
HLPSL Tutorial
— A Beginner’s Guide to Modeling and Checking Security Protocols —

Daniel Plasto and Siemens AVISPA team

April 28, 2005

1 2

This document has been written originally by beginners to AVISPA and HLPSL, and has been
revised later after clarifying issues with the designers of HLPSL and gaining valuable practical
expertise using it. Beginners can follow this evolving experience and learn from mistakes instead
of making their own. Our aim is to provide (hopefully) helpful guidance in an easily accessible
way.

Section 1 contains a very basic introduction to what HLPSL looks like and how it is used.
Section 2 contains three introductory examples that illustrate modeling with HLPSL. With these
examples, both correct solutions and erroneous attempts are provided and discussed. Section 3
contains a number of tips which are useful for writing or reading HLPSL specifications. Fi-
nally, Section 4 provides a list of questions and answers about HLPSL followed by an appendix
containing a list of HLPSL keywords and symbols.

In addition to this tutorial, the AVISPA Package User Manual is another useful resource for
beginners to HLPSL. Please refer to this manual if you require further information on HLPSL or
any of the tools discussed throughout this tutorial.

1Fix: Remark on current version of this document: The current version of this tutorial originates directly
from the work done by Daniel Plasto in 2004. The presented examples have been updated to conform to the
current version of HLPSL and to run with the current version of Ofmc. Only Ofmc is used as model-checker since
it was the most mature tool at the given time. Till then, the model-checkers CL-Atse and SATMC have improved
considerably and another model-checker TA4SP has come up. A future version of this tutorial will have to deal
with these model-checkers and further enhancements of HLPSL.

2Fix: ALL AVISPA MODELERS, please contribute to this document with suggestions and corrections.
Especially for the tips and questions sections.

AVISPA HLPSL Tutorial

CONTENTS 2

Contents

1 HLPSL Basics 3

1.1 Using the AVISPA Tool . 3

1.2 Basic Roles . 4

1.3 Transitions . 6

1.4 Composed Roles . 7

2 HLPSL Examples 9

2.1 Example 1 - from Alice-Bob notation to HLPSL specification 9

2.2 Example 2 - common errors, untrusted agents, attack traces 13

2.3 Example 3 - security goals . 28

3 HLPSL Tips 39

3.1 Priming Variables . 39

3.2 Witness and Request . 40

3.3 Secrecy . 40

3.4 Constants . 40

3.5 Concatenation (.) and Commas (,) . 40

3.6 Exploring executability of your model with Ofmc 40

3.7 The Goal Section . 41

3.8 Detecting Replay Attacks . 42

3.9 Instantiating Sessions . 42

3.10 Function Results . 44

3.11 Declaring Channels . 44

3.12 Global constants and variables . 45

4 Questions and answers about HLPSL 45

A Symbols and Keywords 47

AVISPA HLPSL Tutorial

1 HLPSL BASICS 3

1 HLPSL Basics

AVISPA provides a language called the High Level Protocol Specification Language (HLPSL) for
describing security protocols and specifying their intended security properties, as well as a set of
tools to model-check them.

1.1 Using the AVISPA Tool

3

Translator
HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Output

Model−Checker
CL−based

CL−AtSe

SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly
Model−Checker Attack Searcher Protocol Analyser

Figure 1: Architecture of the AVISPA Tool v.2

The structure of the AVISPA tool is shown in Fig. 1. A HLPSL specification is translated
into the Intermediate Format (IF), using a tool called hlpsl2if. Note that this intermediate step
is transparent to the user, as the translator is called automatically. If you are interested, you
can read more about the IF in the AVISPA User Manual and in the IF specification. [3, 2] The
intermediate format specification is then processed by model-checkers to analyze if the security
goals are violated. The four backends to the AVISPA tool (Ofmc, CL-AtSe, SATMC, and TA4SP)
employ complementary model-checking techniques. Because the methods are complementary

3Fix: PHD: This and the rest of the document should be updated to reflect the usage of the AVISPA tools
and not just the HLPSL2if+OFMC toolchain.

AVISPA HLPSL Tutorial

1 HLPSL BASICS 4

and not equivalent, situations might arise in which the backends return different results. This,
however, should be the exception. If a security goal of the specification is violated these tools
provide a trace which shows the sequence of events leading up to the violation and displays which
goal was violated.

The AVISPA tool is called simply avispa. The -h flag returns usage information as follows:

avispa -h

Given an HLPSL file called, for instance, example.hlpsl, we can invoke the AVISPA tool
with its default options as shown here:

avispa example.hlpsl

By default, the AVISPA tool invokes the OFMC backend. The --backend option, however,
can be used to specify an alternative. For instance, we can analyze the HLPSL file using SATMC
as follows:

avispa example.hlpsl --backend=satmc

In this tutorial, we will focus on invoking the AVISPA tools with the default options. See the
usage information for a more complete description of the options not discussed here.

The AVISPA tool, as well as a very helpful XEmacs mode4 for editing HLPSL specs, are avail-
able to download and experiment with at http://www.avispa-project.org/avispa-package/.
See the INSTALL and README files contained in the package for further information.

There is also a web interface for your first steps with HLPSL and the tools without having to
install anything. Through the web interface you can select one of the protocols of the AVISPA
library, modify it if you like, or write a protocol on your own; you can use one of the four backends
to check the given protocol, or even use all of them and then compare their outputs. Outputs
are given in a textual form (as done in the examples of this tutorial). Also, if an attack is found
on a protocol, the sequence of steps leading to the attack (the trace) is displayed using Message
Sequence Charts. The AVISPA web interface is available at http://www.avispa-project.org/
web-interface/.

Now onto HLPSL ...

1.2 Basic Roles

It is easiest to translate a protocol into HLPSL if it is first written in Alice-Bob (A-B) notation.
For example, below we illustrate A-B notation with the well known Wide Mouth Frog protocol. [4]

4Fix: where to be found?

AVISPA HLPSL Tutorial

http://www.avispa-project.org/avispa-package/
http://www.avispa-project.org/web-interface/
http://www.avispa-project.org/web-interface/

1 HLPSL BASICS 5

A -> S : {Kab}_Kas

S -> B : {Kab}_Kbs

This simple protocol illustrates A-B notation as well as some of the naming conventions we
adopt throughout this document (and in general). In this protocol, A wishes to set up a secure
session with B by exchanging a cryptographic key. The protocol assumes the existence of a trusted
server S. A and B presumably do not share such a key initially; however, each shares a key with
S. We call the key shared between A (respectively B) and S Kas (respectively Kbs). A starts by
generating a new session key, Kab which is intended for B. She encrypts this key with Kas and
sends it to S in the first message (note that encrypted is denoted using curly breackets). S, in
turn, decrypts it, re-encrypts it with Kbs, and forwards it on to B. After this exchange, A and B

share the new session key and can use it to communicate with one another.

A-B notation clearly shows the sequence of events and the exchange of messages in a given
protocol. Several protocol specification languages, including the first version of HLPSL, are based
on A-B notation. For more complex protocols, however, A-B notation is not expressive enough
to capture things like if-then-else constructs, looping and other features. That’s why we use a
more expressive language like HLPSL.

Once you have this flow of messages, you can begin your HLPSL specification with the basic
roles. For each (type of) participant in a protocol, there will be one basic role specifying its
blueprint. This blueprint can later be instantiated by one or more agents playing the given role.
In the above example there will be three basic roles, often called Alice, Bob, and Server.

Each basic role describes what information the participant knows initially (parameters), its
initial state, and ways in which this state can change (transitions). For instance, the role of A in
the protocol above might look like this:

role Alice(A,B,S : agent,

Kas : symmetric_key,

...)

played_by A def=

local State: nat, Kab: symmetric_key (fresh)

init State = 0

transition

...

end role

Here is a role known as Alice, with parameters A, B and S of type agent, and Kas of type
symmetric key. We’ll assume that these values are passed to role Alice from somewhere else for
now. The parameter A appears in the played_by section, meaning that any agent given in the
argument position A behaves as specified by this role. Also note the local section which declares

AVISPA HLPSL Tutorial

1 HLPSL BASICS 6

local variables of Alice: in this case, one called State which is a nat (a natural number) and
another called Kab, which will represent the new session key. Kab is also declared to be (fresh),
which intuitively means that A will generate its value randomly.5 The local State variable is
initialized to 0 in the init section. All variables in HLPSL begin with a capital letter, and all
constants begin with a lower-case letter.

