
Towards Static Analysis of Functional Programs
using Tree Automata Completion

Thomas Genet

INRIA/IRISA, Université de Rennes, France
genet@irisa.fr

Abstract. This paper presents the first step of a wider research effort
to apply tree automata completion to the static analysis of functional
programs. Tree Automata Completion is a family of techniques for com-
puting or approximating the set of terms reachable by a rewriting rela-
tion. The completion algorithm we focus on is parameterized by a set E
of equations controlling the precision of the approximation and influenc-
ing its termination. For completion to be used as a static analysis, the
first step is to guarantee its termination. In this work, we thus give a
sufficient condition on E and T (F) for completion algorithm to always
terminate. In the particular setting of functional programs, this condi-
tion can be relaxed into a condition on E and T (C) (terms built on the
set of constructors) that is closer to what is done in the field of static
analysis, where abstractions are performed on data.

1 Introduction

Computing or approximating the set of terms reachable by rewriting has more
and more applications. For a Term Rewriting System (TRS) R and a set of
terms L0 ⊆ T (F), the set of reachable terms is R∗(L0) = {t ∈ T (F) | ∃s ∈
L0, s →R∗ t}. This set can be computed exactly for specific classes of R [10]

but, in general, it has to be approximated. Applications of the approximation
of R∗(L0) are ranging from cryptographic protocol verification [1], to static
analysis of various programming languages [5] or to TRS termination proofs [15].
Most of the techniques compute such approximations using tree automata as the
core formalism to represent or approximate the (possibly) infinite set of terms
R∗(L0). Most of them also rely on a Knuth-Bendix completion-like algorithm
completing a tree automatonA recognizing L0 into an automatonA∗ recognizing
exactly, or over-approximating, the set R∗(L0). As a result, these techniques can
be refered as tree automata completion techniques [9, 22, 8, 4, 13, 19]. A strength
of this algorithm, and at the same time a weakness, is that its precision is
parameterized by a function [8] or a set of equations [13]. It is a strength because
tuning the approximation function (or equations) permits to adapt the precision
of completion to a specific goal to tackle. This is what made it successful for
program and protocol verification. On the other hand, this is a weakness because
it is difficult to guarantee its termination.

In this paper, we define a simple sufficient condition on the set of equations for
the tree automata completion algorithm to terminate. This condition, which is
strong in general, reveals to be natural and well adapted for the approximation of
reachable terms when TRSs encode typed functional programs. We thus obtain
a way to automatically over-approximate the set of all reachable program states
of a functional program, or even restrict it to the set of all results. Thus we can
over-approximate the image of a functional program.

2 Related work

Tree automata completion. With regards to most papers about completion [9, 22,
8, 4, 13, 19], our contribution is to give the first criterion on the approximation for
the completion to terminate. Note that it is possible to guarantee termination of
the completion by inferring an approximation adapted to the TRS under concern,
like in [20]. In this case, given a TRS, the approximation is fixed and unique.
Our solution is more flexible because it lets the user change the precision of the
approximation while keeping the termination guarantee. In [22], T. Takai have
a completion parameterized by a set of equations. He also gives a termination
proof for its completion but only for some restricted classes of TRSs. Here our
termination proof holds for any left-linear TRS provided that the set of equations
satisfy some properties.

Static analysis of functional programs. With regards to static analysis of func-
tional programs using grammars or automata, our contribution is in the scope of
data-flow analysis techniques, rather than control-flow analysis. More precisely,
we are interested here in predicting the results of a function [21], rather than
predicting the control flow [18]. Those two papers, as well as many other ones,
deal with higher order functions using complex higher-order grammar formalisms
(PMRS and HORS). Higher-order functions are not in the scope of the solution
we propose here. However, we obtained some preliminary results suggesting that
an extension to higher order functions is possible and gives relevant results (see
Section 6). Furthermore, using equations, approximations are defined in a more
declarative and flexible way than in [21], where they are defined by a dedicated
algorithm. Besides, the verification mechanisms of [21] use automatic abstraction
refinement. This can be also performed in the completion setting [3] and adapted
to the analysis of functional programs [14]. Finally, using a simpler (first order)
formalism, i.e. tree automata, makes it easier to take into account some other
aspects like: evaluation strategies and built-ins types (see Section 6) that are not
considered by those papers.

3 Background

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [2, 7]). Let F be a finite set of symbols,
each associated with an arity function, and let X be a countable set of variables.

T (F ,X) denotes the set of terms and T (F) denotes the set of ground terms
(terms without variables). The set of variables of a term t is denoted by Var(t).
A substitution is a function σ from X into T (F ,X), which can be uniquely
extended to an endomorphism of T (F ,X). A position p for a term t is a finite
word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X or
t is a constant and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}
otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p
denotes the term obtained by replacement of the subterm t|p at position p by
the term s.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l→ r is left-linear if
each variable of l occurs only once in l. A TRS R is left-linear if every rewrite
rule l → r of R is left-linear. The TRS R induces a rewriting relation →R on
terms as follows. Let s, t ∈ T (F ,X) and l → r ∈ R, s →R t denotes that
there exists a position p ∈ Pos(s) and a substitution σ such that s|p = lσ and
t = s[rσ]p. Given a TRS R, F can be split into two disjoint sets C and D. All
symbols occurring at the root position of left-hand sides of rules of R are in D.
D is the set of defined symbols of R, C is the set of constructors. Terms in T (C)
are called data-terms. The reflexive transitive closure of →R is denoted by →∗R
and s→!

