
Automata-based verification of relational properties1

of functions over data structures2

3

Théo LOSEKOOT !4

Université de Rennes, IRISA, France5

Thomas GENET !�6

Université de Rennes, IRISA, France7

Thomas JENSEN !�8

Inria, Université de Rennes, France9

Abstract10

This paper is concerned with automatically proving properties about the input-output relation of11

functional programs operating over algebraic data types. Recent results show how to approximate the12

image of a functional program using a regular tree language. Though expressive, those techniques13

cannot prove properties relating the input and the output of a function, e.g., proving that the output14

of a function reversing a list has the same length as the input list. In this paper, we built upon those15

results and define a procedure to compute or over-approximate such a relation. Instead of representing16

the image of a function by a regular set of terms, we represent (an approximation of) the input-output17

relation by a regular set of tuples of terms. Regular languages of tuples of terms are recognized18

using a tree automaton recognizing convolutions of terms, where a convolution transforms a tuple of19

terms into a term built on tuples of symbols. Both the program and the properties are transformed20

into predicates and Constrained Horn clauses (CHCs). Then, using an Implication Counter Example21

procedure (ICE), we infer a model of the clauses, associating to each predicate a regular relation. In this22

ICE procedure, checking if a given model satisfies the clauses is undecidable in general. We overcome23

undecidability by proposing an incomplete but sound inference procedure for such relational regular24

properties. Though the procedure is incomplete, its implementation performs well on 120 examples. It25

efficiently proves non-trivial relational properties or finds counter-examples.26

2012 ACM Subject Classification Theory of computation→ Program verification; Theory of compu-27

tation→ Formal languages and automata theory28

Keywords and phrases Formal verification, Tree automata, Constrained Horn Clauses, Model infer-29

ence, Relational properties, Algebraic datatypes30

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.331

1 Introduction32

This paper is concerned with automatically proving properties about the input-output33

relation of functional programs operating over algebraic datatypes. We explore an approach34

in which both programs and properties are represented as Constrained Horn Clauses [2],35

i.e., Horn clauses with additional constraints expressed in an underlying theory. Using36

such representation, proving a property of a program is reduced to finding a model of the37

combined set of Horn clauses that represent the program and the property. We illustrate38

this using an example where we define the type of natural numbers and natural numbers39

lists, and two recursive functions, len computing the length of a list and less checking if a40

natural number is strictly less than another. We aim at (automatically) proving the logical41

properties ∀x l. less Z (len Cons(x, l)) and ∀x l. less (len l) (len Cons(x, l)). Here are the42

program in Ocaml-like syntax, the logical formulas for properties and their equivalent43

CHC representation. Note that n-ary functions (like unary len) are translated into n + 1-ary44

© Théo Losekoot, Thomas Genet, Thomas Jensen;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:theo.losekoot@irisa.fr
mailto:thomas.genet@irisa.fr
https://orcid.org/0000-0002-2145-3370
mailto:thomas.jensen@inria.fr
https://orcid.org/0000-0002-4064-7170
https://doi.org/10.4230/LIPIcs.FSCD.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Automata-based verification of relational properties of functions over data structures

relations (like binary Len). Because of this extra argument, we add a functionality constraint45

(the third clause of Len) for ensuring that the relation represents exactly the function.46

Without this functionality constraint, we could e.g. have a model where Len(Nil, S(Z)) is47

true. Arity of predicates, like the binary less, do not change: Less is binary. In this case,48

we cannot use functionality constraint because the result is not reified. Instead, we use49

bi-implication to exclude all elements which are not in the relation defined by the OCaml50

function, e.g., exclude Less(S(S(Z)), S(Z)).51

type nat = Z | S of nat
type n a t l i s t = Nil | Cons of nat * n a t l i s t52

l e t rec len (l : n a t l i s t) =
match l with
| Nil −> Z
| Cons (h , t) −> S (len t)

Len(Nil, Z).
Len(l, n)⇒ Len(Cons(x, l), S(n)).
Len(l, n1) ∧ Len(l, n2)⇒ n1 = n2.

53

l e t rec l e s s (n : nat) (m : nat) =
match (n , m) with
| Z , S (_) −> true
| _ , Z −> f a l s e
| S (n1) , S (m1) −> l e s s n1 m1

Less(Z, S(m)).
Less(n, Z)⇒ False.
Less(n, m) ⇐⇒ Less(S(n), S(m)).

54

∀x l. less Z (len (Cons(x, l)))
∀x l. less (len l) (len Cons(x, l))

Len(Cons(x, l), n)⇒ Less(Z, n).
Len(l, n) ∧ Len(Cons(x, l), n′)⇒ Less(n, n′).55

Our goal is thus to automatically infer a model of this set of clauses, i.e., solve the satisfiab-56

ility problem for Constrained Horn Clauses over the theory of inductive datatypes. Tree57

automata [6] are a well-know formalism to represent, approximate, and infer models on58

functional programs [11, 17] or even on CHCs [16]. In all those works, the inferred model59

is not relational, i.e., it only consists of a regular set of unrelated terms. For instance, in60

our example, the first property ∀x l. less Z (len (Cons(x, l))) is not relational and can thus61

be proven using regular sets like [11, 16, 17] do. To perform the proof, the solvers only62

need to consider two regular languages: Llists containing all lists of natural numbers and63

LCons+ containing all non-empty lists of natural numbers. Then, the proof is carried out64

by showing that if l ∈ Llists then, for any natural number x, the term Cons(x, l) belongs65

to LCons+. Finally, since any list l′ ∈ LCons+ have a length strictly greater than 0 then the66

property is true.67

On the opposite, the second property, ∀x l. less (len l) (len Cons(x, l)), is relational and,68

thus, out of the scope of the aforementioned approaches. We still have that if l ∈ Llists69

then cons(x, l) ∈ LCons+ but for any l ∈ Llists and any l′ ∈ LCons+ we cannot prove that70

less (len l) (len l′). To preserve the relation between the two occurrences of the list l, we use71

convoluted automata [6] which can represent regular relations between terms. We build upon72

the preliminary results obtained in [12] and propose a sound but incomplete procedure73

for inferring an automaton that represents a model of the program and the property. This74

procedure is defined as an Implication Counter Example (ICE) procedure [8].75

Contributions:76

- Definition of a sound model-checking procedure for CHCs on convoluted tree automata.77

We propose two sound optimisations of this procedure so as to make it efficient in78

practice;79

- Definition of an ICE procedure for inferring models of CHCs;80

- Definition of a specific over-approximation technique enlarging the class of properties81

which can be proved using regular models on CHCs programs;82

T. Losekoot, T. Genet, T. Jensen 3:3

- Implementation of the ICE procedure;83

- On more than 120 examples, we show that our implementation automatically proves84

and disproves non-trivial examples.85

This paper is organised as follows: In Section 2, we give an overview demonstrating the86

verification technique presented in this paper. In Section 3, we introduce the notions and87

notations. In Section 4, we briefly present how to encode functional programs into Horn88

clauses. In Section 5, we present a transformation from the model-checking procedure for89

CHCs into a search for a proof in a proof system representing the model. In Section 6, we90

present our use of the proof system for an efficient search. In Section 7, the ICE-procedure91

for inferring a model is defined. In Section 8, we present our approximation method. In92

Section 9, we discuss implementation-specific details and experiments. In Section 10, we93

present related work. Finally, we conclude in Section 11.94

2 An overview of the verification procedure on an example95

We continue our example of Section 1. We first give more details about the proof of the96

non-relational property ∀x l. less Z (len (Cons(x, l))). To represent the set Llists containing97

all lists of natural numbers and the set LCons+ containing all non-empty lists of natural98

numbers, we use tree automata. Tree automata recognize sets of terms into states using99

transitions. E.g., a tree automaton with states {qnat, qNil , qCons+} and transitions {Z() →100

qnat, S(qnat) → qnat, Nil() → qNil , Cons(qnat, qNil) → qCons+, Cons(qnat, qCons+) →101

qCons+} recognizes Nil into the state qNil and any non-empty list of naturals into the state102

qCons+. To recognize a term, transitions are used to rewrite the term into a state, e.g, Nil →103

qNil , and Cons(S(Z), Nil) →∗ Cons(S(qnat), qNil) → Cons(qnat, qNil) → qCons+. Similarly104

Cons(Z, Cons(S(S(Z)), Nil))→∗ qCons+. To prove the property ∀x l.less Z (len (Cons(x, l)))105

using such an automaton, it is enough to show that if l belongs to Llists (whose terms are106

recognized by qNil or qCons+), then Cons(x, l) belongs to LCons+ (whose terms are recognized107

by qCons+). Using another automaton for Less, it is possible to show that (len l′), with l′108

recognized by qCons+, belongs to the language Lpos of strictly positive natural numbers,109

whereas (len Nil) belongs to the language {Z}.110

Now, we present a complete overview of our verification procedure for proving the111

second property ∀x l. less (len l) (len Cons(x, l)) which is relational and, thus, out of the112

scope of solvers like [11, 16, 17]. As shown before, the functions and the property are all113

translated into a set of CHCs. In the following, we denote by C this set. Given C, we start114

the model inference phase whose objective is to infer a model of this set, namedM in the115

following. For each relation R defined by the program, M contains an automaton AR116

recognizing a language for the relation R. The model inference procedure can either117

(i) succeed, i.e. find a modelM satisfying C, and the properties are proved, or118

(ii) fail, i.e. find a contradiction, and the properties are disproved, or119

(iii) never terminates.120

This model inference is implemented as an Implication Counter-Example (ICE) procedure [8]121

between two entities: a learner and a teacher. The learner’s goal is to infer a correct model122

using only feedback from the teacher. The teacher’s goal is to verify if the clauses from C123

satisfyM (the model proposed by the learner) and to give feedback in the form of logical124

implications which are counter-examples.125

Initially,M associates to each relation symbol an empty relation recognized by an empty126

automaton, denoted byA∅. The relation recognized byA∅, denoted byR(A∅), is the empty127

relation. On our example, the initial value forM is thusM = {Len 7→ A∅, Less 7→ A∅}.128

