
Rewriting Approximations for Fast Prototyping

of Static Analyzers

Yohan Boichut, Thomas Genet, Thomas Jensen, Luka Le Roux⋆

Université de Rennes 1 and INRIA and CNRS

IRISA, Campus de Beaulieu, F-35042 Rennes, France
{boichut,genet,jensen,leroux}@irisa.fr

Abstract. This paper shows how to construct static analyzers using
tree automata and rewriting techniques. Starting from a term rewriting
system representing the operational semantics of the target program-
ming language and given a program to analyze, we automatically con-
struct an over-approximation of the set of reachable terms, i.e. of the
program states that can be reached. The approach enables fast proto-
typing of static analyzers because modifying the analysis simply amounts
to changing the set of rewrite rules defining the approximation. A salient
feature of this approach is that the approximation is correct by con-
struction and hence does not require an explicit correctness proof. To
illustrate the framework proposed here on a realistic programming lan-
guage we instantiate it with the Java Virtual Machine semantics and
perform class analysis on Java bytecode programs.

1 Introduction

The aim of this paper is to show how to combine rewriting theory with principles
from abstract interpretation in order to obtain a fast and reliable methodology
for implementing static analyzers for programs. Rewriting theory and in partic-
ular reachability analysis based on tree automata has proved to be a powerful
technique for analyzing particular classes of software such as cryptographic pro-
tocols [11, 8, 12]. In this paper we set up a framework that allows to apply those
techniques to a general programming language. Our framework consists of three
parts. First, we define an encoding of the operational semantics of the language
as a term rewriting system (TRS for short). Second, we give a translation scheme
for transforming programs into rewrite rules. Finally, an over-approximation of
the set of reachable program states represented by a tree automaton is computed
using the tree automata completion algorithm [8]. In this paper, we instantiate
this framework on a real test case, namely Java. We encode the Java Virtual
Machine (JVM for short) operational semantics and Java bytecode programs
into TRS and construct over-approximations of JVM states.

With regards to rewriting, the contribution of this paper is dual. First, we
propose an encoding of a significant part of Java into left-linear, unconditionnal

⋆ funded by France Telecom CRE 46128352.

TRS. For rewriting, the second contribution is to have scaled up the theoretical
construction of tree automata completion to the verification of Java bytecode
programs. With respect to static analysis, the contribution of this paper is to
show that regular approximations can be used as a foundational mechanism
for ensuring, by construction, safety of static analyzers. This paper shows that
the approach can already be used to achieve standard class analysis on Java
bytecode programs. Moreover, using approximation rules instead of abstract
domains makes the analysis easier to fine-tune and to prove correct. This is
of great interest, when a standard analysis is too coarse, since our technique
permits to adapt the analysis to the property to prove and preserve safety.

The paper is organized as follows. Section 2 introduces the formal back-
ground of the rewriting theory. Section 3 shows how to over-approximate the
set of reachable terms using tree automata. Section 4 presents a term rewriting
model of the Java semantics. Section 5 presents, by the means of some classi-
cal examples, how rewriting approximations can be used for a class analysis.
Section 6 compares our contribution with related works. Section 7 concludes.

2 Formal Background

Comprehensive surveys can be found in [6, 1] for term rewriting systems, and
in [5, 14] for tree automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity function, and
let X be a countable set of variables. T (F ,X) denotes the set of terms, and T (F)
denotes the set of ground terms (terms without variables). The set of variables
of a term t is denoted by Var(t). A substitution is a function σ from X into
T (F ,X), which can be extended uniquely to an endomorphism of T (F ,X). A
position p for a term t is a word over N. The empty sequence ǫ denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by:

– Pos(t) = {ǫ} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ǫ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term s.
A term rewriting system R is a set of rewrite rules l → r, where l, r ∈ T (F ,X),
l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if each variable
of l (resp. r) occurs only once in l. A TRS R is left-linear if every rewrite rule
l → r of R is left-linear). The TRS R induces a rewriting relation →R on terms
whose reflexive transitive closure is denoted by →⋆

R. The set of R-descendants
of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →⋆

R t}.
The verification technique we propose in this paper is based on the com-

putation of R∗(E). Note that R∗(E) is possibly infinite: R may not terminate
and/or E may be infinite. The set R∗(E) is generally not computable [14]. How-
ever, it is possible to over-approximate it [8, 18] using tree automata, i.e. a finite
representation of infinite (regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,Qf , ∆〉, where Qf ⊆ Q and ∆ is a set of normalized
transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the
set ∆) is denoted by →∆. When ∆ is clear from the context, →∆ will also be
denoted by →A.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →⋆

A q}. The language recognized by A
is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton.

