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Abstract. This paper describes a fully automatic technique for verify-
ing safety properties of higher-order functional programs. Tree automata
are used to represent sets of reachable states and functional programs
are modeled using term rewriting systems. From a tree automaton rep-
resenting the initial state, a completion algorithm iteratively computes
an automaton which over-approximates the output set of the program
to verify. We identify a subclass of higher-order functional programs for
which the completion is guaranteed to terminate. Precision and termi-
nation are obtained conjointly by a careful choice of equations between
terms. The verification objective can be used to generate sets of equations
automatically. Our experiments show that tree automata are sufficiently
expressive to prove intricate safety properties and sufficiently simple for
the verification result to be certified in Coq.

1 Introduction

Higher-order functions are an integral feature of modern programming languages
such as Java, Scala or JavaScript, not to mention Haskell and Caml. Higher-order
functions are useful for program structuring but pose a challenge when it comes
to reasoning about the correctness of programs that employ them. To this end,
the correctness-minded software engineer can opt for proving properties interac-
tively with the help of a proof assistant such as Coq [13] or Isabelle/HOL [30], or
write a specification in a formalism such as Liquid Types [31] or Bounded Refine-
ment Types [34,33] and ask an SMT solver whether it can prove the verification
conditions generated from this specification. This approach requires expertise of
the formal method used, and both the proof construction and the annotation
phase can be time consuming.

Another approach is based on fully automated verification tools, where the
proof is carried out automatically without annotations or intermediate lemmas.
This approach is accessible to a larger class of programmers but applies to a more
restricted class of program properties. The flow analysis of higher-order functions
was studied by Jones [21] who proposed to model higher-order functions as term
rewriting systems and use regular grammars to approximate the result. More
recently, the breakthrough results of Ong et al. [29] and Kobayashi [23,24,26]
show that combining abstraction with model checking techniques can be used
with success to analyse higher-order functions automatically. Their approach



relies on abstraction for computing over-approximations of the set of reachable
states, on which safety properties can then be verified.

In this paper, we pursue the goals of higher-order functional verification using
an approach based on the original term rewriting models of Jones. We present a
formal verification technique based on Tree Automata Completion (TAC) [20],
capable of checking a class of properties, called regular properties, of higher-order
programs in a fully automatic manner. In our approach, a program is represented
as a term rewriting system R and the set of (possibly infinite) inputs to this
program as a tree automaton A. The TAC algorithm computes a new automaton
A∗, by completing A with all terms reachable from A by R-rewriting. This
automaton representation of the reachable terms contains all intermediate states
as well as the final output of the program. Checking correctness properties of
the program is then reduced to checking properties of the computed automaton.
Moreover, our completion-based approach permits to certify automatically A∗
in Coq [6], i.e. given A, R and A∗, obtain the formal proof that A∗ recognizes
all terms reachable from A by R-rewriting.

Example 1. The following term rewriting system R defines the filter function
along with the two predicates even and odd on Peano’s natural numbers.

@(@(filter , p), cons(x, l))→ if @(p, x) then cons(x,@(@(filter , p), l))

else @(@(filter , p), l)

@(@(filter , p),nil)→ nil

@(even, 0)→ true @(even, s(x))→ @(odd , x)

@(odd , 0)→ false @(odd , s(x))→ @(even, x)

This function returns the input list where all elements not satisfying the input
boolean function p are filtered out. Variables are underlined and the special
symbol @ denotes function application where @(f, x) means “x applied to f ”.

We want to check that for all lists l of natural numbers, @(@(filter , odd), l) filters
out all even numbers. One way to do this is to write a higher-order predicate,
exists, and check that there exists no even number in the resulting list, i.e.
that @(@(exists, even),@(@(filter , odd), l)) always rewrites to false. Let A be the
tree automaton recognising terms of form @(@(exists, even),@(@(filter , odd), l))
where l is any list of natural numbers. The completion algorithm computes an
automaton A∗ recognising every term reachable from L(A) (the set of terms
recognised by A) using R with the definition of the exists function. Formally,

L(A∗) = R∗(L(A)) = {t | ∃s ∈ L(A), s→∗R t}

To prove the expected property, it suffices to check that true is not reachable, i.e.
true does not belong to the regular set L(A∗). We denote by regular properties
the family of properties characterised by a regular set. In particular, regular
properties do not count symbols in terms, nor relate subterm heights (a property
comparing the length of the list before and after filter is not regular)



Termination of the tree automata completion algorithm is not ensured in
general [19]. For instance, if R∗(L(A)) is not regular, it cannot be represented
as a tree automaton. In this case, the user can provide a set of equations that
will force termination by introducing an approximation based on equational ab-
straction [27]: L(A∗) ⊇ R∗(L(A)). Equations make TAC powerful enough to
verify first-order functional programs [19]. However, state-of-the-art TAC has
two short-comings. (i) Equations must be given by the user, which goes against
full automation, and (ii) even with equations, termination is not guaranteed in
the case of higher-order programs. In this paper we propose a solution to these
shortcomings with the following contributions:

– We state and prove a general termination theorem for the Tree Automata
Completion algorithm (Section 3);

– From the conditions of the theorem we characterise a class of higher-order
functional programs for which the completion algorithm terminates (Sec-
tion 4). This class covers common usage of higher-order features in functional
programming languages.

