 2009, Munich



Data Races

A fundamental issue in multi-threaded programming

Definition: the situation where two different processes attempt to access to the 
same memory location and at least one access is a write.

Leads to tricky bugs

difficult to reproduce and identify via manual code review or program testing

Java Memory Model is a complex thing...

Data-race-free programs are sequentially consistent

We need to prove the data-race-freeness of a program before safely reasonning 
on its interleaving semantic.
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Defined and proved in Coq
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A least one good news: 

The verifier can be proved correct 
wrt. to an interleaving semantics



This work

We specify and proved correct in Coq a state-of-the-art data race analysis for 
a representative subset of Java.

 J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded object-
oriented programs. Tech. report, IBM Research Division, 2001. 

M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. PLDI ’06

M. Naik and A. Aiken. Conditional must not aliasing for static race detection. POPL’07

M. Naik. Effective static race detection for java. PhD thesis, Stanford university, 2008. 

We propose an extensible framework for certified points-to based data 
race analyses.
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class List{ T val; List next; }

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
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  List data;
  void run(){
    while(*){
6:    List m = this.data;
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Our Java-like language 

We consider a bytecode language with 

unstructured control flow, 

operand stack, 

objects, 

virtual method calls,

lock and unlock operations for thread synchronisation. 
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demonstrated by the fact that no other object of class Main is ever created in the pro-
gram. The next three potential races require a may-happen in parallel analysis [10] to
understand that thats threads of class T are always started strictly after program points
1, 3 and 4 have been reached. Such a proof can be achieved with a reachability analysis
in the call graph and the control flow graph of the program. The last potential race re-
quires the most attention since several thread of class T are updating fields f in parallel.
This writes are safe because they are guarded by a synchronization on an object which
is the only ancestor of the write target in the heap. Such a reasoning relies on the fact,
given two locks guarding two accesses are different then so are the targeted memory lo-
cations. The main difficulty comes when several objects allocated at the same program
point, e.g. within a loop, may point to the same object. The analysis we formalism is
based on this principle. In order to eliminate pairs of potential data races, it relies on
the disjoint reachability property which states that an object is reachable from at most
one object of a given set. The current paper focus on this last property.

2.2 Program syntax

The previous example can be compiled into a bytecode language whose syntax is given
below. The instruction set allows to manipulate objects, call virtual method, start threads
and lock (or unlock) objects for thread synchronization.

ClassId ! {cid, . . .} Field ! {f, g, h, . . .} MethodId ! {mid, . . .}
V ar ! {x, y, z, . . .} Sig = MethodId× ClassIdn × (ClassId ∪ {void})

C ! {name ∈ ClassId; fields ⊆ Field; methods ⊆ M}
M ! {sig ∈ Sig; body ∈ N ⇀ inst}

inst ::= aconstnull | new cid | aload x | astore x | getfield f | putfield f
| areturn | return | invokevirtual mid : (cidn)rtype (n ≥ 0)
| monitorenter | monitorexit | start | ifnd " | goto "

A program is a set of classes, coming with a lookup function matching signatures and
program points (allocation site denoting class names) to methods.A program is a set of
classes, coming with a lookup function matching signatures and program points (allo-
cation site denoting class names) to methods.

2.3 Structure of the development

We now present the general architecture of our development that is sketched in Fig-
ure 2. We formalism three static analysis : a context-sensitive points-to analysis, a must-
lock analysis and a conditional must-not alias analysis based on disjoint reachability.
Each semantics is mechanically proved correct with respect to an operational seman-
tics. However we consider three variants of semantics. While the first one is a standard
small-step semantics, the second one attaches context information to each reference and
frame. This instrumentation makes the soundness proof of the points-to analysis easier.
The last semantics handle more instrumentation in order to count loop iterations. It will
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functions and ⇀ stands for partial functions. In a state (L,σ, µ,ωg), L maps memory
locations to call stacks, i.e. threads and the function σ denotes the heap. The function
ωg is a global counter which is used to handle method calls occurrences in frames. More
precisely, at run-time and for each method m and context c, ωg(m, c) is the number of
the last call to m in context c performed so far. Finally, µ associates with every memory
location $ a pair ($′, n) if $ is locked n times by $′ and the constant free if $ is not held
by any thread. An event ($, ?ppt

f , $′′) (resp. ($, !ppt
f , $′′)) denotes a dereferencing (resp.

an updating) of a field f , performed by the thread $ over the memory location $′, at a
program point ppt. An event ∗ denotes a silent action.