3 Approximations of reachable terms

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [10, 8], computes a tree automaton Ak

R such that L(Ak
R) =

R∗(L(A)) when it is possible (for the classes of TRSs where an exact computa-
tion is possible, see [8]) and such that L(Ak

R) ⊇ R∗(L(A)) otherwise.
The tree automata completion works as follows. From A = A0

R completion
builds a sequence A0

R.A1
R . . .Ak

R of automata such that if s ∈ L(Ai
R) and s →R t

then t ∈ L(Ai+1
R). If we find a fixpoint automaton Ak

R such that R∗(L(Ak
R)) =

L(Ak
R), then we have L(Ak

R) = R∗(L(A0
R)) (or L(Ak

R) ⊇ R∗(L(A)) if R is not
in one class of [8]). To build Ai+1

R
from Ai

R, we achieve a completion step which
consists of finding critical pairs between →R and →Ai

R

. To define the notion of

critical pair, we extend the definition of substitutions to terms of T (F ∪Q). For
a substitution σ : X 7→ Q and a rule l → r ∈ R, a critical pair is an instance lσ

of l such that there exists q ∈ Q satisfying lσ →∗
Ai

R

q and lσ →R rσ. Note that

since R, Ai
R and the set Q of states of Ai

R are finite, there is only a finite number
of critical pairs. For every critical pair detected between R and Ai

R such that
rσ 6→∗

Ai
R

q, the tree automaton Ai+1
R is constructed by adding a new transition

rσ → q to Ai
R such that Ai+1

R recognizes rσ in q, i.e. rσ →
A

i+1

R

q.

∗

lσ

Ai

R

R
rσ

q

∗

A
i+1

R

However, the transition rσ → q is not necessarily a normalized transition of the
form f(q1, . . . , qn) → q and so it has to be normalized first. Since normalization
consists in associating state symbols to subterms of the left-hand side of the new
transition, it always succeed. Note that, when using new states to normalize
the transitions, completion is as precise as possible. However, without approx-
imation, completion is likely not to terminate (because of general undecidabil-
ity results [14]). To enforce termination, and produce an over-approximation,
the completion algorithm is parametrized by a set N of approximation rules.
When the set N is used during completion to normalize transitions, the ob-
tained tree automata are denoted by A1

N,R, . . . ,Ak
N,R. Each such rule describes

a context in which a list of rules can be used to normalize a term. For all
s, l1, . . . , ln ∈ T (F ∪Q,X) and for all x, x1, . . . , xn ∈ Q ∪ X , the general form
for an approximation rule is:

[s → x] → [l1 → x1, . . . , ln → xn].

The expression [s → x] is a pattern to be matched with the new transitions
t → q′ obtained by completion. The expression [l1 → x1, . . . , ln → xn] is a set of
rules used to normalize t. To normalize a transition of the form t → q′, we match
s with t and x with q′, obtain a substitution σ from the matching and then we
normalize t with the rewrite system {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore,
if ∀i = 1 . . . n : xi ∈ Q or xi ∈ Var(li) ∪ Var(s) ∪ {x} then since σ : X 7→ Q,
x1σ, . . . , xnσ are necessarily states. If a transition cannot be fully normalized
using approximation rules N , normalization is finished using some new states,
see Example 1.

The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions, if completion termi-
nates then it produces an over-approximation of reachable terms [8].

Theorem 1 ([8]). Let R be a left-linear TRS, A be a tree automaton and N

be a set of approximation rules. If completion terminates on Ak
N,R then

L(Ak
N,R) ⊇ R∗(L(A))

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.

Example 1. Let R = {g(x, y) → g(f(x), f(y))} and let A be the tree automaton
such that Qf = {qf} and ∆ = {a → qa, g(qa, qa) → qf}. Hence L(A) = {g(a, a)}
and R∗(L(A)) = {g(fn(a), fn(a)) | n ≥ 0}. Let N = [g(f(x), f(y)) → z] →
[f(x) → q1, f(y) → q1]. During the first completion step, we find a criti-
cal pair g(qa, qa) →R g(f(qa), f(qa)) and g(qa, qa) →∗

A qf . We thus have to

add the transition g(f(qa), f(qa)) → qf to A. To normalize this transition,
we match g(f(x), f(y)) with g(f(qa), f(qa)) and match z with qf and obtain
σ = {x 7→ qa, y 7→ qa, z 7→ qf}. Applying σ to [f(x) → q1, f(y) → q1] gives
[f(qa) → q1, f(qa) → q1]. This last system is used to normalize the transition
g(f(qa), f(qa)) → qf into the set {g(q1, q1) → qf , f(qa) → q1} which is added

to A to obtain A1
N,R. The completion process continues for another step and

ends on A2
N,R whose set of transition is {a → qa, g(qa, qa) → qf , g(q1, q1) →

qf , f(qa) → q1, f(q1) → q1}. We have L(Ak
N,R) = {g(fn(a), fm(a)) | n, m ≥ 0}

which is an over-approximation of R∗(L(A)).