FSCD 2023

3:4 Automata-based verification of relational properties of functions over data structures

First iteration of the learner-teacher algorithm129

The learner proposes the modelM = {Len 7→ A∅, Less 7→ A∅}. The teacher checks ifM130

satisfies each clause of C, i.e., for each ϕ ∈ C it checks ifM |= ϕ. This is not true for the131

clause Len(Nil, Z) which imposes that the pair (Nil, Z) is part of the relation associated132

with Len. This is not the case here. Thus, the learner provides the ground clause Len(Nil, Z)133

as a counter-example.134

Second iteration of the learner-teacher algorithm135

Starting fromM = {Len 7→ A∅, Less 7→ A∅} and the counter-example Len(Nil, Z), the136

learner improvesM in order to add the pair (Nil, Z) into the relation associated with Len,137

i.e., refines the automaton so as to recognize the pair (Nil, Z). For recognizing a relation, we138

need to extend the tree automaton formalism to recognize regular sets of tuples of terms. A139

solution proposed in [6] is to use a tree automaton recognizing convolutions of terms. A140

convolution transforms a tuple of terms into a term built on tuples of symbols. It does so141

by introducing new convoluted symbols which represent tuples of symbols. For example,142

to recognize the pair (Nil, Z) we define a new symbol
〈

Nil, Z
〉

and a tree automaton A1143

with the state q0 and the unique transition
〈

Nil, Z
〉
() → q0. With such an automaton,144

the relation recognized by automaton A1 is R(A1) = {(Nil, Z)}. Finally, we now have145

M = {Len 7→ A1, Less 7→ A∅}. Again, this model is given to the teacher which checks if146

M |= C. The teacher finds out thatM 6|= Len(l, n) ⇒ Len(Cons(x, l), S(n)). Indeed,147

since (Nil, Z) ∈ L(A1) we should have (Cons(i, Nil), S(Z)) ∈ L(A1) for all natural num-148

bers i. The teacher provides a ground instance of this clause as a counter-example, e.g.,149

Len(Nil, Z)⇒ Len(Cons(Z, Nil), S(Z)).150

Third iteration of the learner-teacher algorithm: Learner part151

Starting from M = {Len 7→ A1, Less 7→ A∅} and the counter-example obtained from152

the previous iteration Len(Nil, Z) ⇒ Len(Cons(Z, Nil), S(Z)), the learner should refine153

A1 into A2 so that it also recognizes the pair (Cons(Z, Nil), S(Z)). This time, to build the154

convolution we have to overlay the terms Cons(Z, Nil) and S(Z). However, because of155

the different arities of Cons and S, the trees representing those two terms do not perfectly156

overlap. The convolution adds a padding symbol � to complement trees in order to have a157

perfect overlap. Back to our example, with a convolution (known as right-convolution) the158

tree for S(Z) becomes159

S

� Z and the convolution of

Cons

Z Nil and

S

� Z is

〈
Cons, S

〉
〈

Z,�
〉 〈

Nil, Z
〉

.160

Thus, a refined automaton A2 recognizing both (Nil, Z) and (Cons(Z, Nil), S(Z)) has states161

{q0, q1, q2} and transitions {
〈

Nil, Z
〉
() → q0,

〈
Z,�

〉
() → q1,

〈
Cons, S

〉
(q1, q0) → q2}. If162

we declare states q0 and q2 as final (meaning that we ignore the languages recognized by163

non final states) thenR(A2) = {(Nil, Z), (Cons(Z, Nil), S(Z))}.164

A last phase of the ICE learning process is to reduce the number of states of the automaton165

and, doing so, possibly enlarge the recognized language. Note that this phase was skipped166

on automaton A1 because it has only one state. Reducing the number of states consists in167

finding state merging which are coherent w.r.t. the ground clauses sent by the teacher and168

coherent w.r.t. types of recognized languages. For instance, onA2, merging q0 with q2 is pos-169

sible because both recognize pairs of lists and natural numbers. On the opposite, merging q0170

with q1 is incorrect because q0 recognize pairs of lists and q1 only recognizes a unique natural171

T. Losekoot, T. Genet, T. Jensen 3:5

number (omitting padding). After renaming q2 to q0, transitions of the automatonA2 become172

{
〈

Nil, Z
〉
()→ q0,

〈
Z,�

〉
()→ q1,

〈
Cons, S

〉
(q1, q0)→ q0}. Note that this automaton now173

recognizes {(Nil, Z), (Cons(Z, Nil), S(Z)), (Cons(Z, Cons(Z, Nil)), S(S(Z))), . . .}, i.e., all174

pairs (l, n) where l is a list of Z whose length is n.175

Conclusion of the learner-teacher algorithm176

During following iterations, the learner-teacher proceed similarly to infer an automaton for177

Less and to finish inferring that of Len. Finally, during the 6-th iteration, the learner ends up178

on the following modelM = {Len 7→ ALen, Less 7→ ALess}whereALen has final states {q0}179

and the transitions {
〈
�, S

〉
(q1)→ q1,

〈
�, Z

〉
()→ q1,

〈
Nil, Z

〉
()→ q0,

〈
Cons, S

〉
(q1, q0)→180

q0}. This automaton is close to automatonA2 except that it recognizes any natural number in181

place of Z in the list, i.e., it recognizes all pairs (l, n) where l is a list of natural numbers whose182

length is n. The automaton ALess has the final states {q3} and the transitions {
〈
�, Z

〉
()→183

q4,
〈
�, S

〉
(q4)→ q4,

〈
Z, S

〉
(q4)→ q3,

〈
S, S
〉
(q3)→ q3}. This model is given to the teacher184

which then checks that it satisfies all the clauses of C. This terminates the verification and185

proves that ∀x l. less (len l) (len Cons(x, l)).186

3 Prerequisites187

3.1 Typed alphabet and term188

I Definition 1 (Typed alphabet). A typed alphabet (Σ, τ, Γ) is a set of symbols Σ, a set of types189

Γ, and a typing function τ which assigns to each symbol f a type τ(f) = τ1 × . . .× τn → τ0 with190

∀i ∈ J0, nK, τi ∈ Γ and n ∈N varying for each symbol f . When n = 0, the symbol is a constant and191

does not take input. For f ∈ Σ and τ(f) = τ1 × . . .× τn → τ0, we say that f is of arity n, written192

| f | = n, and that τ0 is the output type of f , written τout(f) = τ0. When clear from context, we193

identify the tuple (Σ, τ, Γ) with Σ.194

IDefinition 2 (Term). A (typed) term t over an alphabet Σ is the data of a symbol f ∈ Σ, called the195

root symbol of t and written Root(t), together with a list t1, . . . , t| f | of | f | terms, called children of t,196

such that their type is compatible, i.e. τ(f) = τout(Root(t1))× . . .× τout(Root(t| f |))→ τout(f).197

A term t is also written f (t1, . . . , t| f |). We overload τ with τ(t) = τout(Root(t)). The set of terms198

over an alphabet Σ is written T (Σ).199

I Definition 3 (Substitution). A substitution σ is a finite map between variables and terms (which200

may contain variables). The application of a substitution σ to a variable x, written σ(x), is defined as201

t if there exists a binding (x, t) ∈ σ and x otherwise. The application of a substitution is generalized202

to terms by σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)). Even more generally, a substitution can be203

applied to any structure containing variables. The composition of substitution, which first applies σ1204

and then σ2, is written σ1; σ2. The domain of a substitution is the set of variables for which a binding205

is defined and is written dom(σ).206

A function Vars is used without definition, if unambiguous, to fetch the set of variables207

contained in a structure. It can be called, for example, on a term or on a tuple of structures208

containing variables.209

3.2 Tree automaton210

IDefinition 4 (Tree automaton). A (bottom-up) tree automatonA = (Q, Q f , ∆) over an alphabet211

Σ is given by a finite set of states Q, a set of final states Q f ⊆ Q, and a set of transitions (or rules) ∆212

FSCD 2023

3:6 Automata-based verification of relational properties of functions over data structures

such that transitions are of the form f (q1, . . . , q| f |)→ q0, where f ∈ Σ and ∀i ∈ J0, | f |K, qi ∈ Q.213

I Definition 5 (Language recognized by an automaton). The set of terms recognized (or ac-214

cepted) in a state q of an automaton A is inductively defined as L(A, q) = { f (t1, . . . , tn) |215

f (q1, . . . , qn) → q ∈ ∆ ∧ ∧
i∈J1,nK ti ∈ L(A, qi)}. The language recognized by an automaton is216

L(A) = ⋃
q f∈Q f

L(A, q f).217

I Definition 6 (Typed tree automaton). A typed tree automaton is a tree automaton whose218

states are typed by types of the alphabet. We write τ(q) for the type of the state q. Transitions219

have to be compatible with the types of the symbols, i.e., for any rule f (q1, . . . , qn) → q0 ∈ ∆,220

τ(f) = τ(q1)× . . .× τ(qn) → τ(q0). All final states must be of the same type. The type of the221

automaton, written τ(A), is the type of its final states.222

We write A for the complement of the automaton A w.r.t its type, i.e., L(A) = {t | τ(t) =223

τ(A) ∧ t /∈ L(A)}. We also use Q, Q f , and ∆ as accessors, that is, as functions to respect-224

ively extract states, final states, and transitions from an automaton. We usually write t or225

f (t1, . . . , tn) for terms, q for a state, and A for an automaton. Tuple of elements (e1, . . . , en)226

are also written~e and~e[i] means ei.227

3.3 Automata recognizing a relation228

There exist multiple formalism for representing a relation on terms with an automaton. They229

differ in their expressive power, closure properties, and decision procedure complexity. The230

most well known are tuple automata, ground tree transducers, and automata on convoluted terms,231

all described in [6]. We will pursue an approach based on automata on convoluted terms, or232

simply convoluted automata.233

Convoluted automata are defined w.r.t an operation called convolution which transforms234

an n-tuple of terms into a unique term whose symbols are n-tuple of symbols. Intuitively,235

an automaton defined on this alphabet of tuple reads n terms at the same time, thereby236

recognizing a relation. The standard convolution operator amounts to overlaying the (syntax237

tree of the) terms, starting from the root, and adding a padding symbol � /∈ Σ (of type τ�)238

as there is an arity mismatch between symbols. To this end, we extend any alphabet Σ to239

Σ� = Σ ∪ {�}. We call this standard convolution the left convolution, in order to distinguish240

it from other convolutions, e.g. the right convolution, that has been used in section 2 and in241

the rest of the paper. We first define left-convolution of a tuple of tuple, and then use it to242

define convolution of terms.243

I Definition 7 (Left-convolution).