– We define an algorithm that is able to automatically generate equations for
enforcing convergence, thus avoiding any user intervention (Section 5).

All proofs missing in this paper can be found in the accompanying technical
report [17]. The paper is organised as follow: We describe the completion algo-
rithm and how to use equations to ensure termination in Section 2. The technical
contributions as described above are developed in Sections 3 to 5. In Section 6,
we present a series of experiments validating our verification technique, and dis-
cuss the certification of results in Coq. We present related work in Section 7.
Section 8 concludes the paper.

2 Background

This section introduces basic concepts used throughout the paper. We recall the
usual definitions of term rewriting systems and tree automata, and present the
completion algorithm which forms the basis of our verification technique.

2.1 Term rewriting and tree automata

Terms. An alphabet F is a finite set of symbols, with an arity function ar :
F → N. Symbols represent constructors such as nil or cons, or functions such
as filter , etc. For simplicity, we also write f ∈ Fn when f ∈ F and ar(f) = n.
For instance, cons ∈ F2 and nil ∈ F0. An alphabet F and finite set of variables
X induces a set of terms T (F ,X ) such that:

x ∈ T (F ,X )⇐ x ∈ X
f(t1, . . . , tn) ∈ T (F ,X )⇐ f ∈ Fn and t1, . . . , tn ∈ T (F ,X )

A language is a set of terms. A term t is linear if the multiplicity of each variable
in t is at most 1, and closed if it contains no variables. The set of closed terms is



written T (F). A position in a term t is a word over N pointing to a subterm of
t. Pos(t) is the set of positions in t, one for each subterm of t. It is defined by:

Pos(x) = {λ}
Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n ∧ p ∈ Pos(ti)}

where λ is the empty word and “.” in i.p is the concatenation operator. For
p ∈ Pos(t), we write t|p for the subterm of t at position p, and t[s]p for the
term t where the subterm at position p has been replaced by s. We write s � t
if t is a subterm of s and s � t if it is a subterm and s 6= t. If L ⊆ T (F),
we write L� for the language L and all its subterms. A substitution σ is an
application of X 7→ T (F ,X ), mapping variables to terms. We tacitly extend
it to the endomorphism σ : T (F ,X ) 7→ T (F ,X ) where tσ is the result of the
application of the term t to the substitution σ.

Term rewriting systems [1] provide a flexible way of defining functional
programs and their semantics. A rewriting system is a pair 〈F ,R〉, where F
is an alphabet and R a set of rewriting rules of the form l → r, where l, r ∈
T (F ,X ), l 6∈ X and Var(r) ⊆ Var(l). A TRS can be seen as a set of rules, each
of them defining one step of computation. We write R a rewriting system 〈F ,R〉
if there is no ambiguity on F . A rewriting rule l → r is said to be left-linear if
the term l is linear. Example 1 shows a TRS representing a functional program,
where each rule is left-linear. In that case we say that the TRS R is left-linear.

A rewriting system R induces a rewriting relation →R where for alls s, t ∈
T (F ,X ), s →R t if it exists a rule l → r ∈ R, a position p ∈ Pos(s) and a
substitution σ such that lσ = s|p and t = s[rσ]p. The reflexive-transitive closure
of→R is written→∗R. The rewriting system introduced in the previous example
also derives a rewriting relation →R where

@(@(filter, odd), cons(0, cons(s(0), nil)))→∗R cons(s(0), nil)

The term cons(s(0), nil) is irreducible (no rule applies to it) and hence the result
of the function call. We write IRR(R) for the set of irreducible terms of R.

Tree automata [12] are a convenient way to represent regular sets of terms.
A tree automaton is a quadruple 〈F ,Q,Qf , ∆〉 where F is an alphabet,Q a finite
set of states, Qf the set of final states, and ∆ a rewriting system on F∪Q. Rules
in ∆, called transitions, are of the form l→ q where q ∈ Q and l is either a state
(∈ Q), or a configuration of the form f(q1, . . . , qn) with f ∈ F , q1 . . . qn ∈ Q. A
term t is recognised by a state q ∈ Q if t→∗∆ q, which we also write t→∗A q. We
write L(A, q) for the language of all terms recognised by q. A term t is recognised
by A if there exists q ∈ Qf s.t. t ∈ L(A, q). In that case we write t ∈ L(A). E.g.,
the tree automaton A = 〈F ,Q,Qf , ∆〉 with F = {0 : 0, s : 1}, Qf = {qpair} and
∆ = {0 → qpair, s(qodd) → qpair, s(qpair) → qodd, nil → qlist, cons(qpair, qlist) →
qlist} recognises all lists of even natural numbers.