R t denotes that s→∗R t and t is irreducible by R. The set of irreducible
terms w.r.t. a TRS R is denoted by Irr(R). The set of R-descendants of a set
of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗R t}. A TRS R is
sufficiently complete if for all s ∈ T (F), (R∗({s}) ∩ T (C)) 6= ∅.

An equation set E is a set of equations l = r, where l, r ∈ T (F ,X). The
relation =E is the smallest congruence such that for all substitution σ we have
lσ =E rσ. Given a TRS R and a set of equations E, a term s ∈ T (F) is
rewritten modulo E into t ∈ T (F), denoted s →R/E t, if there exist s′ ∈ T (F)
and t′ ∈ T (F) such that s =E s′ →R t′ =E t. The reflexive transitive closure
→∗R/E of →R/E is defined as usual except that reflexivity is extended to terms

equal modulo E, i.e. for all s, t ∈ T (F) if s =E t then s →∗R/E t. The set of

R-descendants modulo E of a set of ground terms I is R∗E(I) = {t ∈ T (F) | ∃s ∈
I s.t. s→∗R/E t}.

Let Q be a countably infinite set of symbols with arity 0, called states, such
that Q ∩ F = ∅. T (F ∪Q) is called the set of configurations. A transition is
a rewrite rule c → q, where c is a configuration and q is state. A transition is
normalized when c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q.
An ε-transition is a transition of the form q → q′ where q and q′ are states. A
bottom-up non-deterministic finite tree automaton (tree automaton for short)
over the alphabet F is a tuple A = 〈F ,Q,QF , ∆〉, where QF is a finite subset
of Q, ∆ is a finite set of normalized transitions and ε-transitions. The transitive
and reflexive rewriting relation on T (F ∪Q) induced by the set of transitions ∆

(resp. all transitions except ε-transitions) is denoted by →∗∆ (resp. → 6ε ∗∆). When
∆ is attached to a tree automaton A we also note those two relations →A∗ and

→ 6ε ∗A , respectively. A tree automatonA is complete if for all s ∈ T (F) there exists

a state q of A such that s →A∗ q. The language (resp. 6ε-language) recognized

by A in a state q is L(A, q) = {t ∈ T (F) | t →∗A q} (resp. L 6ε(A, q) = {t ∈
T (F) | t → 6ε ∗A q}). A state q of an automaton A is reachable (resp. 6ε-reachable)
if L(A, q) 6= ∅ (resp. L 6ε(A, q) 6= ∅). We define L(A) =

⋃
q∈QF

L(A, q). A set of
transitions ∆ is 6ε-deterministic if there are no two normalized transitions in ∆
with the same left-hand side. A tree automaton A is 6ε-deterministic if its set of
transitions is 6ε-deterministic. Note that if A is 6ε-deterministic then for all states
q1, q2 of A such that q1 6= q2, we have L 6ε(A, q1) ∩ L 6ε(A, q2) = ∅.

4 Tree Automata Completion Algorithm

Tree Automata Completion algorithms were proposed in [16, 9, 22, 13]. They are
very similar to a Knuth-Bendix completion except that they run on two distinct
sets of rules: a TRS R and a set of transitions ∆ of a tree automaton A.

Starting from a tree automaton A0 = 〈F ,Q,Qf , ∆0〉 and a left-linear TRS
R, the algorithm computes a tree automaton A′ such that L(A′) = R∗(L(A0))
or L(A′) ⊇ R∗(L(A0)). The algorithm iteratively computes tree automata A1

R,
A2
R, . . . such that ∀i ≥ 0 : L(AiR) ⊆ L(Ai+1

R) until we get an automaton AkR
with k ∈ N and L(AkR) = L(Ak+1

R). For all i ∈ N, if s ∈ L(AiR) and s→R t, then

t ∈ L(Ai+1
R). Thus, if AkR is a fixpoint then it also verifies L(AkR) ⊇ R∗(L(A0)).

To construct Ai+1
R from AiR, we achieve a completion step which consists in

finding critical pairs between→R and→Ai
R

. A critical pair is a triple (l→ r, σ, q)
where l → r ∈ R, σ : X 7→ Q and q ∈ Q such that lσ →∗Ai

R
q and rσ 6→∗Ai

R
q.

For rσ to be recognized by the same state and thus model the rewriting of lσ
into rσ, it is enough to add the necessary transitions to AiR to obtain Ai+1

R such
that rσ →∗Ai+1

R
q. In [22, 13], critical pairs are joined in the following way:

lσ
R
//

Ai
R

��

rσ

Ai+1
R
��

q q′
Ai+1

R

oo

From an algorithmic point of view, there remains two problems to solve: find
all the critical pairs (l → r, σ, q) and find the transitions to add to AiR to have
rσ →∗Ai+1

R
q. The first problem, called matching, can be efficiently solved using

a specific algorithm [8, 10]. The second problem is solved using Normalization.

4.1 Normalization

The normalization function replaces subterms either by states of Q (using tran-
sitions of ∆) or by new states. A state q of Q is used to normalize a term t

if t → 6ε∆ q. Normalizing by reusing states of Q and transitions of ∆ permits to

preserve the 6ε-determinism of→ 6ε∆. Indeed,→ 6ε∆ can be kept deterministic during
completion though →∆ cannot.