⊕L ((e1
1, . . . , ek1

1), . . . , (e1
n, . . . , ekn

n)) =
(
(e1

1, . . . , e1
n), . . . , (ek

1, . . . , ek
n)
)

244

with k = max
i∈J1,nK

(ki) and ∀i ∈ J1, nK, ∀j ∈ J1, kK, ej
i = ej

i if j ≤ ki and � otherwise245

246

I Definition 8 (Left-convolution of terms). The n-ary left-convolution, written ⊕t
L, takes n

terms (t1, . . . , tn) on an alphabet Σ� and returns a term ⊕t
L(t1, . . . , tn) on a convoluted alphabet

Σ⊕L = Σ�n whose elements are written
〈

f1, . . . , fn
〉

or ~f . The left-convolution of n terms is
recursively defined as:

⊕t
L(f1(~t1), . . . , fn(~tn)) =

〈
f1, . . . , fn

〉
(⊕t

L(
~t′1), . . . ,⊕t

L(
~t′k)) with

(~t′1, . . . ,~t′k
)
= ⊕L(~t1, . . . ,~tn)

T. Losekoot, T. Genet, T. Jensen 3:7

I Example 9 (Left convoluted terms). Let Σex = {Z, S, Nil, Cons}, with τ(Z) = nat, τ(S) =247

nat → nat, τ(Nil) = natlist, τ(Cons) = nat× natlist → natlist, be a typed alphabet248

for natural numbers and lists of natural numbers. Following are two examples of left249

convolution of terms.250

⊕t
L(,)S

Z

S

S

S

Z

=
〈
S, S
〉

〈
Z, S

〉
〈
�, S

〉
〈
�, Z

〉

With lex and nex as defined below,

lex = Cons lex =

Z Cons

Z Nil

nex = S nex =

S

Z

⊕t
L(lex, nex)

=〈
Cons, S

〉
〈

Z, S
〉

〈
�, Z

〉
〈
Cons,�

〉
〈

Z,�
〉 〈

Nil,�
〉

251

Note that, due to type constraints, T (Σ�) = T (Σ) ∪ {�}. The left-convolution ⊕t
L of n252

terms is an isomorphism between T (Σ�)n and T (Σ⊕L). Automata recognizing convoluted253

terms thus recognize relations on T (Σ�)n.254

I Definition 10 (Regular relation). A relation recognized by a tree automaton is said to be regular.255

The relation recognized by automaton A is R(A) = ⊕L
−1(L(A)) = {~t | ⊕L(~t) ∈ L(A)}.256

Similarly, the relation recognized by state q of A isR(A, q) = ⊕L
−1(L(A, q)).257

We impose that the type of any final state q f is τ�-free, that is, τ(q f) = (τ1, . . . , τn) with258

∀i ∈ Ji, nK, τi 6= τ�. This ensures that an automaton defines a relation between terms of259

T (Σ), i.e. terms without padding.260

I Example 11 (Convoluted automata). LetA< be the automaton with states {q, q f }, of which261

q f is final, and transitions {
〈
�, Z

〉
()→ q,

〈
�, S

〉
(q)→ q,

〈
Z, S

〉
(q)→ q f ,

〈
S, S
〉
(q f)→262

q f }. R(A<) is the < relation on Peano numbers and τ(A<) = nat× nat. For example, the263

convolution of S(Z) and S(S(S(Z))) is recognized by this automaton, as shown below.264 〈
S, S
〉

〈
Z, S

〉
〈
�, S

〉
〈
�, Z

〉

〈
S, S
〉

〈
Z, S

〉
〈
�, S

〉
q

〈
S, S
〉

〈
Z, S

〉
q

〈
S, S
〉

q f

q f〈
�, Z

〉
()→ q
−→

〈
�, S

〉
(q)→ q
−→

〈
Z, S

〉
(q)→ q f
−→

〈
S, S
〉
(q f)→ q f
−→

265

Convolutions and their expressivity266

Which relations are representable by convoluted tree automaton highly depends on the267

precise datatypes definition. For example, when using the left-convolution, the Len relation268

can only be represented if the Cons constructor had its arguments swapped. This is because269

left-convoluting a list l and a natural number n will relate n with the left-most branch of l.270

Instead of modifying constructors, we can define other convolutions. The right convolution,271

written ⊕R, is defined similarly to ⊕L but adds padding to the left of terms instead of272

to the right. This right convolution is effective for proving properties relating lists and273

unary natural numbers. Finally, we define the complete convolution, written ⊕C, which is274

more expressive than both the left and the right convolution. This complete convolution275

relates every combination of tuple’s element, which results in overlaying every same-depth276

constructor when convoluting terms. The complete convolution has the advantage of not277

FSCD 2023

3:8 Automata-based verification of relational properties of functions over data structures

depending on the constructor argument’s order and being able to duplicate terms, but the278

drawback of generating big convoluted terms. Both convolution are extended to terms in279

the same way ⊕L was.280

I Example 12.281

On the left is depicted the right con-
volution of lex and nex (of example
11), and on the right their complete
convolution. Note how nex’s con-
structors have been duplicated in
the complete convolution.

⊕t
R(lex, nex)

=〈
Cons, S

〉
〈

Z,�
〉 〈

Cons, S
〉

〈
Z,�

〉 〈
Nil, Z

〉

⊕t
C(lex, nex)

=〈
Cons, S

〉
〈

Z, S
〉

〈
�, Z

〉
〈
Cons, S

〉
〈

Z, Z
〉 〈

Nil, Z
〉

282

Since definitions of this paper hold for any convolution, we write© for any of ⊕L, ⊕R, or283

⊕C.284

4 Functional programs and their logical representation285

Regular models of functional programs286

We consider first-order monomorphic functional programs. Such programs define a set of287

functions of the form f : τ1 → . . .→ τn and of the form f : τ1 → . . .→ τn → bool, with each288

τi being an algebraic datatype. Each of these can be viewed as a relation on τ1 × . . .× τn.289

Formally, these relations constitute a (relational) first-order structure on L, with L being the290

signature (the set of relation symbols together with their type). In our setting, the structures291

are typed, i.e. a relation R of type τ(R) = τ1 × . . .× τn only relates terms t1, . . . , tn satisfying292

∀i ∈ J1, nK, τ(ti) = τi.293

IDefinition 13 (Regular model). A regular model is a functionMmapping each relation symbol294

R ∈ L to an automaton AR.M denotes SM, the L-structure where every R ∈ L is interpreted as295

R(AR). We naturally extend first-order semantic judgement to writeM |= ϕ for SM |= ϕ.296

Regular models are close in essence to automatic structures. Automatic structures [10, 14, 15]297

are a kind of recursive structures [13], which are part of the study of finite representation of298

structures. Automatic structures have been studied for their decidable first-order theory. We299

shall use tree automata to represent first-order structures that model functional programs.300

This allows us to use specific and efficient methods for property checking.301

We use Constrained Horn Clauses (CHCs) [2] as representation of our programs. CHCs302

are first-order Horn clauses with additional constraints from a theory T (see example in the303

Introduction). A CHC on a signature L is a closed formula of the form ∀~x, ψ(~x) ∧ R1(~x1) ∧304

. . . ∧ Rn(~xn) ⇒ R0(~x0), where ∀i ∈ J0, nK, Ri ∈ L. The formula ψ(~x) adds theory-related305

constraints. The semantic judgement S |= ϕ is standard first-order logic (modulo theory306

T). We usually leave out the universal quantifiers in front of CHCs: every variable in a307

formula is implicitly universally quantified. In our setting, we use the theory of inductive308

datatypes [1] over an alphabet Σ, which means that the value of variables are within T (Σ)309

and constraints are of the form x = f (~y), where f ∈ Σ, x is a variable and ~y is a tuple310

of variables. For simplicity, we sometimes write R(t) for x = t ∧ R(x). A ground CHC is311

one that has no variables or, in our context, where every variable’s value is completely312

determined by datatypes constraints (for example, x = Nil ⇒ R(x) is considered ground).313

T. Losekoot, T. Genet, T. Jensen 3:9

Our encoding of functional programs into clauses prevents us from using Horn clauses314

in the translation of the if-then-else construct. For example, the simple translation of let315

f x = if p x then e else e ' yields the two clauses {P(x) ⇒ F(x, e), ¬P(x) ⇒ F(x, e′)}. We316

therefore use non-Horn constrained clauses for modeling such functions. In the following,317

we handle a negated literal in the body as a positive head, in disjunction with the other318

heads. Other work [20] models similar programs with Horn clauses by reifying the truth of319

a predicate in the terms as its last argument, allowing to negate it in the body of a clause.320