The tree automata completion algorithm and the approximation mechanism
are implemented in the Timbuk [13] tool. On the previous example, once the
fixpoint automaton Ak

N,R has been computed, it is possible to check whether

some terms are reachable, i.e. recognized by Ak
N,R or not. This can be done using

tree automata intersections [8]. Another way to do that is to search instances
for a pattern t, where t ∈ T (F ,X), in the tree automaton. Given t it is possible
to check if there exists a substitution σ : X 7→ Q and a state q ∈ Q such that
tσ →∗

Ak
N,R

q. If such a solution exists then it proves that there exists a term

s ∈ T (F), a position p ∈ Pos(s) and a substitution σ′ : X 7→ T (F) such that
s[tσ′]p ∈ L(Ak

N,R) ⊇ R∗(L(A)), i.e. that tσ′ occurs as a subterm in the language

recognized by L(Ak
N,R). On the other hand, if there is no solution then it proves

that no such term is in the over-approximation, hence it is not in R∗(L(A)), i.e.
it is not reachable.

In the patterns we use in this paper, ’?x’ denotes variables for which a value
is wanted and ’ ’ denotes anonymous variables for which no value is needed.
For instance, the pattern g(f(), g(,)) has no solution on A2

N,R of example 1,
meaning that no term containing any ground instance of this pattern is reachable
by rewriting g(a, a).

4 Formalization of the Java Bytecode Semantics using

Rewriting Rules

This section describes how to formalize the semantics of an object-oriented lan-
guage (here, Java bytecode) using rewriting rules. From a bytecode Java program
p, we have developed a prototype that automatically produces a TRS R model-
ing a significant part of the Java semantics (stacks, frames, objects, references,
methods, heaps, integers) as well as the semantics of p. For the moment, excep-
tions and threads are not taken into account but they can be elegantly encoded
using rewriting [16, 7]. The formalization follows the structure of standard Java
semantics formalizations [2, 9].

4.1 Formalization of Java Program States

A Java program state contains a current execution frame (also called activation
record), a frame stack, a heap, and a static heap. A frame gives information
about the method currently being executed: its name, current program counter,
operand stack and local variables. When a method is invoked the current frame
is stored in the frame stack and a new current frame is created. A heap is used to
store objects and arrays, i.e. all the information that is not local to the execution

of a method. The static heap stores values of static fields, i.e. values that are
shared by all objects of a same class.

Let P be the infinite set of all the possible Java programs. Given p ∈ P ,
let C(p) be the corresponding finite set of class identifiers and Cr(p) be C(p) ∪
{array}. A value is either a primitive type or a reference pointing to an object
(or an array) in the heap. In our setting, we only consider integer and boolean
primitive types. Let PC(p) be the set of integers from 0 to the highest possible
program point in all the methods in p. Let M(p) be the set of method names
and Mid(p) be the finite set of pairs (m, c) where m ∈ M(p), c ∈ C(p) and m is
a method defined by the class c. This last set is needed to distinguish between
methods having the same name but defined by different classes. For the sake of
simplicity, we do not distinguish between methods having the same name but a
different signature but this could easily be done.

Following standard Java semantics we define a frame to be a tuple f =
(pc, m, s, l) where pc ∈ PC(p), m ∈ Mid(p), s an operand stack, l a finite map
from indexes to values (local variables). An object from a class c is a map from
field identifiers to values. The heap is a map from references to objects and
arrays. The static heap is a map from static field names to values. A program
state is a tuple s = (f, fs, h, k) where f is a frame, fs is a stack of frames, h is
a heap and k a static heap.

4.2 A Program State as a Term

Let FC(p) = C(p) and FCr
(p) = Cr(p) = C(p) ∪ {array} be sets of symbols.