3.2 Transition system

Labelled transitions have the shape st
e→ st′ (when e is ∗ we simply omit it). They rely

on the usual interleaving semantics, as expressed in the rule below.

L $ = cs L, $ # (cs,σ, µ) e→ (L′,σ′, µ′)

(L,σ, µ) e→ (L′,σ′, µ′)

L $ = cs L, $ # (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

(L,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

Reductions of the shape L, $ # (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g) are defined in figure
4. Intuitively, such a reduction express that in state (L,σ, µ,ωg), reducing the thread
defined by the memory location $ and the call stack cs, by a non deterministic choice,
produces the new state (L′,σ′, µ′,ω′

g). For the sake of readability, we rely on an auxil-
iary relation of the shape instr; $; ppt # (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ) for the reduction
of aconstnull, aload, astore, ifnd, goto, putfield and getfield. In figure 4,
we consider only putfield and getfield, the reductions of other instructions are
standard and produce a ∗ event. This auxiliary relation is embedded into the semantics
by rule (1). In every case, if the reduction moves from program point i to program
point i′ (i′ may not be i + 1 because of ifnd and goto instructions) then we increase
the corresponding component of π by one to reflect this move. Events generated by
getfield and putfield match the intuitive meaning we gave before. The function
σ[$.f ← v], where $ ∈ dom(σ), is defined in figure 4(b). The reduction of a new
instruction is similar except that we record the current code pointer of the frame as
part of the fresh address. The function σ[$ ← ], where ¬($ ∈ dom(σ)), is defined
by σ[$ ← ]($) = λf.Null and σ[($) ← ]($′) = σ($′) if $′ &= $. Method invo-
cation generates a new frame, and thus a new code pointer. The global counter ωg is
increased by one with respect to the method and context of the new frame. As sketched
before the new frame keep tracks of the information provided by the calling frame, ex-
cept for the component related to the method and to the context of the new frame. For
this component, the value of the global counter is taken. Thread spawning is similar
to method invocation. However, the new frame is put on top of an empty call stack.
Thus, the new code pointer is obtained by recording the value of the global counter
ωg in functions mapping every method, context and flow edge to 0 (remember that we
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L ! ! (location)
O = L ! ! (memory location)

O⊥ ! v ::= ! | Null (value)
s ::= v :: s | ε (operand stack)

V → O⊥ ! ρ (local variables)
O ⇀ Cid × (F → O⊥) ! σ (heap)

PPT = M× N ! ppt ::= (m, i) (program point)
CS ! cs ::= (m, i, s, ρ) :: cs | ε (call stack)

O ⇀ CS ! L (thread call stacks)
O → ((O× N∗) ∪ {free}) ! µ (locking state)

st ::= (L, σ, µ) (state)
e ::= τ | (!, ?ppt

f , !′) | (!, !pptf , !′) (event)

O ! ! (memory location)
O⊥ ! v ::= ! | Null (value)

s ::= v :: s | ε (operand stack)
V → O⊥ ! ρ (local variables)

O ⇀ Cid × (F → O⊥) ! σ (heap)
PPT = M× N ! ppt ::= (m, i) (program point)

CS ! cs ::= (m, i, s, ρ) :: cs | ε (call stack)
O ⇀ CS ! L (thread call stacks)

O → ((O× N∗) ∪ {free}) ! µ (locking state)
st ::= (L, σ, µ) (state)
e ::= τ | (!, ?ppt

f , !′) | (!, !pptf , !′) (event)

Fig. 4. States and actions
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(m.body) i = new cid ¬(l′ ∈ dom(σ))
L′ = L[" "→ (m, i + 1, "′ :: s, ρ) :: cs]

L; " $ ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ["′ ←], µ)

(m.body) i = start s = "′ :: s′ ¬("′ ∈ dom(L))
Lookup (run : ()void) class(σ, l′) = m1 ρ1 = [0 "→ "′]
L′ = L[" "→ (m, i + 1, s′, ρ) :: cs, "′ "→ (m1, 0, ε, ρ1) :: !]