Both ways of treating negation seems viable for our purpose but we have only experimented321

with the first one.322

5 Model-checking of regular structures323

In this section, we present the procedure for checking the truth of a given CHC ϕ in a324

model M, i.e., check if M |= ϕ. This model-checking fulfills the teacher role of the ICE325

model inference procedure (See sections 2 and 7). This procedure is devised as a counter-326

example search. A counter-example is a ground instantiation of each variable of ϕ, written327

as a ground substitution σ, that disprovesM |= ϕ. This procedure either returns None328

ifM |= ϕ, and otherwise Some(σ), with σ a counter-example. However, this problem is329

undecidable in general, as showed in [18]. Therefore the procedure given here is correct but330

incomplete, that is, it may diverge.331

The model checking problem can be seen as a type checking procedure where typing332

rules correspond to rules of automata.333

I Definition 14 (Type checking instance). A typing obligation ω = [
〈

x1, . . . , xn
〉

: (A, q)]334

is the data of a tuple
〈

x1, . . . , xn
〉
, with each xi being a variable or �, and of a target type (A, q).335

A typing problem (E, Ω) is a set of typing obligations Ω together with a set of constraints E,336

each of the form x = f (~y) with f a symbol of Σ. A solution for a typing problem is a substitution337

σ : X → T (Σ) that satisfies every typing obligation and constraint:338

σ |= (E, Ω)
.
= σ |= Ω ∧ σ |= E with

σ |= Ω .
=
(
∀[~x : (A, q)] ∈ Ω, σ(~x) ∈ R(A, q)

)
and

σ |= E .
=
(
∀(x = f (~y)) ∈ E, σ(x) = f (σ(~y))

)
I Definition 15 (Coherence of a constraint set). A set of constraints E is said to be coherent if it339

admits a syntactic unifier. The most general unifier (MGU) of a coherent set E is written σE.340

Note that, given a typing problem (E, Ω) with a coherent E, any σ such that σ |= (E, Ω)341

is equivalent to a σ′ such that σE; σ′ |= Ω (by characterisation of the MGU).342

I Definition 16 (Model checking as type checking).343

Let some CHC formula ϕ = ψ(~x) ∧ R1(~x1) ∧ . . . ∧ Rn(~xn)⇒ R0(~x0) and modelM.344

The set of typing problems associated to ϕ andM is tp(ϕ,M) = {(ψ(~x), Ω) | Ω ∈ Ωs} with345

Ωs =
{
{[~x1 : (A1, q1)], . . . , [~xn : (An, qn)], [~x0 : (A0, q0)]} |346

A1 =M(R1) ∧ . . . ∧An =M(Rn) ∧A0 =M(R0) ∧ ∀i ∈ J0, nK, qi ∈ Q f (Ai)
}

347
348

The set of solutions σ to tp(M, ϕ) is the same as the set of counter-examples toM |= ϕ. In-349

tuitively, for such a counter-example to exist, it should validate the atoms R1(~x1), . . . , Rn(~xn)350

(i.e. be recognized byM(R1) . . . ,M(Rn)) and invalidate the atom R0(~x0) (i.e. be recognized351

byM(R0)).352

FSCD 2023

3:10 Automata-based verification of relational properties of functions over data structures

I Theorem 17 (Model checking as type checking).353

For each modelM and CHC property ϕ, M 6|= ϕ ⇐⇒ ∃σ, ∃(E, Ω) ∈ tp(M, ϕ), σ |=354

(E, Ω).355

I Example 18 (Model checking a property). Let ϕ be Len(l, n) ⇒ Even(n), a formula356

stating that all lists are of even length. LetM = {Len 7→ ALen, Even 7→ AEven} where357

ALen and AEven respectively define the length relation on integer lists and the even pre-358

dicate of integers. ALen has states {q f , q}, final states {q f }, and rules {(A) :
〈

Z,�
〉
() →359

q, (B) :
〈
S,�

〉
(q) → q, (C) :

〈
Cons, S

〉
(q, q f) → q f , (D) :

〈
Nil, Z

〉
() → q f }. AEven360

has states {qe, qo}, final states {qe}, and rules {(1) :
〈

Z
〉
() → qe, (2) :

〈
S
〉
(qo) →361

qe, (3) :
〈
S
〉
(qe)→ qo}.362

To check whetherM 6|= ϕ, we first translate (M, ϕ) into a typing problem instance. Note363

that Even appears in the head of the property ϕ, therefore we will need to complement364

AEven. We write its complement AOdd, which is the same automaton but with final states365

{qo}.366

tp(M, ϕ) =
{
(E0, Ω0)

}
with E0 = ∅ and Ω0 =

{
[
〈
l, n
〉

: (ALen, q f)], [
〈
n
〉

: (AOdd, qo)]
}

367

In this case, tp(M, ϕ) only contains one element (as each automaton only has one final368

state), thereforeM 6|= ϕ ⇐⇒ ∃σ, σ |= (∅, Ω0).369

5.1 Proof system370

A proof obligation is the assertion that some typing problem (E, Ω) admits a solution, which371

is written as ` (E, Ω). We first define the unfolding of typing obligations and then the proof372

system. Any solution for a typing obligation ω = [
〈

x1, . . . , xn
〉

: (A, q)] can be found by373

following transitions of the automaton A. A transition
〈

f1, . . . , fn
〉
(q1, . . . , qk) → q of A374

(note that q is the same between the typing obligation and the rule’s goal state) can act as a375

typing rule whose application generates k new typing obligations (one for each sub-state qj376

of the rule) and n new algebraic datatype constraints, the ith stating that variable xi is of the377

form fi(~xi) with ~xi some fresh variables. We formally define this step as unfolding a typing378

obligation.379

I Definition 19 (Unfolding a typing obligation).380

un f old([
〈

x1, . . . , xn
〉

: (A, q)]) = {
(
Er, Ωr

)
| r ∈ ∆(A) ∧ r =

〈
f1, . . . , fn

〉
(q1, . . . , qk) → q}381

with Er = {xi = fi(~xi) | i ∈ J1, nK} and Ωr = {[©(~x1, . . . ,~xn)[j] : (A, qj)] | j ∈ J1, kK} where382

∀i ∈ J1, nK, ~xi are fresh variables.383

I Example 20 (Unfolding). Continuing with Example 18, we set ω1 = [
〈
l, n
〉

: (ALen, q f)]384

and ω0 = [
〈
n
〉

: (AOdd, qo)]. Now, ω0 can be unfolded by rules {(3)} and ω1 by {(C), (D)}.385

un f old(ω0) = {
(
E(3), Ω(3)

)
} with E(3) = {n = S(m)} and Ω(3) = [

〈
m
〉

: (AOdd, qe)].386

un f old(ω1) = {
(
E(D), Ω(D)

)
,
(
E(C), Ω(C)

)
} with387

E(D) = {l = Nil, n = Z}, Ω(D) = ∅,388

E(C) = {l = Cons(l1, l2), n = S(n1)},389

Ω(C) = {[
〈
l1,�

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, q f)]}.390

391

We define the unfolding of a set of typing obligations as the (combination of) unfolding of392

each typing obligation at the same time, that is the application of one rule of the automaton393

to each typing obligation.394

T. Losekoot, T. Genet, T. Jensen 3:11

I Definition 21 (Unfolding a typing problem).

un f olds(Ω) = {(
⋃

ω∈Ω

Eω,
⋃

ω∈Ω

Ωω,) | ∀ω ∈ Ω, (Eω, Ωω) ∈ un f old(ω)}

I Example 22. un f olds({ω0, ω1}) =
{
(E(3) ∪ E(D), Ω(3) ∪ Ω(D)), (E(3) ∪ E(C), Ω(3) ∪395

Ω(C))
}

396

Finally, the proof system on typing problems consists of two deduction rules. The rule397

CONCLUDE concludes a proof when no typing obligation are left and when the algebraic398

datatype constraints are consistent. The rule STEP applies unfolding of typing problems399

using rules of the tree automaton.400

I Definition 23 (Proof system). Our proof system contains two rules.401

CONCLUDE
` (E, ∅)

STEP
` (E ∪ E′, Ω′)

` (E, Ω)402

if Coherent(E) if Coherent(E ∪ E′) and (E′, Ω′) ∈ un f olds(Ω)403
404

I Example 24. Continuing example 20, we build a proof tree of ` (E0, Ω0). Rule CON-405

CLUDE cannot be immediately applied, so let us consider STEP, and thus un f olds(Ω0).406

Its element (E(3) ∪ E(D), Ω(3) ∪ Ω(D)) can be discarded because E(3) ∪ E(D) is con-407

tradictory, as both constraints n = Z and n = S(m) are present. Its other element,408

(E(3) ∪ E(C), Ω(3) ∪Ω(C)), is coherent, so we can apply the STEP rule. We write it (E1, Ω1)409

where E1 = {l = Cons(l1, l2), n = S(n1), n = S(m)} and Ω1 is the set of typing oblig-410

ations Ω1 = {[
〈
l1,�

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, q f)], [

〈
m
〉

: (AOdd, qe)]}. We now411

have the new typing problem (E0 ∪ E1, Ω1). Rule CONCLUDE still cannot be applied. Then,412

un f olds(Ω1) has 8 elements, only 4 of which are coherent. Its four coherent element can be413

seen as two times the almost-same two elements, the only difference being which rule has414

been applied to [
〈
l1,�

〉
: (ALen, qn)]. For this example, we only show the two elements that415

used rule (A), (E2, Ω2) and (E′2, Ω′2) with416

E2 = {l1 = Z, l2 = Nil, n1 = Z, m = Z}, Ω2 = ∅,417

E′2 = {l1 = Z, l2 = Cons(l21, l22), n1 = S(n11), m = S(m1)},418

Ω′2 = {[
〈
l21,�

〉
: (ALen, qn)], [

〈
l22, n11

〉
: (ALen, q f)], [

〈
m1
〉

: (AOdd, qo)]}419
420

Constraints E1 ∪ E2 are coherent and Ω2 is empty, so rule
CONCLUDE can be applied and a solution can be built from
E0 ∪ E1 ∪ E2, that is {n 7→ S(Z), l 7→ Cons(Z, Nil)}. The final
proof tree is depicted on the right. For now, every proof tree is
a single line. This will no longer be true with the introduction
of the rule SPLIT in section 6.

