
Generating Term Rewriting Systems with Copster

Nicolas Barré

December 17, 2008

Contents

1 Preamble 3

2 Language bases 4
2.1 Term creation and manipulation 5

2.1.1 Explicit construction . 5
2.1.2 Sequences . 5
2.1.3 Getting a subterm . 5
2.1.4 Making substitutions . 6
2.1.5 Getting terms length and symboldepth 6
2.1.6 Incrementing a term . 6
2.1.7 Retrieving the position of a subterm 6
2.1.8 Concatenation constructions 6
2.1.9 Merging two lists . 7

2.2 Rules generation . 7
2.3 Imperative constructions . 8

2.3.1 Iterations . 8
2.3.2 Conditional statements 8
2.3.3 Terms modifications . 9

2.4 Copster variables scoping . 9
2.5 Functions . 10

3 Environment imports 10
3.1 Modules . 11
3.2 The Java byte code Environment 11

3.2.1 Naming conventions . 11
3.2.2 Quick semantic overview 12
3.2.3 Imported data structures 12
3.2.4 The stubs classes . 13
3.2.5 A sample code . 15

4 Copster command line 17
4.1 Provided outputs . 17
4.2 Error Management . 18

1

5 Index of reserved expression keywords 18

6 Index of instruction keywords 19

2

This document is the reference documentation of Copster. For any question
or comment you can send an email to Nicolas.Barre@irisa.fr1.

1 Preamble

Copster is a language designed to easily manipulate terms in order to generate
rewriting rules. In Copster, the data structures are only terms and lists.

In the rewriting theory, a term is either an operator with a null arity, either
a variable intended to substitute any term, or an operator with a non null arity
containing other terms. The use of variables makes sens only in rewriting rules.
For instance, if we consider the number ’1’ expressed in peano notation i.e.
succ(zero), zero is an operator of null arity and succ is an operator of arity
1. Then we can define some rules describing the addition between two natural
integers :

• add2(X,zero) => X

• add2(X,succ(Y)) => succ(add2(X,Y))

where X and Y are variables and => defines a rewriting relation between the
left and right sides of the rule.

Copster allows to create terms without writing them down explicitly. For
instance if we want to consider the number ’100’ in Peano notation, we’d like
to find a better way than writing succ(succ(succ(...(zero)))) in a file. . .
With Copster we simply do :

set x = zero;
for i from 1 to 100
do(
set x = succ($x);

);

Then we can assert that x contains the requested value.
Copster was first designed to generate rewriting systems from a Java byte

code program, in order to model its execution on the Java Virtual Machine in
rewriting logic. The generated rewriting systems depend on a semantics for the
JVM and on the program itself. The semantics of the programming language
is defined through a set of generic Copster rules. Then, starting from those
rules and a given byte code program, Copster produces a term rewriting system
encoding the complete execution of the program in rewriting logic. After that,
the execution of the program can be simulated in a rewriting tool.

Generally, in the programs designed to manipulate rewriting logic, the oper-
ators are given a type. For instance, in Maude2 we should declare zero, succ
and add2 as follows :

1mailto:Nicolas.Barre@irisa.fr
2see the [[http://maude.cs.uiuc.edu/][Maude project]]

3

mailto:Nicolas.Barre@irisa.fr

Figure 1: Copster principle

sort Natural .
op zero : -> Natural
op succ : Natural -> Natural
op add2 : Natural Natural -> Natural

In Copster, we can’t specify a type for the operators we define. Thus every
operator is a function taking Term type arguments and returning a Term. In
counterpart, we don’t need to declare the operators in Copster, they are inferred.

The operations we can currently do on terms with Copster are very basic.
It’s possible to :

• get the arity of the root operator of a term

• get a direct subterm

• substitute a direct subterm with another

• search for a specific direct subterm inside a term and get its position if
it’s found

• get the depth of a term according to its root symbol

We define the syntax and see examples of use of those operations in the
further sections.

Now let us define the bases of the Copster language and see how we can ease
the description of a semantics through templates of term rewriting systems.