An ε-transition is a transition q → q′ where q ∈ Q. A tree automaton A is
ε-free if it contains no ε-transitions. A is deterministic if for all terms t there is
at most one state q such that t→∗∆ q . A is reduced if for all q there is at least
one term t such that t→∗∆ q .



2.2 Tree Automata Completion algorithm

The verification algorithm is based on tree automata completion. Given a
program represented as a rewriting system R, and its input represented as a tree
automaton A0, the tree automata completion algorithm computes a new tree
automaton A∗ recognising the set of all reachable terms starting from a term in
L(A). For a given R, we write this set R∗(L(A)) = {t | ∃s ∈ L(A), s →∗R t}.
It includes all intermediate computations and, in particular, the output of the
functional program. The algorithm proceeds by computing iterativelyA1,A2, . . .
such thatAi+1 = CR(Ai) until it reaches a fix-point,A∗. Here, CR(Ai) represents
one step of completion and is performed by searching and completing the critical
pairs of Ai.

lσ
R
//

∗Ai

��

rσ

q

⇒

lσ
R
//

Ai+1 ∗
��

rσ

Ai+1

∗nnq

Definition 1 (Critical pair). A critical pair is a triple 〈l → r, σ, q〉 where
l→ r ∈ R, σ is a substitution, and q ∈ Q such that lσ →∗Ai q and rσ 6→∗Ai q.

Completing a critical pair consists in adding the necessary transitions in Ai+1

to have rσ →∗Ai+1 q, and hence rσ ∈ L(Ai+1, q).

Example 2. Let A0 be the previously defined tree automaton recognising all
lists of even natural numbers. Let R = {s(s(x))→ s(x)}. A0 has a critical pair
〈s(s(x))→ s(x), σ, qpair〉 with σ(x) = qpair. To complete the automaton, we need
to add transition such that s(qpair) →∗A1 qpair. Since we already have the state
qodd recognising s(qpair), we only add the transition qodd → qpair. The formal
definition of the completion step, including the procedure of choosing which new
transition to introduce, can be found in [17].

Every completion step has the following property:

L(Ai) ⊆ L(Ai+1) and

s ∈ L(Ai) ⇒ s→R t ⇒ t ∈ L(Ai+1)

It implies that, if a fix-point A∗ then it recognises every term of R∗(L(A)).
However it is in general impossible to compute a tree automaton recognising
R∗(L(A)) exactly, and this may cause the completion algorithm to diverge.
Instead we shall over-approximate it by an automaton A∗ such that L(A∗) ⊇
R∗(L(A)). The approximation is performed by introducing a set E of equations
of the form l = r where l, r ∈ T (F ,X ). From E we derive the relation =E , the
smallest congruence such that for all equation l = r and substitution σ we have
lσ =E rσ. In this paper we also write ~E for the TRS {l → r | l = r ∈ E}. At
each completion step, the algorithm simplifies the automaton by merging states
together according to E.



Definition 2 (Simplification Relation). Let A = 〈F ,Q,Qf , ∆〉 be a tree
automaton and E be a set of equations. If s = t ∈ E, σ : X 7→ Q, q, q′ ∈ Q such
that sσ →∗A q, tσ →∗A q′ and q 6= q′ then A can be simplified into A′ = A{q′ 7→ q}
(where q′ has been substitued by q), denoted by A;E A′.

We write SE(A) for the unique automaton (up to renaming) A′ such that
A ;∗E A′ and A′ is irreducible by ;E . One completion step is now defined by
Ai+1 = SE(CR(Ai)).
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Example 3. This example shows how using equations can lead to approximations
in tree automata. Let A be the tree automaton defined by the set of transitions
∆ = {0→ q0, s(q0)→ q1}. This automaton recognises the two terms 0 in q0 and
s(0) (also known as 1) in q1. Let E = {s(x) = x} containing the equation that
equates a number and its successor. For σ = {x 7→ 0} we have s(x)σ →A q1,
xσ →A q0 and s(x)σ =E xσ. Then in SE(A), q0 and q1 are merged. The resulting
automaton has transitions {0→ q0, s(q0)→ q0}, which recognises N in q0.

The idea behind the simplification is to overapproximate R∗(L(A)) when it is
not regular. It has been shown in [19] that it is possible to tune the precision
of the approximation. For a given TRS R, initial state automaton A and set
of equations E, the termination of the completion algorithm is undecidable in
general, even with the use of equations. Our contribution in this paper consists
in finding a class of TRS/programs and equations E for which the completion
algorithm with equations terminates.

3 Termination of Tree Automata Completion

In this section, we show that termination of the completion algorithm with a
set of equations E is ensured under the following conditions: if (i) Ak is re-
duced ε-free and deterministic (written REFD in the rest of the paper) for
all k; (ii) every term of Ak can be rewritten into a term of a given language
L ⊆ T (F) using R (for instance if R is terminating); (iii) L has a finite number
of equivalence classes w.r.t E. Completion is known to preserve 6 ε-reduceness
and 6 ε-determinism if E ⊇ Er ∪ ER [19] where ER = {s = t | s → t ∈ R}
and Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ Fn}. Condition (i) is ensured
by showing that, in our verification setting, completion preserve REFD. The
last condition is ensured by having E ⊇ EcL where EcL is a set of contracting
equations.