STEP

STEP

CONCLUDE
` (E1 ∪ E2, ∅)

` (E1, Ω1)

` (∅, Ω0)
421

I Definition 25 (Heights). We define a useful metric for proofs, the height:422

- The height of a term t = f (t1, . . . , tn) is inductively defined as h(t) = 1 + maxi∈J1,nK(h(ti)).423

- The height of a ground formula ϕ, written h(ϕ), is defined as the height of the highest term424

occurring in it.425

- The height of a substitution σ together with a typing obligation ω = [
〈

x1, . . . , xn
〉

: (A, q)] is426

defined as h(σ, ω) = maxi∈J1,nK(h(σ(xi))).427

FSCD 2023

3:12 Automata-based verification of relational properties of functions over data structures

- The height of a substitution with a set of typing obligations is h(σ, Ω) = maxω∈Ω(h(σ, ω)).428

- The height of a proof tree T, written h(T), is defined as the maximal number of occurrences of the429

STEP rule on a branch.430

I Theorem 26 (Proof system is correct and complete).431

We have ∀(E, Ω),
(
∃σ, σ |= (E, Ω)

)
⇐⇒ ` (E, Ω). More precisely, for any (E, Ω) and432

n ∈N,433

(A) For any proof tree T of ` (E, Ω) with h(T) = n, there exists a substitution σ such that434

σ |= (E, Ω) and h(σ, Ω) = n.435

(B) For any substitution σ such that σ |= (E, Ω) and h(σ, Ω) = n, there exists a proof tree T of436

` (E, Ω) such that h(T) = n.437

The proof can be found in Appendix A.438

I Corollary 27 (Smallest counter-example). By theorem 26, a breadth-first exploration of proof439

trees for a given typing problem (E, Ω) admitting a solution yields a solution of minimal height,440

that is, a substitution σ that has the minimal value h(σ, Ω).441

6 Proof search procedure442

The search of a proof or the certainty of the absence of proof is implemented as a breadth-first443

exploration of the above-defined proof trees. This problem is undecidable in general [18],444

thus this procedure either finds a solution to the typing problem (i.e. a counter-example to445

M |= ϕ) or tries every possibility and finds no counter-example (meaning thatM |= ϕ),446

or diverges. We present two sound optimizations which significantly improve the proving447

and disproving power of the proof search procedure. Using those optimizations makes this448

procedure usable and efficient in practice (see experiments in Section 9).449

The first optimisation consists in splitting independent typing obligations when they do not450

depend on each other.451

I Definition 28 (Independence). Let (E, Ω) be a typing problem with E coherent. Ωa ⊆ Ω and
Ωb ⊆ Ω are said independent w.r.t. E, written Ωa ‖E Ωb, when

∀σa, σb, [σE; σa |= Ωa ∧σE; σb |= Ωb]⇒ [∀x ∈ Vars(σE(Ωa))∩Vars(σE(Ωb)), σa(x) = σb(x)]

Therefore, any two solutions σ′a of (E, Ωa) and σ′b of (E, Ωb) with Ωa ‖E Ω can first452

be factorized by σE by letting σa and σb such that σ′a = σE; σa and σ′b = σE; σb and then453

joined into σab = σa ∪ σb, and we have σE; σab |= (E, Ωa ∪ Ωb). Finding a most precise454

partitioning of (E, Ω) into independent sub-problems is hard, as it may require to examine455

the shape of automata. We define below a safe and easy-to-compute approximation of these456

independence classes that splits typing obligations whose variables cannot be related even457

using the equalities of E.458

I Definition 29 (Splitting). Let E be a set of constraints. Let VE([~x : (A, q)]) .
= Vars(σE(~x)).459

The set VE([~x : (A, q)]) is the set of variables remaining in a typing obligation after application460

of the most general unifier σE of E. Note how (A, q) has not been used. We define DE ⊆ Ω×Ω461

as DE(ω1, ω2)
.
= (VE(ω1) ∩ VE(ω2) 6= ∅). Since DE is symmetric, its reflexive and transitive462

closure D∗E is an equivalence relation. We define the function Split(E, Ω) to return the equivalence463

classes of D∗E defined on Ω.464

I Lemma 30. ∀Ω1, Ω2 ∈ Split(E, Ω), Ω1 ‖E Ω2.465

T. Losekoot, T. Genet, T. Jensen 3:13

Proof. For any Ω1, Ω2 ∈ Split(E, Ω), Vars(σE(Ω1)) ∩Vars(σE(Ω2)) = ∅. Therefore Ω1 ‖E
466

Ω2. J467

This separation into independent problems makes the search less combinatorial and give468

rise to a new rule for our typing system:469

SPLIT
` (E, Ω1) . . . ` (E, Ωn)

` (E, Ω) with {Ω1, . . . , Ωn} = Split(E, Ω)

I Example 31 (Splitting (E1, Ω1)). In example 24, we had E1 = {l = Cons(l1, l2), n =470

S(n1), n = S(m)} and Ω1 = {ω1, ω2, ω3} with ω1 = [
〈
l1,�

〉
: (ALen, qn)], with ω2 =471

[
〈
l2, n1

〉
: (ALen, q f)], and ω3 = [

〈
m
〉

: (AOdd, qe)]. We have σE1 = {l 7→ Cons(l1, l2), n 7→472

S(n′), n1 7→ n′, m 7→ n′}, VE1(ω1) = {l1}, VE1(ω2) = {l2, n′}, and VE1(ω3) = {n′}.473

Therefore Split(E1, Ω1) =
{
{ω1}, {ω2, ω3}

}
.474

Solving ω1 have no impact on the solving of ω2 and ω3 because the values that l1 can take475

do not influence the values that l2, n1, or m2 can take. On the other hand, because of E1,476

m and n1 must take the same value, and therefore typing obligations ω2 and ω3 cannot be477

separated. Note that applying this SPLIT rule before the second STEP (of example 24) would478

have separated (E1, Ω1) into two independent problems.479

The second optimisation consists in pruning the search tree. The search space is, for almost480

all typing problems, infinite. Without pruning, it would be impossible to cover the whole481

search space, and therefore negative instances would (almost) all never terminate. Pruning482

the search tree allows, in some cases, to finitely ensure that no typing proof exists.483

I Definition 32 (Pruning). Let T be a proof tree. A node ` (Eb, Ωb) that appears in the sub-tree484

of T whose root is some other node ` (Ea, Ωa) is prunable when both485

(i) At least one STEP rule is used on the path between ` (Ea, Ωa) and ` (Eb, Ωb) ;486

(ii) ∃σ, σ(σEa(Ωa)) ⊆ σEb(Ωb).487

I Theorem 33 (Safety of pruning). For any proof tree that contains a prunable node, there exist a488

strictly smaller (w.r.t the total number of times the STEP rule is used) proof tree with the same root.489

The idea of pruning a proof T
is to replace the orange proof
sub-tree of ` (Ea, Ωa) with the
purple proof tree of ` (Eb, Ωb)
(with minor modifications).

Step

490

Proof. Let T be a prunable tree, that is such that there exists nodes ` (Ea, Ωa) and ` (Eb, Ωb)491

with respective proof trees Ta and Tb, with Tb a sub-tree of Ta with a STEP rule between492

` (Ea, Ωa) and ` (Eb, Ωb), and σ a substitution such that σ(σEa(Ωa)) ⊆ σEb(Ωb).493

By theorem 26(A) there exists a substitution σb with σb |= (Eb, Ωb) and h(σb, Ωb) = h(Tb).494

Because σEb is the most general unifier of Eb and σb |= Eb, there exists σ′ such that σb = σEb ; σ′.495

Therefore the substitution σa = σEa ; σ; σ′ is such that σa(Ωa) ⊆ σb(Ωb). Because σb |= Ωb, we496

also have σa |= Ωa. Because σa first applies σEa , we have σa |= Ea. Therefore σa |= (Ea, Ωa).497

Finally, again because σa(Ωa) ⊆ σb(Ωb), we have h(σa, Ωa) ≤ h(σb, Ωb). By applying498

theorem 26(B) there exists a proof T′a of ` (Ea, Ωa) with h(T′a) = h(σa, Ωa) ≤ h(σb, Ωb) =499

h(Tb).500

Therefore, the proof tree T whose sub-tree Ta has been replaced by T′a is valid and smaller.501

Besides, we know that the sub-tree T′a is strictly smaller than Ta because Ta contains at least502

FSCD 2023

3:14 Automata-based verification of relational properties of functions over data structures

one application of the STEP rule between its root and Tb. Therefore, this transformation503

strictly decreases the size of the proof tree. J504

I Corollary 34. By induction, if there exists a proof tree T of some initial typing problem, then505

there exists one without any prunable node along the proof tree, and therefore abandoning the search506

of prunable branches is safe.507

I Example 35 (Pruning of the search tree). During the second STEP application of example 24,508

the typing problem (E′2, Ω′2) is also in un f olds(Ω1). This was no problem, as the algorithm509

found a solution and stopped. Now, if (for example) automaton ALen did not have rule510

(D), then there would be no solution to the initial typing problem (E0, Ω0). The search511

would never stop, as, after a bit of unification and renaming, (E0, Ω0) can be included in512