2 Language bases

This section describes the syntax of the Copster language, and provides sample
codes.

4

2.1 Term creation and manipulation

Copster aims to generate terms rewriting systems, which means a set of op-
erators, variables and rewriting rules. As we introduced it in the preamble,
operators and variables don’t need to be declared. When writing a term, the
operators and variables which appear for the first time are registered in the
system. Then when encountering an operator again, a consistency check is done
on the arity. It’s possible to store terms in Copster variables in order to build
other terms or to apply transformations on them.

#var

2.1.1 Explicit construction

set x = zero;
set y = succ($x);
set z = add2(var(x),$x);

This simple sample code shows several features. The first instruction sets the
Copster variable x to the term zero. Then we set y to succ(zero). The $ char-
acter is used to refer to a Copster variable. Finally, z expresses the addition
between a rewriting system variable and the Copster variable x. The generated
term looks like add2(X,zero). In the following, we distinguish between Copster
variables like the ones above and rewriting system variables. In the last instruc-
tion we can see that rewriting system variables are boxed by the var keyword.
Otherwise they are understood as operators.

2.1.2 Sequences

A sequence is a list of terms. A list is a term without a root symbol. list(zero,zero,succ(zero))
is a term, (zero,zero,succ(zero)) is a list of terms i.e. a sequence.

There are three predefined ways to build sequences :

• cseq(zero,3) builds the constant sequence (zero,zero,zero)

• seq(n,3) builds the iterative sequence (n0,n1,n2)

• useq(u,3) builds the iterative unsigned sequence (u0,u1,u2) where u0,
u1 and u2 are first defined with arity -1. It means that any next instruction
that will try to give another arity to this operator will succeed. We will
see an example soon.

2.1.3 Getting a subterm

Getting a subterm from a term or list can be achieved thanks to getn primitive.

set x = seq(a,3);
set y = getn($x,3);

puts a2 in y.

5

2.1.4 Making substitutions

It’s often useful to get a copy of a term where one or more subterms have been
replaced by others. This is what we call substitutions.

set x = cseq(zero,3);
set y = subsn($x,1,succ(zero));

puts (zero,zero,zero) in x and (succ(zero),zero,zero) in y.
#symboldepth

2.1.5 Getting terms length and symboldepth

The length of a term is it’s number of direct subterms. The length of a list is
it’s number of elements. The expression len((succ(zero),zero)) is evaluated
to 2.

Starting from the root symbol f of term t, symboldepth computes the length
of the longest path in t where each node is labelled by f. Invoking symboldepth
on a list makes no sense. symboldepth returns at least 1 for any term. The
symboldepth of cons(a,cons(succ(succ(succ(zero))),cons(c,nil))) is 3.

2.1.6 Incrementing a term

set x = a0;
set y = add($x,3);

defines y = a3. Obviously the same primitive can be used to make the addition
of two integers.

2.1.7 Retrieving the position of a subterm

set x = (zero,succ(zero),succ(succ(zero)),succ(zero));
set r = mem(succ(zero),$x);

At the end, r is 4 because the mem primitive browses a term until its end.
When looking for a subterm which is not present, the result of mem is the term
val false.

#concat

2.1.8 Concatenation constructions

There are two concatenation primitives proposed by Copster :

• op(add2,(zero,succ(zero))) builds the term add2(zero,succ(zero))

• concat(a,(d,d2,(zero,succ(zero)))) builds the same term and de-
clares d and d2 as operators of null arity, by inference on the second
argument

6

Indeed, op takes as first argument a root identifier and try to concatenate
the second argument, whereas the second argument of concat is necessarily a
list whose elements will be concatenated one by one to the first argument.

It’s possible to write many inconsistent forms with these constructions, but
errors will be thrown when evaluating the terms. For instance, concat(add2,((zero),(zero)))
should generate add2(zero)(zero) which has no meaning and raises an error.