For information about the different types available in HLPSL and other details, please see the
HLPSL specification (Deliverable 2.1). [1]

1.3 Transitions

The transition section of a HLPSL specification contains a set of transitions. Generally, each
one represents the receipt of a message and the sending of a reply message. A transition consists
of a trigger, or precondition, and an action to be performed when the trigger event occurs. An
example belonging to role Server of our running example is shown here:

step1. State = 0 /\ RCV({Kab’}_Kas) =|>

State’ = 2 /\ SND({Kab’}_Kbs)

This is a transition called step1 (but actually, the label is unimportant). It specifies that if
the value of State is equal to zero and a message is received which contains some value Kab’

encrypted with Kas, then a transition fires which sets the new value of State to 2 and sends the
same value Kab’, but this time encrypted with Kbs.

Here we see an example of priming. When you see X’, it means the new value of the variable
X. We say “X prime” (the notation stems from the temporal logic TLA 6, upon which HLPSL
is based). It is important to realise that the value of the variable will not be changed until the
current transition is complete. So, after transition step1 fires, the right-hand-side tells us that
the value of the State variable will be 2.

A more interesting example, however, is the primed variable that is within the RCV. In this
case, we bind the variable to whatever is received. As in the example, we can specify a structure
of the message that is expected: in this case, we expect an encrypted message. The message
must be encrypted with key Kas: the fact that this variable is not primed indicates that the
received message must have the same value as the current value of the variable. The contents of
the encrypted message, however, can be arbitrary. Whatever is in there, it will be bound to the
variable Kab, because it is primed.

Taking the transition as a whole, we can read it as follows: “whenever the value of State is
equal to 0 and we receive a message on channel RCV whose contents are some value encrypted

5More precisely, each freshly generated value is unique and has never been used before.
6Fix: MR:add reference

AVISPA HLPSL Tutorial

1 HLPSL BASICS 7

with Kab, then we update the value of State to be equal to 2, we update the value of Kab to be
equal to the contents of the encrypted message, and we send this new value of Kab, encrypted
with Kbs, on channel SND.” It’s quite a mouthful, but fortunately HLPSL allows us to be more
concise.

This is how one may model the way in which the information available to a role may change.

You may be wondering about these RCV and SND statements. These are not special functions,
they are actually variables of type channel. They are included as role parameters like this (the
type attribute (dy) is explained below):

role Alice(A,B,S : agent,

Kas : symmetric_key,

SND, RCV : channel (dy))

...

1.4 Composed Roles

Composed roles instantiate one or more basic roles, “gluing” them together so they execute
together, usually in parallel. Once you have defined your basic roles, you need to define composed
roles which describe sessions of the protocol. If we assume, in addition to the Alice role we’ve
already discussed, that we also have a Bob and a Server role with the arguments you’d expect,
then we might define a composed role which instantiates one of each and thus describes one whole
protocol session. By convention, we generally call such a composed role Session.

role Session(A,B,S : agent,

Kas, Kbs : symmetric_key)

def=

local SA, RA, SB, RB SS, RS: channel (dy)

composition

Alice (A, B, S, Kas, SA, RA)

/\ Bob (B, A, S, Kbs, SB, RB)

/\ Server(S, A, B, Kas, Kbs, SS, RS)

end role

Composed roles have no transition section, but rather a composition section in which we
instantiate our basic roles. The /\ operator indicates that these roles should execute in parallel.

AVISPA HLPSL Tutorial

1 HLPSL BASICS 8

The Session role usually declares all channels used by the roles as variables of type channel (dy).
These variables are not instantiated with concrete constants. The dy stands for the Doley-Yao
intruder model. [5] This means that the intruder has full control over the network, such that
all messages sent by agents will go to the intruder. He may suppress, analyze, and/or modify
messages (as far as he knows the required keys), and send them to whoever he pleases. As a
consequence, the agents can send and receive on whichever channel they want; the intended con-
nection between certain channel variables (e.g. Alice sends on SA some messages to Bob who
receives them on RB) is irrelevant because the intruder is the network.

Finally a top level role is always defined. This role contains global constants and a composition
of one or more sessions, where the intruder may play some roles as a legitimate user. There is also
a statement which describes what knowledge the intruder initially has. Typically, this includes
the names of all agents, all public keys, his own private key, any keys he shares with others,
and all publicly known functions. Note that the constant i is used to refer to the intruder. For
example:

role Environment()

def=

const a, b, s : agent,

kas, kbs, kis : symmetric_key

intruder_knowledge = {a, b, s, kis}

composition

Session(a,b,s,kas,kbs)

/\ Session(a,i,s,kas,kis)

/\ Session(i,b,s,kis,kbs)

end role

The final statement in a specification is always an instantiation of the top level role:

Environment()

By now, you should have a basic understanding of the structure of HLPSL specifications.
If you are new to HLPSL, it is strongly recommended that you continuing reading to the next
section of this tutorial. For more detailed information on HLPSL specifications, this can be found
in Deliverable 2.1 [1] as well as in the AVISPA Package User Manual. These documents describe
the full syntax and semantics of HLPSL.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 9

2 HLPSL Examples

2.1 Example 1 - from Alice-Bob notation to HLPSL specification

Suppose A and B share a secret key K. To explain, the phrase share a secret implies that K is a
value known only to A and B. Consider the following protocol for producing a new shared key:

A -> B: {Na}_K

B -> A: {Nb}_K

A -> B: {Nb}_K1 , where K1=hash(Na.Nb)

In Alice-Bob notation, this reads: A sends to B a nonce Na, encrypted with K. B then sends
back to A another nonce Nb also encrypted with K. Finally A calculates a new key K1 by hashing
the value of Na and Nb concatenated together, and sends back to B the value of Nb encrypted with
K1.

The first two messages are for key agreement, the last one for proof that A has the new key.
One property one would like to prove is B authenticates A on Nb (on the last message), in other
words: when B receives the third message, he can be sure that Nb was sent by A. Furthermore,
this property verifies that Nb has not been received by B previously (replay attacks). Of course,
the new key K1 should be kept secret.

Below is a simplified view of role Alice in this protocol modeled in HLPSL:

role Alice(..,K,..) % K has to be passed to each role,

% so that A and B match on the value of K

... def=

local

...

State : nat % This variable is typically defined in all roles.

transition

1. State = 1 /\ RCV(start) =|>

State’ = 2 /\ SND({Na’}_K)

2. State = 2 /\ RCV({Nb’}_K) =|>

State’ = 3 /\ SND({Nb’}_Hash(Na.Nb’))

The first transition is clear: start is a signal to begin the activity. Alice creates a new value
for Na (not using the old value of Na) and encrypts this value using key K before inserting the
encrypted value into the channel titled SND. After this transition, Alice is in state 2.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 10

The second transition is trickier: RCV({Nb’}_K). Firstly, Alice receives a message. Provided
that this message is of the form {*}_K, for some value *, Alice sets Nb to be the received value
encrypted under K. In the same transition, the newly received Nb value is encrypted with a new
key represented as Hash(Na.Nb’). This key is computed from both Na and Nb.

The full solution for this example is provided below. Note that it contains a number of
aspects yet to be explained. For example, the terms secret, witness and request (all of which
are related to describing security goals) exist in this model. As these concepts will be covered
later in the tutorial, it is safe to ignore them for now.