We encode a reference as a term loc(c, a) where c ∈ Cr(P) is the class of the
object being referenced and a is an integer. This is coherent with Java semantics
where it is always possible to know dynamically the class of an object corre-
sponding to a reference. We use Fprimitive = {succ : 1, pred : 1, zero : 0} for
primitive types (integers), Freference(p) = {loc : 2, succ : 1, zero : 0} ∪ FCr

(p)
for references and Fvalue(p) = Fprimitive ∪Freference(p) for values. For example,
loc(foo, succ(zero)) is a reference pointing to the object located at the index 1 in
the foo class heap. Let x be the higher program point of the program (p), then
FPC(p) = {pp0 : 0, pp1 : 0, ..., ppx : 0}. FM (p) is defined the same way as FC(p).
FMid

(p) = {name : 2}∪FM (p)∪FC(p). For example name(bar, A) stands for the
method bar defined by the class A. Let l(p) denote the maximum of local vari-
ables used by the methods of the program package p. We use Fstack(p) = {stack :
2, nilstack : 0} ∪ Fvalue(p) for stacks, FlocalV ars(p) = {locals : l(p), nillocal :
0} ∪ Fvalue(p) for local variables and Fframe(p) = {frame : 4} ∪ FPC(p) ∪
FMid

(p) ∪ Fstack(p) ∪ FlocalV ars(p) for frames. A possible frame thus would be:
frame(name(bar, A), pp4, stack(succ(zero), nilstack), locals(loc(bar, zero),
nillocal)) where the program counter points to the 4th instruction of the method
bar defined by the class A. The current operand stack has the integer 1 on the
top. The first local variable is some reference and the other is not initialized.

The alphabet Fobjects(p) contains the same symbols as FC(p), where the arity
of each symbol is the corresponding number of non-static fields. As an example,
objectA(zero) is an object from the class A with one field whose value is zero.

Let nc be the number of classes. We chose to divide the heap into nc class
heaps plus one for the arrays. In a reference loc(c, a), a is the index of the
object in the list representing the heap of class c. An array is encoded using a
list and indexes in a similar way. We use Fheap(p) = {heaps : (nc + 1), heap :
2} ∪ Fstack(p) ∪ Fobjects(p) for heaps, and Fstate(p) = {state : 4} ∪ Fframe(p) ∪
Fheap(p) for states.

4.3 Java Bytecode Semantics

Figure 1 presents some rules of the semantics operating at the frame level. For
a given instruction, if a frame matches the top expression then it is transformed
into the lower expression. Considering the frame (pc, m, s, l), pc denotes the
current program point, m the current method identifier, s the current stack and l

the current array of local variables. The operator ’::’ models stack concatenation.
The storei instruction is used to store the value at the top of the current stack in
the ith register, where x →i l denotes the new resulting array of local variables.

(pop)
(m, pc, x :: s, l)

(m,pc + 1, s, l)
(storei)

(m,pc, x :: s, l)

(m, pc + 1, s, x →i l)

Fig. 1. Example of bytecodes operating at the frame level

Figure 2 presents a rule of the semantics operating at the state level. For
a state ((m, pc, s, l), fs, h, k), the symbols pc, m, s and l denote the current
frame components, fs the current stack of frames, h the heap and k the static
heap. The instruction invokeV irtualname implements dynamic method invoca-
tion. The method to be invoked is determined from its name and the class of
the reference at the top of the stack. The internal function class(ref, h, k) is
used to get the reference’s class c and lookup(name, c) searches the class hi-
erarchy in a bottom-up fashion for the the method m′ corresponding to this
name and this class. There are internal functions to manage the parameters of
the method (pushed on the stack before invoking): storeparams(ref :: s, m′) to
build an array of local variables from values on the top of the operand stack and
popparams(ref :: s, m′) to remove from the current operand stack the parame-
ters used by m′. With those tools, it is possible to build a new frame pointing at
the first program point of m′ and to push the current frame on the frame stack.
Some other examples can be found in [3].

4.4 Java Bytecode Semantics using Rewriting Rules

In this section, we encode the operational semantics into rewriting rules in a way
that makes the resulting system amenable to approximation by the techniques
described in this paper. The first constraint is that the term rewriting system
has to be left-linear (see Theorem 1). The second constraint, is that intermediate

(invokeV irtualname)
((m,pc, ref :: s, l), fs, h, k), c = class(ref, h, k), m′ = lookup(name, c)

((m′, 0, [], storeparams(ref :: s, m′)), (m, pc + 1, popparams(ref :: s, m′), l) :: fs, h, k)

Fig. 2. Example of bytecodes operating at the state level

steps modeling internal operations of the JVM (such as low level rewriting for
evaluating arithmetic operations +, ∗, . . .), should be easy to filter out. To this
end, we introduce a notion of intermediate frames (named xframe) encompass-
ing all the internal computations performed by the JVM, which are not part of
operational semantic rules. We can express the Java Bytecode Semantics of a
Java bytecode program p by means of rewriting rules (see [3] details). We give
here the encodings of pop and invokeV irtual instructions.