L, " $ ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ, µ)

(m.body) i = monitorenter µ("′) ∈ {free, (", n)} µ′ = lock(", "′, µ)
L′ = L[" "→ (m, i + 1, s, ρ) :: cs]

L, l $ ((m, i, "′ :: s, ρ) :: cs,σ, µ) → (L′,σ, µ′)

3.2 Transition system

Labelled transitions have the shape st
e→ st′ (when e is ∗ we simply omit it). They rely

on the usual interleaving semantics, as expressed in the rule below.

L " = cs L, " $ (cs,σ, µ) e→ (L′,σ′, µ′)

(L,σ, µ) e→ (L′,σ′, µ′)

L " = cs L, " $ (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

(L,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

Reductions of the shape L, " $ (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g) are defined in figure
??.

st ∈ ReachableStates(P ) st
!1!

ppt1
f !0
→ st1 st

!2R!0→ st2 R ∈ {?ppt2
f , !ppt2

f } "1 '= "2

Race(P, ppt1, f, ppt2)

Intuitively, such a reduction express that in state (L,σ, µ,ωg), reducing the thread de-
fined by the memory location " and the call stack cs, by a non deterministic choice,
produces the new state (L′,σ′, µ′,ω′

g). For the sake of readability, we rely on an auxil-
iary relation of the shape instr; "; ppt $ (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ) for the reduction
of aconstnull, aload, astore, ifnd, goto, putfield and getfield. In figure ??,
we consider only putfield and getfield, the reductions of other instructions are
standard and produce a ∗ event. This auxiliary relation is embedded into the semantics
by rule (1). In every case, if the reduction moves from program point i to program point
i′ (i′ may not be i+1 because of ifnd and goto instructions) then we increase the cor-
responding component of π by one to reflect this move. Events generated by getfield
and putfield match the intuitive meaning we gave before. The function σ[".f ← v],
where " ∈ dom(σ), is defined in figure ??. The reduction of a new instruction is similar
except that we record the current code pointer of the frame as part of the fresh address.

8 Frédéric Dabrowski and David Pichardie

(m.body) i = new cid !′ !∈ dom(σ)
L′ = L[! #→ (m, i + 1, !′ ::s, ρ) ::cs]

L, ! % ((m, i, s, ρ) ::cs,σ, µ) τ→ (L′,σ[!′ #→ new(cid)], µ)

(m.body) i = start ¬(!′ ∈ dom(L))
Lookup (run : ()void) class(σ, !′) = m1 ρ1 = [0 #→ !′]

L′ = L[! #→ (m, i + 1, s′, ρ) ::cs, !′ #→ (m1, 0, ε, ρ1) ::ε]
L, ! % ((m, i, !′ ::s′, ρ) ::cs,σ, µ)→ (L′,σ, µ)

(m.body) i = monitorenter µ !′ ∈ {free, (!, n)} µ′ = acquire ! !′ µ
L′ = L[! #→ (m, i + 1, s, ρ) ::cs]

L, ! % ((m, i, !′ ::s, ρ) ::cs,σ, µ)→ (L′,σ, µ′)

