
1

A Certified Non-Interference Java
Bytecode Verifier

G. Barthe, D. Pichardie and T. Rezk, A Certified Lightweight Non-Interference
Java Bytecode Verifier, ESOP'07

Motivations 1: bytecode verification

Java bytecode verification
checks that applets are correctly formed and correctly typed,

using a static analysis of bytecode programs

But Java bytecode verifier (and more generally Java security model)
only concentrates on who accesses sensitive information,

not how sensitive information flows through programs

In this work
We propose an information flow type system for a sequential JVM-like
language, including classes, objects, arrays, exceptions and method
calls.

We prove in Coq that it guarantees the semantical non-interference
property on method input/output.

2

Non-Interference

3

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

H1 L

H
′

1 L
′

P
High = secret

Low = public

Non-Interference

3

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

H1 L

H
′

1 L
′

P

L

L
′

H2

H
′

2

P
High = secret

Low = public

Non-Interference

3

“Low-security behavior of the program is not affected by
any high-security data.” Goguen&Meseguer 1982

H1 L

H
′

1 L
′

P

L

L
′

H2

H
′

2

P

∼L

∼L

∀s1 s2, s1 ∼L s2 =⇒ !P"(s1) ∼L !P"(s2)

High = secret

Low = public

Example of information leaks

Explicit flow:
 public int{L} foo(int{L} l; int{H} h) {

 return h;

 }

Implicit flow:

 public int{L} foo(int{L} l1; int{L} l2; int{H} h) {

 if (h==0) {return l1;} else {return l2;};

 }

We use here the Jif (http://www.cs.cornell.edu/jif) syntax:
a security-typed extension of Java (source) with support for information
flow.

4

http://news.google.fr/
http://news.google.fr/

Information flow type system

Type annotations required on programs:
one security level attached to each fields,

one security level for the contents of arrays (given at their creation point),

each methods posses one (or several) signature(s):

 provides the security level of the method parameters (and local
variables),
 is the effect of the method on the heap,
 is a record of security levels of the form

 is the security level of the return value (normal termination),
 is the security level of each exception that might be
propagated by the method.

5

!kv

kh

−→
!kr

!kv

kh

!kr {n : kn, e1 : ke1
, . . . en : ken

}
kn

ki

Example

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

6

m : (x : L, y : H)
H
−→ {n : H, C : L, np}

 = H: no side effect on low fields,

 = H: result depends on y

termination by an exception C doesn't depend on y,

but termination by a null pointer exception does.

kh

!kr[n]

Typing judgment

7

m[i] = putfield fk
k1 ! se(i) ! k2 ≤ k kh ≤ k k2 ≤

!kr[np]
∀ j ∈ region(i, ∅) ∪ region(i,np), k2 ≤ se(j)

Γ, region, se, !kv
kh
−→ !kr, i) k1 :: k2 :: st⇒ liftk2 st

m[i] = ins constraints

Γ, region, se, sgn, i ! st⇒ st′

Typing judgment

7

m[i] = putfield fk
k1 ! se(i) ! k2 ≤ k kh ≤ k k2 ≤

!kr[np]
∀ j ∈ region(i, ∅) ∪ region(i,np), k2 ≤ se(j)

Γ, region, se, !kv
kh
−→ !kr, i) k1 :: k2 :: st⇒ liftk2 st

m[i] = ins constraints

Γ, region, se, sgn, i ! st⇒ st′

General form:

See the Coq development for 63 others typing rules...

Example: putfield without handler for NullPointer exceptions

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

region(2, ∅)

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

region(7,np)
region(7, ∅)

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

region(i,tau) is a control depend region
that contains the scope of a branching
point i.

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

region(i,tau) is a control depend region
that contains the scope of a branching
point i.
se(i) : program point security level

se
L

L

L

L

L

L

L

H

H

The putfield rule on an example

8

int m(boolean x,C y) throws C {

 if (x) {throw new C();}

 else {y.f = 3;};

 return 1;

}

m : (x : L, y : H)
H
−→ {n : H, C : L, np} 1 load x

2 ifeq 5

3 new C

4 throw

5 load y

6 push 3

7 putfield f:H

8 push 1

9 return

m[i] = putfield fk
k1 ! se(i) ! k2 ≤ k kh ≤ k k2 ≤

!kr[np]
∀ j ∈ region(i, ∅) ∪ region(i,np), k2 ≤ se(j)

Γ, region, se, !kv
kh
−→ !kr, i) k1 :: k2 :: st⇒ liftk2 st

se
L

L

L

L

L

L

L

H

H

Machine-checked proof

Motivations
Implementing an information flow type checker for real Java is a non-
trivial task.
A non-interference paper proof is already a big achievement but how
is it related to what is implemented at the end ?

Using a proof assistant like Coq allows
to formally define non-interference definition,
to formally define an information type system,
to mechanically proved that typability enforces non-interference,
(20.000 lines of Coq...),
to program a type checker and prove it enforces typability,
to extract an Ocaml implementation of this type checker.

9

Information flow in practice

Information flow analysis is impossible without a minimum of precise
information about potential exceptions that might be raised.

Two kind of complementary analysis are specially useful:
Null pointer analysis
Array bound analysis

10

Null pointer analysis

L. Hubert, T. Jensen, and D. Pichardie. Semantic foundations and
inference of non-null annotations. FMOODS’08.

We have defined a null pointer analysis that infer non-null field.
It is based on the type system proposed by [Fahndrich&Leino,
OOPSLA’03]
The analysis is proved correct in Coq (for an idealized OO language)

L. Hubert. A Non-Null annotation inferencer for Java bytecode.
PASTE'08.

a tool has been developed on top of the previous work
available at: http://nit.gforge.inria.fr
efficient: around 2min for the 20.000 methods of Soot
quite precise: 80% of the dereferences are proved safe

11

http://nit.gforge.inria.fr
http://nit.gforge.inria.fr

