
Control-Flow Analysis of Function Calls and Returns
by Abstract Interpretation

Jan Midtgaard
Roskilde University

jmid@ruc.dk

Thomas P. Jensen
CNRS

thomas.jensen@irisa.fr

Abstract
We derive a control-flow analysis that approximates the interproce-
dural control-flow of both function calls and returns in the presence
of first-class functions and tail-call optimization. In addition to an
abstract environment, our analysis computes for each expression
an abstract control stack, effectively approximating where func-
tion calls return across optimized tail calls. The analysisis sys-
tematically calculated by abstract interpretation of the stack-based
CaEK abstract machine of Flanagan et al. using a series of Galois
connections. Abstract interpretation provides a unifyingsetting in
which we1) prove the analysis equivalent to the composition of a
continuation-passing style (CPS) transformation followed by an ab-
stract interpretation of a stack-less CPS machine, and2) extract an
equivalent constraint-based formulation, thereby providing a ratio-
nal reconstruction of a constraint-based control-flow analysis from
abstract interpretation principles.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Pro-
gram Analysis

General Terms Languages, Theory, Verification

Keywords Control flow analysis, abstract interpretation, tail-call
optimization, continuation-passing style, direct style,constraint-
based analysis

1. Introduction
The control flow of a functional program is expressed in termsof
function calls and returns. As a result, iteration in functional pro-
grams is expressed using recursive functions. In order for this ap-
proach to be feasible, language implementations performtail-call
optimizationof function calls [Clinger, 1998], by not pushing a
stack frame on the control stack at call sites intail position. Con-
sequently functions do not necessarily return control to their caller.
Control-flow analysis (CFA) has long been a staple of programop-
timization and verification. Surprisingly, research on control-flow
analysis has focused on calls: A textbook CFA“will determine
where the flow of control may be transferred to in the case [...]
of a function application.”[Nielson et al., 1999]. Our systematic
approximation of a known operational semantics leads to a CFA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $10.00

let g z = z in
let f k = if b then k 1 else k 2 in
let y = f (fn x => x) in

g y
(a) Example program

main f k

g y fn x =>

call

return

callreturncallreturn

(b) Call-return call graph

main f k

g y fn x =>

call

call
return

call

(c) Optimized call graph

Figure 1: The corresponding call graphs

that “will determine where the flow of control may be transferred
to in the case of a function return.”The resulting analysis thereby
approximates both call and return information for a higher-order,
direct-style language. Interestingly it does so by approximating the
control stack.

Consider the example program in Fig. 1(a). The program con-
tains three functions: two named functiong andf and an anony-
mous functionfn x => x. A standard direct-style CFA can deter-
mine that the applications ofk in each branch of the conditional
will call the anonymous functionfn x => x at run time. Build-
ing a call-graph based on this output gives rise to Fig. 1(b),where
we have named the main expression of the programmain. In addi-
tion to the above resolved call, our analysis will determinethat the
anonymous function returns to the let-binding ofy in main upon
completion, rather than to its caller. The analysis hence gives rise
to the call graph in Fig. 1(c).

On a methodological level, we derive the analysis systemati-
cally by Cousot-Cousot-styleabstract interpretation. The analysis
approximates the reachable states of an existing abstract machine
from the literature: theCaEK machine of Flanagan et al. [1993].
We obtain the analysis as the result of composing the collecting
semantics induced by the abstract machine with a series of Galois
connections that each specifies one aspect of the abstraction in the
analysis.

We show how the abstract interpretation formulation lends it-
self to a lock-step equivalence proof between our analysis and a
previously derived CPS-based CFA. More precisely, we definea
relation between the abstract domains of the analyses that is a sim-
ulation between the two, reducing the proof to a fixpoint induction
over the abstract interpretations.

To sum up, the main contributions of this article are:

• An abstract interpretation-derivation of a CFA for a higher-
order functional language from a well-known operational se-
mantics,

• a resulting CFA withreachabilitywhich computes both calland
return control-flow,

• a proof of equivalence of the analysis of programs in direct style
and the CPS analysis of their CPS counterparts,

• an equivalent constraint-based analysis extracted from the
above.

1.1 Related work

We separate the discussion of related analyses in two: direct-style
analyses and analyses based on CPS.

Direct-style CFA has a long research history. Jones [1981] ini-
tially developed methods for approximating the control flowof
lambda terms. Since then Sestoft [1989] conceived the relatedclo-
sure analysis. Palsberg [1995] simplified the analysis and formu-
lated an equivalent constraint-based analysis. At the sametime
Heintze [1994] developed a related set-based analysis formulated
in terms of set constraints. For a detailed account of related work,
we refer to a recent survey of the area [Midtgaard, 2007]. It is worth
emphasizing that all of the above analyses focus on calls, inthat
they approximate the source lambdas being called at each call site.
As such they do not directly determine return flow for programs in
direct style.

CPS-based CFAwas pioneered by Shivers [1988] who formu-
lated control-flow analysis for Scheme. Since then several analyses
have been formulated for CPS [Ayers, 1992, Ashley and Dybvig,
1998, Might and Shivers, 2006]. In CPS all calls are tail calls, and
even returns are encoded as calls to the current continuation. By de-
termining “call flow” and hence the receiver functions of such con-
tinuation calls, a CPS-based CFA thereby determines returnflow
without additional effort.

The impact of CPS transformation on static analysesorig-
inates in binding-time analysis, for which the transformation is
known to have a positive effect [Consel and Danvy, 1991, Damian
and Danvy, 2003]. As to the impact of CPS transformation on CFA
we separate the previous work on the subject in two:

1. results relating an analysisspecializedto the source language
to an analysisspecializedto the target language (CPS), and

2. results relating the analysis of a program to thesame analysis
of the CPS transformed program.

Sabry and Felleisen [1994] designed and compared specialized
analyses and hence falls into the first category as does the present
paper. Damian and Danvy [2003] related the analysis of a program
and its CPS counterpart for a standard flow-logic CFA (as well
as for two binding-time analyses), and Palsberg and Wand [2003]
related the analysis of a program and its CPS counterpart fora
standard conditional constraint CFA. Hence the latter two fall into
the second category.

We paraphrase the relevant theorems of Sabry and Felleisen
[1994], of Damian and Danvy [2003], of Palsberg and Wand
[2003], and of the present paper in order to underline the differ-
ence between the contributions (C refers to non-trivial, 0-CFA-like
analyses defined in the cited papers,p ranges over direct-style pro-
grams,cps denotes CPS transformation, and∼ denotes analysis
equivalence). Our formulations should not be read as a formal sys-
tem, but only as a means for elucidating the difference between the
contributions.
Sabry and Felleisen [1994]:

exists analysesC1, C2 : existsp, C1(p) ≁ C2(cps(p))

Damian and Danvy [2003], Palsberg and Wand [2003]:

exists analysisC : for all p, C(p)∼C(cps(p))

Present paper, Theorem 5.1:

exists analysesC1, C2 : for all p, C1(p)∼C2(cps(p))

Our work relates to all of the above contributions. The dis-
ciplined derivation of specialized CPS and direct-style analyses
results in comparable analyses, contrary to Sabry and Felleisen
[1994]. Furthermore our equivalence proof extends the results of
Damian and Danvy [2003] and Palsberg and Wand [2003] in that
we relate both call flow,return flow, andreachability, contrary to
their relating only the call flow of standard CFAs. In addition, the
systematic abstract interpretation-based approach suggests a strat-
egy for obtaining similar equivalence results for other CFAs derived
in this fashion.

Formulating CFA in the traditional abstract interpretatio n
framework was stated as an open problem by Nielson and Nielson
[1997]. It has been a recurring theme in the work of the present au-
thors. In an earlier paper Spoto and Jensen [2003] investigated class
analysis of object-oriented programs as a Galois connection-based
abstraction of a trace semantics. In a recent article [Midtgaard and
Jensen, 2008a], the authors systematically derived a CPS-based
CFA from the collecting semantics of a stack-less machine. While
investigating how to derive a corresponding direct-style analysis we
discovered a mismatch between the computed return information.

As tail calls are identified syntactically, the additional informa-
tion could also have been obtained by a subsequent analysis af-
ter a traditional direct-style CFA. However we view the needfor
such a subsequent analysis as a strong indication of a mismatch be-
tween the direct-style and CPS analysis formulations. Debray and
Proebsting [1997] have investigated such a“return analysis” for a
first-order language with tail-call optimization. This paper builds a
semantics-based CFA that determines such information, andfor a
higher-order language.