Example 1:

Alice-Bob Notation:

A -> B: {Na}_K

B -> A: {Nb}_K

A -> B: {Nb}_K1 , where K1=hash(Na.Nb)

——
role Alice(

A,B : agent,

K : symmetric_key,

Hash : function,

SND,RCV : channel(dy))

played_by A def=

local

State : nat,

Na : text(fresh),

Nb : text,

K1 : message

const

nb : protocol_id

init

State = 0

transition

1. State = 0 /\ RCV(start) =|>

State’ = 2 /\ SND({Na’}_K)

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 11

2. State = 2 /\ RCV({Nb’}_K) =|>

State’ = 4 /\ K1’ = Hash(Na.Nb’)

/\ SND({Nb’}_K1’)

/\ witness(A,B,nb,Nb’)

end role

——

role Bob(

A,B : agent,

K : symmetric_key,

Hash : function,

SND,RCV : channel(dy))

played_by B def=

local

State : nat,

Nb : text(fresh),

Na : text,

K1 : message

const

nb : protocol_id

init

State = 1

transition

1. State = 1 /\ RCV({Na’}_K) =|>

State’ = 3 /\ SND({Nb’}_K)

/\ K1’ = Hash(Na’.Nb’)

/\ secret(K1,A) /\ secret(K1,B)

2. State = 3 /\ RCV({Nb}_K1) =|>

State’ = 5 /\ request(B,A,nb,Nb)

end role

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 12

——

role Session(

A,B : agent,

K : symmetric_key,

Hash : function)

def=

local SA, SB, RA, RB : channel (dy)

composition

Alice(A,B,K,Hash,SA,RA)

/\ Bob (A,B,K,Hash,SB,RB)

end role

——

role Environment()

def=

const

nb : protocol_id,

kab,kai,kib : symmetric_key,

a,b : agent,

h : function

intruder_knowledge = {a,b,h,kai,kib}

composition

Session(a,b,kab,h)

/\ Session(a,i,kai,h)

/\ Session(i,b,kib,h)

end role

——

goal

secrecy_of K1

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 13

Bob authenticates Alice on nb

end goal

——

Environment()

——

Upon converting this to intermediate format and running the Ofmc model-checker, the fol-
lowing output is given:

% OFMC

% Version of 2005/04/14

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

ex1.if

GOAL

as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 11.79s

visitedNodes: 5430 nodes

depth: 12 plies

It can be seen that no attacks were found. Or, in other words, the stated security goals were
satisfied.

2.2 Example 2 - common errors, untrusted agents, attack traces

7

7Fix: MR: maybe emphasize in the example the faulty parts by boldface or underlining

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 14

S

A B

S returns two encrypted copies of the shared key:
one encrypted with A’s secret key and another
encrypted with B’s secret key.

A requests S to
generate a shared
key to be used
with B.

A forwards the shared key encrypted
with B’s secret key.

B acknowledges receipt
of the shared key.

21

4

3

Figure 2: Representation of Kerberos style protocol for this example

This example looks at a Kerberos style protocol with 3 principals: A, B and S. A wants a secret
key K with B, but both have only secret keys with S. A asks S for such a key, giving his identity
and the identity of B. Figure 2 provides a graphical representation of this process.

Alice-Bob Notation:

A -> S: (A.B.{Na}_Ka) % Ka is a key shared by A and S

A <- S: (A.B.{K.Na.Ns}_Ka. % S generates new key K

{K.Na.Ns}_Kb}) % A cannot decrypt the contents of {K.Na.Ns}_Kb

% but he is able to forward that to B

A -> B: (A.B.{K.Na.Ns}_Kb.

{Na.Ns}_K) % The last part is

% a key confirmation: B knows K

A <- B: (A.B.{Ns.Na}_K)

To provide an insight into the experiences faced as a HLPSL modeler, this example is struc-
tured to reflect some of the authors’ personal experiences whilst attempting to model this protocol.
Firstly, initial attempts at solving this example are included and discussed before the correct solu-
tion is finally given. This way, it is anticipated that this will provide a clearer understanding into
not only the modeling language itself, but also common errors faced when modeling in HLPSL.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 15

The first attempt at this example is given below. Please note that there are a lot of errors
which you may already recognize.
——

role Alice (A,B:agent,...)

played_by A def=

local State: nat,

Na : text(fresh),

Nb,Ns: text

init State = 0

transition

% Receives START and send the 1st message to Server

step1. State = 0 /\ RCV(start) =|>

SND(A.B.{Na’}_Ka) /\ State’ = 2

% Receives keys from server and send message to B

step2. State = 2 /\ RCV(A.B.{K.Na’.Ns’}_Ka.{K.Na.Ns}_Kb) =|>

SND(A.B.{K.Na.Ns}_Kb.{Na.Nb’}_K) /\ State’ = 3

step3. ...

end role

——

role Bob (A,B:agent,...)

played_by B def=

local State: nat,

Na : text,

Nb : text(fresh),

Ns : text

init State = 0

transition

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 16

step1. State = 0 /\ RCV(A.B.{K.Na’.Ns’}_Kb.{Na.Nb’}_K) =|>

SND(A.B.{Nb’.Na}_K) /\ State’ = 1

end role

——

role Server(....)

played_by S def=

local A, B : agent,

Na : text,

Ns : text(fresh),

State: nat

init State = 0

transition

step1. State = 0 /\ RCV(A.B.{Na’}_Ka) =|>

SND(A.B.{K.Na.Ns’}_Ka.{K.Na.Ns}_Kb}) /\ State’ = 1

end role

——

Whilst attempting to correct this version, much confusion centered around when to prime
variables. In the above example, there are several examples of incorrect priming. Priming is
actually quite simple if you follow these simple rules:

If your variable is on the left hand side of a transition, it is typically an argument of a receive
action. In this situation, primed variables (e.g. X’) will be assigned the value received in the
message. Unprimed variables (e.g. X) will restrict the messages which are accepted.

For example:

RCV(A.X’)

This will appear on the left hand side of a transition, and will only enable the transition if the
message received contains in its first component, a value that matches the current value of the
variable A. If the transition is fired, then after the transition has completed, the value of X will
be equal to whatever value was sent in the second component of the message.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 17

On the right hand side of a transition, use a primed variable name when assigning a new value
to a variable. For example:

State’ = 3

Also use primes for freshly generated nonces, e.g.:

SND(Na’)

A primed variable always means the new value of X, and it helps to read things this way.

There is one other important thing to consider in relation to priming. All state changes
specified in a transition occur simultaneously. So, if you have a transition like this:

RCV(X’) =|> SND(X)

you must prime both variables. Otherwise you would be sending the current value of X rather
than forwarding the recently received value.

Another issue arising from this first attempt centers around the concern of when variables
should be shared. In this example, all three roles know a variable named K. However, it is
inappropriate for them to share the same variable because it is not some a priori knowledge and
must be negotiated as part of the protocol. Therefore, each role should have its own copy of
the variable to allow us to see situations where this information might not correspond properly
(perhaps an attack?).

In fact, in HLPSL, variables (which have the ability to change) cannot8 be shared (except for
sets and lists which are passed by reference). Yet, it is appropriate and possible to share constant
values when you require roles to have pre-existing knowledge - for instance, a shared key. This is
accomplished by passing them as an argument to several roles.

It is important to note the difference between using commas ”,” and using decimal-points ”.”
in HLPSL specifications.

When sending or receiving data from a channel, one should always use decimal points as they
indicate concatenation, e.g.:

SND(A.B.Na’)

When passing arguments to a function and for role arguments, commas should be used to
separate them, e.g.:

8Fix: Change this when necessary

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 18

Server(A, S, B, Ka, Kb, SAS, RAS)

There is another problem with the example which is very important for properly modeling
the protocol.

step2. State = 2 /\ RCV(A.B.{K.Na’.Ns’}_Ka.{K.Na.Ns}_Kb) =|>

SND(A.B.{K.Na.Ns}_Kb.{Na.Nb’}_K) /\ State’ = 3

Apart from some problems with the priming of variables, this should be written differently:
A receives (A.B.{K.Na’.Ns’}_Ka.X) where X is a bunch of data that A cannot understand. He
expects it to be of the form {K.Na.Ns}_Kb, for some Kb, but even if he knows the plaintext
(K.Na.Ns), he cannot match X to {K.Na.Ns}_Kb because he does not know the key Kb.

The transition should be written as:9

step2. State = 2 /\ RCV(A.B.{K.Na’.Ns’}_Ka.X’) =|>

SND(A.B.X’.{Na.Nb’}_K) /\ State’ = 3

Where X is a local variable used instead of {K.Na.Ns}_Kb, X should be declared of the compound
type {symmetric_key.text.text}_symmetric_key because the value to be received for it has the
following form: a symmetric key and two bit-strings, which are jointly encrypted by a symmetric
key. This format is something the recepient might be able to check even without knowing the
symmetric key used for encryption. One could also give X the most general type message, but
this will slow down the model-checkers.

