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Abstract: This paper defines a new framework for fast prototyping of static analyzers
based on rewriting techniques. Starting from a term rewriting system representing the
operational semantics of the target programming language and given a program to analyze,
we automatically construct an over-approximation of the set of reachable terms, i.e. of
program states that can be reached. With this approximation, it is possible to prove a
variety of safety or security properties expressible in terms of (un)reachability. Compared
with static analysis based on abstract interpretation, a salient feature of this approach is
that it is correct by construction. The approach enables fast prototyping of static analyzers
because modifying the analysis simply amounts to changing the set of rewrite rules defining
the approximation. To illustrate the framework proposed here on a realistic programming
language we instantiate it with the Java Virtual Machine semantics and use Java bytecode
programs as running examples. We show how to compile a Java bytecode program into an
equivalent term rewriting system and show how to quickly specify and implement a class
analysis by defining rewriting approximations.
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Approximations de réécriture pour le prototypage rapide
d’analyseurs statiques

Résumé : Cet article définit un nouveau cadre pour le prototypage rapide d’analyseurs
statiques basé sur des techniques de réécriture. A partir d’un systéme de réécriture représen-
tant la sémantique opérationnelle du langage de programmation cible et d’'un programme &
analyser, nous construisons automatiquement une sur-approximation de I’ensemble des ter-
mes atteignables, c-a-d des états de programme atteignables. A I'aide de ces approximations,
il est possible de prouver une grande variété de propriétés de streté et de sécurité exprimées
sous la forme d’un probléme de (non) atteignabilité. Comparée a I'analyse statique basée sur
I'interprétation abstraite, une caractéristique intéressante de cette approche est qu’elle est
correcte par construction. Cette approche permet de prototyper rapidement des analyseurs
statiques car pour modifier le type d’analyse effectué, il est suffisant de modifer ’ensemble
de régles de réécriture définissant I’approximation. Afin d’illustrer cette méthode de vérifi-
cation sur un langage de programmation réaliste, nous avons choisi de l'instancier avec la
sémantique de la machine virtuelle de Java (JVM) et d’analyser des programmes Java byte-
code. Nous montrons comment compiler un programme Java en un systéme de réécriture
équivalent et nous montrons également comment rapidement spécifier et implémenter des
analyses de classe simples en définissant des régles d’approximation.

Mots-clé : Systémes de réécriture, Analyse statique, Atteignabilité, Approximation, Java,
Bytecode, Automates d’arbres
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1 Introduction

The aim of this paper is to show how to combine rewriting theory with principles from
abstract interpretation in order to obtain a fast and reliable methodology for prototyping
static analyzers for programs. Rewriting theory and in particular reachability analysis based
on tree automata has proved to be a powerful technique for analyzing particular classes of
software such as cryptographic protocols [11, 7, 12]. In this paper we set up a framework
that allows to apply those techniques to a general programming language. Our framework
consists of three parts:

e an encoding of the operational semantics of the language as a term rewriting system
(TRS for short)

e a translation scheme for transforming programs into rewrite rules,

e and an over-approximation of the set of reachable program states represented by a tree
automaton, based on the tree automata completion algorithm [7].

In this paper, we instantiate this framework on a real test case, namely Java. We
encode the Java Virtual Machine (JVM for short) operational semantics and Java bytecode
programs into TRS and construct over-approximation of JVM states.

With regards to rewriting, the main contribution of this paper is to have scaled up
a theoretical construction, namely tree automata completion, to the verification of Java
bytecode programs. With regards to static analysis, the contribution of this paper is to
show that regular approximations can be used as a foundational mechanism for ensuring, by
construction, safety of static analyzers. This paper is a first step in that direction and shows
that the approach can already be used to achieve standard class analysis on Java bytecode
programs. Moreover, using approximation rules instead of abstract domains makes analysis
easier to prototype and to tune. This is of great interest, when a standard analysis is
too coarse, since our technique permits to adapt the analysis to the property to prove and
preserve safety.

The paper is organized as follows. Section 2 introduces the formal background of the
rewriting theory. Section 3 shows how to over-approximate the set of reachable terms using
tree automata. Section 4 presents a term rewriting model of the Java semantics. Section 5
presents, by the mean of some classical examples, how rewriting approximations can be used
for a class analysis. Section 6 compares with related works. Section 7 concludes.