Reductions of the shape L; ! % (cs,σ, µ) e→ (L′,σ′, µ′) are defined in Figure 5. Intu-
itively, such a reduction expresses that in state (L,σ, µ), reducing the thread defined by
the memory location ! and the call stack cs, by a non deterministic choice, produces
the new state (L′,σ′, µ′). For the sake of readability, we rely on an auxiliary relation of
the shape instr; !; ppt % (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ′) for reduction of intra-procedural
instructions. In Figure 5, we consider only putfield, getfield and new. Reductions
for instructions are standard and produce a τ event. The notation σ[!.f ← v] for field
update, where ! ∈ dom(σ), is defined in Figure 5(a). It does not change the class of
an object. The reduction of a new instruction pushes a fresh address onto the operand
stacks and allocates a new object in the heap. The notation σ[! ← new(cid)], where
¬(! ∈ dom(σ)), denotes the heap σ with a new object, at location !, of class cid and
with all fields equals to Null. The auxiliary relation is embedded into the semantics
by rule (1). Method invocation relies on the lookup function for method resolution and
generates a new frame. Thread spawning is similar to method invocation. However, the
new frame is put on top of an empty call stack. We omit the reduction rules for return
and areturn, those rules are standard and produce a τ event. For monitorenter and
monitorexit we use a partial function acquire defined in Figure 5(a). Intuitively,
acquire ! !′ µ results from thread ! locking object !′ in µ.

We write RState(P ) for the set of states that contains the initial state of a pro-
gram P , that we do not describe here for conciseness concerns, and that is closed by
reduction. A data race is a tuple (ppt1, f, ppt2) such that Race(P, ppt1, f, ppt2) holds.

st ∈ RState(P ) st
"1!

ppt1
f "0

−−−−−→ st1 st
"2R"0−−−−→ st2 R ∈ {?ppt2

f , !ppt2f } !1 != !2

Race(P, ppt1, f, ppt2)

The ultimate goal of our certified analyser is to guarantee Data Race Freeness, i.e.
for all ppt1, ppt2 ∈ PPT and f ∈ F, ¬Race(P, ppt1, f, ppt2).



Data Race Analysis

We start from a large set of all potential race 
pairs.

We successively remove pairs that are proved 
to be false races.

Each potential races sets are proved sound:
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∀(ppt1, f, ppt2),
Race(P, ppt1, f, ppt2) ⇒
(ppt1, f, ppt2) ∈ PotentialRacePairs(P )
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(m.body) i = new cid !′ !∈ dom(σ)
L′ = L[! #→ (m, i + 1, !′ ::s, ρ) ::cs]

L, ! % ((m, i, s, ρ) ::cs,σ, µ) τ→ (L′,σ[!′ #→ new(cid)], µ)

(m.body) i = start ¬(!′ ∈ dom(L))
Lookup (run : ()void) class(σ, !′) = m1 ρ1 = [0 #→ !′]
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L, ! % ((m, i, !′ ::s′, ρ) ::cs,σ, µ) → (L′,σ, µ)
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∅ ?

Reductions of the shape L; ! % (cs,σ, µ) e→ (L′,σ′, µ′) are defined in Figure 5.
Intuitively, such a reduction expresses that in state (L,σ, µ), reducing the thread defined
by the memory location ! and the call stack cs, by a non deterministic choice, produces
the new state (L′,σ′, µ′). For the sake of readability, we rely on an auxiliary relation of
the shape instr; !; ppt % (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ′) for reduction of intra-procedural
instructions. In Figure 5, we consider only putfield, getfield and new. Reductions
for instructions are standard and produce a τ event. The notation σ[!.f ← v] for field
update, where ! ∈ dom(σ), is defined in Figure 5(a). It does not change the class of
an object. The reduction of a new instruction pushes a fresh address onto the operand
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generates a new frame. Thread spawning is similar to method invocation. However, the
new frame is put on top of an empty call stack. We omit the reduction rules for return
and areturn, those rules are standard and produce a τ event. For monitorenter and
monitorexit we use a partial function acquire defined in Figure 5(a). Intuitively,
acquire ! !′ µ results from thread ! locking object !′ in µ.

We write RState(P ) for the set of states that contains the initial state of a pro-
gram P , that we do not describe here for conciseness concerns, and that is closed by
reduction. A data race is a tuple (ppt1, f, ppt2) such that Race(P, ppt1, f, ppt2) holds.

st ∈ RState(P ) st
"1!

ppt1
f "0

−−−−−→ st1 st
"2R"0−−−−→ st2 R ∈ {?ppt2

f , !ppt2f } !1 != !2

Race(P, ppt1, f, ppt2)

The ultimate goal of our certified analyser is to guarantee Data Race Freeness, i.e.
for all ppt1, ppt2 ∈ PPT and f ∈ F, ¬Race(P, ppt1, f, ppt2).