Definition 3 (Contracting Equations). Let L ⊆ T (F). A set of equations is
contracting for L, denoted by EcL, if all equations of E

c
L are of the form u = u|p



with u a linear term of T (F ,X ), p 6= λ and if the set of normal forms of L w.r.t
the TRS ~EcL = {u→ u|p | u = u|p ∈ EcL} is finite.

Example 4. Assume that F = {0 : 0, s : 1}. The set EcL = {s(x) = x} is
contracting for L = T (F) because the set of normal forms of T (F) with respect
to ~EcL = {s(x) → x} is the (finite) set {0}. The set EcL = {s(s(x)) = x} is
contracting because the normal forms of {s(s(x))→ x} are {0, s(0)}.

The contracting equations ensure that the completion algorithm will merge
enough states during the simplification steps to terminate. Note that EcL cannot
be empty, unless L is finite. To prove termination of completion, we first prove
that it is possible to bound the number of states needed in A∗ to recognise a
language L by the number of normal forms of L with respect to ~EcL . In our
case L will be the set of output terms of the program. Since A∗ does not only
recognises the output terms, we need additional states to recognise intermediate
computation terms. In the proof of Theorem 1 we show that with ER, the sim-
plification steps will merge the states recognising the intermediate computation
with the states recognising the outputs. If the latter set of states is finite then
we can show that A∗ is finite.

Theorem 1. Let A be an REFD tree automaton, R a left-linear TRS, E a set
of equations and L a language closed by subterms such that for all k ∈ N and
for all s ∈ L�(Ak), there exists t ∈ L s.t. s →∗R t. If E ⊇ Er ∪ EcL ∪ ER then
the completion of A by R and E terminates with a REFD A∗.

4 A Class of Analysable Programs

The next step is to identify a class of functional programs and a language L
for which Theorem 1 applies. By choosing L = T (F) and providing a set of
contracting equations EcT (F), the termination theorem above proves that the
completion algorithm terminates on any functional program R. If this works in
theory, in practice we want to avoid introducing equations over the application
symbol (such as @(x, y) = y). Contracting equations on applications makes
sense in certain cases, e.g., with idempotent functions (@(sort,@(sort, x)) =
@(sort, x)), but in most cases, such equations dramatically lower the precision
of the completion algorithm. Hence, we want to identify a language L with no
contracting equations over @ in EcL. Since such a language L still has to have a
finite number of normal forms w.r.t. ~EcL (Theorem 1), it cannot include terms
containing an un-bounded stack of applications. For instance, L cannot contain
all the terms of the form @(f, x),@(f,@(f, x)),@(f,@(f,@(f, x)), etc. The @
stack must be bounded, even if the applications symbols are interleaved with
other symbols (e.g. @(f, s(@(f, s(@(f, s(x))))))). To do that we (i) define a set
Bd of all terms where such stack size is bounded by d ∈ N; (ii) define a set Kn
and a class of TRS called K-TRS such that for any TRS R in this class, Kn is
closed by R and Kn ∩ IRR(R) ⊆ Bφ(n). This is done by first introducing a type
system over the terms; (iii) finally define L = Bφ(n) ∩ IRR(R) that can be used
to instantiate Theorem 1.



Definition 4. For a given alphabet F = C ∪ {@}, Bd is the set of terms where
every application depth is bounded by d. It is the smallest set defined by:

f ∈ B0 ⇐ f ∈ C0

f(t1, . . . , tn) ∈ Bi ⇐ f ∈ Cn ∧ t1 . . . tn ∈ Bi

@(t1, t2) ∈ Bi+1 ⇐ t1, t2 ∈ Bi

t ∈ Bi+1 ⇐ t ∈ Bi

In Section 5, we show how to produce Ec such that Bd ∩ IRR(R) has a
finite number of normal forms w.r.t. ~Ec with no equations on @. However we
don’t have for all k, for all term t ∈ L�(Ak) a term s ∈ Bd ∩ IRR(R) s.t.
t →∗R s in general. Theorem 1 cannot be instantiated with L = Bd ∩ IRR(R).
Instead we define (i) a set Kn ⊆ T (F) and φ such that Kn ∩ IRR(R) ⊆ Bφ(d)
and (ii) a class of TRS, called K-TRS for which L�(Ak) ⊆ Kn�. In K-TRS,
the right hand sides of TRS rules are contained in a set K whose purpose is to
forbid the construction of unbounded partial applications during rewriting. If
the initial automaton satisfies L�(A) ⊆ Kn� then we can instantiate Theorem 1
with L = Kn� ∩ IRR(R) and prove termination.