A corrected version of Example 2 given below:

——
role Alice (A, S, B: agent,

Ka : symmetric_key,

SND_SA, RCV_SA, SND_BA, RCV_BA: channel(dy))

played_by A

def=

local State : nat,

Na : text (fresh),

Ns : text,

K : symmetric_key,

9Fix: PHD: Of course, this isn’t really incorrect because we don’t explicitly reason about honest agent
knowledge. But perhaps we should leave this out of the tutorial and explain it in more detail in the user manual.
DvO: The above is of course not technically incorrect, but I think we have made clear enough why that version
is not the desired one.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 19

X : {symmetric_key.text.text}_symmetric_key

const na : protocol_id

init State = 0

transition

1. State = 0 /\ RCV_BA(start) =|>

State’ = 2 /\ SND_SA(A.B.{Na’}_Ka)

2. State = 2 /\ RCV_SA(A.B.{K’.Na.Ns’}_Ka.X’) =|>

State’ = 4 /\ SND_BA(A.B.X’.{Na.Ns’}_K’)

3. State = 4 /\ RCV_BA(A.B.{Ns.Na}_K) =|>

State’ = 6 /\ request(A,B,na,Na)

end role

——

role Server (A, S, B : agent,

Ka, Kb : symmetric_key,

SND_AS, RCV_AS: channel(dy))

played_by S

def=

local State : nat,

Ns : text(fresh),

K : symmetric_key(fresh),

Na : text

init State = 1

transition

1. State = 1 /\ RCV_AS(A.B.{Na’}_Ka) =|>

State’ = 3 /\ SND_AS(A.B.{K’.Na’.Ns’}_Ka.{K’.Na’.Ns’}_Kb)

/\ secret(K’,A) /\ secret(K’,B) /\ secret(K’,S)

end role

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 20

——

role Bob (A, S, B: agent,

Kb : symmetric_key,

SND_AB, RCV_AB: channel(dy))

played_by B

def=

local State : nat,

Ns, Na : text,

K : symmetric_key

const na : protocol_id

init State = 5

transition

1. State = 5 /\ RCV_AB(A.B.{K’.Na’.Ns’}_Kb.{Na’.Ns’}_K’) =|>

State’ = 7 /\ SND_AB(A.B.{Ns’.Na’}_K’)

/\ witness(B,A,na,Na’)

end role

——

role Session(A, S, B : agent,

Ka, Kb : symmetric_key)

def=

local

SSA, RSA,

SBA, RBA,

SAS, RAS,

SAB, RAB : channel (dy)

composition

Alice (A, S, B, Ka, SSA, RSA, SBA, RBA)

/\ Server(A, S, B, Ka, Kb, SAS, RAS)

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 21

/\ Bob (A, S, B, Kb, SAB, RAB)

end role

——

role Environment()

def=

const a, b, s : agent,

ka, kb, ki : symmetric_key

intruder_knowledge = {a, b, s, ki}

composition

Session(a,s,b,ka,kb)

/\ Session(a,s,i,ka,ki)

/\ Session(i,s,b,ki,kb)

end role

——

goal

secrecy_of K

Alice authenticates Bob on na

end goal

——

Environment()

——

Here you can see the problems mentioned previously have been fixed, the full parameters have
been filled in, and the composed roles Session and Environment have been given.

Notice how the state numbers are even for Alice, and odd for Bob and the Server, which
reflects the intended order of send and receive events. This is not compulsory, however, it is a
convenient convention which keeps things clear while reading the HLPSL and the traces printed

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 22

by the model-checkers.

Note that for non-trivial HLPSL specifications, it is often the case that, due to some modeling
mistake(s), the model 10 cannot execute until its intended end. This is very problematic because
the model-checkers might not find an attack just because the protocol model cannot reach the
state where the attack can happen. Therefore, an executability check is very important. See
subsection 3.6 for how to do this. Typical modeling mistakes leading to blocked transitions are
mismatches of expected and actually sent values – or even harder to spot, mismatches of their
types! See subsection 3.10 for a particularly nasty case.

A less frequent but very tricky source of non-executability is insufficient knowledge of the
intruder. In particular, when he plays the role of an honest agent. Therefore, make sure to
include all relevant values in the intruder_knowledge = {...} declaration of the Environment

role.

The parameters of a role define what information it begins with, and are passed in as arguments
from composed roles. For instance, the Session role is used to describe a single execution of
the protocol. The Session role composes three roles together and defines for each role, what
information it begins with by passing this in as arguments.

The Environment role is the top-level role, and describes three concurrent sessions. The first
is a typical session with the legitimate agents a, b and s. Note that all of the arguments are in
lower-case within the environment role. This is because they are constants rather than variables.

The second and third sessions are ones in which the intruder is impersonating either Alice or
Bob. You can see from the arguments to these sessions that the intruder (i) is playing the role
of a legitimate user in order to somehow fool the protocol. He even has a shared key with the
server (ki) with which he can communicate in a regular manner.

When this revised model of the protocol is tested using Ofmc, the following output is provided:

% OFMC

% Version of 2005/04/14

SUMMARY

UNSAFE

DETAILS

ATTACK_FOUND

PROTOCOL

ex22.if

GOAL

a authenticates b on na

%request(a,b,na,Na(1))

BACKEND

10Fix: MR:protocol?

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 23

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 0.17s

visitedNodes: 26 nodes

depth: 3 plies

ATTACK TRACE

i -> (a,3): start

(a,3) -> i: a.b.{Na(1)}_ka

i -> (s,7): a.i.{Na(1)}_ka

(s,7) -> i: a.i.{K(2).Na(1).Ns(2)}_ka.{K(2).Na(1).Ns(2)}_ki

i -> (a,3): a.b.{K(2).Na(1).Ns(2)}_ka.x60

(a,3) -> i: a.b.x60.{Na(1).Ns(2)}_K(2)

i -> (a,3): a.b.{Ns(2).Na(1)}_K(2)

% Reached State:

% wrequest(a,b,na,Na(1))

% state_Alice(a,s,b,ka,6,Na(1),Ns(2),K(2),x60,3)

% state_Server(s,a,b,ka,kb,1,dummy_nonce,dummy_sk,dummy_nonce,3)

% state_Bob(b,a,s,kb,5,dummy_nonce,dummy_nonce,dummy_sk,3)

% state_Alice(a,s,i,ka,0,dummy_nonce,dummy_nonce,dummy_sk,

{dummy_sk.dummy_nonce.dummy_nonce}_dummy_sk,7)

% state_Bob(b,i,s,kb,5,dummy_nonce,dummy_nonce,dummy_sk,12)

% state_Server(s,i,b,ki,kb,1,dummy_nonce,dummy_sk,dummy_nonce,12)

% secret(K(2),s)

% secret(K(2),i)

% secret(K(2),a)

% state_Server(s,a,i,ka,ki,3,Ns(2),K(2),Na(1),7)

The output following the keyword Reached State describes the events already seen (in this
case, wrequest(a,b,na,Na(1)) and a number of secret statements for the nonce value K(2),
plus the states of the various active agents).

The important parts of this are “UNSAFE”, the violated goal, which was: “a authenticates

b on na”, and the attack trace, which is explained below:

i -> (a,3): start

The intruder initiates the first session (which for some strange reason is labeled with “3”11)

11Fix: PHD: We are the tool developers, so none of this is allowed to be “strange” to us. We can say that

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 24

by sending the special start message to A.

(a,3) -> i: a.b.{Na(1)}_ka

A sends a message to the intruder, or rather, the intruder intercepts the message sent by A.

i -> (s,7): a.i.{Na(1)}_ka

The intruder then forwards message to S. However, two small details have been changed: the
receiving instance of S belongs to the second session, labeled with “7”, rather than the original
session. Moreover, the message now tells S that A wishes to talk to i, rather than B. Note that
the intruder has not broken the encryption, but has simply copied the encrypted data into the
new message.

(s,7) -> i: a.i.{K(2).Na(1).Ns(2)}_ka.{K(2).Na(1).Ns(2)}_ki

S sends back to the intruder an appropriate response including nonces encrypted with a key
shared between the S and the intruder. The intruder now has knowledge of these nonces, as well
as K, a session key which A will believe he can use to talk to B.

i -> (a,3): a.b.{K(2).Na(1).Ns(2)}_ka.x60

The intruder sneakily switches the name of the correspondent back to B so that A is none the
wiser.

(a,3) -> i: a.b.x60.{Na(1).Ns(2)}_K(2)

Now A sends the nonces encrypted with the intruder’s key to B, but they are again intercepted
by the intruder. (A still believes that they are encrypted with the key of B.)

i -> (a,3): a.b.{Ns(2).Na(1)}_K(2)

Now the intruder can easily decrypt these values and send them back encrypted with the
new session key K, so that A will believe she is indeed talking to B, but is really talking with the
intruder!

the user need not concern himself with the reason because it is related to tool internals, but we can’t say “if you
don’t understand why it’s a 3, don’t worry, we don’t either.” DvO: It is strange form the user’s perspective. I’d
be happy to remove this remark if the tools get changed to yield some more intuitive numbering.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 25

Consequently, it is clear that the stated security goal “a authenticates b on n” was indeed
violated. The problem with the protocol is that the identities of the parties were not protected
in any way allowing the intruder to tamper with them. An improved version of the protocol was
devised which solved this problem. It is included below.