2 Formal Background

Comprehensive surveys can be found in [5, 2] for term rewriting systems, in [4, 14] for tree
automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity function, and let X be
a countable set of variables. 7 (F,X) denotes the set of terms, and 7 (F) denotes the set
of ground terms (terms without variables). The set of variables of a term ¢ is denoted
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4 Y. Boichut, T. Genet, T. Jensen & L. Leroux

by Var(t). A substitution is a function ¢ from X into 7 (F,X), which can uniquely be
extended to an endomorphism of 7 (F, X). A position p for a term ¢ is a word over N. The
empty sequence e denotes the top-most position. The set Pos(t) of positions of a term ¢ is
inductively defined by:

o Pos(t) ={e}ifte X
o Pos(f(t1,...,tn)) ={e}U{i.p|1<i<mnandp e Pos(t)}

If p € Pos(t), then t|, denotes the subterm of ¢ at position p and t[s], denotes the term
obtained by replacement of the subterm t|, at position p by the term s. A term rewriting
system R is a set of rewrite rules | — r, where l,r € T(F,X), | ¢ X, and Var(l) 2 Var(r).
A rewrite rule | — r is left-linear if each variable of [ (resp. r) occurs only once in I. A
TRS R is left-linear if every rewrite rule I — r of R is left-linear). The TRS R induces a
rewriting relation — on terms whose reflexive transitive closure is denoted by —%. The set
of R-descendants of a set of ground terms E is R*(E) = {t € T(F) | Is € E s.t. s =} t}.

Example 1 Let R be the TRS such that R = {f(x) — g(f(z))}. The term f(a) rewrites to
9(f(a)), i-e. f(a) —r g(f(a)). Similarly, g(f(a)) —r g(g9(f(a)). We thus have f(a) —r"
g(g9(f(a))). Let E be the set of terms E = {f(a)}. On this example, we have R*(E) =
{f(a), 9(f(a)),9(9(f(a))), -} = {g"(f(a))}-

The verification technique we propose in this paper is based on the computation of R*(E).
Note that R*(E) is possibly infinite (like in the previous example): R may not terminate
and/or E may be infinite. The set R*(F) is generally not computable [14]. However, it is
possible to over-approximate it [7, 19| using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata.

Let Q be an infinite set of symbols, with arity 0, called states such that Q@ N F = ().
T(F U Q) is called the set of configurations.

Definition 1 (Transition and normalized transition) A transition is a rewrite rule
¢ — q, where ¢ is a configuration i.e. ¢ € T(FU Q) and q € Q. A normalized transition is
a transition ¢ — q where ¢ = f(q1,...,qn), [ € F whose arity is n, and ¢1,...,q, € Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton) A bottomn-up non-
deterministic finite tree automaton (tree automaton for short) is a quadruple A = (F, Q, Qf, A),
where Qy C Q and A is a set of normalized transitions.

The rewriting relation on 7 (F U Q) induced by the transitions of A (the set A) is denoted
by —a. When A is clear from the context, —a will also be denoted by — 4.

Definition 3 (Recognized language) The tree language recognized by A in a state q is

L(A,q) ={t € T(F) |t =% q}. The language recognized by A is L(A) = U,cq, L(A,q). A
tree language is regular if and only if it can be recognized by a tree automaton.

INRIA
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Example 2 Let A be the tree automaton (F,Q,Qy,A) such that F = {f,g,a}, Q =
{90, 1}, Qf = {qo} and A = {f(q) — qo,9(q1) — qo.a — q}. In A transition-
s are normalized. A transition of the form f(g(q1)) — qo is not normalized. The ter-
m g(a) is a term of T(FU Q) (and of T(F)) and can be rewritten by A in the follow-
ing way: g(a) —a g(¢1) —a qo- Note that L(A,q1) = {a} and L(A) = L(A,q) =
{ola), flg(@)), (£ (6@, } = {/*(g(a))}.

3 Approximations of reachable terms

Given a tree automaton A and a TRS R, the tree automata completion algorithm, proposed
in [10, 7], computes a tree automaton A% such that £(A%) = R*(L(A)) when it is possible
(for the classes of TRSs where an exact computation is possible, see [7]) and such that
L(AX) D R*(L(A)) otherwise.