(E1 ∪ E′2, Ω′2). Without pruning, the typing algorithm could therefore loop forever instead of513

returning None. Fortunately, (E1 ∪ E′2, Ω′2) can be pruned by taking σ = {l 7→ l22, n 7→ n11},514

as σ(σ0(Ω0)) ⊆ σ2(Ω′2) (with σ0 and σ2 being most general unifiers of E0 and E0 ∪ E1 ∪ E′2,515

respectively).516

7 Regular structure inference517

This section presents a procedure for inferring a regular model of a set of CHCs. The input518

set of CHCs we later use the procedure for is C = Γ ∪ Γ′, with Γ defining a program and519

Γ′ the desired properties. The procedure follows the Implication Counter-Example (ICE)520

framework [8]. In this framework, the task of inferring a correct model is divided between521

two entities (or procedures), a learner and a teacher, working iteratively. There are three522

possible outcomes for this procedure: either the learner finds a correct model (that the523

teacher validates), the learner finds a contradiction, or the procedure loops forever with524

more and more refined models.525

The teacher’s procedure takes as input a modelM and a CHC system C, and returns an526

optional ground Horn clause. It returns None ifM |= C, and Some(σ(ϕ)) ifM 6|= ϕ with527

counter-example σ for some ϕ ∈ C. With the model checking procedure already defined,528

a teacher’s implementation is only a matter of selecting an order in which to check the529

formulas. For example, taking as input the problem of example 18, the output would be530

Len(Cons(Z, Nil), S(Z))⇒ Even(S(Z)).531

The learner’s procedure is responsible for inferring a model from examples or finding532

a contradiction. It takes as input a finite set C of ground CHCs and returns None if C is533

contradictory and Some(M) otherwise, withM being a smallest model (in the number of534

states) satisfying C. This procedure is divided into two steps, which are the main subject of535

this section, the working model generation and the working model generalisation.536

IDefinition 36 (Working model generation). The working modelW of a given finite set of ground537

CHCs C is the smallest model (up to state renaming) recognizing exactly the terms mentioned in C538

in a different state for each. That is, for any atom R(~t) of any ϕ ∈ C, there exists a state q inW(R)539

such thatR(W(R), q) = {~t}.540

This working model construction is carried out by classical automaton algorithms [6]. The541

modelW can then be generalised by merging states and deciding which equivalence classes542

are to be considered as final states. Merging states leads to additional terms being recognized543

and makes regularity appear. We search for a merging that minimises the number of states544

ofW while ensuring that the resulting model satisfies C.545

T. Losekoot, T. Genet, T. Jensen 3:15

IDefinition 37 (State merging problem). The minimisation problem we define is on the first-order546

(functional) signature S = {cq | A ∈ dom(W)∧ q ∈ Q(A)} ∪ {Final} containing only constants,547

one for each state of every automaton in W , and one unary predicate Final. The constraints are548

Cok ∪ C f . The set Cok represents essential constraints: (i) merged states must belong to the same549

automaton ; (ii) merged states must be of the same type ; (iii) any final state must be of its automaton’s550

type. The set C f forces states to be or not to be final, which also have an impact on which states to551

merge. It is defined from C by transforming every clause ϕ = R1(~t1) ∧ . . . ∧ Rn(~tn) ⇒ R0(~t0)552

into ϕq = Final(cq1) ∧ . . . ∧ Final(cqn)⇒ Final(cq0), with each qi being the state ofW(Ri) that553

recognizes exactly~ti. Recall that we use non-Horn clauses, so the head of ϕ could be empty or contain554

multiple predicates.555

A minimal solution J·K to the state merging problem can be computed by a finite model556

finder. We write JFinalK for the set of final states of the solution and JcqK for the equivalence557

class of constant cq.558

I Definition 38 (Generalisation of working model). Given a solution J·K to the state merging559

problem, we generalise the working modelW byM withM(R) = (Q, Q f , ∆) with Q = {JcqK |560

q ∈ Q(W(R))}, Q f = Q ∩ JFinalK and ∆ = {~f (Jcq1K, . . . , JcqnK) → Jcq0K | ~f (q1, . . . , qn) →561

q0 ∈ ∆(W(R))}.562

I Example 39 (Learner: Model generation). We observe the ICE procedure after learner and563

teacher already had two exchanges to learn the Len relation defined in Section 2. The learner564

has accumulated the constraints {Len(Nil, Z), Len(Nil, Z)⇒ Len(Cons(Z, Nil), S(Z))}.565

The generated working model isW = {Len 7→ A} with A = (Q, Q f , ∆), Q = {ql0 , ql1 , qn},566

Q f = ∅, and ∆ = {
〈

Nil, Z
〉
() → ql0 ;

〈
Cons, S

〉
(qn, ql0) → ql1 ;

〈
Z,�

〉
() → qn}. We have567

R(A, ql0) = {(Nil, Z)}, R(A, qn) = {(Z,�)}, and R(A, ql1) = {(Cons(Z, Nil), S(Z))}.568

Note that state qn recognizes the term
〈

Z,�
〉

which does not appear in C but is necessary to569

recognize (Cons(Z, Nil), S(Z)).570

The minimisation problem is therefore on the signature with unary predicate Final and571

constant symbols cql0
, cql1

, and cqn . The constraints Cok are stating that qn cannot be merged572

with ql0 nor ql1 because they are not of the same type, and that only ql0 and ql1 can be final, as573

they are the only states of the automaton’s type, natlist× nat. The constraints C f , generated574

from C, are {Final(cql0
), Final(cql0

)⇒ Final(cql1
)}. The smallest model is a two-elements575

set {ql , qz}, with JFinalK = {ql}, Jql0K = Jql1K = ql , and JqnK = qz.576

The generalized model isM = {Len 7→ A′} with automaton A′ having states {ql , qz},577

final states {ql}, and transitions {
〈

Nil, Z
〉
()→ ql ,

〈
Cons, S

〉
(qz, ql)→ ql ,

〈
Z,�

〉
()→ qz}.578

This automaton recognizes an almost-correct relation: the set of pairs (l, n) of a list of zeros579

together with its size. The only missing rule is
〈
S,�

〉
(qz)→ qz, which will be added by the580

learner in the ICE step that follows.581

8 Approximation582

As we suppose programs to be deterministic and terminating, the CHC representation of583

a functional program has only one possible model. For many programs, this model is not584

regular and cannot be represented using convoluted tree automata. As a result, trying585

to verify a property using an exact model of the relation will fail on such programs. We586

circumvent this problem by approximating relations.587

Our verification goals are CHCs of the form ψ(~x) ∧ R1(~x1) ∧ . . . ∧ Rn(~xn) ⇒ R0(~x0).588

Given a relation R we denote by R+ (resp. R−) an over-approximation (resp. under-589

approximation) of R which can also be R itself. A safe way to prove the above implication590

FSCD 2023

3:16 Automata-based verification of relational properties of functions over data structures

using approximations is to over-approximate R1, . . . , Rn and under-approximate R0. If591

ψ(~x) ∧ R+
1 (~x1) ∧ . . . ∧ R+

n (~xn)⇒ R−0 (~x0) is true then so is the original CHC. Applying such592

a reasoning on the CHCs of the verification goal, we can infer which relations can be over593

or under-approximated. For instance, the functional program computing the sum of two594

natural numbers is represented by the relation Plus(n, m, u) associating any two natural595

numbers n and m with their sum u. This relation is not regular when using unary encoding596

of numbers. The argument for seeing this is very similar to that of {an · bn | n ∈ N} not597

being a regular string language. For the string automaton, it would require an unbounded598

counter for as in order to later exactly match their number with bs. For a convoluted599

tree automaton to recognize Plus(n, m, u), the counting is of the depth at which n and m600

root symbol stop being both S, which later needs to match the number of Ss left on u.601

However, to prove a property of the form Plus(n, m, u) ⇒ n ≤ u, we only need a regular602

over-approximation of the relation Plus, say Plus+, and an under-approximation of ≤, say603

≤−, such that Plus+(n, m, u)⇒ n ≤− u.604

In practice, we focus on over-approximation and do not under-approximate. We thus605

prove the stronger goal Plus+(n, m, u) ⇒ n ≤ u. Here are the clauses defining the Plus606

relation:607

Plus(n, Z, n). Plus(n, m, u)⇒ Plus(n, S(m), S(u)). Plus(v, w, x) ∧ Plus(v, w, y)⇒ x = y.608

These clauses form a system where the first clause invalidates under-approximations,609

the second clause can invalidate both over and under approximations, whereas the third610

only invalidates over-approximations. We can therefore obtain a safe approximation Plus+611

from Plus by simply removing the third clause. In our example, this suffices to prove612

Plus+(n, m, u)⇒ n ≤ u because the approximation Plus+ we built relates any n, m with all613

u greater than or equal to n (See the solver result for isaplanner_prop21.smt2 in http://614

people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html).615

Finally, some relations cannot be approximated. If a relation appears on both sides of616

the verification goal then it cannot be approximated. E.g., to prove Z < m ∧ Plus(n, m, u)⇒617

n < u, we can safely use Plus+. Since < occurs (positively) on the left and right-hand side618

of the implication, we could use <+ on the left-hand side and <− on the right-hand side.619

We could use different approximations for relations appearing at different positions in the620

formula. However, in our analyser, we choose to use a common approximation for any621

relation. In our example, we use the intersection between <+ and <−, which is exactly <.622

9 Implementation and Experiments623

We implemented the verification algorithm in Ocaml. It can be found on https://gitlab.624

inria.fr/tlosekoo/auto-forestation. This provides an implementation of terms, tree625

automata, model checking, model-inference procedure, as well as left, right, and complete626

convolution.627

The teacher closely follows the depth-first search of the proof system described in section628