4.1 Types

In order to define K and Kn we require the TRS to be well-typed. Our definition
of types is inspired by [1]. Let A be a non-empty set of algebraic types. The set
of types T is inductively defined as the least set containing A and all function
types, i.e. A → B ∈ T ⇐ A,B ∈ T . The function type constructor → is
assumed to be right-associative. The arity of a type A is inductively defined on
the structure of A by:

ar(A) = 0 ⇐ A ∈ A

ar(A→ B) = 1 + ar(B) ⇐ A→ B ∈ T

Instead of using alphabets, in a typed terms environment we use signatures
F = C ∪{@} where C is a set of constructor symbols associated to a unique type
and @ the application symbol (with no type). We also assign a type to every
variable. We write f : A if the symbol f has type A and t : A a term t ∈ T (F ,X )
of type A. We write W(F ,X ) for the set of all well typed terms using the usual
definition. We extend the definition of term rewriting systems to typed TRS. A
TRS is well typed if all rules are of the form l : A → r : A (type is preserved).
In the same way, an equation s = t is well typed if both s and t have the same
type. In the rest of this paper we only consider well typed equations and TRSs.

Definition 5 (Functional TRS). A higher-order functional TRS is composed
of rules of the form

@(. . .@(f, t1 : A1) . . . , tn : An) : A→ r : A



where f : A1 → . . . → An → A ∈ Cn, t1 . . . tn ∈ W(C,X ) and r ∈ W(F ,X ). A
functional TRS is complete if for all term t = @(t1, t2) : A such that ar(A) = 0,
it is possible to rewrite t using R. In other words, all defined functions are total.

Types provides information about how a term can be rewritten. For instance
we expect the term @(f : A → B, x : A) : B to be rewritten by every complete
(no partial function) TRS R if ar(A→ B) = 1. Furthermore, for certain types,
we can guarantee the absence of partial applications in the result of a compu-
tation using the type’s order. For a given signature F , the order of a type A,
written ord(A), is inductively defined on the structure of A by:

ord(A) = max{ord(f) | f : · · · → A ∈ Cn}
ord(A→ B) = max{ord(A) + 1, ord(B)}

where ord(f : A1 → . . . → An → A) = max{ord(A1), . . . , ord(An)} (with, for
Ai = A, ord(Ai) = 0). For instance ord(int) = 0 and ord(int→ int) = 1.

Example 5. Define two different types of lists list and list′. The first defines
lists of int with the constructor consA : int→ list→ list ∈ C, while the second
defines lists of functions with the constructor consB : (int → int) → list′ →
list′ ∈ C. The importance of order becomes manifest here: in the first case a
fully reduced term of type list cannot contain any @ whereas in the second case
it can. ord(list) = 0 and ord(list′) = 1.

Lemma 1. If R is a complete functional TRS and A a type such that ord(A) =
0, then all closed terms t of type A are rewritten into an irreducible term with
no partial application:

∀s ∈ IRR(R), t→∗R s⇒ s ∈ B0.

4.2 The class K-TRS

Recall that we want to define (i) a setKn ⊆ T (F) and φ such thatKn�∩IRR(R) ⊆ Bφ(n)
and (ii) a class of TRS K-TRS for which L�(Ak) ⊆ Kn�. Assuming that L�(A) ⊆
Kn� we instantiate Theorem 1 with L = Kn� ∩ IRR(R) and prove termination.

Definition 6 (K-TRS). A TRS R is part of K-TRS if for all rules l→ r ∈ R,
r ∈ K where K is inductively defined by:

x : A ∈ K ⇐ x : A ∈ X
f(t1, . . . , tn) : A ∈ K ⇐ f ∈ Cn ∧ t1, . . . , tn ∈ K

@(t1 : A→ B, t2 : A) : B ∈ K ⇐ t1 ∈ Z, t2 ∈ K ∧B ∈ A (1)
@(t1 : A→ B, t2 : A) : B ∈ K ⇐ t1, t2 ∈ K ∧ ord(A) = 0 (2)

with Z defined by:

t ∈ Z ⇐ t ∈ K
@(t1, t2) ∈ Z ⇐ t1 ∈ Z, t2 ∈ K



By constraining the form of the right hand side of each rule of R, K defines a
set of TRS that cannot construct unbounded partial applications during rewrit-
ing. The definition of K takes advantage of the type structure and Lemma 1.
The rules (1) and (2) ensure that an application @(t1, t2) is either: (1) a total
application, and the whole term can be rewritten; or (2) a partial application
where t2 can be rewritten into a term of B0 (Lemma 1). In (1), Z allows partial
applications inside the total application of a multi-parameter function.

Example 6. Consider the classical map function. A typical call to this function
is @(@(map, f), l) of type list, where f is a mapping function, and l a list.
The whole term belongs to K because of rule (1): list is an algebraic type and
its subterm @(map, f) : list → list belongs to Z. This subterm is a partial
application, but there is no risk of stacking partial applications as it is part of a
complete call (to the map function).