The difference between the first argument of op and concat is that op can
also take a Copster variable instead of an explicit root identifier. In that case,
the Copster variable must refer to an unsigned operator to avoid errors :

set s = useq(u,3);
set x = getn($u,1);
set y = getn($u,2);
set r1 = op($x,(zero));
set r2 = op($y,(zero,zero));

works, and sets r1 to u0(zero) and r2 to u1(zero,zero).
Whereas

set x = u0;
set r = op($x,(zero));

doesn’t work because u0 is declared with arity 0 by the first instruction and op
tries to give it arity 1.

2.1.9 Merging two lists

The append primitive builds the concatenation of two lists. For instance,
append((zero,zero),(succ(zero))) is the list (zero,zero,succ(zero)).

2.2 Rules generation

Copster is an interpreter of copster source code which holds basic data structures
during code processing :

• a list of declared operators with their arity

• a list of declared variables

• a stack of defined Copster variables associated to their value (this stack
structure allows to handle the scoping)

• a list of rewriting rules

We’ll discuss later about the scoping of Copster variables, however it’s im-
portant to notice that operators, variables and rewriting rules can only been
added and never deleted from Copster held data structures.

There is a single instruction to generate a rewriting rule :

7

• genrule(add2(var(x),zero),var(x)) generates the rule add2(X,zero)
=> X.

The genrule primitive takes as arguments any expressions that can be eval-
uated to a term.

2.3 Imperative constructions

Until now we’ve had an overview of Copster showing instructions separated by
semi-colons in a very imperative way. Indeed, Copster is mainly imperative and
furthermore doesn’t allow recursive constructions. Fortunately Copster handles
iterations on variables or sequences and comparisons between terms.

2.3.1 Iterations

Here is an example of a for loop :

set x = cseq(zero,3);
set y = zero;
for i from 1 to len($x)
do(
set y = succ($y);
set x = subsn($x,$i,$y);

);

At the end of the for loop, x has the value (succ(zero),succ(succ(zero)),succ(succ(succ(zero))))
It’s also possible to iterate on sequences :

set x = ((add2(var(x),zero),var(x)),(add2(var(x),succ(var(y))),succ(add2(var(x),var(y)))))
for r in $x
do(
genrule(getn($r,1),getn($r,2));

);

2.3.2 Conditional statements

In Copster, everything is considered true except the val false term.

set x = (zero,succ(zero),succ(zero));
for i from 1 to len($x)
do(
if (getn($x,$i) = zero) then
(
genrule(pos($x,$i),val_true);

) else
(
genrule(pos($x,$i),val_false);

8

);
);

generates the rules :

• pos((zero,succ(zero),succ(zero)),1) => val true

• pos((zero,succ(zero),succ(zero)),2) => val false

• pos((zero,succ(zero),succ(zero)),3) => val false

The else clause is optional and can be replaced by a semi-colon.
Inside a conditionally statement, the following comparison operators are

allowed : =, <, >, <= and >=.
Furthermore, in conditional statements, logical operators like && and ||

are allowed and the expressions are evaluated according to their writing order.
For instance, the expression val true && val false || val true is false, and
the expression val true && (val false || val true) is not allowed by the
language syntax. Such expressions can be boxed by a not primitive.

#or However, if necessary, such conditions can be encoded before an if
statement as follows :

set x = and(val_true,or(val_false,val_true));
if ($x) then (
...

);

2.3.3 Terms modifications

We’ve seen in former sections that we could create new terms from an existing
one by getting a direct subterm or making substitutions. There also exists a
primitive setn to substitute a subterm in place.

set x = (a,b,c,d);
setn (x,1) = e;

At the end, x = (e,b,c,d). The last instruction is equivalent to set x =
subsn($x,1,e); but is more concise.

2.4 Copster variables scoping

In Copster, the scoping is lexical, except for variables contained in function
definitions that we’ll see next. The instruction let ... in allows to build a
new context which is destroyed at the end.

set x = 1; (* defines x = 1 in the toplevel *)
let x = 3 and y = 2 in (
genrule(numpred(x),y);

);

9

generates the rule numpred(3) => 2. At the end x = 1 and y doesn’t exist any
more.