Definition 1 (New state). Given a set of transitions ∆, a new state (for ∆)
is a state of Q \ Qf not occurring in left or right-hand sides of rules of ∆ 1.

We here define normalization as a bottom-up process. This definition is simpler
and equivalent to top-down definitions [13]. In the recursive call, the choice of
the context C[] may be non deterministic but all the possible results are the
equivalent modulo state renaming.

Definition 2 (Normalization). Let ∆ be a set of transitions defined on a set
of states Q, t ∈ T (F ∪Q) \ Q. Let C[] be a non empty context of T (F ∪Q) \
Q, f ∈ F of arity n, and q, q′, q1, . . . , qn ∈ Q. The normalization function is
inductively defined by:

1. Norm∆(f(q1, . . . , qn)→ q) = {f(q1, . . . , qn)→ q}
2. Norm∆(C[f(q1, . . . , qn)]→ q) = {f(q1, . . . , qn)→ q′} ∪

Norm∆∪{f(q1,...,qn)→q′}(C[q′]→ q)
where either (f(q1, . . . , qn) → q′ ∈ ∆) or (q′ is a new state for ∆ and
∀q′′ ∈ Q : f(q1, . . . , qn)→ q′′ 6∈ ∆).

In the second case of the definition, if there are several states q′ such that
f(q1, . . . , qn) → q′ ∈ ∆, we arbitrarily choose one of them. We illustrate the
above definition on the normalization of a simple transition.

Example 1. Given ∆ = {b → q0}, Norm∆(f(g(a), b, g(a)) → q) = {a →
q1, g(q1)→ q2, b→ q0, f(q2, q0, q2)→ q}

4.2 One step of completion

A step of completion only consists in joining critical pairs. We first need to
formally define the substitutions under concern: state substitutions.

Definition 3 (State substitutions, Σ(Q,X)). A state substitution over an
automaton A with a set of states Q is a function σ : X 7→ Q. We can extend
this definition to a morphism σ : T (F ,X) 7→ T (F ,Q). We denote by Σ(Q,X)
the set of state substitutions built over Q and X .

Definition 4 (Set of critical pairs). Let a TRS R and a tree automaton
A = 〈F ,Q,Qf , ∆〉. The set of critical pairs between R and A is CP (R,A) =
{(l→ r, σ, q) | l→ r ∈ R, q ∈ Q, σ ∈ Σ(Q,X), lσ →∗A q, rσ 6→∗A q}.

Recall that the completion process builds a sequence A0
R,A1

R, . . . ,AkR of au-
tomata such that if s ∈ L(AiR) and s →R t then t ∈ L(Ai+1

R). One step of
completion, i.e. the process computing Ai+1

R from AiR, is defined as follows.
Again, the following definition is a simplification of the definition of [13].

1 Since Q is a countably infinite set of states, Qf and ∆ are finite, a new state can
always be found.

Definition 5 (One step of completion). Let A = 〈F ,Q,Qf , ∆〉 be a tree au-
tomaton, R be a left-linear TRS. The one step completed automaton is CR(A) =
〈F ,Q,Qf , JoinCP (R,A)(∆)〉 where JoinS(∆) is inductively defined by:

– Join∅(∆) = ∆
– Join{(l→r,q,σ)}∪S(∆) = JoinS(∆ ∪∆′) where

∆′ = {q′ → q} if there exists q′ ∈ Q s.t. rσ → 6ε ∗∆ q′, and otherwise
∆′ = Norm∆(rσ → q′) ∪ {q′ → q} where q′ is a new state for ∆

Example 2. Let A be a tree automaton with ∆ = {f(q1)→ q0, a→ q1, g(q1)→
q2}. If R = {f(x) → f(g(x))} then CP (R,A) = {(f(x) → f(g(x)), σ3, q0)}
with σ3 = {x 7→ q1}, because f(x)σ3 →A∗ q0 and f(x)σ3 →R f(g(x))σ3. We

have f(g(x))σ3 = f(g(q1)) and there exists no state q such that f(g(q1))→ 6ε ∗A q.
Hence, Join{(f(x)→f(g(x)),σ3,q0)}(∆) = Join∅(∆∪Norm∆(f(g(q1))→ q3)∪{q3 →
q0}). Since Norm∆(f(g(q1)) → q3) = {f(q2) → q3, q(q1) → q2}, we get that
CR(A) = 〈F ,Q∪ {q3},Qf , ∆ ∪ {f(q2)→ q3, q3 → q0}〉.

4.3 Simplification of Tree Automata by Equations

In this section, we define the simplification of tree automata A w.r.t. a set of
equations E. This operation permits to over-approximate languages that cannot
be recognized exactly using tree automata completion, e.g. non regular languages.
The simplification operation consists in finding E-equivalent terms recognized
in A by different states and then by merging those states together. The merging
of states is performed using renaming of a state in a tree automaton.

Definition 6 (Renaming of a state in a tree automaton). Let Q,Q′ be set
of states, A = 〈F ,Q,Qf , ∆〉 be a tree automaton, and α a function α : Q 7→ Q′.
We denote by Aα the tree automaton where every occurrence of q is replaced by
α(q) in Q, Qf and in every left and right-hand side of every transition of ∆.