Example 7. Consider the function stack defined by:

@(@(stack, x), 0)→ x

@(@(stack, x), S(n))→ @(@(stack,@(g, x)), n)

Here g is a function of type (A → A) → A → A. The stack function returns a
stack of partial applications whose height is equal to the input parameter:

@(@(stack, f), S(S(S . . . S︸ ︷︷ ︸
k

(0) . . . )))→∗R @(g,@(g,@(g, . . .@(g︸ ︷︷ ︸
k

, f) . . . )))

The depth of partial applications stacks in the output language is not bounded.
With no equations on the @ symbol, the completion algorithm may not termi-
nate. Notice that x is a function and @(g, x) a partial application. Hence the
term @(@(stack,@(g, x)), n) is not in K, so the TRS does not belong to the
K-TRS class.

We define Kn as {tσ | t ∈ K, σ : X 7→ Bn ∩ IRR(R)} and claim that if
for all rule l → r of the functional TRS R, r ∈ K and if L(A) ⊆ Kn then with
Theorem 1 we can prove that the completion of A with R terminates. The idea
is the following:

– Prove that if A recognises terms of Kn�, then it is preserved by completion
using the notion of Kn-coherence of A.

– Prove that Kn� ∩ IRR(R) ⊆ Bn+2B ∩ IRR(R) where B ∈ N is a fixed upper
bound of the arity of all the types of the program.

– Prove that there is a finite number of normal form of Bn+2B ∩ IRR(R) w.r.t
~EcL.

– Finally, we use those three properties combined, and instantiate Theorem 1
with L = Bn+2B ∩ IRR(R) to prove Theorem 2, defined as follows.

Theorem 2. Let A be a Kn-coherent REFD tree automaton, R a terminating
functional TRS such that for all rule l→ r ∈ R, r ∈ K and E a set of equations.
Let L = Bn+2B ∩ IRR(R). If E = Er ∪EcL ∪ER then the completion of A by R
and E terminates.



To prove that after each step of completion, the recognised language stays in
Kn, we require the considered automaton to be Kn-coherent.

Definition 7 (Kn-coherence). Let L ⊆ W(F) and n ∈ N. L is Kn-coherent if

L ⊆ Kn ∨ L ⊆ Zn \ Kn

By extension we say that a tree-automaton A = 〈F ,Q,Qf , ∆〉 is Kn-coherent if
the language recognised by all states q ∈ Q is Kn-coherent.

If Kn-coherence is not preserved during completion, then some states in the
completed automaton may recognise terms outside of Kn�. Our goal is to show
that it is preserved by CR(·) (Lemma 2) then by SE(·) (Lemma 3).

Lemma 2 (CR(A) preserves Kn-coherence). Let A be a REFD tree automa-
ton. If A is Kn-coherent, then CR(A) is Kn-coherent.

Lemma 3 (SE(A) preserves Kn-coherence). Let A be a REFD tree automa-
ton, R a functional TRS and E a set of equations such that E = Er ∪EcL ∪ER
with L = Bn+2B ∩ IRR(R). If A is Kn-coherent then SE(A) is Kn-coherent.

By using Lemma 2 and Lemma 3, we can prove that the completion algorithm,
which is a composition of CR(A) and SE(A), preserves Kn-coherence. The proofs
of these two lemmas are based on a detailed analysis of the completion algorithm
itself. The complete proofs are provided in [17].

Lemma 4 (Completion preserves Kn-coherence). Let A = 〈F ,Q,Qf , ∆〉
be a tree automaton, R a functional TRS and E a set of equations. If E =
Er ∪ EcL ∪ ER with L = Bn+2B ∩ IRR(R) and A is Kn-coherent then for all
k ∈ N, Ak is Kn-coherent. In particular, A∗ is Kn-coherent.

By construction we can prove that the depth of irreducible Kn� terms is bounded,
which correspond to the following lemma.

Lemma 5. For all t : T ∈ Kn�, t : T ∈ IRR(R)⇒ t : T ∈ Bn+2B−arity(T ).

4.3 Proof of Theorem 2

Proof. According to Lemma 4, for all k ∈ N, the completed automaton Ak
is Kn-coherent. By definition this implies that L�(Ak) ⊆ Kn�. Moreover, we
know that IRR(R) ∩ Kn� ⊆ Bn+2B (Lemma 5). Let L = Bn+2B ∩ IRR(R). R is
terminating, so for every term s ∈ L�(Ak) there exists t ∈ L such that s→∗R t.
Since the number of normal form of L is finite w.r.t ~E, Theorem 1 implies that
the completion of A by R and E terminates.



5 Equation Generation

Theorem 2 states a number of hypotheses that must be satisfied in order to
guarantee termination of the completion algorithm:

– The initial automaton A must be Kn-coherent and REFD.
– R must be terminating.
– All left-hand sides of rules of R are in the set of terms K. This is a straight-

forward syntactic check. If it is not verified, we can reject the TRS before
starting the completion.

– The set of equations E must be of the form Er ∪ EcL ∪ ER. The equation
sets Er and ER are determined directly from the syntactic structure of R.
However, there is no unique suitable set of contracting equations EcL. This set
must be generated carefully, because a bad choice of contracting equations
(i.e., equations that equate too many terms) will have a severe negative
impact on the precision of the analysis result.