∀(ppt1, f, ppt2),
Race(P, ppt1, f, ppt2) ⇒
(ppt1, f, ppt2) ∈ PotentialRacePairs(P )
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11

Java’s strong typing dictates that a pair of 
accesses may be involved in a race only if both 
access the same field.

Here :

class List{ T val; List next; }

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
1:    temp.val = new T();
2:    temp.val.f = new A();
3:    temp.next = l;
      l = temp }
    while (*) {
      T t = new T();
4:    t.data = l;
      t.start(); 
5:    t.f = ...;}
    return;
   }
}

class T { 
  A f;
  List data;
  void run(){
    while(*){
6:    List m = this.data;
7:    while (*) { m = m.next; }
8:    synchronized(m){ m.val.f = ...;}}
    return;}}



Original pairs

11

Java’s strong typing dictates that a pair of 
accesses may be involved in a race only if both 
access the same field.

Here :

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3), 
(4,data,4),(5,f,5), (2,f,5),

(5,f,8),

(4,data,6),(3,next,7),(1,val,8),(2,f,8), 

(8,f,8)

class List{ T val; List next; }

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
1:    temp.val = new T();
2:    temp.val.f = new A();
3:    temp.next = l;
      l = temp }
    while (*) {
      T t = new T();
4:    t.data = l;
      t.start(); 
5:    t.f = ...;}
    return;
   }
}

class T { 
  A f;
  List data;
  void run(){
    while(*){
6:    List m = this.data;
7:    while (*) { m = m.next; }
8:    synchronized(m){ m.val.f = ...;}}
    return;}}

we start with 13 potential races.



Original pairs

11

Java’s strong typing dictates that a pair of 
accesses may be involved in a race only if both 
access the same field.

Here :

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3), 
(4,data,4),(5,f,5), (2,f,5),

(5,f,8),

(4,data,6),(3,next,7),(1,val,8),(2,f,8), 

(8,f,8)

class List{ T val; List next; }

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
1:    temp.val = new T();
2:    temp.val.f = new A();
3:    temp.next = l;
      l = temp }
    while (*) {
      T t = new T();
4:    t.data = l;
      t.start(); 
5:    t.f = ...;}
    return;
   }
}

class T { 
  A f;
  List data;
  void run(){
    while(*){
6:    List m = this.data;
7:    while (*) { m = m.next; }
8:    synchronized(m){ m.val.f = ...;}}
    return;}}

we start with 13 potential races.



Original pairs

11

Java’s strong typing dictates that a pair of 
accesses may be involved in a race only if both 
access the same field.

Here :

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3), 
(4,data,4),(5,f,5), (2,f,5),

(5,f,8),

(4,data,6),(3,next,7),(1,val,8),(2,f,8), 

(8,f,8)

class List{ T val; List next; }

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
1:    temp.val = new T();
2:    temp.val.f = new A();
3:    temp.next = l;
      l = temp }
    while (*) {
      T t = new T();
4:    t.data = l;
      t.start(); 
5:    t.f = ...;}
    return;
   }
}

class T { 
  A f;
  List data;
  void run(){
    while(*){
6:    List m = this.data;
7:    while (*) { m = m.next; }
8:    synchronized(m){ m.val.f = ...;}}
    return;}}

we start with 13 potential races.



Data Race Analysis

Original pairs

Reachable pairs

Aliasing pairs

Escaping pairs

Unlocked pairs

Potential Races



Conditional Must-Not 
Alias Analysis

Must-Not Thread 
Escape Analysis

Data Race Analysis

Original pairs

Reachable pairs

Aliasing pairs

Escaping pairs

Unlocked pairs

Points-to Analysis

Must-Lock Analysis

:  use the result of 

Potential Races Static Analyses



Points-to analysis

13

Points-to analysis computes a finite 
abstraction of the memory where locations 
are  abstracted by their allocation site
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Points-to analysis in Coq

The analysis is parameterized by an abstract notion of context which captures a 
large variety of points-to context.