The systematic design of constraint-based analysesis a goal
shared with theflow logic framework of Nielson and Nielson
[2002]. In flow logic an analysis specification can be systemat-
ically transformed into a constraint-based analysis. The present
paper instead extracts a constraint-based analysis from ananalysis
developed in the original abstract interpretation framework.

The idea of CFA by control stack approximation, applies
equally well to imperative or object-oriented programs, but it is
beyond the scope of this paper to argue this point. Due to space
limitations most calculations and proofs are also omitted.We refer
the reader to the accompanying technical report [Midtgaardand
Jensen, 2008b].

2. Language and semantics
Our source language is a simple call-by-value core languageknown
asadministrative normal form(ANF). The grammar of ANF terms
is given in Fig. 2(a). Following Reynolds, the grammar distin-
guishesseriousexpressions, i.e., terms whose evaluation may di-
verge, fromtrivial expressions, i.e., terms without risk of diver-
gence. Trivial expressions include constants, variables,and func-
tions, and serious expressions include returns, let-bindings, tail
calls, and non-tail calls. Programs are serious expressions.

The analysis is calculated from a simple operational semantics
in the form of an abstract machine. We use the environment-based
CaEK abstract machine of Flanagan et al. [1993] given in Fig. 2 in
which functional values are represented usingclosures, i.e., pairs
of a lambda-expression and an environment. The environment-
component captures the (values of the) free variables of thelambda.
Machine states are triples consisting of a serious expression, an

P∋ p ::= s (programs)

T ∋ t ::= c | x | fn x => s (trivial expressions)

C∋ s ::= t | let x=t in s | t0 t1 | let x=t0 t1 in s (serious expressions)

(a) ANF grammar

Val∋w ::= c | [fn x => s, e]

Env∋ e ::= • | e[x 7→ w]

K ∋ k ::= stop | [x, s, e] :: k

(b) Values, environments, and stacks

µ : T×Env⇀ Val

µ(c,e) = c

µ(x,e) = e(x)

µ(fn x => s,e) = [fn x => s, e]

(c) Helper function

〈t, e, [x, s′, e′] :: k′〉 −→ 〈s′, e′[x 7→ µ(t,e)], k′〉

〈let x=t in s, e, k〉 −→ 〈s, e[x 7→ µ(t,e)], k〉

〈t0 t1, e, k〉 −→ 〈s′, e′[x 7→ w], k〉

if [fn x => s′, e′] = µ(t0,e) andw = µ(t1,e)

〈let x=t0 t1 in s, e, k〉 −→ 〈s′, e′[y 7→ w], [x, s, e] :: k〉

if [fn y => s′, e′] = µ(t0,e) andw = µ(t1,e)

(d) Machine transitions

eval(p) = w iff 〈p, •, [xr, xr, •] :: stop〉 −→∗ 〈xr, •[xr 7→ w], stop〉

(e) Machine evaluation

Figure 2: TheCaEK abstract machine

environment and a control stack. The control stack is composed
of elements (“stack frames”) of the form[x, s, e] wherex is the
variable receiving the return valuew of the current function call,
ands is a serious expression whose evaluation in the environment
e[x 7→w] represents the rest of the computation in that stack frame.
The empty stack is represented bystop. The machine has a helper
function µ for evaluation of trivial expressions. The machine is
initialized with the input program, with an empty environment, and
with an initial stack, that will bind the result of the program to a
special variablexr before halting. Evaluation follows by repeated
application of the machine transitions.

3. Abstract interpretation basics
We assume some familiarity with the basic mathematical facts re-
called in Appendix A. Canonical abstract interpretation approx-
imates thecollecting semanticsof a transition system [Cousot,
1981]. A standard example of a collecting semantics is thereach-
able statesfrom a given set of initial statesI . Given a transition
functionT defined as:T(Σ) = I ∪{σ | ∃σ ′ ∈ Σ : σ ′→ σ}, we can
compute the reachable states ofT as the least fixed-point lfpT of
T. The collecting semantics is ideal, in that it is the most precise
analysis. Unfortunately it is in general uncomputable. Abstract in-
terpretation therefore approximates the collecting semantics, by in-
stead computing a fixed-point over an alternative and perhaps sim-
pler domain. For this reason, abstract interpretation is also referred
to as a theory of fixed-point approximation.

Abstractions are formally represented as Galois connections
which connect complete lattices through a pair of adjoint functions
α andγ (see Appendix A). Galois connection-based abstract inter-
pretation suggests that one may derive an analysis systematically
by composing the transition function with these adjoints:α ◦ T ◦ γ .
In this setting Galois connections allow us to gradually refine the
collecting semantics into a computable analysis function by mere
calculation. An alternative “recipe” consists in rewriting the com-
position of the abstraction function and transition function α ◦ T
into something of the formT♯ ◦ α, from which the analysis func-
tion T♯ can be read off [Cousot and Cousot, 1992a]. Cousot [1999]
has shown how to systematically construct a static analyserfor a
first-order imperative language using calculational abstract inter-
pretation.

4. Approximating the CaEK collecting semantics
As our collecting semantics we consider the reachable states of
theCaEK machine, expressed as the least fixed point lfpF of the
following transition function.

F : ℘(C×Env×K)→℘(C×Env×K)

F(S) = Ip ∪{s | ∃s′ ∈ S: s′ −→ s}

where Ip = {〈p, •, [xr, xr, •] :: stop〉}

First we formulate in Fig. 3(a) an equivalent helper function µc
extended to work on sets of environments.

Lemma 4.1. ∀t,e : {µ(t,e)}= µc(t,{e})

The equivalence of the two helper functions follow straightfor-
wardly. This lemma enables us to express an equivalent collecting
semantics based onµc, which appears in Fig. 3. The equivalence of
F andFc follows from the lemma and by unfolding the definitions.

The abstraction of the collecting semantics is staged in several
steps. Figure 4 provides an overview. Intuitively, the analysis ex-
tracts three pieces of information from the set of reachablestates.

1. An approximation of the set of reachable expressions.

2. A relation between expressions and control stacks that repre-
sents where the values of expressions are returned to.

3. An abstract environment mapping variables to the expressions
that may be bound to that variable. This is standard in CFA and
allows to determine which functions are called at a given call
site.

Keeping an explicit set of reachable expressions is more precise
than leaving it out, once we further approximate the expression-
stack pairs. Alternatively the reachable expressions would be ap-
proximated by the expressions present in the expression-stack rela-
tion. However expressions may be in the expression-stack relation
without ever being reached. An example hereof would be a diverg-
ing non-tail call.

To formalize this intuition, we first perform a Cartesian abstrac-
tion of the machine states, however keeping the relation between
expressions and their corresponding control stacks. The second step
in the approximation consists in closing the triples by a closure op-
erator, to ensure that (a) any saved environment on the stackor
nested within another environment is itself part of the environment

µc : T×℘(Env)→℘(Val)

µc(c,E) = {c}

µc(x,E) = {w | ∃e∈ E : w = e(x)}

µc(fn x => s,E) = {[fn x => s, e] | ∃e∈ E}

(a) Helper function

Fc :℘(C×Env×K)→℘(C×Env×K)

Fc(S) = Ip

∪
⋃

〈t,e, [x,s′,e′]::k′〉∈S
w∈µc(t,{e})

{〈s′, e′[x 7→ w], k′〉}

∪
⋃

〈let x=t in s,e,k〉∈S
w∈µc(t,{e})

{〈s, e[x 7→ w], k〉}

∪
⋃

〈t0 t1 ,e,k〉∈S
[fn x => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

{〈s′, e′[x 7→ w], k〉}

∪
⋃

〈let x=t0 t1 in s,e,k〉∈S
[fn y => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

{〈s′, e′[y 7→ w], [x, s, e] :: k〉}

(b) Transition function

Figure 3: Collecting semantics

℘(C×Env×K)

α×
��

coll. sem. Fc

℘(C)×℘(C×K)×℘(Env)

γ×
OO

ρ
��

- F×

ρ(℘(C)×℘(C×K)×℘(Env))

1

OO

α⊗
��

- Fρ

℘(C)× (C/≡→℘(K♯))×Env♯

γ⊗
OO

0-CFA F♯

Figure 4: Overview of abstraction

set, and (b) that all expression-control stack pairs that appear fur-
ther down in a control stack are also contained in the expression-
stack relation. We explain this in more detail below (Section 4.2).
Finally as a third step we approximate stacks by their top element,
we merge expressions with the same return point into equivalence
classes, and we approximate closure values by their lambda expres-
sion.

In the following sections we provide a detailed explanationof
each abstraction in turn.

4.1 Projecting machine states

The mapping that extracts the three kinds of information described
above is defined formally as follows.