The instruction set x defines a new Copster variable x in the toplevel, only
if x is not already defined in any enclosing context. Otherwise, a bottom-up
lookup is processed through the context stack and the first occurrence found of
x is modified.

2.5 Functions

We don’t distinguish between functions and procedures in Copster meaning that
every expression of the language must be an instruction and vice versa. That’s
why we need to define a result expression for instructions which don’t return
a value. Like in Lisp dialects, it is the empty list (). A function returns the
expression associated to its last instruction.

defun f(a) =
(
let b = add($a,1) in
(
$b;

);
);

returns a + 1.
As we mentioned it in the previous subsection, the scoping is dynamic for

functions. Indeed the syntax of a function is checked during it’s definition but
its content is interpreted only during the function call. Calling a function is
done the same way than referring to variables except you have to provide the
list of parameters.

defun f(a) =
(
let b = add($a,$c) in
(
$b;

);
);

set c = 5;
set r = $f(2);

This sample works even if c isn’t defined before the function definition, and r
= 7 at the end.

3 Environment imports

An environment is a set of operators, variables, Copster variables and rewriting
rules. Thus importing an environment means merging such a set with the

10

current environment. An environment can come from an other Copster source
file (e.g. modules), or can be natively defined in Copster in order to serve
any purpose. There currently exists only one kind of native import in Copster,
meeting our first needs on Java byte code programs.

3.1 Modules

Copster allows modular programming by splitting code into multiple files. a
module may include another, otherwise module environments are totally iso-
lated.

(* file definitions.rex *)
set x = a0;
set y = (succ(zero),zero);

(* file main.rex *)
load ./definitions.rex
genrule($x,$y);

Relative paths are allowed.
Loading a module is merging its environment with the current one, it’s to

say adding the Copster variables, operators, variables and rules which are not
already defined in the current environment. If one of the imported elements
is inconsistent according to the current environment, an appropriate error is
raised.

3.2 The Java byte code Environment

Importing an environment built from a Java byte code program is done by
invoking the primitive import java bytecode. The program name and location
are not written in Copster source file but are given as parameters to Copster
command line as shown in 3.2.5 section.

The aim is to express a Java Virtual Machine semantics in Copster. That’s
why we have to import an environment containing everything we could need
in order to write this semantics. For instance, we have to know classes names,
methods names, fields names and a lot of information associated to them.

3.2.1 Naming conventions

First, we need to define a naming convention in order to avoid collisions be-
tween program symbols, coming from a Java byte code program, and the op-
erators defined by the user in a Copster source file. By convention, all op-
erators coming from a Java program are bracketed with <>. For instance,
the class java.lang.Object will create three operators, <java>, <lang> and
<Object>. Thus by convention if you don’t refer to a program symbol and
you want to avoid collisions you mustn’t name your operators with that kind of
brackets.

11

Copster is able to export the generated rewriting systems in Timbuk and
Maude formats. However those formats don’t allow the use of characters < and
>, that’s why Copster relies on a renaming process to generate valid output. The
renaming algorithm is very simple, it consists in suppressing the brackets and
if a collision is found, in incrementing a counter concatenated to the operator
symbol until collisions are resolved.

3.2.2 Quick semantic overview

The Java imported data structures depends on the semantics we chose to de-
scribe classes, methods, fields and their attributes. So let us present it quickly.

Consider the following class in the package java/lang :

class String extends Object{
public char charAt(int i){...};
public int length(){...};
public String substring(int){...};

...
}

The class java.lang.String is represented by the term ConsName(<java>,
ConsName(<lang>, ConsName(<String>, NilName))).

The methods are represented by the terms

• Method(<charAt>, ConsType(TInt, NilType), TChar)

• Method(<length>, NilType, TInt)

• Method(<substring>, ConsType(TInt, NilType), OType(ConsName(<java>,
ConsName(<lang>, ConsName(<String>, NilName)))))

The ConsName operator is used to build a class name qualified with its pack-
age name, the operator ConsType represents a list of types.