If there exists a bijection α such that A = A′α then A and A′ are said to
be equivalent modulo renaming. Now we define the simplification relation which
merges states in a tree automaton according to an equation. Note that it is not
required for equations of E to be linear.

Definition 7 (Simplification relation). Let A = 〈F ,Q,Qf , ∆〉 be a tree au-
tomaton and E be a set of equations. For s = t ∈ E, σ ∈ Σ(Q,X), qa, qb ∈ Q
such that sσ → 6ε ∗A qa, tσ →6ε ∗A qb, and qa 6= qb then A can be simplified into
A′ = A{qb 7→ qa}, denoted by A;E A′.

Example 3. Let E = {s(s(x)) = s(x)} and A be the tree automaton with set
of transitions ∆ = {a → q0, s(q0) → q1, s(q1) → q2}. We can perform a sim-
plification step using the equation s(s(x)) = s(x) because we found a substi-

tution σ = {x 7→ q0} such that: s(s(x))σ → 6ε ∗A q2 and s(x)σ →6ε ∗A q1 Hence,
A;E A′ = A{q2 7→ q1}2

2 or {q1 7→ q2}, any of q1 or q2 can be used for renaming.

As stated in [13], simplification ;E is a terminating relation (each step sup-
presses a state) and it enlarges the language recognized by a tree automaton,
i.e. if A;E A′ then L(A) ⊆ L(A′). Furthermore, no matter how simplification
steps are performed, the obtained automata are equivalent modulo state renam-
ing. In the following, A ;!

E A′ denotes that A ;∗E A′ and A′ is irreducible by
;E . We denote by SE (A) any automaton A′ such that A;!

E A′.

Theorem 1 (Simplified Tree Automata [13]). Let A,A′1,A′2 be tree au-
tomata and E be a set of equations. If A ;!

E A′1 and A ;!
E A′2 then A′1 and

A′2 are equivalent modulo state renaming.

4.4 The full Completion Algorithm

Definition 8 (Automaton completion). Let A be a tree automaton, R a
left-linear TRS and E a set of equations.

– A0
R,E = A

– An+1
R,E = SE

(
CR(AnR,E)

)
, for n ≥ 0

If there exists k ∈ N such that AkR,E = Ak+1
R,E, then we denote AkR,E by A∗R,E.

In practice, checking if CP (R,AkR,E) = ∅ is sufficient to know that AkR,E is a

fixpoint. However, a fixpoint cannot always be finitely reached3. To ensure ter-
mination, one can provide a set of approximating equations to overcome infinite
rewriting and completion divergence.

Example 4. Let R = {f(x, y)→ f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions ∆ = {f(qa, qb)→ q0), a→ qa, b→ qb},
i.e. L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E
which is a fixpoint. Completion steps are summed up in the following table.
To simplify the presentation, we do not repeat the common transitions: AiR,E
and CR(Ai) columns are supposed to contain all transitions of A0, . . . ,Ai−1R,E .

The automaton A1
R,E is exactly CR(A0) since simplification by equations do not

apply. Simplification has been applied on CR(A1
R,E) to obtain A2

R,E .

A0 CR(A0) A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb) → q0 f(q1, q2) → q3 f(q1, q2) → q3 f(q4, q5) → q6 f(q1, q2) → q6
a→ qa s(qa) → q1 s(qa) → q1 s(q1) → q4 s(q1) → q1
b→ qb s(qb) → q2 s(qb) → q2 s(q2) → q5 s(q2) → q2

q3 → q0 q3 → q0 q6 → q3

Now, we recall the lower and upper bound theorems. Tree automata comple-
tion of automaton A with TRS R and set of equations E is lower bounded by
R∗(L(A)) and upper bounded by R∗E(L(A)). The lower bound theorem ensures
that the completed automaton A∗R,E recognizes all R-reachable terms (but not
all R/E-reachable terms). The upper bound theorem guarantees that all terms
recognized by A∗R,E are only R/E-reachable terms.

3 See [10], for classes of R for which a fixpoint always exists.

Theorem 2 (Lower bound [13]). Let R be a left-linear TRS, A be a tree
automaton and E be a set of equations. If completion terminates on A∗R,E then
L(A∗R,E) ⊇ R∗(L(A)).

The upper bound theorem states the precision result of completion. It is de-
fined using the R/E-coherence property. The intuition behind R/E-coherence
is the following: in the tree automaton ε-transitions represent rewriting steps
and normalized transitions recognize E-equivalence classes. More precisely, in a
R/E-coherent tree automaton, if two terms s, t are recognized into the same state
q using only normalized transitions then they belong to the same E-equivalence
class. Otherwise, if at least one ε-transition is necessary to recognize, say, t into
q then at least one step of rewriting was necessary to obtain t from s.

Theorem 3 (Upper bound [13]). Let R be a left-linear TRS, E a set of
equations and A a R/E-coherent tree automaton. For any i ∈ N: L(AiR,E) ⊆
R∗E(L(A)) and AiR,E is R/E-coherent.

5 Termination criterion for a given set of equations

Given a set of equations E, the effect of the simplification with E on a tree
automaton is to merge two distinct states recognizing instances of the left and
right-hand side for all the equations of E. In this section, we give a sufficient
condition on E and on the completed tree automata AiR,E for the tree automata
completion to always terminate. The intuition behind this condition is simple:
if the set of equivalence classes for E, i.e. T (F)/=E

, is finite then so should be
the set of new states used in completion. However, this is not true in general
because simplification of an automaton with E does not necessarily merge all
E-equivalent terms.