℘(C×Env×K)−−−→←−−−α×

γ×
℘(C)×℘(C×K)×℘(Env)

α×(S) = 〈π1S,{〈s, k〉 | ∃e : 〈s, e, k〉 ∈ S},π2S〉

γ×(〈C, F, E〉) = {〈s, e, k〉 | s ∈C ∧ 〈s, k〉 ∈ F ∧ e∈ E}

Lemma 4.2. α×, γ× is a Galois connection.

The above Galois connection and the proof hereof closely re-
sembles the independent attributes abstraction, which is aknown
Galois connection. We use the notation∪× and⊆× for the compo-
nentwise join and componentwise inclusion of triples.

As traditional [Cousot and Cousot, 1979, 1992a, 1994], we will
assume that the abstract product domains throughout this article
have beenreduced, i.e., all triples〈A, B, C〉 with a bottom compo-
nent (A = ⊥a ∨ B = ⊥b ∨ C = ⊥c) have been eliminated and
replaced by a single bottom element〈⊥a,⊥b,⊥c〉.

Based on this abstraction we can now calculate a new transfer
functionF×. The resulting transition function appears in Fig. 5. By
construction, the transition function satisfies the following theorem.

Theorem 4.1.

∀C,F,E : α×(Fc(γ×(〈C, F, E〉))) = F×(〈C, F, E〉)

4.2 A closure operator on machine states

For the final analysis, we are only interested in an abstraction of
the information present in an expression-stack pair. More precisely,
we aim at only keeping track of the link between an expression
and the top stack frame in effect during its evaluation, throwing
away everything below. However, we need to make this information
explicit for all expressions appearing on the control stack, i.e.,
for a pair 〈s, [x, s′, e] :: k〉 we also want to retain thats′ will
be evaluated with control stackk. Similarly, environments can be
stored on the stack or inside other environments and will have to be
extracted. We achieve this by defining a suitableclosure operator
on these nested structures.

For environments, we adapt the definition of a constituent re-
lation due to Milner and Tofte [1991] We say that each compo-
nentxi of a tuple〈x0, . . . ,xn〉 is a constituentof the tuple, written
〈x0, . . . ,xn〉 ≻ xi . For a partial function1 f = [x0 7→ w0, . . . ,xn 7→
wn], we say that eachwi is a constituent of the function, written
f ≻wi . We write≻∗ for the reflexive, transitive closure of the con-
stituent relation.

To deal with the control stack, we define an order on expression-
stack pairs. Two pairs are ordered if (a) the stack componentof
the second is the tail of the first’s stack component, and (b) the
expression component of the second, resides on the top stackframe
of the first pair:〈s, [x, s′, e] :: k〉⋗ 〈s′, k〉. We write ⋗

∗ for the
reflexive, transitive closure of the expression-stack pairordering.

Next, we consider an operatorρ, defined in terms of the con-
stituent relation and the expression-stack pair ordering.The opera-
tor ρ ensures that all constituent environments will themselvesbe-
long to the set of environments, and that any structurally smaller
expression-stack pairs are also contained in the expression-stack
relation.

Definition 4.1.

ρ(〈C, F, E〉) = 〈C,{〈s, k〉 | ∃〈s′, k′〉 ∈F : 〈s′, k′〉⋗∗ 〈s, k〉},

{e | ∃〈s, k〉 ∈ F : 〈s, k〉 ≻∗ e ∨ ∃e′ ∈ E : e′ ≻∗ e}〉

We need to relate the expression-stack ordering to the con-
stituent relation. By case analysis one can prove that∀〈s, k〉,〈s′, k′〉 :
〈s, k〉 ⋗ 〈s′, k′〉 =⇒ k ≻ k′. By structural induction (on the
stack component) it now follows that∀〈s, k〉,〈s′, k′〉 : 〈s, k〉⋗∗

〈s′, k′〉 =⇒ k≻∗ k′. Based on these results we can verify thatρ is
a closure operator and formulate an abstraction on the triples:

℘(C)×℘(C×K)×℘(Env)−−→←−−ρ
1

ρ(℘(C)×℘(C×K)×℘(Env))

1 Milner and Tofte define the constituent relation for finite functions.

F× : ℘(C)×℘(C×K)×℘(Env)→℘(C)×℘(C×K)×℘(Env)

F×(〈C, F, E〉) = 〈{p}, {〈p, [xr, xr, •] :: stop〉}, {•}〉

∪×
⋃
×

〈{t},{〈t , [x,s′,e′]::k′〉},{e}〉⊆×〈C,F,E〉
w∈µc(t,{e})

〈{s′}, {〈s′, k′〉}, {e′[x 7→ w]}〉

∪×
⋃
×

〈{let x=t in s},{〈let x=t in s,k〉},{e}〉⊆×〈C,F,E〉
w∈µc(t,{e})

〈{s}, {〈s, k〉}, {e[x 7→ w]}〉

∪×
⋃
×

〈{t0 t1},{〈t0 t1 ,k〉},{e}〉⊆×〈C,F,E〉
[fn x => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

〈{s′}, {〈s′, k〉}, {e′[x 7→ w]}〉

∪×
⋃
×

〈{let x=t0 t1 in s},{〈let x=t0 t1 in s,k〉},{e}〉⊆×〈C,F,E〉
[fn y => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

〈{s′}, {〈s′, [x, s, e] :: k〉}, {e′[y 7→ w]}〉

Figure 5: Abstract transition function

We use the notation∪ρ for the join operationλX.ρ(∪×X) on
the closure operator-induced complete lattice. First observe that in
our case:

∪ρ = λX.ρ(
⋃
×

i

Xi) = λX.
⋃
×

i

ρ(Xi) = λX.
⋃
×

i

Xi = ∪×

Based on the closure operator-based Galois connection, we can
calculate a new intermediate transfer functionFρ . The resulting
transfer function appears in Fig. 6. This transfer functiondiffers
only minimally from the one in Fig. 5, in that (a) the signature
has changed, (b) the set of initial states has been “closed” and
now contains the structurally smaller pair〈xr, stop〉, and (c) the
four indexed joins now each join “closed” triples in the image of
the closure operator. By construction, the new transition function
satisfies the following theorem.

Theorem 4.2. ∀C,F,E : ρ ◦ F× ◦ 1(〈C, F, E〉) = Fρ(〈C, F, E〉)

4.3 Abstracting the expression-stack relation

Since stacks can grow unbounded (for non-tail recursive pro-
grams), we need to approximate the stack component and hereby
the expression-stack relation. We first formulate a grammarof ab-
stract stacks and an elementwise operator @ :C×K → C×K♯

operating on expression-stack pairs.

K♯ ∋ k♯ ::= stop | [x, s]

@(〈s, stop〉) = 〈s, stop〉

@(〈s, [x, s′, e] :: k〉) = 〈s, [x, s′]〉

Based on the elementwise operator we can now use an elementwise
abstraction.

Elementwise abstraction [Cousot and Cousot, 1997]: A given
elementwise operator @ :C→ A induces a Galois connection:

〈℘(C);⊆〉 −−−→←−−−
α@

γ@
〈℘(A);⊆〉

α@(P) = {@(p) | p∈ P} γ@(Q) = {p |@(p) ∈Q}

Notice how some expressions share the same return point (read:
same stack): the expressionslet x=t in s ands share the same re-
turn point, andlet x=t0 t1 in s ands share the same return point.
In order to eliminate such redundancy we define an equivalence re-
lation on serious expressions grouping together expressions sharing

the same return point. We define the smallest equivalence relation
≡ satisfying:

let x=t in s≡s

let x=t0 t1 in s≡s

Based hereon we define a second elementwise operator @′ :
C×K♯→C/≡×K♯ mapping the first component of an expression-
stack pair to a representative of its corresponding equivalence class:

@′(〈s, k♯〉) = 〈[s]≡, k♯〉

We can choose the outermost expression as a representative for
each equivalence class by a linear top-down traversal of theinput
program.

Pointwise coding of a relation [Cousot and Cousot, 1994]: A
relation can be isomorphically encoded as a set-valued function by
a Galois connection:

〈℘(A×B);⊆〉 −−−→−→←←−−−−
αω

γω
〈A→℘(B);⊆̇〉

αω (r) = λa.{b | 〈a, b〉 ∈ r} γω(f) = {〈a, b〉 | b∈ f (a)}

By composing the three above Galois connections we obtain our
abstraction of the expression-stack relation:

℘(C×K)−−−→←−−−αst

γst
C/≡→℘(K♯)

whereαst = αω ◦ α@′ ◦ α@ = λF.
⋃̇
〈s,k〉∈Fαω ({@′ ◦@(〈s, k〉)})

andγst = γ@ ◦ γ@′ ◦ γω . We can now prove a lemma relating the
concrete and abstract expression-stack relations.