Alice-Bob Notation:

A -> S: A.B.{Na}_Ka

S -> A: {K.Na.Ns.B}_Ka. {K.Na.Ns.A}_Kb

A -> B: {K.Na.Ns.A}_Kb. {Na.Ns.A}_K

B -> A: {Ns.Na.B}_K

The updated HLPSL model 12 reflecting the above A-B notation to eliminate this attack is:

——
role Alice (A, S, B: agent,

Ka : symmetric_key,

SND_SA, RCV_SA, SND_BA, RCV_BA: channel(dy))

played_by A

def=

local State : nat,

Na : text (fresh),

Ns : text,

K : symmetric_key,

Tx : {symmetric_key.text.text}_symmetric_key

const na : protocol_id

init State = 0

transition

1. State = 0 /\ RCV_BA(start) =|>

State’ = 2 /\ SND_SA(A.B.{Na’}_Ka)

2. State = 2 /\ RCV_SA({K’.Na.Ns’.B}_Ka.Tx’) =|>

State’ = 4 /\ SND_BA(Tx’.{Na.Ns’.A}_K’)

3. State = 4 /\ RCV_BA({Ns.Na.B}_K) =|>

12Fix: MR:specification?

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 26

State’ = 6 /\ request(A,B,na,Na)

end role

——

role Server (A, S, B : agent,

Ka, Kb : symmetric_key,

SND_AS, RCV_AS: channel(dy))

played_by S

def=

local State : nat,

Ns : text(fresh),

K : symmetric_key(fresh),

Na : text

init State = 1

transition

1. State = 1 /\ RCV_AS(A.B.{Na’}_Ka) =|>

State’ = 3 /\ SND_AS({K’.Na’.Ns’.B}_Ka.{K’.Na’.Ns’.A}_Kb)

/\ secret(K’,A) /\ secret(K’,B) /\ secret(K’,S)

end role

——

role Bob (A, S, B: agent,

Kb : symmetric_key,

SND_AB, RCV_AB: channel(dy))

played_by B

def=

local State : nat,

Ns, Na : text,

K : symmetric_key

const na : protocol_id

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 27

init State = 5

transition

1. State = 5 /\ RCV_AB({K’.Na’.Ns’.A}_Kb.{Na’.Ns’.A}_K’) =|>

State’ = 7 /\ SND_AB({Ns’.Na’.B}_K’)

/\ witness(B,A,na,Na’)

end role

——

role Session(A, S, B : agent,

Ka, Kb : symmetric_key)

def=

local

SSA, RSA,

SBA, RBA,

SAS, RAS,

SAB, RAB : channel (dy)

composition

Alice (A, S, B, Ka, SSA, RSA, SBA, RBA)

/\ Server(A, S, B, Ka, Kb, SAS, RAS)

/\ Bob (A, S, B, Kb, SAB, RAB)

end role

——

role Environment()

def=

const a, b, s : agent,

ka, kb, ki : symmetric_key

intruder_knowledge = {a, b, s, ki}

composition

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 28

Session(a,s,b,ka,kb)

/\ Session(a,s,i,ka,ki)

/\ Session(i,s,b,ki,kb)

end role

——

goal

secrecy_of K

Alice authenticates Bob on na

end goal

——

Environment()

——

By reading the specification (or by quickly looking at the A-B notation), it is evident that the
intruder cannot modify the values of A or B without detection. This is because they are encrypted
from Message 2 onwards. Running this updated protocol through the model checker produces no
attacks.

For information on how to specifiy the security goals of a protocol, this is discussed in the
following section.

2.3 Example 3 - security goals

This example looks at the Andrew Secure RPC Protocol. Below is the A-B notation for this
protocol adapted from page 45 of the Clark and Jacob library [?] to reflect the notation style of
HLPSL.

A -> B : A.{Na}_Kab

B -> A : {Na+1.Nb}_Kab

A -> B : {Nb+1}_Kab

B -> A : {K1ab.N1b}_Kab

The protocol is used to authenticate both parties to each other and then establish a shared
key K1ab which can be used for further communication. K1ab should be fresh, i.e. never used

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 29

before. The value N1b is sent for use in the future. Both K1ab and N1b are generated by B.

Our first attempt at the protocol is below, keep in mind that the initial definition was misun-
derstood.13

First, buggy version of Example 3:
——

role Alice (A, B : agent,

Kab : symmetric_key,

SND,RCV : channel(dy))

played_by A def=

local State : nat,

Na, Nb : text(fresh)

init State = 0

transition

step1. State = 0 /\ RCV(start) =|>

State’ = 1 /\ SND({Kab}_Na’)

step2. State = 1 /\ RCV({Na+1.Nb’}_Kab) =|>

State’ = 3 /\ SND({Nb’+1}_Kab)

step3. State = 3 /\ RCV({K’ab.N’b}_Kab)

end role

——

role Bob (A, B : agent,

Kab : symmetric_key,

SND,RCV : channel(dy))

13Fix: PHD: I think this example is really problematic. The K’ab and the Na+1 is, I think, very dangerous and
will have readers thinking “Well why can’t I write Na+1 if that’s what I want to express?” I think this example
needs to be restructured alot. Do we really want to show the incorrect models that result if you misinterpret what
a protocol means? DvO: I think it’s helpful to show also erroneous attempts.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 30

played_by B def=

local State : nat,

Na, Nb : text(fresh)

init State = 0

transition

step1. State = 0 /\ RCV({Kab}_Na’) =|>

State’ = 2 /\ SND({Na’+1.Nb’}_Kab)

step2. State = 2 /\ RCV({Nb+1}Kab) =|>

State’ = 4 /\ SND({K’ab.N’b}_Kab)

end role

——

On a glance we can spot something wrong: SND({Kab}_Na’) should read SND({Na’}_Kab) in
step1 of A. 14

We can also see the variables K’ab and N’b. These will soon be changed to K1ab and N1b and
declared in the local statements of both roles.

The state numbers are somewhat confusing and should be rewritten.

Also, in role A, Na should be declared as text(fresh), while Nb should simply be text and
vice-versa in role B. This is because in role A, Na is freshly generated while Nb is just some value
received in a message. In role B, Na is just a value while Nb is freshly generated.

Another problem here is that we do not have the ”+” operator in HLPSL so we cannot write
”Na + 1”. The solution to this is to use a function called succ (for successor), however we are
unsure how suitable this approach is. The problem is that the intruder is not capable of reversing
the succ function, whereas in real life he would be quite capable of obtaining the value of Na

given Na+1.15

Second, correct version of Example 3:
——

role Alice (A, B : agent,

14Fix: MR:is this mistake interesting to introduce ? i do not think so
15Fix: PHD: I think it’s fine to explain the pros and the cons of a particular modelling decision. But this

sounds a bit unprofessional, and I do think it can be a problem to include this + stuff when it’s not even valid
syntax. DvO: Well, this is a typical example of the problems a modeler has in real life.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 31

Kab : symmetric_key,

Succ : function,

SND, RCV : channel(dy))

played_by A

def=

local State : nat,

Na : text (fresh),

Nb : text,

K1ab : symmetric_key,

N1b : text

const k1ab, na, nb : protocol_id

init State = 0

transition

0. State = 0 /\ RCV(start) =|>

State’ = 2 /\ SND(A.{Na’}_Kab)

2. State = 2 /\ RCV({Succ(Na).Nb’}_Kab) =|>

State’ = 4 /\ SND({Succ(Nb’)}_Kab)

/\ witness(A,B,nb,Nb’)

4. State = 4 /\ RCV({K1ab’.N1b’}_Kab) =|>

State’ = 6

/\ request(A,B,k1ab,K1ab’)

/\ request(A,B,na,Na)

end role

——

role Bob (A, B : agent,

Kab : symmetric_key,

Succ : function,

SND, RCV : channel(dy))

played_by B

def=

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 32

local State : nat,

Nb : text (fresh),

Na : text,

K1ab : symmetric_key (fresh),

N1b : text (fresh)

const k1ab, na, nb : protocol_id

init State = 1

transition

1. State = 1 /\ RCV(A.{Na’}_Kab) =|>

State’ = 3 /\ SND({Succ(Na’).Nb’}_Kab)