5. There is a lot of redundancy in the proof search, so we used canonization and memoisation629

of typing problems. Memoisation avoids re-computing the unfolding of a typing problem if630

the search already did. However, memoisation alone is not very useful, as even equivalent631

typing problems are often different because of variable names. This is the reason for632

using canonization, which ensures that equivalent typing problems have the same internal633

representation. The learner delegates the merging of states to Clingo [9], a finite-model finder.634

The solver presented in this paper builds regular relations, as opposed to [11, 16, 17]635

which only build regular sets of terms. Since regular sets are a particular case of regular636

http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
https://gitlab.inria.fr/tlosekoo/auto-forestation
https://gitlab.inria.fr/tlosekoo/auto-forestation
https://gitlab.inria.fr/tlosekoo/auto-forestation

T. Losekoot, T. Genet, T. Jensen 3:17

relations, our solver should be able to handle the examples covered by those techniques,637

plus some relational problems. As a result, for the experiments, we choose some examples638

coming from benchmarks of Timbuk [11], add relational examples taken from the Isaplanner639

benchmark [4,7] and built relational problems inspired by TIP [4,5]. As shown in Section 2, a640

typical property which can be automatically proved by those non-relational solvers [11,16,17]641

is of the form ∀x l. less Z (len (Cons(x, l))) where l is any list of natural numbers.642

Non-relational solvers can also handle a restricted form of relations: the finite union of643

languages L1 × . . .×Ln where ∀i ∈ J1, nK, Li is a regular language. This allows to prove644

properties with a limited form of relation. For instance, using a non-relational regular solver,645

it is possible to prove the property ∀l1 l2. less Z (len l1)⇒ less Z (len (append l1 l2)) where646

append is the function concatenating lists and l1 and l2 are lists of a. For the tuple of variables647

(l1, l2) to cover all the possible cases, it is enough to consider the two languages Lnil ×Llists648

and LCons+ ×Llists where Lnil = {Nil} and LCons+ = Llists \ Lnil . With the first language,649

the property is true because the left-hand side of the implication is false. With the second650

language LCons+ ×Llist, both the left and right-hand side of the implication are true.651

One of the simplest problem which cannot be proved using a non-relational "regular"652

solver is ∀x y. Cons(x, y) 6= y. Proving such a property cannot be done using a finite union653

of products of regular languages. However, this property can automatically be proven using654

our relational solver. Additionally to the above examples, we highlight some relational655

properties which are automatically proven using our solver.656

- ∀(l : ablist). (len l) = (len (reverse l)) length_reverse_eq.smt2657

- ∀(l1 : ablist) (l2 : ablist). (pre f ix l1 (append l1 l2)) prefix_append.smt2658

- ∀(l : ablist). (len l) = (len (sort l)) sort_length_eq.smt2659

- ∀(i : nat)(t1 : natbintree)(t2 : natbintree). t1 6= (node i t1 t2) tree_add_not_eq.smt2660

On the following properties our solver is able to find a counter-example.661

- ∀(n : nat). n < (double n) nat_double_is_le.smt2662

- ∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2663

⇒ (count x l) = 1664

On the following properties, our solver does not terminate due to trying to represent a665

non-regular relation (ICE loops).666

- ∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2667

⇒ (count x l) ≤ 1668

- ∀(n : nat) (m : nat). n + m = m + n plus_commutative.smt2669

All of our experimental results for all convolution types are available at http://people.670

irisa.fr/Thomas.Genet/AutoForestation/. Because the properties of our database were671

mostly either on same-type relations or on lists and natural numbers, the right-convolution672

was the most efficient of convolution type. Left-convolution is not adapted for most of the673

list-based examples and complete-convolution revealed to be too costly in practice though it674

should help to prove properties on functions manipulating trees. On a total of 120 examples,675

our solver (using right-convolution) proves 66, disproves 23, and timeouts on 31 after 60s.676

Our solver succeeds on 20 out of the 79 first-order Isaplanner examples in less than 60s (and677

18 in less than 5s). Our solver reveals to be more efficient on examples where a single level678

of structure have to be compared, i.e., natural numbers, lists of arbitrary elements, etc. It is679

generally unsuccessful on examples mixing several layers of structure, e.g., lists of natural680

numbers, or on examples where a precise counting is required to prove the property. Finally,681

on examples where using a non-relational model suffices to prove the property, our solving682

FSCD 2023

http://people.irisa.fr/Thomas.Genet/AutoForestation/
http://people.irisa.fr/Thomas.Genet/AutoForestation/
http://people.irisa.fr/Thomas.Genet/AutoForestation/

3:18 Automata-based verification of relational properties of functions over data structures

technique is flexible enough to find such a model, with an efficiency comparable with683

non-relational solvers. For instance, on 11 examples coming from the Timbuk benchmarks,684

we proved 6 of them (with execution times around 2 seconds), disproved 3, and have a685

timeout on the 2 last.686

10 Related work687

Other approaches for automatically proving algebraic and relational properties also rely on688

a CHC representation. The approach of [20] and [19] aims to solve the satisfiability problem689

of Horn clauses over any underlying theory supported by an SMT solver. This approach first690

reduces this problem to validity checking of first-order formulas with inductively-defined691

predicates. It is then based on syntactic proof, together with calls to the underlying theory692

solver. They design an inductive proof system tailored to Horn constraint solving. Using693

the theory of inductive datatypes, their method can reason about, and automatically prove,694

relational and algebraic properties.695

Another approach, which is closer to ours, is that of [18]. This approach aims to check696

properties on recursive data-structure by using symbolic automatic relations, which are (al-697

most) the languages defined by symbolic synchronous automata (ss-NFA), the combination of698

symbolic automata and automatic relations. They devise a sound but (necessarily) incom-699

plete procedure for checking if a given formula admits an assignment of its free variables700

that makes it true in a given ss-NFA. This procedure corresponds to the teacher procedure,701

but for ss-NFAs. They plan to implement an ICE-based CHC solver, but have left the model702

discovery (learner section) to future work.703

By manually writing ss-NFAs, authors of [18] are able to benchmark their verification704

procedure. Our approach and theirs seems to be complementary as they succeed on different705

sets of examples. This can be observed on the IsaPlanner benchmark where our technique706

fails on most of examples that [18] handles (i.e. 4, 5, 15, 16, 29, 30, 39, 42, 50, 62, 67, 71, 86)707

and succeeds on examples on which they do not report any success (i.e. 17, 18, 21, 22, 23, 24,708

25, 26, 31, 32, 33, 34, 45, 46, 65, 69).709

In [3], the authors present an expressive formalism for representing relations between710

trees called synchronized context-free programs. This formalism is more expressive than711

convoluted tree automata presented here. In particular, it can represent languages of the712

form {(gn(a), gn(b)) | n ∈ N} (like convoluted tree automata) and also languages of the713

form { f (gn(a), gn(b)) | n ∈N} and {gn(h(gn(a))) | n ∈N} (out of the scope of convoluted714

tree automata). This formalism is used to precisely approximate the set of outputs of a715

term rewriting system. However, [3] does not show how to automatically infer such a716

representation from the term rewriting system.717

11 Conclusion and future work718

This paper demonstrates that it is possible to use tree automata as a basis for analysing719

the input-output behaviour of a first-order functional program. This shows that existing720

automata-based techniques for approximating the set of reachable states of a function can be721

extended to also compute relations between input and output of a function. Such relational722

analysis is key to scaling static analyses to larger programs, because it enables a modular,723

function-by-function analysis technique. The extension to relational analysis is based on724

the notion of tree automata convolution. We argue that the standard left-convolution can725

be complemented by other convolution techniques in order to verify more properties of726

T. Losekoot, T. Genet, T. Jensen 3:19

programs. Another technical contribution of the paper is the proof tree pruning used for727

verifying models of constrained Horn clauses. An efficient implementation of this proof728

search has been an essential part of the counter-example guided learner-teacher algorithm729

for inferring models from the CHC representation of the program to be analysed. This is730

confirmed by the benchmark used to evaluate our implementation of the verifier.731

We believe our ICE procedure to be relatively refutationally complete and relatively complete732

on regular structures. Relative means that we suppose the termination of the model-checking733

procedure to be able to study the ICE cycle. Refutationally complete means that if the set of734

clauses C given to the ICE procedure is contradictory, then the procedure eventually finds735

a contradiction and stops. Complete on regular structures means that if the set of clauses C736

given to the ICE procedure admits a regular model, then the procedure eventually finds a737

model of C. This has to be investigated further.738

Fixing the convolution to be the either left or right convolution is however insufficient for739

proving non-trivial properties that would need a different overlay of terms, for example the740

height function on trees. Complete convolution can theoretically overcome this restriction741

but, as confirmed by our benchmarks, the size explosion of convoluted term makes it742

unusable in practice. We believe the convolution can and should be non-static, that is, being743

inferred together with the model.744

Moreover, unlike the convolutions presented in this paper, we think that convolution745

could be lossy. For instance, if a subterm in a relation is not useful to prove a property, we746

think that we can forget about it in the convolution. Later on, if a new ground counter-747

example comes to the learner showing that the subterm was, in fact, necessary to prove the748

property then the convolution needs to be extended for that purpose.749

References750

1 Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure for a theory751

of inductive data types. Journal on Satisfiability, Boolean Modeling and Computation, 3(1-2):21–46,752

2007.753

2 Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. Horn clause solvers754

for program verification. In Fields of Logic and Computation II, pages 24–51. Springer, 2015.755

3 Yohan Boichut, Jacques Chabin, and Pierre Réty. Towards more precise rewriting approximations.756

J. Comput. Syst. Sci., 104:131–148, 2019.757

4 Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Tip and isaplanner758

benchmarks, 2015. https://tip-org.github.io/.759

5 Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Tip: tons of inductive760

problems. In International Conference on Intelligent Computer Mathematics, pages 333–337. Springer,761