Lemma 4.3. Control stack and saved environments
Let 〈C, F, E〉 ∈ ρ(℘(C)×℘(C×K)×℘(Env)) be given.

〈s, [x, s′, e] :: k〉 ∈ F =⇒ e∈ E ∧ {〈s′, k〉} ⊆ F

∧ {[x, s′]} ⊆ αst(F)([s]≡)

Proof. The first half follows from the assumptions. The second half
follows from monotonicity ofαst, and the definitions ofαst, ∪̇, @,
@′, αω , and⊆̇.

4.4 Abstracting environments

We also abstract values using an elementwise abstraction. Again
we formulate a grammar of abstract values and an elementwise

Fρ : ρ(℘(C)×℘(C×K)×℘(Env))→ ρ(℘(C)×℘(C×K)×℘(Env))

Fρ(〈C, F, E〉) = 〈{p}, {〈p, [xr, xr, •] :: stop〉,〈xr, stop〉}, {•}〉

∪×
⋃
×

〈{t},{〈t, [x ,s′,e′]::k′〉},{e}〉⊆×〈C,F,E〉
w∈µc(t,{e})

ρ(〈{s′}, {〈s′, k′〉}, {e′[x 7→ w]}〉)

∪×
⋃
×

〈{let x=t in s},{〈let x=t in s ,k〉},{e}〉⊆×〈C,F,E〉
w∈µc(t,{e})

ρ(〈{s}, {〈s, k〉}, {e[x 7→ w]}〉)

∪×
⋃
×

〈{t0 t1},{〈t0 t1,k〉},{e}〉⊆×〈C,F,E〉
[fn x => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

ρ(〈{s′}, {〈s′, k〉}, {e′[x 7→ w]}〉)

∪×
⋃
×

〈{let x=t0 t1 in s},{〈let x=t0 t1 in s,k〉},{e}〉⊆×〈C,F,E〉
[fn y => s′,e′]∈µc(t0,{e})

w∈µc(t1,{e})

ρ(〈{s′}, {〈s′, [x, s, e] :: k〉}, {e′[y 7→ w]}〉)

Figure 6: The second abstract transition function

operator @ :Val→ Val♯ mapping concrete to abstract values.

Val♯ ∋w♯ ::= c | [fn x => s]

@(c) = c

@([fn x => s, e]) = [fn x => s]

The abstraction of environments, which are partial functions,
can be composed by a series of well-known Galois connections.

Pointwise abstraction of a set of functions [Cousot and Cousot,
1994]: A given Galois connection on the co-domain〈℘(C);⊆〉

−−→←−−α

γ
〈C♯;⊑〉 induces a Galois connection on a set of functions:

〈℘(D→C);⊆〉 −−−→←−−−αΠ

γΠ
〈D→C♯;⊑̇〉

αΠ(F) = λd.α({ f (d) | f ∈ F})

γΠ(A) = { f | ∀d : f (d) ∈ γ(A(d))}

Subset abstraction [Cousot and Cousot, 1997]: Given a setC
and a strict subsetA⊂C hereof, the restriction to the subset induces
a Galois connection:

〈℘(C);⊆〉 −−−→−→←−−−−
α⊂

γ⊂
〈℘(A);⊆〉

α⊂(X) = X∩A γ⊂(Y) = Y∪ (C\A)

A standard trick is to think of partial functionsr : D ⇀ C as
total functionsr⊥ : D→ (C∪⊥) where⊥ ⊑ ⊥ ⊑ c, for all c∈C.
Consider environmentse∈ Var ⇀ Val to be total functionsVar→
(Val∪⊥) using this idea. In this context the bottom element⊥ will
denote variable lookup failure. Now compose a subset abstraction

℘(Val∪⊥) −−−→−→←−−−−
α⊂

γ⊂
℘(Val) with the above value abstraction, and

feed the result to the pointwise abstraction above. The result is
a pointwise abstraction of a set of environments, not explicitly

modelling variable lookup failure:℘(Env)−−−→←−−−αΠ

γΠ
Var→℘(Val♯).

By considering only closed programs, we statically ensure against
failure of variable-lookup, hence disregarding⊥ loses no informa-
tion.

4.5 Abstracting the helper function

We can calculate an abstract helper function, by “pushingα ’s”
under the function definition, and reading off a resulting abstract
definition.

Lemma 4.4. ∀t,E : α@(µc(t,E)) = µ♯(t,αΠ(E))

The resulting helper functionµ♯ : T×Env♯→℘(Val♯) reads:

µ♯(c,E♯) = {c}

µ♯(x,E♯) = E♯(x)

µ♯(fn x => s,E♯) = {[fn x => s]}

where we writeEnv♯ as shorthand forVar→℘(Val♯). We shall
need a lemma relating the two helper function definitions on closed
environments.

Lemma 4.5. Helper function on closed environments (1)
Let 〈C, F, E〉 ∈ ρ(℘(C)×℘(C×K)×℘(Env)) be given.

{[fn x => s, e]} ⊆ µc(t,E) =⇒ e∈ E

∧ {[fn x => s]} ⊆ µ♯(t,αΠ(E))

The above lemma is easily extended to capture nested environments
in all values returned by the helper function:

Lemma 4.6. Helper function on closed environments (2)
Let 〈C, F, E〉 ∈ ρ(℘(C)×℘(C×K)×℘(Env)) be given.

{w} ⊆ µc(t,E) ∧ w≻∗ e′′ =⇒ e′′ ∈ E

4.6 Abstracting the machine states

We abstract the triplet of sets into abstract triples by a component-
wise abstraction.

Componentwise abstraction [Cousot and Cousot, 1994]: As-

suming a series of Galois connections:℘(Ci) −−−→←−−−αi

γi
Ai for i ∈

{1, . . . ,n}, their componentwise composition induces a Galois con-
nection on tuples:

〈℘(C1)× . . .×℘(Cn);⊆×〉 −−−→←−−−α⊗

γ⊗
〈A1× . . .×An;⊆⊗〉

α⊗(〈X1, . . ., Xn〉) = 〈α1(X1), . . ., αn(Xn)〉

γ⊗(〈x1, . . ., xn〉) = 〈γ1(x1), . . ., γn(xn)〉

We write∪⊗ and⊆⊗ for componentwise join and inclusion, re-
spectively.

For the set of expressions℘(C) we use the identity abstrac-
tion consisting of two identity functions. For the expression-stack

F♯ : P→℘(C)× (C/≡→℘(K♯))×Env♯→℘(C)× (C/≡→℘(K♯))×Env♯

F♯
p(〈C, F♯, E♯〉) = 〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. /0〉

∪⊗
⋃
⊗

{t}⊆C
{[x ,s′]}⊆F♯([t]≡)

〈{s′}, F♯, E♯ ∪̇ [x 7→ µ♯(t,E♯)]〉

∪⊗
⋃
⊗

{let x=t in s}⊆C

〈{s}, F♯, E♯ ∪̇ [x 7→ µ♯(t,E♯)]〉

∪⊗
⋃
⊗

{t0 t1}⊆C
{[fn x => s′]}∈µ♯(t0,E♯)

〈{s′}, F♯ ∪̇ [[s′]≡ 7→ F♯([t0 t1]≡)], E♯ ∪̇ [x 7→ µ♯(t1,E
♯)]〉

∪⊗
⋃
⊗

{let x=t0 t1 in s}⊆C
{[fn y => s′]}∈µ♯(t0,E♯)

〈{s′}, F♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E♯ ∪̇ [y 7→ µ♯(t1,E♯)]〉

Figure 7: The resulting analysis function

relation℘(C×K) we use the expression-stack abstractionαst de-
veloped in Section 4.3. For the set of environments℘(Env) we use
the environment abstractionαΠ developed in Section 4.4.

Using the alternative “recipe” we can calculate the analy-
sis by “pushingα ’s” under the intermediate transition function:
α⊗(Fρ (〈C, F, E〉)) ⊆⊗ F♯(〈C, αst(F), αΠ(E)〉) from which the
final definition of F♯ can be read off. The resulting analysis ap-
pears in Fig. 7. The alert reader may have noticed that this final
abstraction is notcompletein that the above equation contains an
inequality. Completeness is a desirable goal in an abstractinter-
pretation but unfortunately it is not possible in general without
refining the abstract domain [Giacobazzi et al., 2000]. Consider
for example the addition operator over the standardsign-domain:
0 = α(1+ (−1)) ⊑ α(1) + α(−1) = ⊤. As traditional [Cousot,
1999], we instead limit upward judgements to a minimum.