18

Module Type CONTEXT.

  Parameter pcontext : Set. (* pointer context *)
  Parameter mcontext : Set. (* method context *)

  Parameter make_new_context : method -> line -> classId -> mcontext -> pcontext.
  Parameter make_call_context : method -> line -> mcontext -> pcontext -> mcontext.
  Parameter get_class : program -> pcontext -> option classId.

  Parameter class_make_new_context : forall p m i cid c,
    body m i = Some (New cid) ->
    get_class p (make_new_context m i cid c) = Some cid.

  Parameter init_mcontext : mcontext.
  Parameter init_pcontext : pcontext.

  Parameter eq_pcontext : forall c1 c2:pcontext, {c1=c2}+{c1<>c2}.
  Parameter eq_mcontext : forall c1 c2:mcontext, {c1=c2}+{c1<>c2}.

End CONTEXT.
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:  sound w.r.t. 

:  safe instrumed w.r.t. 
:  use the result of 

Original pairs

Reachable pairs

Aliasing pairs

Points-to Analysis

Standard Semantics

Points-to Semantics

Static Analyses SemanticsPotential Races

We prove the soundness of the analysis with respect to an instrumented points-to 
semantics.



Must-Not Thread Escape analysis
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For all these potential races, the main thread 
access location that are not (yet) shared

•We uses a flow sensitive thread-escape 
analysis

•The analysis is iteration sensitive
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  void run(){
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For all these potential races, the main thread 
access location that are not (yet) shared

•We uses a flow sensitive thread-escape 
analysis

•The analysis is iteration sensitive

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3), 
(4,data,4),(5,f,5), (2,f,5),

(5,f,8),

(4,data,6),(3,next,7),(1,val,8),(2,f,8), 

(8,f,8)



The last one...

22

synchronize(m){ m.val.f = ...;} synchronize(m){ m.val.f = ...;}
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We extend the formalisation made by Naik and Aiken for a While language to 
our bytecode language.

Main steps:

1. Define an instrumented semantic with loop counters: at each allocation 
site, the new location is tagged with the current loop counter. 

2. Formally prove that the instrumentation completely identifies locations: two 
location tagged with the same loop counter must be equal.

3. Define and prove correct a type and effect system that computes a set     of 
couples (h1,h2) such that h1 points to h2 but the two corresponding objects 
were allocated in the same loop iteration.

4. Define and prove correct a sound under-approximation              of the 
disjoint reachability set, using the previous type system.

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

1 / 1

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

1 / 1

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

1 / 1
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Disjoint reachability is mixed with two other analyses

A must-lock analysis computes a must information: for all location targeted by a 
read or a write, which locks must be held by the current thread and from 
which the location is accessible wrt to the history of heaps ?

Points-to analysis gives standard may information: the set of locations that 
may be targeted by a read or a write.

We mix all these analyses and remove the potential races 
such that                           ,                             and

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

(ppt1, f , ppt2)

Must(ppt1) #= ∅

Must(ppt2) #= ∅

May(ppt1) ∩May(ppt2) ⊆ DRΣ
Paths(Must(ppt1) ∪Must(ppt2))

1 / 1

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

(ppt1, f , ppt2)

Must(ppt1) #= ∅

Must(ppt2) #= ∅

May(ppt1) ∩May(ppt2) ⊆ DRΣ
Paths(Must(ppt1) ∪Must(ppt2))

1 / 1

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

(ppt1, f , ppt2)

Must(ppt1) #= ∅

Must(ppt2) #= ∅

May(ppt1) ∩May(ppt2) ⊆ DRΣ
Paths(Must(ppt1) ∪Must(ppt2))

1 / 1

o1 o2 o h ∈ DRPaths(H)

DR{[val]}({h1}) = {h2}

Σ DRΣ
Paths ⊆ DRPaths

(ppt1, f , ppt2)

Must(ppt1) #= ∅

Must(ppt2) #= ∅

May(ppt1) ∩May(ppt2) ⊆ DRΣ
Paths(Must(ppt1) ∪Must(ppt2))