Example 5. Let A be the tree automaton with set of transitions a → q, R =
{a → c} and let E = {a = b, b = c}. The set of transitions of CR(A) is {a →
q, c→ q′, q′ → q}. We have a =E c, a ∈ L 6ε(CR(A), q) and c ∈ L 6ε(CR(A), q′) but
on the automaton CR(A), no simplification situation (as described by Defini-
tion 7), can be found because the term b is not recognized by CR(A). Hence, the
simplified automaton is CR(A) where a and c are recognized by different states.

There is no simple solution to have a simplification algorithm merging all states
recognizing E-equivalent terms (see Section 6). Having a complete automaton
A solve the above problem but leads to rough approximations (see [11]). In the
next section, we propose to give some simple restrictions on E to ensure that
completion terminates. In Section 5.2, we will see how those restrictions can
easily be met for “functional” TRS, i.e. a typed first-order functional program
translated into a TRS.

5.1 General criterion

What Example 5 shows is that, for a simplification with E to apply, it is necessary
that both sides of the equation are recognized by the tree automaton. In the
following, we will define a set Ec of contracting equations so that this property
is true. What Example 5 does not show is that, by default, tree automata are not
E-compatible. In particular, any non 6ε-deterministic automaton does not satisfy
the reflexivity of =E . For instance, if an automaton A has two transitions a→ q1
and a → q2, since a =E a for all E, for A to be E-compatible we should have
q1 = q2. To enforce 6ε-determinism by automata simplification, we define a set of
reflexivity equations as follows.

Definition 9 (Set of reflexivity equations Er). For a given set of symbols
F , Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ F , and arity of f is n}, where
x1 . . . xn are pairwise distinct variables.

Note that for all set of equations E, the relation =E is trivially equivalent to
=E∪Er . Furthermore, simplification with Er transforms all automaton into an
6ε-deterministic automaton, as stated in the following lemma.

Lemma 1. For all tree automaton A and all set of equation E, if E ⊇ Er and
A;!

E A′ then A′ is 6ε-deterministic.

Proof. Shown by induction on the height of terms (see [11] for details). ut

We now define sets of contracting equations. Such sets are defined for a set
of symbols K which can be a subset of F . This will be used later to restrict
contracting equations to the subset of constructor symbols of F .

Definition 10 (Sets of contracting equations for K, EcK). Let K ⊆ F . A
set of equations is contracting for K, denoted by EcK, if all equations of EcK are
of the form u = u|p with u ∈ T (K,X) a linear term, p 6= λ, and if the set of

normal forms of T (K) w.r.t. the TRS
−→
EcK = {u→ u|p | u = u|p ∈ EcK} is finite.

Contracting equations, if defined on F , define an upper bound on the number
of states of a simplified automaton.

Lemma 2. Let A be a tree automaton and EcF a set of contracting equations for
F . If E ⊇ EcF ∪ Er then the simplified automaton SE (A) is an 6ε-deterministic

automaton having no more states than terms in Irr(
−→
EcF).

Proof. First, assume for all state q of SE (A), L6ε(SE (A) , q) ∩ Irr(
−→
EcF) = ∅.

Then, for all terms s such that s → 6ε ∗SE(A) q, we know that s is not in normal

form w.r.t.
−→
EcF . As a result, the left-hand side of an equation of EcF can be applied

to s. This means that there exists an equation u = u|p, a ground context C and

a substitution θ such that s = C[uθ]. Furthermore, since s → 6ε ∗SE(A) q, we know

that C[uθ] → 6ε ∗SE(A) q and that there exists a state q′ such that C[q′] → 6ε ∗SE(A) q

and uθ → 6ε ∗SE(A) q
′. From uθ →6ε ∗SE(A) q

′, we know that all subterms of uθ are

recognized by at least one state in SE (A). Thus, there exists a state q′′ such

that u|pθ →6ε ∗SE(A) q
′′. We thus have a situation of application of the equation

u = u|p in the automaton. Since SE (A) is simplified, we thus know that q′ = q′′.

As mentioned above, we know that C[q′] → 6ε ∗SE(A) q. Hence C[u|pθ] →6ε ∗SE(A)

C[q′] → 6ε ∗SE(A) q. If C[u|pθ] is not in normal form w.r.t.
−→
EcF then we can do the

same reasoning on C[u|pθ]→ 6ε ∗SE(A) q until getting a term that is in normal form

w.r.t.
−→
EcF and recognized by the same state q. Thus, this contradicts the fact

that SE (A) recognizes no term of Irr(
−→
EcF).

Then, by definition of EcF , Irr(
−→
EcF) is finite. Let {t1, . . . , tn} be the subset of

Irr(
−→
EcF) recognized by SE (A). Let q1, . . . , qn be the states recognizing t1, . . . , tn

respectively. We know that there is a finite set of states recognizing t1, . . . , tn
because E ⊇ Er and Lemma 1 entails that SE (A) is 6ε-deterministic. Now, for

all terms s recognized by a state q in SE (A), i.e. s → 6ε ∗SE(A) q, we can use a

reasoning similar to the one carried out above and show that q is equal to one

state of {q1, . . . , qn} recognizing normal forms of
−→
EcF in SE (A). Finally, there

are at most card(Irr(
−→
EcF)) states in SE (A). ut

Now it is possible to state the Theorem guaranteeing the termination of com-
pletion if the set of equations E contains a set of contracting equations EcF for
F and a set of reflexivity equations.