As a corollary of the construction, the analysis safely approxi-
mates the reachable states of the abstract machine.

Corollary 4.1. α⊗ ◦ ρ ◦ α×(lfp F)⊆⊗ lfp F♯

4.7 Characteristics of the analysis

First of all the analysis incorporatesreachability: it computes an
approximate set of reachable expressions and will only analyse
those reachable program fragments. Reachability analyseshave
previously been discovered independently [Ayers, 1992, Palsberg
and Schwartzbach, 1995, Gasser et al., 1997]. In our case they
arise naturally from a projecting abstraction of a reachable states
collecting semantics.

Second the formulation materializesmonomorphisminto two
mappings: (a) one mapping merging all bindings to the same vari-
able, and (b) one mapping merging all calling contexts of thesame
function. Both characteristics are well known, but our presentation
is novel in that it literally captures this phenomenon in twoapprox-
imation functions.

Third the analysis handles returns inside-out (“callee-restore”),
in that the called function restores control from the approximate
control stack and propagates the obtained return values. This differs
from the traditional presentations [Palsberg, 1995, Nielson et al.,
1999] that handle returns outside-in (“caller-restore”) where the
caller propagates the obtained return values from the body of the
function to the call site (typically formulated asconditional con-
straints).

CProg∋ p ::= fn k => e (CPS programs)

SExp∋ e ::= t0t1c | c t (serious CPS expressions)

TExp∋ t ::= x | v | fn x,k => e (trivial CPS expressions)

CExp∋ c ::= fn v => e | k (continuation expressions)

Figure 8: BNF of CPS language

5. Analysis equivalence
In previous work [Midtgaard and Jensen, 2008a] we derived an
initial CFA with reachability for a CPS language from the stack-less
CE-machine [Flanagan et al., 1993]. In this section we show that
the present ANF analysis achieves the same precision as obtained
by first transforming a program into CPS and then using the CPS
analysis. This is done by defining a relation that captures how the
direct-style analysis and the CPS analysis operate in lock-step.

The grammar of CPS terms is given in Fig. 8. The grammar
distinguishes variables in the original source programx ∈ X, from
intermediate variablesv ∈ V and continuation variablesk ∈ K. We
assume the three classes are non-overlapping. Their union consti-
tute the domain of CPS variablesVar = X ∪ V ∪ K.

5.1 CPS transformation and back again

In order to state the relation between the ANF and CPS analyses
we first recall the relevant program transformations. The below
presentation is based on Danvy [1991], Flanagan et al. [1993], and
Sabry and Felleisen [1994].

The CPS transformation given in Fig. 9(a) is defined by two
mutually recursive functions — one for serious and trivial expres-
sions. A continuation variablek is provided in the initial call toF .
A freshk is generated inV ’s lambda abstraction case. To ease the
expression of the relation, we choosek unique to the serious ex-
pressions — ks . It follows that we only need onek per lambda
abstraction in the original program + an additionalk in the initial
case.

It is immediate from the definition ofF that the CPS transfor-
mation of a let-bindinglet x=t in s and the CPS transformation
of its bodys share the same continuation identifier — and similarly
for non-tail calls. Hence we shall equate the two:

Definition 5.1. ks≡ks′ iff s≡s′

C : P→ CProg

C [p] = fn kp => Fkp [p]

F : K→ C→ SExp

Fk [t] = kV [t]

Fk [let x=t in s] = (fn x => Fk [s])V [t]

Fk [t0 t1] = V [t0]V [t1]k

Fk [let x=t0 t1 in s] = V [t0]V [t1] (fn x => Fk [s])

V : T→ TExp

V [x] = x

V [fn x => s] = fn x,ks => Fks [s]

(a) CPS transformation

D : CProg→ P

D [fn k => e] = U [e]

U : SExp→ C

U [k t] = P [t]

U [(fn v => e)t] = let v=P [t] in U [e]

U [t0t1k] = P [t0]P [t1]

U [t0t1 (fn v => e)] = let v=P [t0]P [t1] in U [e]

P : TExp→ T

P [x] = x

P [v] = v

P [fn x,k => e] = fn x => U [e]

(b) Direct-style transformation

Figure 9: Transformations to and from CPS

The direct-style transformation given in Fig. 9(b) is defined
by two mutually recursive functions over serious and trivial CPS
expressions. We define the direct-style transformation of aprogram
fn k => e as the direct-style transformation of its bodyU [e].

Transforming a program, a serious expression, or a trivial ex-
pression to CPS and back to direct style yields the original expres-
sion, which can be confirmed by (mutual) structural induction on
trivial and serious expressions.

Lemma 5.1. D [C [p]] = p ∧ U [Fk [s]] = s ∧ P [V [t]] = t

5.2 CPS analysis

We recall the CPS analysis of Midtgaard and Jensen [2008a] in
Fig. 10. It is defined as the least fixed point of a program specific
transfer functionT♯

p . The definition relies on two helper functions

µ♯
t andµ♯

c for trivial and continuation expressions, respectively. The
analysis computes a pair consisting of (a) a set of serious expres-
sions (the reachable expressions) and (b) an abstract environment.
Abstract environments map variables to abstract values. Abstract
values can be either the initial continuationstop, function closures
[fn x,k => e], or continuation closures[fn v => e].

The definition relies on two special variableskr andvr , the first
of which names the initial continuation and the second of which
names the result of the program. To ensure the most precise analysis
result, variables in the source program can be renamed to be distinct
as is traditional in control-flow analysis [Nielson et al., 1999].

5.3 Analysis equivalence

Before formally stating the equivalence of the two analyseswe will
study an example run. As our example we use the ANF program:
let f=fn x => x in let a1=f cn1 in let a2=f cn2 in a2, taken
from Sabry and Felleisen [1994] where we have Church encoded
the integer literals. We writecn1 for fn s => fn z => s z andcn2
for fn s => fn z => let t1=s z in s t1. The analysis trace appears
in the left column of Table 1.

Similarly we study the CPS analysis of the CPS transformed
program. The analysis trace appears in the right column of Table 1
where we have writtenccn1 for V [cn1] and ccn2 for V [cn2].
Contrary to Sabry and Felleisen [1994] both the ANF and the CPS
analyses achieve the same precision on the example, determining
thata1 will be bound to one of the two integer literals.

We are now in position to state our main theorem relating the
ANF analysis to the CPS analysis. Intuitively the theorem relates:

• reachability in ANF to CPS reachability

• abstract stacks in ANF to CPS continuation closures

• abstract stack bottom in ANF to CPS initial continuation

• ANF closures to CPS function closures

Theorem 5.1. Let p be given. Let 〈C, F♯, E♯〉 = lfp F♯
p and

〈Q♯, R♯〉= lfp T♯
C [p]

. Then

s ∈C ⇐⇒ Fks [s] ∈Q♯ ∧

[x, s′] ∈ F♯(s) ⇐⇒ [fn x => Fks′ [s
′]] ∈ R♯(ks) ∧

stop ∈ F♯(s) ⇐⇒ stop ∈ R♯(ks) ∧

[fn x => s] ∈ E♯(y) ⇐⇒ [fn x,ks => Fks [s]] ∈ R♯(y)

For the purpose of the equivalence we equate the special vari-
ablesxr andvr both naming the result of the computations. We
prove the theorem by combining an implication in each direction
with the identity from Lemma 5.1. We formulate both implication
as relations and prove that both relations are preserved by the trans-
fer functions.

5.4 ANF-CPS equivalence

We formally define a relation RANF
CPS that relates ANF analysis

triples to CPS analysis pairs.

Definition 5.2. 〈C, F♯, E♯〉 RANF
CPS 〈Q

♯, R♯〉 iff ∀s :

s ∈ C =⇒ Fks [s] ∈Q♯ ∧

[x, s′] ∈ F♯(s) =⇒ [fn x => Fks′ [s
′]] ∈R♯(ks) ∧

stop ∈ F♯(s) =⇒ stop ∈R♯(ks) ∧

[fn x => s] ∈ E♯(y) =⇒ [fn x,ks => Fks [s]] ∈R♯(y)

First we need a small lemma relating the ANF helper function
to one of the CPS helper functions.

Lemma 5.2.

