
OFMC Usage Overview

Sebastian Mödersheim
Information Security Group, Dep. of Computer Science, ETH Zurich, Switzerland

www.infsec.ethz.ch/~moedersheim

February 13, 2006

1 Introduction

The On-the-Fly Model-Checker OFMC has been developed since 2001, for the
main part in the context of the two EU-Projects AVISS and AVISPA:

http://www.avispa-project.org

OFMC is based on the idea of the lazy intruder which is a symbolic, constraint-
based approach to modeling an intruder. The most important new feature of
this release is that the user can specify an algebraic theory on message terms,
modulo which the analysis of the protocol is performed.

1.1 Input Languages

In AVISS and AVISPA, two languages where developed: the High-Level Protocol
Specification Language HLPSL and the Intermediate Format IF. The HLPSL is
meant for the users to specify protocols in a high-level way and the IF is meant
as a more low-level language as input for several analysis tools like OFMC.

The translator from HLPSL to IF is not part of this release and must be
downloaded separately from the AVISPA web-page. On this site, one can also
find a large collection of examples, the AVISPA library. The IF translations of
these files are included in this release.

Unfortunately, several new features of OFMC cannot be used with the cur-
rent version of HLPSL:

• HLPSL supports only a built-in set of operators, so when declaring new
operators and their algebraic properties (e.g. addition and multiplication),
there is no way to specify them in HLPSL.

• Although HLPSL supports functions (in the latest version called hash_func),
their use is intended as hash-functions only and they cannot be used to
specify other kinds of functions like a ‘public-key table function’ which
maps every agent to its public-key, for instance.1

1Although one may specify such a function, e.g. the HLPSL expression {message}pk(A)

would be interpreted as a symmetric-key encryption, rather than a public-key encryption.

1



• HLPSL supports only concrete sessions, i.e. one must specify constants
for the participants in each role (e.g. “alice starts a session with the
intruder”). OFMC’s symbolic sessions overcomes this restriction, as ex-
plained in section 3.

Therefore, we have also included a few examples in the IF language which cannot
be specified in HLPSL.

1.2 Literature

We have also included in this release several papers and documents on the
techniques behind OFMC:

• OFMC: A symbolic model checker for security protocols. This paper ex-
plains the basic model and the lazy intruder technique.

• Algebraic Intruder Deductions. This paper describes the class of algebraic
theories that can now be handled by OFMC and how this is done.

• User-Guide for Algebraic Intruder Deductions in OFMC supplements the
previous paper, explaining in detail the specification of algebraic theory
files.

• Deliverable 2.3: The Intermediate Format. This document of the AVISPA
project defines the IF language.

2 Using OFMC

Usage. OFMC is invoked by typing on the command-line

Ofmc <filename> [Options]

where <filename> is an IF file to be checked, and the following options are
available:

-theory <Theoryfile> for specifying a custom algebraic theory — see User-
Guide for Algebraic Intruder Deductions in OFMC, which describes also
the default-theory that is used, when this option is not specified.

-sessco This option is explained in Section 4.

-untyped This option forces OFMC to ignore all types specified in an IF file.
(This is equivalent to specifying no types at all in IF or to give every atom
and variable the type message.)

-d <DEPTH> Using this option, one can specify a depth bound (a positive in-
teger) for the search (the default being unbounded depth). In this case,
OFMC uses a depth-first search (while the standard search strategy is a
combination of breadth-first search and iterative deepening search).

2



-p <PATH> where <PATH> is a whitespace-separated list of positive integers.
Using this option, one can “manually browse” the search tree, e.g.:

-p is the root node,

-p 0 is the first (left-most) successor of the root node,

-p 0 1 is the second successor (next to left-most) successor of the
node obtained by -p 0.

An exception is raised if a path to a non-existing node is specified. This
option can be specified in combination with all other options, however, it
must be given as the last in the sequence of options.

3 Symbolic Sessions

A scenario is a finite number of sessions, where a session is an instantiation of
all protocol roles agent names. The number of scenarios grows exponentially in
the number of sessions (for finite scenarios, one can bound the number of agent
names). In HLPSL, the user must specify each scenario manually and run it
through the AVISPA tool, in order to check that the protocol has no attacks for
a given number of sessions.

OFMC allows one to specify symbolic sessions which involves specifying just
one scenario – with agent names replaced by variables. During the search for
an attack, OFMC instantiates the agent names when necessary (lazily).

In the example file of the SRP protocol, we have two roles User and Host, and
we have specified the following symbolic scenario (where User, User2, Host,
and Host2 are of type Agent):

initial_state init1 :=

...
state_srp_user(User,Host,...)
state_srp_host(Host,...)
state_srp_user(User2,Host2,...)
state_srp_host(Host2,...)

& User/=Host
& Host/=i
& User /=Host2
& User2/=Host2
& User2/=Host
& Host2/=i

This specifies two sessions, one between User and Host, and one between
User2 and Host2. Observe that in this specification the Host is independent
from the name of the client, as the Host will accept communication from ev-
eryone. Using the inequalities, we can further require that hosts and users are

3



disjoint (i.e. no user in one session can be a host in another session) and that all
hosts are honest (unequal intruder). Such a specification is not mandatory, but
some protocols require that certain roles can only be played by honest users, for
instance.

4 Session Compilation

Session compilation is a feature that has been supported by OFMC for quite a
while, but has lead to many questions, hence this extra section.

When specifying the option -sessco, OFMC will first perform a search
with a passive intruder to check whether the honest agents can execute the
protocol, and then give the intruder the knowledge of some “normal” session
between honest agents. In the case certain steps cannot be executed by any
honest agent, OFMC reports that the protocol is not executable and stops.
If the executability check is successful, then the normal search with an active
intruder is started, with the only difference that the intruder initially knows all
the messages exchanged by the honest agents in the passive intruder phase.

This is helpful both for quickly finding replay attacks (rather than specifying
lots of parallel sessions), but also for checking the sanity of the specification,
namely that at least the ‘legal execution’ of the protocol is possible.

We recommend to check each protocol specification with option sessco first,
to see if it is executable in the model of OFMC. If OFMC replies that it is
not the case, then one should try to simulate the legal execution (the way the
protocol was meant to be executed) using the path option. At some point,
OFMC will not offer the next step of the legal execution, and that’s the first
point where probably a mistake in the rules has occurred. Indeed such debugging
of specifications is not very convenient, and we hope to offer you soon a more
improved option to inspect protocol specifications.

If one role can loop (i.e. remain in the same control state forever and make
infinitely many steps), sessco is not possible (and OFMC aborts with an error
message), but then the search in OFMC does not terminate either, unless you
specify a depth bound for the search.

In any case, when it is not possible to establish executability of the protocol,
one should still check the protocol without the sessco option. In this case, one
can manually perform the session compilation by adding to the initial intruder
knowledge the messages of one run of the protocol with the fresh data replaced
by fresh constants.

We hope you enjoy using OFMC and find many interesting attacks.
Questions and comments welcome.

4