Moreover we also define a Field constructor whose arguments are the class
name, the field name and the field type. For instance, Field(ConsName(<A>,NilName),<x>,TInt)
represents a field x of type int in a class A.

There exist other operators to represent basic types : TShort, TBool, TDouble,
TFloat, Tlong, TByte, void.

The classes, methods and fields attributes are represented by the operators
AccDefault, AccPublic, AccPrivate, AccAbstract, AccNative, AccStatic
and AccSynchronized.

3.2.3 Imported data structures

The imported data structures are terms lists contained in Copster variables.
We don’t need to import rewriting rules because these structures provide all
the information required to build the rules we want to express.

Here are the imported Copster variables :

12

• max locals contains the maximum size of local variables arrays

• max pc contains the maximum number of instructions among all the meth-
ods defined in the considered program

• insts is a list containing every Java byte code instruction at every pro-
gram point in every method defined in every existing class : ((ConsName(<A>,NilName),Method(<foo>,NilType,void),pp0,dup),
...)

• classes is a list gathering all classes names present in the given Java
program : (ConsName(<A>,NilName),ConsName(,NilName), ...)

• methods is a list containing all the methods defined in the given program

• methods per classes is a list with the same length as classes containing
lists of methods defined in the corresponding classes : ((Method(<foo>,NilType,void),
...),(...), ...)

• fields per classes is a list with the same length as classes contain-
ing lists of fields defined in the corresponding classes or their super-
classes : ((Field(ConsName(<A>,NilName),<x>,TInt), ...),(...
), ...)

• fields is fields per classes flatten

• init fields per classes contains the default values taken by the fields
when they are initialized : zero for numbers, nilchar for characters and
val null for objects

• subclasses per classes

• superclasses per classes

• classes flags : ((AccPublic),(AccPublic,AccAbstract, ...), ...)

• fields flags per classes

• fields flags is fields flags per classes flatten

• methods flags per classes

Moreover, we import variables such as nb insts, nb classes, nb fields,
nb methods, nb fields per classes and nb methods per classes even if they
can be retrieved by using the primitive len on the appropriate variables.

3.2.4 The stubs classes

The classes belonging to the Java API can be declared in a special file with
.jstub extension. This file contains classes, fields and methods signatures using
a syntax very close to Java. For instance here is the stubclasses.jstub file
that we use to generate a term rewriting system from a Java program :

13

/** stubclasses.jstub file **/

public class java.lang.Object{
void <init>{};

}

public class java.io.IOException extends java.lang.Object{
}

public class java.io.InputStream extends java.lang.Object{
public int read{};

}

public class java.io.PrintStream extends java.lang.Object{
public void println{int};
public void println{char};
public void println{java.lang.String};

}

public class java.lang.System extends java.lang.Object{
public static java.io.InputStream in;
public static java.io.PrintStream out;

}

public class java.lang.String extends java.lang.Object{
public native char charAt{int};
public native java.lang.String concat{java.lang.String};
public native int length{};
public native java.lang.String substring{int};

}

public class java.lang.StringBuilder extends java.lang.Object{
}

public class java.lang.Thread extends java.lang.Object{
public void <init>{};
public void start{};
public void join{};

}

public class java.lang.InterruptedException extends java.lang.Object{
}

Some classes are empty when they are present in the byte code but we don’t
provide any implementation yet (e.g the exception classes).

14

The implementation of the classes declared in the stubclasses.jstub file
is done in a Copster source file.

3.2.5 A sample code

We present here a full example of the imported environment when considering
a very simple program.

Consider the following program :

class A{
int x;
void foo(){this.bar();}
void bar(){x=1;}

}

class B extends A{
void bar(){x=2;}

}

class M{
public static void main(String[] argv){
A o1 = new A();
A o2 = new B();

}
}

The imported variables are :

• insts = ((Class(ConsName(<M>,NilName)),Method(<<init>>,NilType,void),pp0,load(local0)),
...)