In the following, symbols m, c, pc, s, l, fs, h, k, x, y, a, b, adr, l0, l1,
l2, size, h, h0, h1, ha are variables. For a given program point pc in a given
method m, we build an xframe term very similar to the original frame term
but with the current instruction explicitly stated. The xframes are used to
compute intermediate steps. If an instruction requires several internal rewriting
steps, we will only rewrite the corresponding xframe term until the execution
of the instruction ends. Assume that, in program p, the instruction at program
point pp2 of method foo of class A is pop. In figure 3, Rule 1 builds a xframe

term by explicitly adding the current instruction to the frame term. Rule 2
describes the semantics of pop. Rule 3 specifies the control flow by defining the
next program point.

1 frame(name(foo,A), pp2, s, l) → xframe(pop,name(foo, A), pp2, s, l)

2 xframe(pop,m, pc, stack(x, s), l) → frame(m,next(pc), s, l)

3 next(pp2) → pp3

Fig. 3. An example pop instruction by rewriting rules, for program p

Now, assume that, in program p, the instruction at program point pp2 of
method foo of class A is invokeV irtual. This instruction requires to compile
some information about methods and the class hierarchy into the rules. Basically,
we need to know what is the precise method to invoke, given a class identifier
and a method name. In p, assume that A and B are two classes such that B

extends A. Let set be a method implemented in the class A (and thus available
from B) with one parameter and reset a method implemented in the class B

(and thus unavailable from A) with no parameter. Figure 4 presents the resulting
rules for this simple example. To complete the modeling of the semantics and
the program by rewriting rules we need stubs for native libraries used by the
program. At present, we have developed stubs for some of the methods from the
javaioInputStream class. We model interactions of a Java program state with

its environment using a term of the form IO(s, i, o) where s is the state, i is the
input stream and o the output stream.

1 frame(name(foo, A), pp2, s, l) → xframe(invokeV irtual(set),
name(foo, A), pp2, s, l)

2 state(xframe(invokeV irtual(set),
m, pc, stack(loc(A, adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set,A), pp0, s,

locals(loc(A, adr), x, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

3 state(xframe(invokeV irtual(set),
m, pc, stack(loc(B, adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set,A), pp0, s,

locals(loc(B, adr), x, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

4 state(xframe(invokeV irtual(reset),
m, pc, stack(loc(B, adr), s), l), fs, h, k)

→ state(frame(name(reset,B), pp0, s,

locals(loc(B, adr), nillocal, nillocal)),
stack(storedframe(m,pc, s, l), fs), h, k)

5 next(pp2) → pp3

Fig. 4. invokeV irtualset instruction by rewriting rules

5 Class Analysis as a Rewriting Theory

In most program analyzes, it is often necessary to know the control flow graph.
For Java, as for other object-oriented languages, the control flow depends on the
data flow. When a method is invoked, to know which one is executed, the class
of the involved object is needed. For instance, on the Java program of Figure 5,
x.foo() calls this.bar(). To know which version of the bar is called, it is
necessary to know the class of this and thus the class of x in x.foo() call.
The method actually invoked is determined dynamically during the program
run. Class analysis aims at statically determining the class of objects stored in
fields and local variables, and allows to build a more precise control flow graph
valid for all possible executions. Note that in this example, exceptions around
System.in.read() are required by the Java compiler. However, in this paper,
we do not take them into account in the control flow.

There are different standard class analyzes, from simple and fast to precise
and expensive. We consider k-CFA analysis [17]. In these analyzes, primitive
types are abstracted by the name of their type and references are abstracted
by the class of the objects they point to. In 0-CFA analysis, each method is
analyzed only once, without distinguishing between the different calls (and hence
the arguments passed) to this method. k-CFA analyzes different calls to the same
method separately, taking into account up to k frames on the top of the frame
stack.

Starting from a term rewriting system R modeling the semantics of a Java
program, and a tree automaton A recognizing a set of initial Java program
states, we aim at computing an automaton Ak

N,R over-approximating R∗(L(A)).