Theorem 4. Let A be a tree automaton, R a left linear TRS and E a set of
equations. If E ⊇ Er ∪ EcF , then completion of A by R and E terminates.

Proof. For completion to diverge it must produce infinitely many new states.
This is impossible if E contains EcF and Er (see Lemma 2). ut

5.2 Criterion for Functional TRSs

Now, we consider functional programs viewed as TRSs. We assume that such
TRSs are left-linear, which is a common assumption on TRSs obtained from
functional programs [2]. In this section, we will restrict ourselves to sufficiently
complete TRSs obtained from functional programs and will refer to them as
functional TRSs. For TRSs representing functional programs, defining contract-
ing equations of EcC on C rather than on F is enough to guarantee termination
of completion. This is more convenient and also closer to what is usually done in
static analysis where abstractions are usually defined on data and not on func-
tion applications. Since the TRSs we consider are sufficiently complete, any term
of T (F) can be rewritten into a data-term of T (C). As above, using equations of
EcC we are going to ensure that the data-terms of the computed languages will
be recognized by a bounded set of states. To lift-up this property to T (F) it is
enough to ensure that ∀s, t ∈ T (F) if s →R t then s and t are recognized by
equivalent states. This is the role of the set of equations ER.

Definition 11 (ER). Let R be a TRS, the set of R-equations is ER = {l =
r | l→ r ∈ R}.

Theorem 5. Let A0 be a tree automaton, R a sufficiently complete left-linear
TRS and E a set of equations. If E ⊇ Er ∪ EcC ∪ ER with EcC contracting then
completion of A0 by R and E terminates.

Proof. Firstly, to show that the number of states recognizing terms of T (C) is
finite we can do a proof similar to the one of Lemma 2 . Let G ⊆ T (C) be

the finite set of normal forms of T (C) w.r.t.
−→
EcC . Since E ⊇ Er ∪ EcC , like in

the proof of Lemma 2, we can show that in any completed automaton, terms
of T (C) are recognized by no more states than terms in G. Secondly, since R is
sufficiently complete, for all terms s ∈ T (F) \ T (C) we know that there exists
a term t ∈ T (C) such that s →R∗ t. The fact that E ⊇ ER guarantees that s

and t will be recognized by equivalent states in the completed (and simplified)
automaton. Since the number of states necessary to recognize T (C) is finite, so
is the number of states necessary to recognize terms of T (F). ut

Finally, to exploit the types of the functional program, we now see F as a many-
sorted signature whose set of sorts is S. Each symbol f ∈ F is associated to a
profile f : S1 × . . . × Sk 7→ S where S1, . . . , Sk, S ∈ S and k is the arity of f .
Well-sorted terms are inductively defined as follows: f(t1, . . . , tk) is a well-sorted
term of sort S if f : S1× . . .×Sk 7→ S and t1, . . . , tk are well-sorted terms of sorts
S1, . . . , Sk, respectively. We denote by T (F ,X)

S
, T (F)

S
and T (C)S the set of

well-sorted terms, ground terms and constructor terms, respectively. Note that
we have T (F ,X)

S ⊆ T (F ,X), T (F)
S ⊆ T (F) and T (C)S ⊆ T (C). We assume

that R and E are sort preserving, i.e. that for all rule l→ r ∈ R and all equation
u = v ∈ E, l, r, u, v ∈ T (F ,X)

S
, l and r have the same sort and so do u and v.

Note that well-typedness of the functional program entails the well-sortedness
of R. We still assume that the (sorted) TRS is sufficiently complete, which is
defined in a similar way except that it holds only for well-sorted terms, i.e. for
all s ∈ T (F)

S
there exists a term t ∈ T (C)S such that s →R∗ t. We slightly

refine the definition of contracting equations as follows. For all sort S, if S has
a unique constant symbol we note it cS .

Definition 12 (Set EcK,S of contracting equations for K and S). Let K ⊆
F . The set of well-sorted equations EcK,S is contracting (for K) if its equations

are of the form (a) u = u|p with u linear and p 6= Λ, or (b) u = cS with u

of sort S, and if the set of normal forms of T (K)S w.r.t. the TRS
−−−→
EcK,S =

{u→ v | u = v ∈ EcK,S ∧ (v = u|p ∨ v = cS)} is finite.

The termination theorem for completion of sorted TRSs is similar to the previous
one except that it needs R/E-coherence of A0 to ensure that terms recognized
by completed automata are well-sorted (see [11] for proof).

Theorem 6. Let A0 be a tree automaton recognizing well-sorted terms, R a
sufficiently complete sort-preserving left-linear TRS and E a sort-preserving set

of equations. If E ⊇ Er ∪ EcC,S ∪ ER with EcC,S contracting and A0 is R/E-
coherent then completion of A0 by R and E terminates.

5.3 Experiments

The objective of data-flow analysis is to predict the set of all program states
reachable from a language of initial function calls, i.e. to over-approximate
R∗(L(A)) where R represents the functional program and A the language of
initial function calls. In this setting, we automatically compute an automaton
A∗R,E over-approximating R∗(L(A)). But we can do more. Since we are dealing
with left-linear TRS, it is possible to build AIrr(R) recognizing Irr(R). Finally,
since tree automata are closed under all boolean operations, we can compute
an approximation of all the results of the function calls by computing the tree
automaton recognizing the intersection between A∗R,E and AIrr(R).