/\ witness(B,A,na,Na’)

3. State = 3 /\ RCV({Succ(Nb)}_Kab) =|>

State’ = 5 /\ SND({K1ab’.N1b’}_Kab)

/\ witness(B,A,k1ab,K1ab’)

/\ request(B,A,nb,Nb)

/\ secret(K1ab’, A) /\ secret(K1ab’, B)

/\ secret(N1b’ , A) /\ secret(N1b’ , B)

end role

——

role Session(A, B : agent,

Kab : symmetric_key,

Succ : function)

def=

local SAB, RAB,

SBA, RBA : channel (dy)

composition

Alice(A, B, Kab, Succ, SAB, RAB)

/\ Bob (A, B, Kab, Succ, SBA, RBA)

end role

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 33

——

role Environment()

def=

const k1ab, na, nb : protocol_id,

a, b : agent,

kab, kai, kib : symmetric_key,

succ : function

intruder_knowledge = {a, b, kai, kib, succ}

composition

Session(a,b,kab,succ)

/\ Session(a,i,kai,succ)

/\ Session(i,b,kib,succ)

end role

——

goal

secrecy_of K1ab, N1b

Bob authenticates Alice on nb

Alice authenticates Bob on na

Alice authenticates Bob on k1ab % freshness of k1ab

end goal

——

Environment()

——

This example correctly corresponds to the A-B notation definition above.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 34

A short remark concerning the goal section. The current16 implementation of Ofmc does not
use the goal section but assumes a more low-level and precise means to describe security goals,
using secret, witness and request.17

In this example we would like to ensure that the new key K1ab, and the generated nonce N1b

are kept secret among A and B. So in the creating role, we place these lines (where the primes are
required there to refer to the new values of K1ab and N1b):

/\ secret(K1ab’, A) /\ secret(K1ab’, B)

/\ secret(N1b’ , A) /\ secret(N1b’ , B)

indicating that B allows that the two values are shared between (only) A and B.

The witness and request events are used to check that a principal is right to assume that its
intended peer is present in the current session, has reached a certain state, and agrees on a certain
value, which typically is fresh. They always appear in pairs with identical third parameter.

Suppose A has received some data and would like to ensure that it came from B within the
same session. We place the line

/\ request(A,B,na,Na)

in the transitions of A. It reads as follows: ”I am A, and I know Na, and expect that B already
asserted to know the same value Na, and that I have not checked this value before.”18 The third
argument na, used for distinguishing different authentication pairs, is usually the lower case of the
name of the variable being checked, and should be declared as a constant of type protocol_id

in the top-level role.

There is also wrequest which corresponds to weak authentication. No such replay protection
is imposed if one uses wrequest.

Now the matching witness predicate will appear in B, as part of the transition in which the
value Na is sent to A.

/\ witness(B,A,na,Na)

16Fix: Update when this changes.
17Fix: PHD: This is not strictly accurate. We do not use witness/request because Ofmc does not read the

goals section. That Ofmc does not read the goal section simply means that Ofmc assumes that the temporal
formula for which “A authenticates B...” is an abbreviation is always the same. We would still have the witness
and request terms even if Ofmc read the goals section, so it is not a case of “instead”. DvO: I changed the above.
Fine now?

18Fix: PHD: I think this should be a local statement. That is, Alice is not saying to somebody “please make
sure” because there is no somebody. Rather, Alice is asserting that she has accepted what seems to come from B.
We have some text on this in the SAPS’04 HLPSL paper ... perhaps it could be reused? DvO: Slightly changed;
fine now?

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 35

This reads: ”I am B, please remember that I have presented Na to A so that we can check this
later.”

The semantics of the witness and (w)request predicates when used to describe authen-
tication goals are as follows: if a (w)request predicate is fired, then there must have been a
corresponding witness event sometime in the past. By ”corresponding” we mean that the agent
arguments must be switched, the protocol_id argument must be identical, and the value of the
fourth argument must also be identical. request is the same except additionally the value of the
fourth argument must not have been ”requested” before.19 20

In our example we have used witness and request for three purposes:

• Alice authenticates Bob on the value of Na (which holds because only Bob can decrypt Na
and send back Succ(Na) to Alice)

• Bob authenticates Alice on the value of Na (which holds because only Alice can decrypt
Nb and send back Succ(Nb) to Bob)

• Alice authenticates Bob on the value of K1ab. We abuse strong authentication on K1ab

here to express that K1ab should be generated freshly (and not replayed).

Upon running this through our model-checker, we find that there are no attacks, and so we
might conclude that our security goals are valid. However we know that this is not the case.
There is a well known attack on the Andrew Secure RPC Protocol in which an intruder replays
the fourth message from a previous protocol run in the place of a legitimate fourth message from
B. This makes A use an old session key, which may have been compromised over time.

Why is this attack not detected? We have a security goal that states: ”I am A, and I have
received K1ab from B, please check to make sure that B indeed generated the value of K1ab, and
that I have not received this value before.” This security goal is suitable, but by default the
current21 implementation of Ofmc does not consider repeated sessions, therefore replay attacks
will not be detected.

To help finding replay attacks, Ofmc provides the sessco (session compilation) option.

ofmc ex3.if -sessco

19Fix: PHD: Well, the “exact semantics” of witness and request terms are actually just boolean variables.
This is the meaning we interpret, and we express this meaning via the declaration in the goals section (currently
unfortunately just macros for what are actually temporal formulae). So this is a bit imprecise...here again (and
for the description of witness), we have text in the HLPSL paper ... can it perhaps be reused? DvO: Slightly
changed; fine now?

20Fix: MR: maybe explain difference with and without (w)?
21Fix: Update when this changes.

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 36

actually finds the replay attack. This is because it first simulates a run of the whole system and
in a second run, it lets the intruder take advantage of the knowledge learnt in the first run. By
the way, the sessco option is also handy for a quick check of executability, yet unfortunately it
fails if the State variables of each roles do not strictly increase from one transition to the next.

A suitable work-around, which also applies to the other model-checkers, is to add another
legitimate session between A and B in our environment role. This session will occur in parallel, in
any arbitrary interleaving of state-changes. This will quite naturally allow all model-checkers to
find replay attacks.

Third modified version of Example 322:
——

role Environment()

def=

const k1ab, na, nb : protocol_id,

a, b : agent,

kab, kai, kib : symmetric_key,

succ : function

intruder_knowledge = {a, b, kai, kib, succ}

composition

Session(a,b,kab)

/\ Session(a,b,kab)

/\ Session(a,i,kai)

/\ Session(i,b,kib)

end role

——

Once this modification was made we found that the attack was detected. Here is the output:

% OFMC

% Version of 2005/04/15

SUMMARY

UNSAFE

22Fix: J: Shouldn’t Session be provided with a fourth argument, namely succ?

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 37

DETAILS

ATTACK_FOUND

PROTOCOL

ex31.if

GOAL

a authenticates b on k1ab

%wrequest(a,b,k1ab,K1ab(7))

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 1.19s

visitedNodes: 809 nodes

depth: 8 plies

ATTACK TRACE

i -> (a,3): start

(a,3) -> i: a.{Na(1)}_kab

i -> (a,6): start

(a,6) -> i: a.{Na(2)}_kab

i -> (b,3): a.{Na(2)}_kab

(b,3) -> i: {succ(Na(2)).Nb(3)}_kab

i -> (b,6): a.{Na(1)}_kab

(b,6) -> i: {succ(Na(1)).Nb(4)}_kab

i -> (a,3): {succ(Na(1)).Nb(4)}_kab

(a,3) -> i: {succ(Nb(4))}_kab

i -> (a,6): {succ(Na(2)).Nb(3)}_kab

(a,6) -> i: {succ(Nb(3))}_kab

i -> (b,3): {succ(Nb(3))}_kab

(b,3) -> i: {K1ab(7).N1b(7)}_kab

i -> (a,3): {K1ab(7).N1b(7)}_kab

i -> (a,6): {K1ab(7).N1b(7)}_kab

% Reached State:

% wrequest(a,b,k1ab,K1ab(7))

% state_Alice(6,a,b,kab.succ.6.Na(2).Nb(3).K1ab(7).N1b(7).dummy,6)

% state_Alice(0,a,i,kai.succ.0.dummy_nonce.dummy_nonce.dummy_sk.dummy_nonce.dummy,9)

% state_Bob(1,b,i,kib.succ.1.dummy_nonce.dummy_nonce.dummy_sk.dummy_nonce.dummy,13)