The tree automata completion works as follows. From A = A% completion builds a
sequence A% . AL ... A% of automata such that if s € £(A%) and s —x t then t € L(AF).
If we find a fixpoint automaton A% such that R*(L(A%)) = L(AY), then we have £(AY) =
R*(L(A%)) (resp. L(A%) D R*(L(A)) if R is not in one class of [7]). To build A" from

= we achieve a completion step which consists in finding critical pairs between —x and

— Al - To define the notion of critical pair, we extend the definition of substitutions to terms

of T(FU Q). For a substitution o : X — Q and a rule [ — r € R, a critical pair is an

instance lo of [ such that there exists ¢ € Q satistying lo —%, ¢ and lo —g ro. Note that

X X R

since R, A% and the set Q of states of A% are finite, there is only a finite number of critical

pairs. For every critical pair detected between R and A% such that ro 7@; q, the tree
R

automaton .Af,{rl is constructed by adding a new transition ro — ¢ to A% such that Agl
recognizes ro in g, i.e. 70 — 4i+1 q.
R

lo —> ro

. 1
1
‘ARl * /
x 7/
LAY

q <--
However, the transition ro¢ — ¢ is not necessarily a normalized transition of the form
f(q1,--.,qn) — ¢ and so it has to be normalized first. For example, to normalize a transition

of the form f(g(a),h(q")) — q, we need to find some states ¢1, g2, g3 and replace the previous
transition by a set of normalized transitions: {a — q1,9(q1) — q2, h(¢’) — g3, f(g2,q3) — ¢}

If ¢1, g2, q3 are new states, then adding the transition itself or its normalized form does
not make any difference. On the opposite, if we identify ¢; with go, the normalized form
becomes {a — q1,9(q1) — q1,h(q") — g3, f(q1,93) — ¢}. This set of normalized transitions
represents the regular set of non-normalized transitions of the form f(g*(a),h(¢')) — g
which contains the transition we want to add but also many others. Hence, this is an over-
approximation. We could have made an even more drastic approximation by identifying
q1,q2,q3 with ¢, for instance.
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6 Y. Boichut, T. Genet, T. Jensen & L. Leroux

When always using new states to normalize the transitions, completion is as precise
as possible. However, without approximation, completion is likely not to terminate (be-
cause of general undecidability results [14]). To enforce termination, and produce an over-
approximation, the completion algorithm is parametrized by a set N of approzimation rules.
When the set N is used during completion to normalize transitions, the obtained tree au-
tomata are denoted by A}V,R, e ,A’]“\,’R. Each such rule describes a context in which a list
of rules can be used to normalize a term. For all s,ly,...,l, € T(FUQ,X) and for all
T,%1,...,Tyn € QUAX, the general form for an approximation rule is:

[s =] = [l1 = x1,..., 01 — xy)

The expression [s — x| is a pattern to be matched with the new transitions ¢ — ¢’
obtained by completion. The expression [l; — x1,...,l, — x,] is a set of rules used
to normalize t. To normalize a transition of the form ¢ — ¢/, we match s with ¢ and
x with ¢/, obtain a substitution ¢ from the matching and then we normalize ¢ with the
rewrite system {lyoc — zi0,...,l,0 — x,0}. Furthermore, if Vi = 1...n : z; € Q or
x; € Var(l;) UVar(s) U {z} then x;0,...,x,0 are necessarily states. If a transition cannot
be fully normalized using approximation rules N, normalization is finished using some new
states.

The main property of the tree automata completion algorithm is that, whatever the state
labels used to normalize the new transitions, if completion terminates then it produces an
over-approximation of reachable terms [7]. In other words, approximation safety does not
depend on the set of approximation rules used. Since the role of approximation rules is
only to select particular states for normalizing transitions, the safety theorem of [7] can be
reformulated in the following way.

Theorem 1 Let R be a left-linear TRS, A be tree automaton and N be a set of approzi-
mation rules. If completion terminates on .Alf\,R then

LAY ) 2 R*(L(A))

Here is a simple example illustrating completion and the use of approximation rules when
the language R*(F) is not regular.

Example 3 Let R = {g(z,y) — g(f(x), f(y))} and let A be the tree automaton such that
Qf =A{ar} and A = {a — ¢a,9(¢a:9a) — qr}. Hence L(A) = {g(a,a)} and R*(E) =
{9(f"(a), f"(a)) [ n > 0} Let N = [9(f(z),f(y)) — 2] — [f(x) = @ f(y) = @l
During the first completion step, we find a critical pair g(qa,q.) —r 9(f(9a), f(qa)) and
q(qa> Ga) =74 qp- We thus have to add the transition g(f(qa), f(qa)) — qr to A. To normalize
this transition, we match g(f(x), f(y)) with g(f(ga), f(ga)) and match z with q; and obtain
o =12 ¢,y — qa,z — qr}. Applying o to [f(z) — q1, f(y) — @] gives [f(qa) —
a1, f(ga) — @1]. This last system is used to normalize the transition g(f(qa), f(¢a)) —
qr into the set {g(q1,q1) — q¢, f(ga) — q1} which is added to A to obtain A}V,R. The
completion process continues for another step and ends on A?\,’R whose set of transition

INRIA
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is {a = ¢a,9(dar4a) = a5,9(01,01) — 45, [(@a) = @1, f(@1) = @1} We have LIAY ) =
{g(f™(a), f™(a)) | n,m > 0} which is an over-approzimation of R*(L(A)).