• nb insts = 29

• max locals = 3

• max pc = 8

• nb classes = 12

• nb fields = 4

• nb methods = 14

• nb fields per classes = (0,1,1,0,0,0,0,2,0,0,0,0)

• nb methods per classes = (2,2,3,1,0,1,3,0,4,0,3,0)

15

• classes = (Class(ConsName(<M>,NilName)), Class(ConsName(,NilName)),
Class(ConsName(<A>,NilName)), Class(ConsName(<java>,ConsName(<lang>,ConsName(<Object>,NilName)))),
Class(ConsName(<java>,ConsName(<io>,ConsName(<IOException>,NilName)))),
Class(ConsName(<java>,ConsName(<io>,ConsName(<InputStream>,NilName)))),
Class(ConsName(<java>,ConsName(<io>,ConsName(<PrintStream>,NilName)))),
Class(ConsName(<java>,ConsName(<lang>,ConsName(<System>,NilName)))),
Class(ConsName(<java>,ConsName(<lang>,ConsName(<String>,NilName)))),
Class(ConsName(<java>,ConsName(<lang>,ConsName(<StringBuilder>,NilName)))),
Class(ConsName(<java>,ConsName(<lang>,ConsName(<Thread>,NilName)))),
Class(ConsName(<java>,ConsName(<lang>,ConsName(<InterruptedException>,NilName)))))

• fields = (Field(Class(ConsName(<A>,NilName)),<x>,TInt), Field(Class(ConsName(<A>,NilName)),<x>,TInt),
...)

• methods = (Method(<<init>>,NilType,void), Method(<main>,ConsType(...),void),
Method(<bar>,NilType,void), Method(<foo>,NilType,void), ...)

• fields per classes = ((), (Field(Class(ConsName(<A>,NilName)),<x>,TInt)),
(Field(Class(ConsName(<A>,NilName)),<x>,TInt)), ...)

• methods per classes = ((Method(<<init>>,NilType,void), Method(<main>,ConsType(...),void)),
(Method(<<init>>,NilType,void), Method(<bar>,NilType,void)),
(Method(<<init>>,NilType,void), Method(<bar>,NilType,void),
Method(<foo>,NilType,void)), ...)

• init fields per classes = ((), (zero), (zero), (), (), (), (),
(val null, val null), (), (), (), ())

• subclasses per classes = ((1), (2), (3,2), (4,12,11,10,9,8,7,6,5,3,2,1),
(5), (6), (7), (8), (9), (10), (11), (12))

• superclasses per classes = ((1,4), (2,3,4), (3,4), (4), (5,4),
(6,4), (7,4), (8,4), (9,4), (10,4), (11,4), (12,4))

• classes flags = ((AccDefault), (AccDefault), (AccDefault), (AccPublic),
(AccPublic), (AccPublic), (AccPublic), (AccPublic), (AccPublic),
(AccPublic), (AccPublic), (AccPublic))

• fields flags per classes = ((), ((Field(Class(ConsName(<A>,NilName)),<x>,TInt),
(AccDefault))), ((Field(Class(ConsName(<A>,NilName)),<x>,TInt),
(AccDefault))), (), (), (), (), ((Field(Class(ConsName(<java>,ConsName(<lang>,ConsName(<System>,NilName)))),
<in>, OType(Class(ConsName(<java>,ConsName(<io>,ConsName(<InputStream>,NilName)))))),
(AccStatic,AccPublic)), (Field(Class(ConsName(<java>,ConsName(<lang>,ConsName(<System>,NilName)))),
<out>, OType(Class(ConsName(<java>,ConsName(<io>,ConsName(<PrintStream>,NilName)))))),
(AccStatic,AccPublic))),(),(),(),())

• fields flags = ((Field(Class(ConsName(<A>,NilName)),<x>,TInt),
(AccDefault)), (Field(Class(ConsName(<A>,NilName)),<x>,TInt),
(AccDefault)), ...)