% secret(K1ab(7),a)

% secret(K1ab(7),b)

% secret(N1b(7),a)

AVISPA HLPSL Tutorial

2 HLPSL EXAMPLES 38

% secret(N1b(7),b)

% witness(a,b,nb,Nb(4)

% state_Bob(3,b,a,kab.succ.3.Nb(4).Na(1).dummy_sk.dummy_nonce.dummy,6)

% state_Alice(6,a,b,kab.succ.6.Na(1).Nb(4).K1ab(7).N1b(7).dummy,3)

% state_Bob(5,b,a,kab.succ.5.Nb(3).Na(2).K1ab(7).N1b(7).dummy,3)

We can see that the goal “a authenticates b on k1ab” has been violated. Here is an
explanation of what has happened taken from the ATTACK TRACE section:

i -> (a,3): start

(a,3) -> i: a.{Na(1)}_kab

The first legitimate session begins and A sends the first message which is intercepted by the
intruder.

i -> (a,6): start

(a,6) -> i: a.{Na(2)}_kab

The second legitimate session likewise begins, with the first message intercepted by the in-
truder.

i -> (b,3): a.{Na(2)}_kab

(b,3) -> i: {succ(Na(2)).Nb(3)}_kab

The intruder forwards the first message of the first session to B, who returns the next message
of the protocol.

i -> (b,6): a.{Na(1)}_kab

(b,6) -> i: {succ(Na(1)).Nb(4)}_kab

And likewise for the second session.

i -> (a,3): {succ(Na(1)).Nb(4)}_kab

(a,3) -> i: {succ(Nb(4))}_kab

The intruder simply forwards this message to A. He is not playing an active role yet, but
simply listening to the messages and silently forwarding them on.

AVISPA HLPSL Tutorial

3 HLPSL TIPS 39

i -> (a,6): {succ(Na(2)).Nb(3)}_kab

(a,6) -> i: {succ(Nb(3))}_kab

Yet again, the message is simply forwarded to A.

i -> (b,3): {succ(Nb(3))}_kab

(b,3) -> i: {K1ab(7).N1b(7)}_kab

i -> (a,3): {K1ab(7).N1b(7)}_kab

Here we can see the end of the first session.

i -> (a,6): {K1ab(7).N1b(7)}_kab

And finally the intruder takes some action. Instead of sending the third message of the second
session to B and obtaining some response, the intruder simply sends the fourth message of the
first session again, which will result in A using this old value of K1ab again.

3 HLPSL Tips

3.1 Priming Variables

Always remember that if a variable is being assigned a new value, then the variable name on the
left-hand side of the = must be primed. If you would like to refer to the value of a variable that is
assigned a new value in the current transition, then using prime will refer to the new value, and
not using prime will refer to the old value of the variable.

Here are some guidelines:

• In the RCV channel, if you are receiving a new value then the variable used to store this
value should be primed.

• In the SND channel, if you are sending an old value, don’t prime the variable.

• If sending a value just received in the same step, prime!

• A local variable should be assigned a value before first reading or sending it: either in the
init section (without primes) or by assigning a value to its primed instance.

AVISPA HLPSL Tutorial

3 HLPSL TIPS 40

3.2 Witness and Request

When using witness and (w)request, the third argument is an identifier of type protocol_id

declared in the top-level role. This is used to associate the witness and (w)request predicates
with each other.

3.3 Secrecy

If you want to express that a certain value (represented by a term T) produced or selected by
a role A is a shared secret between A and a set of agents, say, B, and C, place in role A in the
transition in which T is determined the following statement:

secret(T,A) /\ secret(T,B) /\ secret(T,C)

3.4 Constants

Do not forget to declare all constants used in your model and to give them a suitable type.
Otherwise, the model-checkers might yield strange results.

3.5 Concatenation (.) and Commas (,)

Full-stops (e.g. “.”) should be used when composing messages to be sent. For example:

SND(A.B.Na’)

Commas (e.g. “,”) should be used when passing arguments to functions and events, e.g.:

secret(Kab, B)

The reason is that “.” is associative while “,” is not. Thus, (A.B).Na’ = A.(B.Na’), which
allows to check for (a very limited sort of) type-flaw attacks.

3.6 Exploring executability of your model with Ofmc

Did you know about the “-p” (ply) option for Ofmc? It allows you to easily step through the
search tree for a given protocol. One symptom of errors in specifications is that they can cause
a protocol model to be unexecutable. Ofmc’s -p flag is thus a useful debugging tool to check

AVISPA HLPSL Tutorial

3 HLPSL TIPS 41

manually that your protocol specification allows two agents to execute all the steps required for
an honest run of the protocol.

After you run the AVISPA tool for the first time on a given HLPSL file, say protocol.hlpsl,
it will have produced the corresponding IF file, protocol.if. Ofmc itself can be found in the
directory bin/backends of the AVISPA package directory and can be called directly with the IF
file as input as follows:

Ofmc protocol.if -p

You will be shown the “root node” of the search space and a list of possible transitions available
from this point numbered from 0 upwards.

Ofmc protocol.if -p 0

This command will take the first transition from the root node, and display both a history of
what has happened in the protocol and a list of transitions available from this new point.

Ofmc protocol.if -p 0 2

This will take the first transition from the root node, then the third available transition from
there. Once again, you will see a history and a list of possible transitions.

This technique is very useful for debugging protocol specifications and can be used to test
that your protocol is indeed behaving correctly. Try to make your way through a normal “run”
of the protocol!

There is another useful option for Ofmc: the -sessco option. This automatically explores
the search tree created to check that all the states/transitions are reachable. If the outcome is
negative, it usually indicates a problem with your model.

3.7 The Goal Section

The goals section is not used by Ofmc. However the other model-checkers do use it. You should
in general include a goal section so that you can make use of SATMC and CL-Atse.23

23Fix: Update when this changes

AVISPA HLPSL Tutorial

3 HLPSL TIPS 42

3.8 Detecting Replay Attacks

Currently,24 the model-checkers do not fully support repeated sessions. This may lead to a
situation where a replay attack is not detected. A work-around (which unfortunately slows down
the verification a lot) for this is to declare two valid sessions in the top-level composed role. For
instance, two sessions between A and B. (See example 3 from Section 2)

3.9 Instantiating Sessions

Session instantiation sometimes appears simpler than it actually is. Usually, the situation is as
follows: there is a top-level role usually called Environment. In the Environment role, a number of
sessions are instantiated corresponding to the composed role Session. The Session role usually
instantiates one instance of each basic role. For instance, Alice and Bob.

The code might look something like this:

role Environment()

def=

const a,b: agent

composition

Session(a,b,...)

/\ Session(a,i,...)

end role

role Session(A,B: agent,...)

def=

composition

Alice(A,...) /\ Bob(B...)

end role

role Alice(A: agent,...)

played_by A def=

...

24Fix: Update when this changes.

AVISPA HLPSL Tutorial

3 HLPSL TIPS 43

Figure 3: A valid representation of role instantiation

end role

role Bob(B: agent,...)

played_by B def=

...

end role

So what does this mean? Well, there are three agents (or principals) taking part in this
scenario: a, b and i. In two of the sessions, a plays role Alice: Alice 1 and Alice 2 (see Figure 3).
In the first session, the role or Bob is played by b, while in the second session, it is played by the
intruder.

Currently,25 HLPSL passes variables by value (except for lists and sets, which are passed by
reference). This means that Alice 1 and Alice 2 have separate copies of all local variables and
are effectively separate state machines. The only things tying these two roles together are the
common identity a given as for the formal role parameter A, and constants like na, which are used
in the witness and (w)request predicates. For example, request(A,B,na,Na).

An interesting example of when this is important is shown in example 3. In the Environment

role, the following code exists:

composition

25Fix: Update when this changes.

AVISPA HLPSL Tutorial

3 HLPSL TIPS 44

Session(a,b,kab)

/\ Session(a,b,kab)

...

Essentially, this code sample is stating that there are two identical sessions between the same
client and the same server (a and b). This is a requirement of the attack on the Andrew secure
RPC protocol. The final message (below) will not be accepted by any other than the original
client because it is encrypted with their shared key.

B -> A : {K1ab, N1b}_Kab

Consider the following change to example 3:

composition

Session(a1,b,kab1)

/\ Session(a2,b,kab2)

...

As a result of this change, the attack is not found. Now you can see how important it is to
understand role instantiation!