1 / 1
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synchronize(m){ m.val.f = ...;}

Threads:

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

synchronize(m){ m.val.f = ...;}

l

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

ftemp

t

m m m

⇒

May1 = May2 = {h2}
Must1 = Must2 = {h1}
DR{[val]}({h1}) = {h2}

Must1 != ∅ ∧
Must2 != ∅ ∧

May1 ∩May2 ⊆ DRΣ
Paths(Must1 ∪Must2)

2 / 2

May1 = May2 = {h2}
Must1 = Must2 = {h1}
Paths = {[val]}
DR{[val]}({h1}) = {h2}

Must1 != ∅ ∧
Must2 != ∅ ∧

May1 ∩May2 ⊆ DRΣ
Paths(Must1 ∪Must2)

2 / 2
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Counting Semantics

:  sound w.r.t. 

:  safe instrumed w.r.t. 
:  use the result of 

Original pairs

Reachable pairs

Aliasing pairs

Escaping pairs

Unlocked pairs

Points-to Analysis

Must-Lock Analysis

Conditional Must-Not 
Alias Analysis

Must-Not Thread 
Escape Analysis

Standard Semantics

Points-to Semantics

Potential Races Static Analyses Semantics
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Points-to static analyses give powerful tools to prove data-race-freeness.

We need to assemble several complex blocks of this kind to obtain a good 
tool.

Our current formalisation (10.000 line of Coq) should be sufficiently modular to 
handle new blocks without major reconstruction.

Our ultimate goal is to build a powerful certified datarace verifier for bytecode Java.

But the current formalisation is not executable.

Building an efficient certified analyser/checker is a big challenge.

Scalable implementations rely on BDDs.

We could refine the current formalisation to something executable.
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4 Frédéric Dabrowski and David Pichardie

class Main() {
void main() {

List l = null;
while (*) {

List temp = new List;
1: temp.val = new T;
2: temp.val.f = new A;
3: temp.next = l;

l = temp; };
while (*) {

T t = new T;
4: t.data = l;

t.start();
5: t.f = null; }}};

class A{};
class List{ T val; List next; };

class T extends java.lang.Thread {
A f;
List data;
void run(){

while(*) {
6: List m = this.data;
7: while (*) { m = m.next; }

synchronized(m)
8: { m.val.f = new A; }};

}
};

Fig. 2. A challenging example program

is local to a thread at the current point (Escaping pairs). The last potential race (8, f, 8)
requires the most attention since several threads of class T are updating fields f in par-
allel. These writes are safe because they are guarded by a synchronization on an object
which is the only ancestor of the write target in the heap. Such reasoning relies on the
fact that if locks guarding two accesses are different then so are the targeted memory lo-
cations. The main difficulty comes when several objects allocated at the same program
point, e.g. within a loop, may point to the same object. This last triplet is removed by
the conditional must not alias presented in Section 5.

Original Reachable Aliasing Unlocked Escaping
(1, val, 1), (1, val, 2), (2, f, 2), (3, next, 3),
(4, data, 4)

! !
(5, f, 5) ! ! !
(2, f, 5) !
(5, f, 8) ! ! !
(4, data, 6), (3, next, 7), (1, val, 8), (2, f, 8) ! ! !
(8, f, 8) ! ! !

Fig. 3. Potential race pairs in the example program

3 Standard Semantics

The previous example can be compiled into a bytecode language whose syntax is
given below. The instruction set allows to manipulate objects, call virtual methods, start
threads and lock (or unlock) objects for threads synchronization.

class Main() {
  void main(){
    List l = null;
    while (*) {
      List temp = new List();
1:    temp.val = new T();
2:    temp.val.f = new A();
3:    temp.next = l;
      l = temp }
    while (*) {
      T t = new T();
4:    t.data = l;
      t.start(); 
5:    t.f = ...;}
    return;
   }}

class List{ T val; List next; }

class T { 
  A f;
  List data;
  void run(){
    while(*){
6:    List m = this.data;
7:    while (*) { m = m.next; }
8:    synchronized(m){ m.val.f = ...;}}
    return;}}