We developed a prototype which produces R and A from a Java .class file.
From the Java source program of Figure 5, one can obtain the files Test.class,
A.class and B.class whose content is around 90 lines of bytecode. The TRS
R produced by compilation of those classes is composed of 275 rewrite rules.
The number of rewrite rules is linear w.r.t. the size of the bytecode files. The
analysis itself is performed using Timbuk [13]. Successively, this section details a
0-CFA, a 1-CFA and an even more precise analysis obtained using the same TRS
R and automaton A, but using different sets of approximation rules. On this
program, the set of reachable program states is infinite (and thus approximations
are necessary) because the instruction x=System.in.read(), reading values in
the input stream, is embedded in an unbounded loop. As long as the value stored
in the variable x is different from 0, the computation continues. Moreover, since
we want to analyze this program for any possible stream of integers, in the
automaton A the input stream is unbounded.

class A{ o1= new A();

int y; o2= new B();

void foo(){this.bar();} try{

void bar(){y=1;} x=System.in.read();

} }

class B extends A{ catch (java.io.IOException e)

void bar(){y=2;} { x = 0;}

} while (x != 0){

class Test{ execute(o1);

public void execute(A x){ execute(o2);

x.foo(); try{

} x=System.in.read(); }

public void main(String[] argv){ catch (java.io.IOException e)

A o1; { x = 0;}}

B o2; }

int x; }

Fig. 5. Java Program Example

5.1 0-CFA Analysis

For a 0-CFA analysis, all integers are abstracted by their type, i.e. they are
defined by the following transitions in A: zero → qint, succ(qint) → qint and
pred(qint) → qint. The input stream is also specified by A as an infinite stack of
integers: nilstackin → qin and stackin(qint, qin) → qin. Approximation rules for
integers, streams and references are defined by: [x → y] → [zero → qint, succ(qint)
→ qint, pred(qint) → qint, nilstackin → qin, stackin(qint, qin) → qin, loc(A, α) →
qrefA, loc(B, β) → qrefB] where x, y, α and β are variables. The pattern [x → y]
matches any new transition to normalize and the rules loc(A, x) → qrefA and

loc(B, y) → qrefB merge all references to an object of the class A and an object
of the class B into the states qrefA and qrefB, respectively.

Execution 2
state

s’ k’

locs’

frame h’
s2

name _

m

state

kh

locsname

sframe

Execution 1

m

s1

c

c

state

khs

Execution 1

Execution 2
state

s’ k’h’

{s1,s2}

{s1,s2}pp0

pp0 _

MERGING

Fig. 6. Principle of approximation rules for a 0-CFA analysis

The approximation rules for frames and states are built according to the
principle illustrated in Figure 6. The frames representing two different calls to
the method m of the class c are merged independently of the current state of
the execution in which the method m is called. The set of approximation rules
N is completed by giving such an approximation rule for each method of each
class. Using N , we can automatically obtain a fixpoint automaton A145

N,R over-
approximating the set of all reachable Java program states. The result of the 0-
CFA class analysis can be obtained, for each program location (a program point
in a method in a class), by asking for the possible classes for each object in the
stack or in the local variables. For instance, to obtain the set of possible classes
?c for the object passed as parameter to the method execute, i.e. the possible
classes for the second local variable at program point pp0 of execute, one can use
the following pattern: frame(name(execute,Test), pp0, , locals(, loc(?c,), ...)).
The result obtained for this pattern is that there exist two possible values for
?c: qA and qB which are the states recognizing respectively the classes A and B.
This is consistent with 0-CFA which is not able to discriminate between the two
possible calls to the execute method.

5.2 1-CFA Analysis

For 1-CFA, we need to refine the set of approximation rules into N ′. In N ′ the
rules on integers, the input stream and references are similar to the ones used for
0-CFA. In N ′, approximation rules for states and frames are designed according
to the principle illustrated in Figure 7. Contrary to Figure 6, the frames for the
method m of the class c are merged if the corresponding method calls have been
done from the same program point (in the same method m′ of the class c′). For

m c

name

state

khstack

k’

state

h’stack

_ _

storedframe rem

state

khstack

k’

m c

locs’name

frame h’stack

locs

frame

_

_pp0

pp0

_ _

storedframe rem

s2

s1 {s1,s2}

{s1,s2}

MERGING_ _ppi

_ _ppi _ _ppi

_ _ppi

_ _
__

state

Execution 1
Execution 1

name

name

m’ c’

m’ c’

name

m’ c’

name

m’ c’

storedframestoredframe

Execution 2
Execution 2

rem’
rem’

Fig. 7. Principle of approximation rules for a 1-CFA analysis

example, there are two approximation rules for the method execute of the class
Test: one applying when execute is invoked from the program point pp18 of the
method main, and one applying when it is done from the program point pp21 of
this same method. Applying the same principle for all the methods, we obtain
a complete set of approximation rules N ′. Using N ′, completion terminates on
A140

N ′,R. The following patterns:

state(frame(name(execute, Test), pp0, , locals(, loc(?c,), ...)), stack(storeframe(, pp18, ...),)...)

state(frame(name(execute, Test), pp0, , locals(, loc(?c,), ...)), stack(storeframe(, pp21, ...),)...)

gives the desired result: each pattern has only one solution for ?c: qA for
the first and qB for the second. Using a similar pattern to query the 0-CFA
automaton A145

N,R,gives qA and qB as solution for ?c for both program points.