[fn x => s] ∈ µ♯(t,E♯) ∧ 〈C, F♯, E♯〉 RANF
CPS 〈Q

♯, R♯〉

=⇒ [fn x,ks => Fks [s]] ∈ µ♯
t (V [t],R♯)

Env♯ = Var→℘(Val♯) (abstract environment)

Val♯ ∋w♯ ::= stop | [fn x,k => e] | [fn v => e] (abstract values)

(a) Abstract domains

T♯ : CProg→℘(SExp)×Env♯→℘(SExp)×Env♯

T♯
fn k => e(〈Q♯, R♯〉) = 〈{e}, [kr 7→ {stop},k 7→ {[fn vr => kr vr]}]〉

∪⊗
⋃
⊗

t0t1c∈Q♯

[fn x,k′ => e′]∈µ♯
t (t0,R♯)

〈{e′}, R♯ ∪̇ [x 7→ µ♯
t (t1,R

♯),k′ 7→ µ♯
c(c,R♯)]〉

∪⊗
⋃
⊗

c t∈Q♯

[fn v => e′]∈µ♯
c(c,R♯)

〈{e′}, R♯ ∪̇ [v 7→ µ♯
t (t,R♯)]〉

(b) Abstract transition function

µ♯
t : TExp×Env♯→℘(Val♯)

µ♯
t (x,R♯) = R♯(x)

µ♯
t (v,R♯) = R♯(v)

µ♯
t (fn x,k => e,R♯) = {[fn x,k => e]}

µ♯
c : CExp×Env♯→℘(Val♯)

µ♯
c(k,R♯) = R♯(k)

µ♯
c(fn v => e,R♯) = {[fn v => e]}

(c) Abstract helper functions

Figure 10: CPS analysis

The relation is preserved by the transfer functions.

Theorem 5.2.

〈C, F♯, E♯〉 RANF
CPS 〈Q

♯, R♯〉

=⇒ F♯
p(〈C, F♯, E♯〉) RANF

CPS T♯
C [p]

(〈Q♯, R♯〉)

Proof. First we name the individual triples of the union in the
function body ofF♯. We name the first triple of results as ini-
tial: 〈CI , F♯

I , E♯
I 〉 = 〈{p}, [p 7→ {[xr, xr]},xr 7→ {stop}], λ_. /0〉.

The results of the second, third, fourth, and fifth joined triples
corresponding to return, binding, tail call, and non-tail call are
named 〈Cret, F♯

ret, E♯
ret〉, 〈Cbind, F♯

bind, E♯
bind〉, 〈Ctc, F♯

tc, E♯
tc〉 and

〈Cntc, F♯
ntc, E♯

ntc〉, respectively. Similarly we name the first re-
sult pair in the function body of the CPS analysis as initial:
〈Q♯

I , R♯
I 〉 = 〈{e}, [kr 7→ {stop},k 7→ {[fn vr => kr vr]}]〉. The re-

sults of the second and third joined pair corresponding to call and
return are named〈Q♯

call, R♯
call〉 and〈Q♯

ret, R♯
ret〉, respectively.

The proof proceeds by verifying five relations:

〈CI , F♯
I , E♯

I 〉 RANF
CPS 〈Q

♯
I , R♯

I 〉 (1)

〈Cret, F♯
ret, E♯

ret〉RANF
CPS 〈Q

♯
ret, R♯

ret〉 (2)

〈Cbind, F♯
bind, E♯

bind〉 RANF
CPS 〈Q

♯
ret, R♯

ret〉 (3)

〈Ctc, F♯
tc, E♯

tc〉RANF
CPS 〈Q

♯
call, R♯

call〉 (4)

〈Cntc, F♯
ntc, E♯

ntc〉 RANF
CPS 〈Q

♯
call, R♯

call〉 (5)

Realizing that the union of related triples and pairs are related
we obtain the desired result.

After realizing that the bottom elements are related by the above
relation, it follows by fixed point induction that their least fixed
points (and hence the analyses) are related.

Corollary 5.1. lfp F♯
p RANF

CPS lfp T♯
C [p]

5.5 CPS-ANF equivalence

Again we formally define a relation now relating CPS analysispairs
to ANF analysis triples.

Definition 5.3. 〈Q♯, R♯〉RCPS
ANF 〈C, F♯, E♯〉 iff ∀e :

e ∈Q♯ =⇒ U [e] ∈C ∧

[fn x => e] ∈ R♯(ks) =⇒ [x, U [e]] ∈ F♯(s) ∧

stop ∈ R♯(ks) =⇒ stop ∈ F♯(s) ∧

[fn x,ks => e] ∈ R♯(y) =⇒ [fn x => U [e]] ∈ E♯(y)

We again need a helper lemma relating the helper functions.

Lemma 5.3.

[fn x,ks => e] ∈ µ♯
t (t,R♯) ∧ 〈Q♯, R♯〉RCPS

ANF 〈C, F♯, E♯〉

=⇒ [fn x => U [e]] ∈ µ♯(P [t],E♯)

This relation is also preserved by the transfer functions.

Theorem 5.3.

〈Q♯, R♯〉RCPS
ANF 〈C, F♯, E♯〉

=⇒ T♯
C [p]

(〈Q♯, R♯〉) RCPS
ANF F♯

p(〈C, F♯, E♯〉)

Proof. The proof follows a similar structure to the earlier proof.

The bottom elements are related by the relation and it follows
by fixed point induction that their least fixed points (and hence the
analyses) are related.

Corollary 5.2. lfp T♯
C [p]

RCPS
ANF lfp F♯

p

6. Extracting constraints
The resulting analysis may appear complex at first glance. However
we can express the analysis in the popular constraint formulation,
extracted from the obtained definition. The formulation shown be-
low is in terms of program-specific conditional constraints. Con-
straints have a (possibly empty) list of preconditions and aconclu-
sion [Palsberg and Schwartzbach, 1995, Gasser et al., 1997]:

{u1} ⊆ rhs1 ∧ . . . ∧ {un} ⊆ rhsn⇒ lhs⊆ rhs

The constraints operate on the same three domains as the above
analysis. Left-hand sideslhs can be of the form{u}, F♯([s]≡),
or E♯(x), right-hand sidesrhs can be of the formC, F♯([s]≡), or
E♯(x), and singleton elementsu can be of the forms, c, [fn x => s],
or [x, s]. From Fig. 7 we directly read off the following constraints.

i ANF trace: 〈Ci , F♯
i , E♯

i 〉 CPS trace:〈Q♯
i , R♯

i 〉

0

{let f=fn x => x in let a1=f cn1 in let a2=f cn2 in a2}
[

[xr]≡ 7→ {stop},

[let f=fn x => x in let a1=f cn1 in let a2=f cn2 in a2]≡ 7→ {[xr, xr]}

]

λ_. /0

{
(fn f => f ccn1(fn a1 => f ccn2(fn a2 => kp a2)))(fn x,kx => kx x)

}

[
kr 7→ {stop},

kp 7→ {[fn vr => kr vr]}

]

1

C0 ∪ {let a1=f cn1 in let a2=f cn2 in a2}

F♯
0

E♯
0 ∪̇

[
f 7→ {[fn x => x]}

]

Q♯
0 ∪

{
f ccn1(fn a1 => f ccn2(fn a2 => kp a2))

}

R♯
0 ∪̇

[
f 7→ {[fn x,kx => kx x]}

]

2

C1 ∪ {x}

F♯
1 ∪̇

[
[x]≡ 7→ {[a1, let a2=f cn2 in a2]}

]

E♯
1 ∪̇

[
x 7→ {cn1}

]

Q♯
1 ∪ {kx x}

R♯
1 ∪̇

[
kx 7→ {[fn a1 => f ccn2(fn a2 => kp a2)]}

x 7→ {ccn1}

]

3

C2 ∪ {let a2=f cn2 in a2}

F♯
2

E♯
2 ∪̇

[
a1 7→ {cn1}

]

Q♯
2 ∪

{
f ccn2(fn a2 => kp a2)

}

R♯
2 ∪̇

[
a1 7→ {ccn1}

]

4

C3

F♯
3 ∪̇

[
[x]≡ 7→ {[a1, let a2=f cn2 in a2], [a2, a2]}

]

E♯
3 ∪̇

[
x 7→ {cn1,cn2}

]

Q♯
3

R♯
3 ∪̇

[
kx 7→ {[fn a1 => f ccn2(fn a2 => kp a2)], [fn a2 => kp a2]}

x 7→ {ccn1,ccn2}

]

5

C4 ∪ {a2}

F♯
4

E♯
4 ∪̇

[
a1 7→ {cn1,cn2}

a2 7→ {cn1,cn2}

]

Q♯
4 ∪

{
kp a2

}

R♯
4 ∪̇

[
a1 7→ {ccn1,ccn2}

a2 7→ {ccn1,ccn2}

]