The tree automata completion algorithm and the approximation mechanism are imple-
mented in the Timbuk [13] tool. Timbuk also provides means to query the approximation
automaton so as to achieve some reachability checks. For instance, on the previous exam-
ple, once the fixpoint automaton A’fv’R has been computed, it is possible to check whether
some terms are recognized or not. This can be done using tree automata intersections [7].
However, a more convenient way to do that is to search instances for a pattern ¢, where
t € T(F,X), in the tree automaton. Given ¢ it is possible to check if there exists a sub-
stitution o : X — Q and a state ¢ € Q such that to _>j4'1‘§17z q- If such a solution exists
then it proves that there exists a term s € 7(F), a position pe Pos(s) and a substitution
o' : X — T(F) such that s[to’], € L(AY, z) 2 R*(L(A)), i.e. that to’ occurs as a subterm
in the language recognized by L(A’]“\,R). On the other hand, if there is no solution then it
proves that no such term is in the over-approximation, hence it is not in R*(L£(A)), i.e. it

is not reachable.

Example 4 In the patterns we use in this paper, 7x’ denotes variables for which a value is
wanted and ’_’ denotes anonymous variables for which no value is needed. Using Timbuk on
Ezxample 3, we can automatically construct A?\,’R which can be queried using the following
patterns. The answer to the pattern g(f(?x), f(f(f(?y)))) is the following set of solutions:

Occurence in state qf!
solution 1: x <- qga, y <- ql solution 2: x <- ql, y <- ql
solution 3: x <- ga, y <- ga solution 4: x <- ql, y <- ga

This result means that some ground instances of this term exist in the approximation.
On the opposite, the pattern g(f(_),g9(_, )) has no solution, meaning that no term con-

taining any ground instance of this pattern is reachable, i.e. Yu,v,w € T(F) : g(a,a) /r"
g(f(u), g(v,w))

4 Formalisation of the Java Bytecode Semantics using
Rewriting Rules

This section describes how to model an object oriented bytecode language semantics using
rewriting rules. First, we show how program states are generally described in formal seman-
tics of Java. Second, we give an encoding of this semantics using terms. Third, we present
formal semantics of Java bytecode instructions. Forth, we encode the semantics of those
instructions in TRS. The first and third part are based on Java semantics formalizations of
the literature [3, 18, 9, 1].
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8 Y. Boichut, T. Genet, T. Jensen & L. Leroux

4.1 Formalization of Java Program States

A Java program state contains a current frame, a frame stack, a heap, and a static heap.
A frame gives information about the method currently being executed: its name, current
program counter, operand stack and local variables. When a method is invoked the current
frame is stored in the frame stack and a new current frame is created. A heap is used to
store objects and arrays, i.e. all the informations that are not local to the execution of a
method. The static heap stores values of static fields, i.e. values that are shared by all
objects of a same class.

Let P be the infinite set of all the possible Java programs. Given p € P, let C(p) be the
corresponding finite set of class identifiers and C..(p) be C(p) U {array}.

A value is either a primitive type or a reference pointing to an object (or an array) in
the heap. In our setting, we only consider integer and boolean primitive types. Let PC(p)
be the set of integers from 0 to the higher possible program point in all the methods in p.
Let M (p) be the set of method names and M;q(p) be the finite set of couples (m,c) where
m € M(p), c € C(p) and m is a method defined by the class c¢. This last set is needed to
distinguish between methods having the same name but defined by different classes. For
sake of simplicity, we do not distinguish between methods having the same name but a
different signature but this could easily be done.

Following standard Java semantics we define a frame to be a tuple f =< pe,m, s, >
where pc € PC(p), m € M;q4(p), s an operand stack, [ a finite map from indexes to values
(local variables).

An object from a class ¢ is a map from field identifiers to values. The heap is a map
from references to objects and arrays. The static heap is a map from static fields name to
values.