2015.762

6 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof763

Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. 2008. URL:764

https://hal.inria.fr/hal-03367725.765

7 Lucas Dixon and Jacques Fleuriot. Isaplanner: A prototype proof planner in isabelle. In CADE’03,766

volume 2741, pages 279–283. Springer, 2003.767

8 Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. Ice: A robust framework768

for learning invariants. In International Conference on Computer Aided Verification, pages 69–87.769

Springer, 2014.770

9 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving771

in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &772

Claypool Publishers, 2012.773

10 Erich Grädel. Automatic structures: twenty years later. In Proceedings of the 35th Annual774

ACM/IEEE Symposium on Logic in Computer Science, pages 21–34, 2020.775

FSCD 2023

https://tip-org.github.io/
https://hal.inria.fr/hal-03367725

3:20 Automata-based verification of relational properties of functions over data structures

11 Timothée Haudebourg, Thomas Genet, and Thomas Jensen. Regular Language Type Inference776

with Term Rewriting. Proceedings of the ACM on Programming Languages, 4(ICFP):1–29, 2020.777

12 Timothée Haudebourg. Automatic Verification of Higher-Order Functional Programs using Regular778

Tree Languages. PhD thesis, Univ. Rennes1, 2020.779

13 Tirza Hirst and David Harel. More about recursive structures: Descriptive complexity and780

zero-one laws. In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pages781

334–347. IEEE, 1996.782

14 R Hodgson Bernard. Théories décidables par automate fini (Decidable theories via finite automata).783

PhD thesis, Ph.D. thesis Département de Mathématiques et de Statistique, Université de . . . ,784

1976.785

15 Bakhadyr Khoussainov and Anil Nerode. Automatic Presentations of Structures. In International786

Workshop on Logic and Computational Complexity, pages 367–392. Springer, 1994.787

16 Yurii Kostyukov, Dmitry Mordvinov, and Grigory Fedyukovich. Beyond the elementary rep-788

resentations of program invariants over algebraic data types. In Stephen N. Freund and Eran789

Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language790

Design and Implementation, Virtual Event, Canada, June 20-25, 2021, pages 451–465. ACM, 2021.791

17 Yuma Matsumoto, Naoki Kobayashi, and Hiroshi Unno. Automata-based abstraction for auto-792

mated verification of higher-order tree-processing programs. In Asian Symposium on Programming793

Languages and Systems, pages 295–312. Springer, 2015.794

18 Takumi Shimoda, Naoki Kobayashi, Ken Sakayori, and Ryosuke Sato. Symbolic automatic795

relations and their applications to SMT and CHC solving. In International Static Analysis796

Symposium, pages 405–428. Springer, 2021.797

19 Takeshi Tsukada and Hiroshi Unno. Software model-checking as cyclic-proof search. Proceedings798

of the ACM on Programming Languages, 6(POPL):1–29, 2022.799

20 Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. Automating induction for solving horn clauses.800

In International Conference on Computer Aided Verification, pages 571–591. Springer, 2017.801

A Appendix802

Proof of theorem 26803

Proof of A. Let suppose that T proves ` (E, Ω) and h(T) = n. Let us proceed by induction804

on the last rule used in T.805

- case CONCLUDE:806

By hypothesis, we have that T is of the form
` (E, ∅)

with Coherent(E), and therefore n =807

0. Take σ = σE a most general unifier of E, which is well-defined, as E is coherent. We have:808

(i) σ |= E is immediate, as σ unifies E; (ii) σ |= Ω is trivial, as Ω = ∅; (iii) h(Ω, σ) = 0 = n,809

as Ω is empty.810

- case STEP:811

By hypothesis, we have that T is of the form
STEP

T′

` (E, Ω) with T′ of the form

. . .

` (E ∪ E′, Ω′)812

and (E′, Ω′) ∈ un f olds(Ω). By induction, we have that there exists σ′ with σ′ |= (E ∪813

E′, Ω′) and h(Ω′, σ′) = h(T′). We also know that h(T′) = n− 1. Take σ = σ′. Then:814

+ σ |= E : Immediate by σ′ |= E ∪ E′ and monotonicity of first-order logic.815

+ σ |= Ω : Let ω = [~x : (A, q)] ∈ Ω. We must prove that σ(~x) ∈ R(A, q). For this, it is816

sufficient (and necessary) to show that there exists a rule r = ~f (~q)→ q of A such that817

* ∀i ∈ J1, |~f |K, σ(xi) = fi(~yi) for some variables ~yi ;818

* ∀j ∈ J1, |~q|K, σ |= [©(~y1, . . . ,~y|~f |)[j] : (A, qj)].819

T. Losekoot, T. Genet, T. Jensen 3:21

Since (E′, Ω′) ∈ un f olds(Ω), we know that there exists such a rule r with (Er, Ωr) ∈820

un f old(ω). The first property is immediate from σ |= E′ and Er ⊆ E′ while the second821

is immediate from σ |= Ω′ and Ωr ⊆ Ω′.822

+ h(Ω, σ) = n: Because (E′, Ω′) ∈ un f olds(Ω), every variable y in Ω′ is such that823

there exists a variable x in Ω with σ(x) = f (. . . , σ(y), . . .) for some function f , that is,824

h(σ, Ω′) < h(σ, Ω). Moreover, every variable x in Ω with h(σ(x)) > 1 yields a least one825

variable y in Ω′ with h(σ(y)) = h(σ(x))− 1.826

Therefore, h(σ, Ω) = h(σ, Ω′) + 1 = h(T′) + 1 = n.827

J828

Proof of B.829

Let us build a proof tree by induction on h(Ω, σ).830

In any case, let suppose that there exists σ such that σ |= (E, Ω) and h(Ω, σ) = n. We831

then construct a proof tree T of ` (E, Ω) such that h(T) = n.832

- case h(Ω, σ) = 0: This is only possible when Ω = ∅. Take T =
CONCLUDE

` (E, Ω) . This proof833

tree T is correct, as Ω = ∅ and E is coherent (because σ |= E). Also h(T) = 0.834

- case h(Ω, σ) > 0:835

Because σ |= Ω, we have, for each ω = [
〈

x1, . . . , xn
〉

: (A, q)] ∈ Ω, that there exists an836

associated rule rω =
〈

f1, . . . , fn
〉
(q1, . . . , qk)→ q such that837

+ ∀i ∈ J1, nK, σ(xi) = fi(~ti) for some terms~ti ;838

+ ∀j ∈ J1, kK,©(~t1, . . . ,~tn)[j] ∈ R(A, qj).839

Therefore we can build three functions, Fc, Ft, Fs, which assign to each such typing840

obligation and rule the following:841

+ Fc(ω) = {x1 = f1(~x1), . . . , xn = fn(~xn)}, with ∀i ∈ J1, nK,~xi are fresh variables.842

+ Ft(ω) = {[©(~x1, . . . ,~xn)[j] : (A, qj)] | j ∈ J1, kK}843

+ Fs(ω) = {(xj
i , tj

i) | xi = fi(x1
i , . . . , xm

i) ∈ Fc(ω) ∧ j ∈ J1, mK∧ σ(xi) = f (t1
i , . . . , tm

i)}844

Let E′ =
⋃

ω∈Ω Fc(ω) and Ω′ =
⋃

ω∈Ω Ft(ω). Note that (E′, Ω′) ∈ un f olds(Ω).845

Let σ′ = σ ∪⋃ω∈Ω Fs(ω). We have:846

+ σ′ is well-defined: Any binding of σ′ which is not in σ is of the form xj
i = σ(tj

i) for847

some fresh variable xj
i . Therefore, as σ is well-defined, so is σ′.848

+ σ′ |= E ∪ E′: We have σ ⊆ σ′, therefore σ′ |= E. Any constraint of E′ is of the form849

xi = fi(~xi) with xi a variable appearing in a node ω ∈ Ω, for which we therefore have850

σ′(xi) = fi(σ
′(~xi)) = σ′(fi(~xi)) by definition of Fs(ω).851

+ σ′ |= Ω′: For any typing obligation ω′ ∈ Ω′, we have ω′ ∈ Ft(ω) for some ω ∈ Ω,852

so ω′ = [
〈

x1, . . . , xn
〉

: (A, qj)] for some x1, . . . , xn such that
〈
σ′(x1), . . . , σ′(xn)

〉
∈853

R(A, qj), by definition of Ft(ω) and Fs(ω).854

+ h(Ω′, σ′) = h(Ω, σ) − 1: For this case, let ω = argmaxω∈Ω(h(σ, ω)) and ω′ =855

argmaxω′∈Ω′(h(σ′, ω′)). By definition of Ft(ω) and Fs(ω), we have both h(σ′, Ω′) ≥856

h(σ, ω)− 1 and h(σ′, Ω′) ≤ h(σ, ω)− 1.857

By induction on σ′ |= (E ∪ E′, Ω′), we have that there exists a proof tree T′ of ` (E ∪858

E′, Ω′) such that h(T′) = h(σ′, Ω′).859

Therefore, take T =
STEP

T′

` (E, Ω)860

We have that T is a valid proof tree and that h(T) = h(T′) + 1 = h(Ω, σ).861

J862

FSCD 2023

	1 Introduction
	2 An overview of the verification procedure on an example
	3 Prerequisites
	3.1 Typed alphabet and term
	3.2 Tree automaton
	3.3 Automata recognizing a relation

	4 Functional programs and their logical representation
	5 Model-checking of regular structures
	5.1 Proof system

	6 Proof search procedure
	7 Regular structure inference
	8 Approximation
	9 Implementation and Experiments
	10 Related work
	11 Conclusion and future work
	A Appendix