3.10 Function Results

Currently26, the types of functions are not properly supported. In particular, all function results
(like e.g. hashed values and key looked up via a function) implicitly have the most general type
message. This can cause very subtle executability problems when receiving in a variable a value
that has been computed by the peer using a function. If you do not give the variable the type
message, reception will fail.

3.11 Declaring Channels

You may have noticed that there are many different styles used to define the channels used in a
protocol. However, the recommended style is to declare, for each connection used by each rule, a
separate channel.

26Fix: Update when this changes.

AVISPA HLPSL Tutorial

4 QUESTIONS AND ANSWERS ABOUT HLPSL 45

Do not worry too much about this. The most important thing is that each agent must have
access to a channel for sending and a different channel for receiving. Whether or not agents agree
on channel names does not really matter. Look at the traces produced by the model-checkers and
you will see that everything is sent to and received from the intruder anyway!27

28

3.12 Global constants and variables

Global constants (confusingly called “rigid variables” by some logicians) are immutable values
that are known to and shared between several agents. These are often used; typical examples
include names and public keys of agents, and shared symmetric keys. They should be declared
in the Environment role.

Global variables (also called “flexible variables”) are shared between several agents, too, but
can change their value over time. They are rarely used, and currently29 only implemented for
sets, which are passed by reference. A global variable produces a direct implicit synchronous
communication between the agents sharing it, i.e. the communication is not via sending messages
on a channel, and it cannot be seen by the intruder. It is like magic.

4 Questions and answers about HLPSL

• Q: Should (w)request appear in the transition where the data is received, or in the last
transition? Does it matter?
A: Yes, it does indeed matter. The (w)request term should be emitted in the transition
after which the authentication should be considered successful. It’s not always as simple
as the transition in which certain data is received. For instance, two agents might be
authenticating one another based on a shared key. Invariably, in an asynchronous protocol,
one agent will have all the key material before the other. But she shouldn’t emit her
(w)request term before she knows that her communication partner has all the keying
material as well, because otherwise he won’t have emitted his witness term and a trivial
attack will result.

• Q: How is the message data-type different to the text type?
A: message is the supertype of all types including e.g. nat and text, while the latter stands

27Fix: PHD: Well, it doesn’t really matter from an implementation standpoint, but it’s very important from
the semantics side. In TLA shared channels could of course lead to contradictions. DvO: Slightly changed - fine
now?

28Fix: We may later have a new style of channels in which we will explicitly link channels with the sending and
receiving agents, as well as defining other useful features of the channel!

29Fix: Update when this changes

AVISPA HLPSL Tutorial

4 QUESTIONS AND ANSWERS ABOUT HLPSL 46

for uninterpreted bit-strings.

• Q: What does secret(term, A) actually mean? That the value of the term is known only
to A, or that the value is shared between the current role and A? It seems to be ambiguous
in some situations.
A: It means that the value is known to A and any other roles R for which a predicate
secret(term-with-same-valuse, R) is given.

• Q: When should the intruder be allowed to assume a role? For example the Needham-
Schroeder Public Key Protocol (NSPK) example does not include an intruder impersonating
the server. Why is this and when in this appropriate?
A: Allowing an intruder to assume the role of a trusted server usually violates the security
goals of a protocol. Trivially. It is interesting to experiment with intruders impersonating
trusted servers but usually the protocol will be dependant on the reliability of this server
and so we do not allow an intruder to impersonate it. It is also interesting to experiment
with who you can trust by allowing the intruder to assume different roles, however if the
protocol specifies that a role is trusted, then it is not really flawed if there is an attack when
that role is played by an intruder, is it?

• Q: Do the tools support the spontaneous transitions (e.g. ”--|>”) described in D2.1?
A: No30.

• Q: Are temporal logic style requirements supported by HLPSL yet?
A: No31.

• Q: Is exp a special function like inv? What exactly does it mean?
A: Yes, exp is special. It is an operator in the message algebra defined in the prelude.if

file to have certain properties:
exp(exp(X,Y),Z) = exp(exp(X,Z),Y), and exp(exp(X,Y),inv(Y) = X

• Q: Where can the most up-to-date documentation on HLPSL2IF and IF be found?
A: The AVISPA User Manual [3] is the best resource. Also, in the AVISPA repository under
the directories shared/docs/HLPSL and shared/docs/IF you will find up-to-date versions
of D2.1 and D2.3, the HLPSL and IF deliverables. [1, 2]

30Fix: Update when this changes.
31Fix: Update when this changes.

AVISPA HLPSL Tutorial

A SYMBOLS AND KEYWORDS 47

A Symbols and Keywords

Symbol Description Example
. associative concatenation (of messages) SND(ABC.XY.Z)

, separates elements of a tuple, set, or list, or argu-
ments of a function or role

’ prime, used for referring to the next (new) value
of variable in a transition

X’

; sequential composition if roles Phase1(...);

Phase2(...)

% comment (until end of line)
= initializsation (of local variable) in init-section init X = 1

= assignment to (primed!) local variable X’ = 1

= equality test of assigned variables or other expres-
sions

X = 1

< less than X < 2

/\ conjunction (logical AND) X = 2 /\ Y = 3

/\ parallel composition of roles Alice(...) /\ Bob(...)

/_ conjunction over elements in a set /_{in(A,Agents)}

Kr(A)=[]

-> mapping from one data-type to another KeyMap: agent ->

public key

=|> immediate transition RCV(X) =|> SND(Y)

{ } set delimiter e.g. in knowledge declaration {a,b}

{ }_ encryption or signature SND({X}_K)

() indicates arguments of function, send or receive
statement, or role.

[] delimits list values init L = []

accept used in sequential composition to indicate when a
role is finished and the new role can begin

accept

State=5 /\ Auth=1

agent data-type for agents
bool data-type for boolean values
channel(dy) data-type for channels. Currently only Dolev-Yao

channels implemented.
composition marks beginning of composition section of a com-

posed role
cons add elements to set or list L’ = cons(X,L)

AVISPA HLPSL Tutorial

A SYMBOLS AND KEYWORDS 48

Symbol Description Example
def= indicates beginning of body of a role
end role indicates end of role
function data-type for one-way functions
hash a synonym to function

i intruder’s identity
in check if element is in list or set in(X,L)

init indicates initialization of local variables init State = 0

inv inverse of a key: given a public key returns
private key

inv(Ka)

intruder_knowledge defines knowledge of the intruder intruder_knowledge={a,Kai}

list data-type for ordered collection of typed val-
ues

local indicates local variable section local State : nat

message general type of message contents
nat data-type for natural numbers
not logical negation not(in(X,L))

owns ownership32 of a variable: if a role owns a
variable, only this role may change the value
of the variable

owns X

played_by for basic roles: specifies which agent is play-
ing this role

played_by A

public_key data-type for public keys
request used to check strong authentication (together

with witness)
request(A,B,na,Na)

secret used to check secrecy secret(Key,A) /\

secret(Key,B)

set data-type for unordered collection of typed
values

local S : text set

init S = {}

symmetric_key data-type for symmetric keys
text data-type for uninterpreted bit-strings
text(fresh) data-type for nonces
transition marks beginning of transitions section of ba-

sic role
witness used to check authentication (together with

(w)request)
witness(B,A,na,Na)

wrequest used to check weak authentication (together
with witness)

wrequest(A,B,na,Na)

AVISPA HLPSL Tutorial

REFERENCES 49

References

[1] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Language. Available at
http://www.avispa-project.org, 2003.

[2] AVISPA. Deliverable 2.3: The Intermediate Format. Available at http://www.

avispa-project.org, 2003.

[3] AVISPA. The AVISPA User Manual. Available at http://www.avispa-project.org, 2006.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report 39,
Digital Systems Research Center, february 1989.

[5] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 2(29), 1983.

AVISPA HLPSL Tutorial

http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org

	HLPSL Basics
	Using the AVISPA Tool
	Basic Roles
	Transitions
	Composed Roles

	HLPSL Examples
	Example 1 - from Alice-Bob notation to HLPSL specification
	Example 2 - common errors, untrusted agents, attack traces
	Example 3 - security goals

	HLPSL Tips
	Priming Variables
	Witness and Request
	Secrecy
	Constants
	Concatenation (.) and Commas (,)
	Exploring executability of your model with Ofmc
	The Goal Section
	Detecting Replay Attacks
	Instantiating Sessions
	Function Results
	Declaring Channels
	Global constants and variables

	Questions and answers about HLPSL
	Symbols and Keywords