5.3 Fine-tuning the precision of the analysis

Assume that we want to show that, after the execution of the previous program,
field y has always a value 1 for objects of class A and 2 for objects of class B. This
cannot be done by 1-CFA nor by any k-CFA since, in those analyzes, integers are
abstracted by their type. One of the advantage of our technique is its ability to
easily make approximation more precise by removing some approximation rules.

The property we want to prove is related to values 1 and 2 so it is tempt-
ing to refine our approximation so as not to merge those values. However, only
distinguishing these two values is not enough for the analysis to succeed. Fur-
ther experimentation with the approximation shows that refining the approx-
imation of the integers by distinguishing between 0, 1, 2 and “any other in-
teger” is enough to prove the desired property. Formally, this is expressed by
the following transitions: 0 → q0, succ(q0) → q1, succ(q1) → q2, succ(q2) →
qint, succ(qint) → qint. For specifying the negative integers, the following transi-
tions are used: pred(q0) → qnegint and pred(qnegint) → qnegint. The input stream

representation is also modified by the following transitions: nilstackin → qin,
stackin(qnegint, qin) → qin, stackin(qint, qin) → qin and stackin(qj , qin) → qin

with j = 0, . . . , 2.
No other approximation is needed to ensure termination of the completion.

In the fixpoint automaton A161
N,R, we are then able to show that, when the Java

program terminates, there are only two possible configurations of the heap. Ei-
ther the heap contains an object of class A and an object of class B whose fields
are both initialized to 0, or it contains an object of class A whose field has the
value 1 and an object of class B whose field has the value 2. These verifications
have been performed using a pattern matching with all the frames whose pp

value is the last control point of the program.
This result is not surprising. The first result is possible when there is zero

iterations of the loop (x is set to 0 before the instruction while (x != 0){...).
The second result is obtained for 1 or more iterations. Nevertheless, this kind of
result is impossible to obtain with the two previous analyzes presented in Section
5.1 and 5.2.

6 Related work

Term rewriting systems have been used to define and prototype semantics for
a long time. However, this subject has recently reappeared for verification pur-
poses. In [7, 16], rewriting is also used as operational semantics for Java. The ver-
ification done on the obtained rewriting system is closer to finite model-checking
or to simulation, since it can only deal with finite state programs. Moreover, no
abstraction mechanism is proposed. Hence, our work is complementary to theirs
since it permits to define abstractions in the rewrite model and to prove prop-
erties on Java applets for unbounded sets of inputs or for unbounded execution
paths. In [15], abstractions on reachability analysis are defined but they seem to
be too restrictive to deal with programming language semantics. Instead of tree
automata, Meseguer, Palomino and Mart́ı-Oliet use equations to define approx-
imated equivalence classes. More precisely, they use terminating and confluent
term rewriting systems normalizing every term of a class to its representative.
In order to guarantee safety of approximations, approximation and specification
rules must satisfy strong syntactic constraints. Roughly, approximation TRS
and specification TRS, they use, have to commute. Such properties are hard
to prove on a TRS encoding the Java semantics. Moreover, the approximation
rules we used for class analysis are contextual and cannot easily be expressed as
equations.

Takai [18] also proposed a theoretical version of approximated reachability
analysis over term rewriting systems. This work also combines equations and
tree automata. However, again, syntactic restrictions imposed on the equations
are strong and would prevent us from constructing the kind of approximation
we use on Java bytecode.

In [4], Bouajjani et al. propose a verification methodology based on abstrac-
tions and tree transducer applications on tree automata languages, called Ab-

stract Regular Tree Model Checking. This brings into play a tree transducer τ , a
tree automaton A and an abstraction α. For a given system to verify, τ encodes
its transition relation and L(A) accounts for its set of initial configurations. As
for computing R∗ of a set of terms in rewriting, computing τ∗(L(A)) may not
terminate. A well-suited abstraction α makes the computation converge at the
expense of an over-approximation of the set of configurations actually reachable.
The underlying idea of this technique is close to ours. However, in our case,
the TRS can implement basic computations in the semantics which would be
complicated to specify in terms of transducers.