16

• methods flags per classes = (((Method(<<init>>,NilType,void),
(AccDefault)), (Method(<main>,ConsType(...),void), (AccStatic,AccPublic))),
...)

4 Copster command line

This section presents the copster command usage. If you type copster -help
in a terminal, you can see :

~/> copster -help
Usage : copster -aterms filename [-rules file] [-sysname expr] [-maude file]
[-timbuk file] [-screen-width size] [-javaclass file] [-stubs file]
[-no-recompile]
-rules specifies the rules file (default : rules.rex)
-aterms specifies the aterms result file
-maude specifies the maude result file
-timbuk specifies the timbuk result file
-sysname specifies the name of the system (default : S)
-classpath specifies the classpath where to search for .class files

Must be placed before -javaclass option
-javaclass specifies the .class file to import

Must not contain the .class extension
-stubs specifies the file where are defined stubs
-no-recompile If the aterms file is already generated,

it’s not useful to parse the java class file again
-screen-width specifies the max size of lines in result files
-debug prints information useful for debugging
-help Display this list of options
--help Display this list of options

Example of usage :
./build/copster -rules ./rules/monothread/rules.rex -stubs ./rules/stubclasses.jstub

-classpath ./tests/ -javaclass Ex1 -aterms result.aterms -maude result.maude

4.1 Provided outputs

The main output is the Aterms format and is specified as follows :

Example.aterms
specification(

operatorList([
op(stack,2),op(name,2),op(succ,1),op(zero,0),...]),

varList([
x,y,f,...]),

17

trsList([system("S",[
rule(initialJavaState(var(x)),

IO(state(frame(name(Method(main,...),...),...),...),...)),
...]), ...])

)

The term rewriting system is given a name (S by default), but this is not
used yet.

Specifying a -aterms argument to copster is compulsory because the others
output formats are built from the Aterms format. There are two others output
formats, Maude and Timbuk, where files are given after -maude and -timbuk
options, respectively.

It possible to generate Maude and Timbuk outputs later, independently of
any byte code program. For this you need to specify the previously generated
Aterms file and use the -no-recompile option.

Example : ./copster -aterms result.aterms -maude res maude.maude
-timbuk res timbuk.timbuk --no-recompile

4.2 Error Management

Copster handles syntax and execution errors. In both cases, a stack trace is
printed, giving the filenames and the instructions lines numbers which lead to
the error.

Moreover, there is a very useful -debug option which prints the content of
operators list, variables list and Copster variables list when the program stops
its execution, normally or abnormally.

5 Index of reserved expression keywords

The expression keywords are reserved. It means that you can’t use them di-
rectly in order to create terms. For instance, if you want to generate the rule
add(X,zero) => X you must write genrule(op(add,(var(x),zero)),var(x)).
Otherwise add is understood as the addition primitive.

• 2.1.5

• 2.3.2

• ??

• 2.1.2

• 2.1.4

• 2.1.6

• 2.3.2

18

• 2.1.7

• ??

• 2.1.1, 2.1.1, 2.1.1

• 2.1.3

• ??

• ??

6 Index of instruction keywords

• 2.4

• 2.3

• 2.1.9

• 3.1

• 2.3.1, 2.3.1, 2.3.1

• 2.3.3

• 3

• 2.1

• 2.3.2

19

	Preamble
	Language bases
	Term creation and manipulation
	Explicit construction
	Sequences
	Getting a subterm
	Making substitutions
	Getting terms length and symboldepth
	Incrementing a term
	Retrieving the position of a subterm
	Concatenation constructions
	Merging two lists

	Rules generation
	Imperative constructions
	Iterations
	Conditional statements
	Terms modifications

	Copster variables scoping
	Functions

	Environment imports
	Modules
	The Java byte code Environment
	Naming conventions
	Quick semantic overview
	Imported data structures
	The stubs classes
	A sample code

	Copster command line
	Provided outputs
	Error Management

	Index of reserved expression keywords
	Index of instruction keywords