In this section, we describe a method for generating all possible sets of contract-
ing equations EcL. To simplify the presentation, we only present the case where
L =W(C) and IRR(R) ⊆ W(C) (i.e., all results are first-order terms). Our ap-
proach looks for contracting equations for the set of closed terms W(C) instead
of the set Bn+2B mentioned in Theorem 2. More precisely, we generate the set
of equations iteratively, as a series of equation sets Ekc where the equations only
equate terms of depth at most k. Recall that a contracting equation is of the
form u = u|p with p 6= λ, i.e., it equates a term with a strict subterm of the
same type. A set of contracting equations over the set W(C) is then generated
as follows: (i) generate the set of left-hand side of equations as a covering set
of terms [25], so that for each term t ∈ W(C) there exists a left-hand side u of
an equation and a substitution σ such that t = uσ. (ii) for each left-hand side,
generate all possible equations of the form u = u|p, satisfying that both sides
have the same type. (iii) from all those equations, we build all possible EcL (with
L =W(C)) such that the set of normal forms of W(C) w.r.t. ~EcL is finite. Since
~EcL is left-linear and L =W(C), this can be decided efficiently [11].

Example 8. Assume that C = {0 : 0, s : 1}.. For k = 1, the covering set is
{s(x), 0} and E1

c = {{s(x) = x}}. For depth 2, the covering set is {s(s(x)), s(0), 0}
and E2

c = E1
c ∪{{s(s(x)) = x}, {s(s(x)) = s(x)}, {s(0) = 0}, {s(0) = 0, s(s(x)) =

x}, {s(0) = 0, s(s(x)) = s(x)}}. All equation sets of E1
c and E2

c satisfy Defini-
tion 3 and lead to different approximations.

To verify a property ϕ on a program, we use completion and equation gener-
ation as follows. The program is represented by a TRS R and function calls are
represented by an initial tree automaton A. Both have to respect the hypothesis
of Theorem 2. The algorithm searches for a set of contracting equations Ec such
that verification succeeds, i.e. L(A∗) satisfy ϕ. Starting from k = 1, we apply
the following algorithm:



1. We first complete the tree automatonAk recognising the finite subset of L(A)
of terms of maximum depth k. Since L(Ak) is finite and R is terminating,
the set of reachable terms is finite, completion terminates without equations
and computes an automaton A∗k recognising exactly the set R∗(L(Ak)) [20].

2. If L(A∗k) does not satisfy ϕ then verification fails: a counterexample is found.
3. Otherwise, we search for a suitable set Ec. All Ec of Ekc that introduce a

counterexample in the completion of Ak with R and Ec are filtered out.
4. Then for all remaining Ec, we try to completeA withR and E = Er∪ER∪Ec

and check ϕ on the completed automaton. If ϕ is true on A∗ then verification
succeeds. Otherwise, we try the next Ec.

5. If there remain no Ec, we start again with k = k + 1.

If there exists a set of equations Ec able to verify the program, this algorithm
will find it eventually, or find a counter example. However if there is no set of
equations that can verify the program, this algorithm does not terminate.

6 Experiments

The verification technique described above has been integrated in the Timbuk
library [16]. We implemented the naive equation generation where all possible
equation sets Ec are enumerated. Despite the evident scalability issues of this
simple version of the verification algorithm, we have been able to verify a series of
properties of several classical higher-order functions: map, filter , exists, forall ,
foldRight , foldLeft as well as higher-order sorting functions parameterised by
an ordering function. Most examples are taken from or inspired by [28,26] and
have corresponding TRSs in the K set defined above. The property ϕ consists in
checking that a finite set of forbidden terms is not reachable (Patterns section
of Timbuk specifications).

Given A, R and A∗, the correctness of the verification, i.e. the fact that
L(A∗) ⊇ R∗(L(A)), can be checked in a proof assistant embedding a formalisa-
tion of rewriting and tree automata. It is enough to prove that (a) L(A∗) ⊇ L(A)
and that (b) for all critical pairs 〈l → r, σ, q〉 of A∗ we have rσ →∗A∗ q. Prop-
erty (a) can be checked using standard algorithms on tree automata. Property (b)
can be checked by enumerating all critical pairs of A∗ (there are finitely many)
and by proving that all of them satisfy rσ →∗A∗ q. Since there exists algo-
rithms for checking properties (a) and (b), the complete proof of correctness
can automatically be built in the proof assistant. For instance, the automa-
ton A∗ can be used as a certificate to build the correctness proof in Coq [6]
and in Isabelle/HOL [14]. It is also used to build unreachability proofs in Is-
abelle/HOL [14]. Besides, since verifying (a) and (b) is automatic, the cor-
rectness proof may be run outside of the proof assistant (in a more efficient
way) using a formally verified external checker extracted from the formalisation.
All our (successful) completion attempts output a comp.res file, containing
A, R and A∗, which has been certified automatically using the external cer-
tified checker of [6]. Timbuk’s site http://people.irisa.fr/Thomas.Genet/

timbuk/funExperiments/ lists those verification experiments. Nine of them are

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/


automatically proven. Two other examples show that correct counter-examples
are generated when the property is not provable. On one example equation gen-
eration times out due to our naïve enumeration of equations. For this last case,
by providing the right set of equations in mapTree2NoGen the verification of the
function succeeds.