6

C5 ∪ {xr}

F♯
5

E♯
5 ∪̇

[
xr 7→ {cn1,cn2}

]

Q♯
5 ∪ {kr vr}

R♯
5 ∪̇

[
vr 7→ {ccn1,ccn2}

]

7 C6 F♯
6 E♯

6 Q♯
6 R♯

6

Table 1: Analysis traces oflet f=fn x => x in let a1=f cn1 in let a2=f cn2 in a2 and its CPS transformed counterpart

• For the programp:

{p} ⊆ C {[xr, xr]} ⊆ F♯([p]≡) {stop} ⊆ F♯([xr]≡)

• For each return expressiont and non-tail calllet x=t0 t1 in s′

in p:

{t} ⊆ C ∧ {[x, s′]} ⊆ F♯([t]≡)⇒

{
{s′} ⊆ C ∧
µsym(t,E♯)⊆ E♯(x)

• For each let-bindinglet x=t in s in p:

{let x=t in s} ⊆C⇒

{
{s} ⊆ C ∧
µsym(t,E♯)⊆ E♯(x)

• For each tail callt0 t1 and functionfn x => s′ in p:

{t0 t1} ⊆ C ∧

{[fn x => s′]} ⊆ µsym(t0,E
♯)
⇒

{s′} ⊆C ∧
F♯([t0 t1]≡)⊆ F♯([s′]≡) ∧

µsym(t1,E♯)⊆ E♯(x)

• For each non-tail calllet x=t0 t1 in s and functionfn y => s′

in p:

{let x=t0 t1 in s} ⊆C ∧

{[fn y => s′]} ⊆ µsym(t0,E
♯)
⇒

{s′} ⊆ C ∧
{[x, s]} ⊆ F♯([s′]≡) ∧

µsym(t1,E♯)⊆ E♯(y)

where we partially evaluate the helper function, i.e., interpret the
helper function symbolically at constraint-generation time, to gen-
erate a lookup for variables, and a singleton for constants and
lambda expressions. The definition of the symbolic helper function
otherwise coincides with the abstract helper functionµ♯.

We may generate constraints{[fn x => s]} ⊆ {[fn y => s′]} of
a form not covered by the above grammar. We therefore first pre-
process the constraints in linear time, removing vacuouslytrue
inclusions {[fn x => s]} ⊆ {[fn x => s]} from each constraint,
and removing constraints containing vacuously false preconditions
{[fn x => s]} ⊆ {w♯}, where[fn y => s′] 6= w♯.

The resulting constraint system is formally equivalent to the
control flow analysis in the sense that all solutions yield correct
control flow information and that the best (smallest) solution of

the constraints is as precise as the information computed bythe
analysis. More formally:

Theorem 6.1. A solution to the CFA constraints of programp is a
safe approximation of the least fixpoint of the analysis function F♯

induced byp. Furthermore, the least solution to the CFA constraints
is equal to the least fixpoint ofF♯.

Implemented naively, a single constraint may takeO(n) space
alone. However by using pointers or by labelling each sub-expres-
sion and using the pointer/label instead of the sub-expression itself,
a single constraint takes only constant space. By linearly determin-
ing a representative for each sub-expression, by generating O(n2)
constraints, linear post-processing, and iteratively solving them us-
ing a well-known algorithm [Palsberg and Schwartzbach, 1995,
Nielson et al., 1999], we can compute the analysis in worst-case
O(n3) time.

The extracted constraints bear similarities to existing constraint-
based analyses in the literature. Consider, e.g., callst0 t1, which
usually gives rise to two conditional constraints [Palsberg, 1995,
Nielson et al., 1999]: (1){[fn x => s′]} ⊆ Ĉ(t0)⇒ Ĉ(t1) ⊆ Ê(x)

and (2){[fn x => s′]} ⊆ Ĉ(t0)⇒ Ĉ(s′)⊆ Ĉ(t0 t1). The first con-
straint resembles our third constraint for tail calls. The second “re-
turn constraint” differs in that it has a inside-out (or caller-restore)
nature, i.e., propagation of return-flow from the function body is
handled at the call site. The extracted reachability constraints are
similar to Gasser et al. [1997] (modulo an isomorphic encoding
℘(C)≃ C→℘({on}) of powersets).

7. Conclusion
We have presented a control-flow analysis determining interproce-
dural control-flow of both calls and returns for a direct-style lan-
guage. Existing CFAs have focused on analysing which functions
are called at a given call site. In contrast, the systematic derivation
of our CFA has lead to an analysis that provides extra information
about where a function returns to at no additional cost. In the pres-
ence of tail-call optimization, such information enables the creation
of more precise call graphs.

The analysis was developed systematically using Galois connec-
tion-based abstract interpretation of a standard operational seman-
tics for that language: theCaEK abstract machine of Flanagan et
al. In addition to being more principled, such a formulationof
the analysis is pedagogically pleasing since monomorphismof the
analysis is made explicit through two Galois connections: one lit-
erally merges all bindings to the same variable and one merges all
calling contexts of the same function.

The analysis has been shown to provide a result equivalent to
what can be obtained by first CPS transforming the program and
then running a control flow analysis derived from a CPS-based
operational semantics. This extends previous results obtained by
Damian and Danvy, and Palsberg and Wand. The close correspon-
dence between the way that the analyses operate (as illustrated by
the analysis trace in Table 1) leads us to conjecture that such equiv-
alence results can be obtained for other CFAs derived using abstract
interpretation.

The functional, derived by abstract interpretation, that defines
the analysis may appear rather complex at first glance. As a final
result, we have shown how to extract from the analysis an equiv-
alent constraint-based formulation expressed in terms of the more
familiar conditional constraints. Nevertheless, we stress that the de-
rived functional can be used directly to implement the analysis. We
have developed a prototype implementation of the resultinganaly-
sis in OCaml.2

2 available athttp://www.brics.dk/~jmi/ANF-CFA/

The analysis has been developed for a minimalistic functional
language in order to be able to focus on the abstraction of the
control structure induced by function calls and returns. Anobvious
extension is to enrich the language with numerical operators and
study how our Galois connections interact with abstractions such
as the interval or polyhedral abstraction of numerical entities.

The calculations involved in the derivation of a CFA are lengthy
and would benefit enormously from some form of machine support.
Certified abstract interpretation[Pichardie, 2005, Cachera et al.,
2005] has so far focused on proving the correctness of the analysis
inside a proof assistant by using the concretization (γ) component
of the Galois connection to prove the correctness of an already
defined analysis. Further work should investigate whether proof
assistants such as Coq are suitable for conducting the kind of
reasoning developed in this paper in a machine-checkable way.

Acknowledgments
The authors thank Matthew Fluet, Amr Sabry, Mitchell Wand,
Daniel Damian, Olivier Danvy, and the anonymous referees for
comments on earlier versions. Part of this work was done withthe
support of the Carlsberg Foundation.

References
J. M. Ashley and R. K. Dybvig. A practical and flexible flow analysis for

higher-order languages.ACM Transactions on Programming Languages
and Systems, 20(4):845–868, 1998.

A. E. Ayers. Efficient closure analysis with reachability. In M. Billaud,
P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, editors, Actes
WSA’92 Workshop on Static Analysis, Bigre, pages 126–134, Bordeaux,
France, Sept. 1992. Atelier Irisa, IRISA, Campus de Beaulieu.

D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extractinga data flow
analyser in constructive logic.Theoretical Computer Science, 342(1):
56–78, 2005.

W. D. Clinger. Proper tail recursion and space efficiency. InK. D. Cooper,
editor, Proc. of the ACM SIGPLAN 1998 Conference on Program-
ming Languages Design and Implementation, pages 174–185, Montréal,
Canada, June 1998.

C. Consel and O. Danvy. For a better support of static data flow. In
J. Hughes, editor,Proc. of the Fifth ACM Conference on Functional
Programming and Computer Architecture, volume 523 ofLNCS, pages
496–519, Cambridge, Massachusetts, Aug. 1991. Springer-Verlag.

P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors,Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick
and N. D. Jones, editors,Program Flow Analysis: Theory and Applica-
tions, chapter 10, pages 303–342. Prentice-Hall, 1981.

P. Cousot and R. Cousot. Abstract interpretation of algebraic polynomial
systems. In M. Johnson, editor,Proc. of the Sixth International Confer-
ence on Algebraic Methodology and Software Technology, AMAST’97,
volume 1349 ofLNCS, pages 138–154, Sydney, Australia, Dec. 1997.
Springer-Verlag.