Here is an example of application of those theorems. Completions are per-
formed using Timbuk. All theAIrr(R) automata and intersections were performed
using Taml. Details can be found in [14].

Ops append:2 rev:1 nil:0 cons:2 a:0 b:0 Vars X Y Z U Xs

TRS R

append(nil,X)->X append(cons(X,Y),Z)->cons(X,append(Y,Z))

rev(nil)->nil rev(cons(X,Y))->append(rev(Y),cons(X,nil))

Automaton A0 States q0 qla qlb qnil qf qa qb Final States q0 Transitions
rev(qla)->q0 cons(qb,qnil)->qlb cons(qa,qla)->qla nil->qnil

cons(qa,qlb)->qla a->qa cons(qb,qlb)->qlb b->qb

Equations E Rules cons(X,cons(Y,Z))=cons(Y,Z) %%% Ec

%%% E_R %%% E^r

append(nil,X)=X rev(X)=rev(X)

append(cons(X,Y),Z)=cons(X,append(Y,Z)) cons(X,Y)=cons(X,Y)

rev(nil)=nil append(X,Y)=append(X,Y)

rev(cons(X,Y))=append(rev(Y),cons(X,nil)) a=a b=b nil=nil

In this example, the TRS R encodes the classical reverse and append func-
tions. The language recognized by automaton A0 is the set of terms of the form
rev([a, a, . . . , b, b, . . .]). Note that there are at least one a and one b in the list. We
assume that S = {T, list} and sorts for symbols are the following: a : T , b : T ,
nil : list, cons : T × list 7→ list, append : list× list 7→ list and rev : list 7→ list.
Now, to use Theorem 6, we need to prove each of its assumptions. The set E of
equations contains ER, Er and EcC,S . The set of Equations EcC,S is contracting be-
cause the automaton A

Irr(
−−−→
Ec

C,S)
recognizes a finite language. This automaton can

be computed using Taml: it is the intersection between the automaton AT (C)S
4

recognising T (C)S and the automaton AIrr({cons(X,cons(Y,Z))→cons(Y,Z)}):

4 Such an automaton has one state per sort and one transition per constructor.
For instance, on our example AT (C)S will have transitions: a → qT , b → qT ,
cons(qT, qlist) → qlist and nil → qlist.

States q2 q1 q0 Final States q0 q1 q2

Transitions b->q2 a->q2 nil->q1 cons(q2,q1)->q0

The language of A0 is well-sorted and E and R are sort preserving. We can
prove sufficient completeness of R on T (F)

S
using, for instance, Maude [6] or

even Timbuk [9] itself. The last assumption of Theorem 6 to prove is that A0 is
R/E-coherent. This can be shown by remarking that each state q of A0 recog-

nizes at least one term and if s → 6ε ∗A0
q and t → 6ε ∗A0

q then s =E t. For instance

cons(b, cons(b, nil))→ 6ε ∗A0
qlb and cons(b, nil)→ 6ε ∗A0

qlb and cons(b, cons(b, nil)) =E

cons(b, nil). Thus, completion is guaranteed to terminate: after 4 completion
steps (7 ms) we obtain a fixpoint automaton A∗R,E with 11 transitions. To re-
strain the language to normal forms it is enough to compute the intersection
with Irr(R). Since we are dealing with sufficiently complete TRSs, we know

that Irr(R) ⊆ T (C)S . Thus, we can use again AT (C)S for the intersection that
is:

States q3 q2 q1 q0 Final States q3 Transitions a->q0 nil->q1 b->q2

cons(q0,q1)->q3 cons(q0,q3)->q3 cons(q2,q1)->q3 cons(q2,q3)->q3

which recognizes any (non empty) flat list of a and b. Thus, our analysis preserved
the property that the result cannot be the empty list but lost the order of the
elements in the list. This is not surprising because the equation cons(X, cons(Y,

Z))=cons(X, Z) makes cons(a, cons(b, nil)) equal to cons(a, nil). It is possible to
refine by hand EcC,S using the following equations: cons(a,cons(a,X))=cons(a,X),
cons(b,cons(b,X))=cons(b,X), cons(a,cons(b,cons(a,X)))=cons(a,X). This set of
equations avoids the previous problem. Again, E verifies the conditions of Theo-
rem 6 and completion is still guaranteed to terminate. The result is the automa-
ton A′∗R,E having 19 transitions. This time, intersection with AT (C)S gives:

States q4 q3 q2 q1 q0 Final States q4 Transitions a->q1 b->q3 nil->q0

cons(q1,q0)->q2 cons(q1,q2)->q2 cons(q3,q2)->q4 cons(q3,q4)->q4

This automaton exactly recognizes lists of the form [b, b, . . . , a, a, . . .] with at
least one b and one a, as expected. Hopefully, refinement of equations can be
automatized in completion [3] and can be used here, see [14] for examples. More
examples can be found in the Timbuk 3.1 source distribution.

6 Conclusion and further research

In this paper we defined a criterion on the set of approximation equations to
guarantee termination of the tree automata completion. When dealing with, so
called, functional TRS this criterion is close to what is generally expected in
static analysis and abstract interpretation: a finite model for an infinite set of
data-terms. This work is a first step to use completion for static analysis of
functional programs. There remains some interesting points to address.