As in classical static class analyzes (such as e.g., [17]), we can get several
ranges of precision of k-CFA, depending of the approximation rules. In addition,
starting from an automatically generated approximation, it is possible to adapt
approximation rules so as to get a more precise abstraction and prove specific
properties that may be difficult to show by an analyzer whose abstractions are
built-in (See Section 5.3 for instance).

7 Conclusion

We have defined a technique, based on rewriting and tree automata, for prototyp-
ing static analyzers from the operational semantics of a programming language.
As a test case, we showed how to produce a TRS R modeling the operational
semantics of a given Java program p. In this setting, given a set of inputs E

the set R∗(E) represents the set of program states reachable by p on inputs E,
i.e. the collecting semantics of p. The TRS R is produced automatically and
has a size linear in the size of the source program p. The technique has been
implemented and experimented on a number of standard control-flow analyzes
for Java bytecode, demonstrating the feasibility of the technique.

The exact set of reachable states is not computable in general so we use the
tree automata completion algorithm and approximation rules so as to compute
a finite approximation of the superset of R∗(E). The approximation technique
works at the level of terms and their representation through a tree automata
and has a number of advantages. First, the correctness of the approximation is
guaranteed by the underlying theory and does not have to be proved for each
proposed abstraction. Second, the analysis has easy access to several types of
information (on integers, memory, call stacks), as illustrated in Section 5.3. This
is an advantage compared to the more standard approach which combines several
data flow analyzes (by techniques such as reduced and open product) to gather
the same information. Third, it is relatively easy to fine-tune the analysis by
adding and removing approximation rules.

We have presented our approach in terms of a sequential fragment of Java
bytecode but the term rewriting setting is well suited to deal with the extension
to concurrent aspects of Java and to the handling of exceptions [16, 7].

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. P. Bertelsen. Semantics of Java Byte Code. Technical report, Technical University
of Denmark, 1997.

3. Y. Boichut, T. Genet, T. Jensen, and L. Le Roux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. Research Report RR 5997, INRIA, 2006.
http://www.irisa.fr/lande/genet/publications.html.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree
model checking. In Proceedings of 7th International Workshop on Verification of
Infinite-State Systems – INFINITY 2005, number 4 in BRICS Notes Series, pages
15–24, 2005.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 2002.

6. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers
B. V. (North-Holland), 1990. Also as: Research report 478, LRI.

7. A. Farzan, C. Chen, J. Meseguer, and G. Rosu. Formal analysis of java programs
in javafan. In CAV, volume 3114 of Lecture Notes in Computer Science, pages
501–505. Springer, 2004.

8. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term
Rewriting Systems. JAR, 33 (3-4):341–383, 2004.

9. Stephen N. Freund and John C. Mitchell. A formal framework for the Java bytecode
language and verifier. ACM SIGPLAN Notices, 34(10):147–166, 1999.

10. T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In Proc. 9th RTA Conf., Tsukuba (Japan), volume 1379 of LNCS, pages
151–165. Springer-Verlag, 1998.

11. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.
17th CADE Conf., Pittsburgh (Pen., USA), volume 1831 of LNAI. Springer-Verlag,
2000.

12. T. Genet, Y.-M. Tang-Talpin, and V. Viet Triem Tong. Verification of Copy Pro-
tection Cryptographic Protocol using Approximations of Term Rewriting Systems.
In In Proceedings of Workshop on Issues in the Theory of Security, 2003.

13. T. Genet and V. Viet Triem Tong. Timbuk 2.0 – a Tree Automata Library. IRISA
/ Université de Rennes 1, 2000. http://www.irisa.fr/lande/genet/timbuk/.

14. R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta
Informaticae, 24:157–175, 1995.

15. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational Abstractions. In Proc.
19th CADE Conf., Miami Beach (Fl., USA), volume 2741 of LNCS, pages 2–16.
Springer, 2003.

16. J. Meseguer and G. Rosu. Rewriting logic semantics: From language specifications
to formal analysis tools. In IJCAR, pages 1–44, 2004.

17. O. Shivers. The semantics of Scheme control-flow analysis. In Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
volume 26, pages 190–198, New Haven, CN, June 1991.

18. T. Takai. A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In Proc. 15th RTA Conf., Aachen (Germany), volume 3091 of
LNCS, pages 119–133. Springer, 2004.