P. Cousot and R. Cousot. Higher-order abstract interpretation (and ap-
plication to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages), invited paper. In
H. Bal, editor,Proc. of the Fifth IEEE International Conference on Com-
puter Languages, pages 95–112, Toulouse, France, May 1994.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, Aug. 1992a.

P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs.Journal of Logic Programming, 13(2–3):103–179, 1992b.

P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In B. K. Rosen, editor,Proc. of the Sixth Annual ACM Sym-

posium on Principles of Programming Languages, pages 269–282, San
Antonio, Texas, Jan. 1979.

D. Damian and O. Danvy. Syntactic accidents in program analysis: On the
impact of the CPS transformation.Journal of Functional Programming,
13(5):867–904, 2003. A preliminary version was presented at the 2000
ACM SIGPLAN International Conference on Functional Programming.

O. Danvy. Three steps for the CPS transformation. TechnicalReport CIS-
92-2, Kansas State University, Manhattan, Kansas, Dec. 1991.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, England, second edition, 2002.

S. K. Debray and T. A. Proebsting. Interprocedural control flow analysis of
first-order programs with tail-call optimization.ACM Transactions on
Programming Languages and Systems, 19(4):568–585, 1997.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In D. W. Wall, editor,Proc. of the ACM
SIGPLAN 1993 Conference on Programming Languages Design and
Implementation, pages 237–247, Albuquerque, New Mexico, June 1993.

K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of
control flow analyses for CML. In M. Tofte, editor,Proc. of the Second
ACM SIGPLAN International Conference on Functional Programming,
pages 38–51, Amsterdam, The Netherlands, June 1997.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstractinterpretations
complete.J. ACM, 47(2):361–416, 2000.

N. Heintze. Set-based program analysis of ML programs. In C.L. Talcott,
editor, Proc. of the 1994 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. VII, No. 3, pages 306–317, Orlando,
Florida, June 1994.

N. D. Jones. Flow analysis of lambda expressions (preliminary version). In
S. Even and O. Kariv, editors,Automata, Languages and Programming,
8th Colloquium, Acre (Akko), volume 115 ofLNCS, pages 114–128,
Israel, July 1981. Springer-Verlag.

J. Midtgaard. Control-flow analysis of functional programs. Technical
Report BRICS RS-07-18, Dept. of Comp. Sci., University of Aarhus,
Aarhus, Denmark, Dec. 2007. Accepted for publication inACM Com-
puting Surveys.

J. Midtgaard and T. Jensen. A calculational approach to control-flow
analysis by abstract interpretation. In M. Alpuente and G. Vidal, editors,
Static Analysis, 15th International Symposium, SAS 2008, volume 5079
of LNCS, pages 347–362, Valencia, Spain, July 2008a. Springer-Verlag.

J. Midtgaard and T. P. Jensen. Control-flow analysis of function calls
and returns by abstract interpretation. Rapport de Recherche RR-6681,
INRIA Rennes – Bretagne Atlantique, Oct. 2008b.

M. Might and O. Shivers. Environmental analysis via∆CFA. In S. Peyton
Jones, editor,Proc. of the 33rd Annual ACM Symposium on Principles of
Programming Languages, pages 127–140, Charleston, South Carolina,
Jan. 2006.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209–220, 1991.

F. Nielson and H. R. Nielson. Infinitary control flow analysis: a collecting
semantics for closure analysis. In N. D. Jones, editor,Proc. of the 24th
Annual ACM Symposium on Principles of Programming Languages,
pages 332–345, Paris, France, Jan. 1997.

F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis.
Springer-Verlag, 1999.

H. R. Nielson and F. Nielson. Flow logic: a multi-paradigmatic approach to
static analysis. In T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough,
editors,The Essence of Computation: Complexity, Analysis, Transforma-
tion. Essays Dedicated to Neil D. Jones, volume 2566 ofLNCS, pages
223–244. Springer-Verlag, 2002.

J. Palsberg. Closure analysis in constraint form.ACM Transactions on
Programming Languages and Systems, 17(1):47–62, 1995.

J. Palsberg and M. I. Schwartzbach. Safety analysis versus type inference.
Information and Computation, 118(1):128–141, 1995.

J. Palsberg and M. Wand. CPS transformation of flow information. Journal
of Functional Programming, 13(5):905–923, 2003.

D. Pichardie. Interprétation abstraite en logique intuitioniste: extraction
d’analyseurs Java certifiés. PhD thesis, Université de Rennes 1, Sept.
2005.

A. Sabry and M. Felleisen. Is continuation-passing useful for data flow
analysis? In V. Sarkar, editor,Proc. of the ACM SIGPLAN 1994 Con-
ference on Programming Languages Design and Implementation, pages
1–12, Orlando, Florida, June 1994.

P. Sestoft. Replacing function parameters by global variables. In J. E. Stoy,
editor,Proc. of the Fourth International Conference on FunctionalPro-
gramming and Computer Architecture, pages 39–53, London, England,
Sept. 1989.

O. Shivers. Control-flow analysis in Scheme. In M. D. Schwartz, editor,
Proc. of the ACM SIGPLAN 1988 Conference on Programming Lan-
guages Design and Implementation, pages 164–174, Atlanta, Georgia,
June 1988.

F. Spoto and T. P. Jensen. Class analyses as abstract interpretations of trace
semantics.ACM Transactions on Programming Languages and Systems,
25(5):578–630, 2003.

A. Underlying mathematical material
This section is based on known material [Cousot and Cousot, 1979,
Cousot, 1981, Cousot and Cousot, 1992b, 1994, Davey and Priest-
ley, 2002].

A complete lattice is a partially ordered set〈C;⊑,⊥,⊤,⊔,⊓〉
(poset), such that the least upper bound⊔S and the greatest
lower bound⊓S exists for every subsetS of C. ⊥ = ⊓C de-
notes the infimum ofC and ⊤ = ⊔C denotes the supremum
of C. The set of total functionsD → C, whose domain is a
complete lattice〈C;⊑,⊥,⊤,⊔,⊓〉, is itself a complete lattice
〈D→C;⊑̇,⊥̇,⊤̇, ⊔̇, ⊓̇〉 under the pointwise orderingf ⊑̇ f ′ ⇐⇒
∀x. f (x) ⊑ f ′(x), with bottom, top, join, and meet extended simi-
larly. The powersets℘(S) of a setS ordered by set inclusion is a
complete lattice〈℘(S);⊆, /0,S,∪,∩〉.

A Galois connection is a pair of functionsα, γ between two
posets〈C;⊑〉 and 〈A;≤〉 such that for alla ∈ A,c ∈ C : α(c) ≤
a ⇐⇒ c⊑ γ(a). Equivalently a Galois connection can be defined
as a pair of functions satisfying (a)α and γ are monotone, (b)
α ◦ γ is reductive, and (c)γ ◦ α is extensive. Galois connections

are typeset〈C;⊑〉 −−→←−−α

γ
〈A;≤〉. We omit the orderings when they

are clear from the context. For a Galois connection between two
complete latticesα is a complete join-morphism (CJM) andγ
is a complete meet morphism. The composition of two Galois

connections〈C;⊑〉 −−−→←−−−α1

γ1
〈B;⊆〉 and 〈B;⊆〉 −−−→←−−−α2

γ2
〈A;≤〉 is itself

a Galois connection〈C;⊑〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
〈A;≤〉. Galois connections in

which α is surjective (or equivalentlyγ is injective) are typeset

〈C;⊑〉 −−→−→←−−−−
α

γ
〈A;≤〉. Galois connections in whichγ is surjective

(or equivalentlyα is injective) are typeset〈C;⊑〉 −−−−→←←−−−
α

γ
〈A;≤〉.

When bothα andγ are surjective, the two domains are isomorphic.
A(n upper) closure operatorρ is map ρ : S→ S on a poset

〈S;⊑〉, that is (a) monotone: (for alls,s′ ∈ S : s⊑ s′ =⇒ ρ(s) ⊑
ρ(s′)), (b) extensive (for alls ∈ S : s⊑ ρ(s)), and (c) idempo-
tent, (for all s ∈ S : ρ(s) = ρ(ρ(s))). A closure operatorρ in-

duces a Galois connection〈S;⊑〉 −−→←−−ρ
1
〈ρ(S);⊑〉, writing ρ(S) for

{ρ(s) | s∈ S} and 1 for the identity function. Furthermore the im-
age of a complete lattice〈C;⊑,⊥,⊤,⊔,⊓〉 by an upper closure op-
erator is itself a complete lattice〈ρ(C);⊑,ρ(⊥),⊤,λX.ρ(⊔X),⊓〉.