7 Related Work

When it comes to verifying first-order imperative programs, there exist sev-
eral successful tools based on abstract interpretation such as ASTREE [3] and
SLAM [2]. The use of abstract interpretation for verifying higher-order func-
tional programs has comparatively received less attention. The tree automaton
completion technique is one analysis technique able to verify first-order Java
programs [4]. Until now, the completion algorithm was guaranteed to terminate
only in the case of first-order functional programs [19].

Liquid Types [31], followed by Bounded Refinement Types [34,33], and also
Set-Theoretic Types [9,8], are all attempts to enrich the type system of functional
languages to prove non-trivial properties on higher-order programs. However,
these methods are not automatic. The user has to express the property he wants
to prove using the type system, which can be tedious and/or difficult. In some
cases, the user even has to specify straightforward intermediate lemmas to help
the type checker.

The first attempt in verifying regular properties came with Jones [21] and
Jones and Andersen [22]. Their technique computes a grammar over-approximat-
ing the set of states reachable by a rewriting systems. However, their approxi-
mation is fixed and too rough to prove programs like Example 1 (filter odd). Our
program and property models are close to those of Jones and Andersen. How-
ever, the approximation in our analysis is not fixed and can be automatically
adapted to the verification objective.

Ong et al. proposes one way of addressing the precision issue of Jones and
Andersen’s approach using a model checking technique on Pattern Matching
Recursion Schemes [28] (PMRS). This technique improves the precision but is
still not able to verify functions such as Example 1 (see [32] page 85). As shown
in our experiments, our technique handles this example.

Kobayashi et al. developed a tree automata-based technique [26] (but not
relying on TRS and completion), able to verify regular properties (including
safety properties on Example 1). We have verified a selection of examples coming
from [26] and observed that we can verify the same regular properties as they
can. Our prototype implementation is inferior in terms of execution time, due
to the slow generation of equations. A strength of our approach is that our
verification results are certifiable and that they can be used as certificates to
build unreachability proofs in proof assistants (see Section 6).

Our verification framework is based on regular abstractions and uses a simple
abstraction mechanism based on equations. Regular abstractions are less expres-
sive than Higher-Order Recursion Schemes [29,23] or Collapsible Pushdown Au-



tomata [7], and equation-based abstractions are a particular case of predicate ab-
straction [24]. However, the two restrictions imposed in this particular framework
result in two strong benefits. First, the precision of the approximation is formally
defined and precisely controlled using equations: L(A∗) ⊆ (R/E)∗(L(A)) [20].
This precision property permits us to prove intricate properties with simple
(regular) abstractions. Second, using tree automata-based models facilitates the
certification of the verification results in a proof assistant. This significantly
increases the confidence in the verification result compared e.g., to verdicts ob-
tained by complex CEGAR-based model-checkers.

8 Conclusion & Future Work

This paper shows that tree automata completion is a simple yet powerful, fully
automatic verification technique for higher-order functional programs, expressed
as term rewriting systems. We have proved that the completion algorithm ter-
minates on a subset of TRS encompassing common functional programs, and
provided experimental evidence of the viability of the approach by verifying
properties on fundamental higher-order functions including filtering and sorting.

One remaining question is whether this approach is complete: if there exists
a regular approximation of the reachable terms of a functional program, can we
build it using equations? We can already answered this question in the positive
when L =W(C), i.e., all results are first order terms [15]. Extending this result
to all kind of results, including higher-order ones, is a promising research topic.

The generation of the approximating equations is automatic but simple-
minded, and too simple to turn the prototype into a full verification tool. Further
work will look into how sets of contracting equations can be generated in a more
efficient manner, notably by taking the structure of the TRS into account and
using a CEGAR approach.

The present verification technique is agnostic to the evaluation strategy. An
interesting research track would be to experiment completion-based verification
techniques with different term rewriting semantics of functional programs such
as outlined by Clemente et al. [10]. This would permit us to take a particular
evaluation strategy into account, and in certain cases, improve the precision of
the verification. We already experimented with this in [18]. This is in line with
our long-term research goal of providing a light-weight verification tool to assist
the working OCaml programmer.

Our work focuses on verifying regular properties represented by tree au-
tomata. Dealing with non-regular over-approximations of reachable terms would
allow us to verify relational properties like comparing the length of the list
before and after filter. This is one of the objective of techniques like [24]. Build-
ing non-regular over-approximations of reachable terms for TRS, using a form
of completion, is possible [5]. However, up to now, adapting automatically the
precision of such approximations to a given verification goal is not possible. Ex-
tending their approach with equations may provide a powerful verification tool
worth pursuing.
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