Dealing with higher-order functions. Higher-order functions can be encoded into
first order TRS using a simple encoding borrowed from [17]: defined symbols be-
come constants, constructor symbols remain the same, and an additional applica-
tion operator ’@’ of arity 2 is introduced. On all the examples of [21], completion
and this simple encoding produces exactly the same results [14].

Dealing with evaluation strategies. The technique proposed here, as well as [21],
over-approximates the set of results for all evaluation strategies. As far as we
know, no static analysis technique for functional programs can take into account
evaluation strategies. However, it is possible to restrict the completion algorithm
to recognize only innermost descendants [14], i.e. call-by-value results. If the
approximation is precise enough, any non terminating program with call-by-
value will have an empty set of results. An open research direction is to use this
to prove non termination of functional programs by call-by-value strategy.

Dealing with built-in types. Values manipulated by real functional programs are
not always terms or trees. They can be numerals or be terms embedding numer-
als. In [12], it has been shown that completion can compute over-approximations
of reachable terms embedding built-in terms. The structural part of the term is
approximated using tree automata and the built-in part is approximated using
lattices and abstract interpretation.

Besides, there remain some interesting theoretical points to solve. In section 5, we
saw that having a finite T (F)/=E

is not enough to guarantee the termination
of completion. This is due to the fact that the simplification algorithm does
not merge all states recognizing E-equivalent terms. Having a simplification
algorithm ensuring this property is not trivial. First, the theory defined by E has
to be decidable. Second, even if E is decidable, finding all the E-equivalent terms
recognized by the tree automaton is an open problem. Furthermore, proving that
T (F)/=E

is finite, is itself difficult. This question is undecidable in general [23],
but can be answered for some particular E. For instance, if E can be oriented
into a TRS R which is terminating, confluent and such that Irr(R) is finite
then T (F)/=E

is finite [23].

Acknowledgments Many thanks to the referees for their detailed comments.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA Tool for the automated validation of internet security pro-
tocols and applications. In CAV’2005, volume 3576 of LNCS, pages 281–285.
Springer, 2005.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. Y. Boichut, B. Boyer, T. Genet, and A. Legay. Equational Abstraction Refinement
for Certified Tree Regular Model Checking. In ICFEM’12, volume 7635 of LNCS.
Springer, 2012.

4. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Handling non left-
linear rules when completing tree automata. IJFCS, 20(5), 2009.

5. Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. In RTA, volume 4533 of LNCS, pages 48–62.
Springer, 2007.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude, A High-Performance Logical Framework, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

7. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
http://tata.gforge.inria.fr, 2008.

8. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term
Rewriting Systems. Journal of Automated Reasonning, 33 (3-4):341–383, 2004.

9. T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In Proc. 9th RTA Conf., Tsukuba (Japan), volume 1379 of LNCS, pages
151–165. Springer-Verlag, 1998.

10. T. Genet. Reachability analysis of rewriting for software verification. Université de
Rennes 1, 2009. Habilitation document, http://www.irisa.fr/celtique/genet/
publications.html.

11. T. Genet. Towards Static Analysis of Functional Programs using Tree Automata
Completion. Technical report, INRIA, 2013. http://hal.archives-ouvertes.

fr/hal-00921814/PDF/main.pdf.
12. T. Genet, T. Le Gall, A. Legay, and V. Murat. A Completion Algorithm for Lattice

Tree Automata. In CIAA’13, volume 7982 of LNCS, pages 134–145, 2013.
13. T. Genet and R. Rusu. Equational tree automata completion. Journal of Symbolic

Computation, 45:574–597, 2010.
14. T. Genet and Y. Salmon. Tree Automata Completion for Static Analy-

sis of Functional Programs. Technical report, INRIA, 2013. http://hal.

archives-ouvertes.fr/hal-00780124/PDF/main.pdf.
15. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that

certify termination of left-linear term rewriting systems. In RTA’05, volume 3467
of LNCS, pages 353–367. Springer, 2005.

16. F. Jacquemard. Decidable approximations of term rewriting systems. In
H. Ganzinger, editor, Proc. 7th RTA Conf., New Brunswick (New Jersey, USA),
pages 362–376. Springer-Verlag, 1996.

17. N. D. Jones. Flow analysis of lazy higher-order functional programs. In S. Abram-
sky and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages
103–122. Ellis Horwood, Chichester, England, 1987.

18. Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20, 2013.
19. A. Lisitsa. Finite Models vs Tree Automata in Safety Verification. In RTA’12,

volume 15 of LIPIcs, pages 225–239, 2012.
20. F. Oehl, G. Cécé, O. Kouchnarenko, and D. Sinclair. Automatic Approximation

for the Verification of Cryptographic Protocols. In Proc. of FASE’03, volume 2629
of LNCS, pages 34–48. Springer-Verlag, 2003.

21. L. Ong and S. Ramsay. Verifying higher-order functional programs with pattern-
matching algebraic data types. In POPL’11, 2011.

22. T. Takai. A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In Proc. 15th RTA Conf., Aachen (Germany), volume 3091 of
LNCS, pages 119–133. Springer, 2004.

23. S. Tison. Finiteness of the set of E-equivalence classes is undecidable, 2010. Private
communication.