A program state is a tuple s =< f, fs, h, k > where f is a frame, fs is a stack of frames,
h is a heap and k a static heap.

4.2 A Program State as a Term

Now that we formally defined a program state, we need to define the set of symbols (F, see
section 2) needed to express a program state as a term. In the following, the notation foo : i
stands for foo is a symbol and the arity of foo is 7.

We first need some set of symbols for C.(p) = C(p) U {array}. This is straightfor-
ward, using names of the classes ¢ € C(p) and {array} as symbols with an arity 0. The
corresponding sets of symbols will be referred as Fo(p) and Fe, (p).

In our TRS, we encode a reference as loc(c, a) where ¢ € C,.(P) is the class of the object
being referenced and a is an integer. In Java, it is always possible to know dynamically the
class of an object corresponding to a reference (including a special case for arrays). This
justifies that the class name ¢ appears in the encoding of the reference itself.

e To express a primitive type (integer), we use Fprimitive = {succ: 1,pred : 1,zero: 0}.

e To express a reference, we use Freference(p) = {loc : 2, succ : 1, zero : 0} U Fe, (p).

INRIA
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e To express a value, we use Fyqiue(p) = Fprimitive U Freference(P)-

For example, succ(succ(zero)) stands for the integer 2, and loc(foo, succ(zero)) is a
reference pointing to the object located at the index 1 in the class heap dedicated to the
class foo.

Now we need symbols for PC(p), M(p) and M;q(p). Let = be the higher program
point of the program (p), then Fpc(p) = {pp0 : 0,ppl : 0,...,ppx : 0}. Far(p) is defined
the same straightforward way as Fo(p). Fa,,(p) = {name : 2} U Fp(p) U Fe(p). For
example name(bar, A) stands for the method bar defined by the class A. Let I(p) denotes
the maximum of local variables used by the methods of the program package p. Then:

e To express an operand stack, we use Fyrqck(p) = {stack : 2, nilstack : 0} U Fpaiue (D)-
e To express local variables, we use Fiocaivars(p) = {locals : 1(p), nillocal : 0}UF ya1ue(p).

e To express a frame, we use Frrame(p) = {frame : 4} UFpc(p) U Far,a(p) U Fstack (p) U
flocalVars (p)

For example, stack(succ(succ(zero)), stack(loc(foo, succ(zero)), nilstack)) stands for the
stack having two elements, the integer 2 at the top and a reference to an object of class foo
at the bottom. locals(loc( foo, succ(zero)), succ(succ(zero)), nilstack) stands for local vari-
ables where the first contains a reference and the second the integer 2. The last one isn’t
initialized yet (nillocal).

A possible frame thus would be:
frame(name(bar, A), pp4, stack(succ(zero), nilstack), locals(loc(bar, zero), nillocal))

The program counter points to the 4th instruction of the method bar defined by the class
A. The current operand stack just have the integer 1 on the top. The first local variable is
some reference and the other is not initialized.

Now we need symbols to represent the objects. The alphabet Fypjects(p) contains the
same symbols as Fo(p), where the arity of each symbol is the corresponding number of
non-static fields. Let nc be the number of classes.

We chose to divide the heap into nc class heaps plus one for the arrays. A class heap
is a list of objects of the same class. In a reference loc(c,a), a is the index of the object in
the list representing the heap of class ¢. An array is encoded using a list and indexes in a
similar way.

e To express a heap, we use Fpeap(p) = {heaps : (nc + 1),heap : 2} U Faaer(p) U
-:Fobjects (p)

o To express a state, we use Fgqre(p) = {state : 4} U Frrame(P) U Fheap(D)-

A possible heap would be:
heaps(
heap(suce(zero), stack(object A, nilstack)),
heap(suce(zero), stack(object B(zero), nilstack)),
nilstack)

)

RR n~ 5997



10 Y. Boichut, T. Genet, T. Jensen & L. Leroux

(m,pc,x i s,1)
(pop) (m,pc+1,s,1)
(add) (m,pe,ba s l)
(m,pc+1,(a+Db)::s,l)
(store;) (m,pe,x i s,1)
! (m,pc+ 1,8, —; 1)

Figure 1: example of bytecodes operating at the frame level

(getFieldname)
((m,peyref i s,l), fs,h, k), f = getf(name,ref, h, k)
(m,pc+ 1, f :s,1)
(tnvokeVirtualame)
((m,pe,ref :: 8,1), fs,h, k), c = class(ref, h, k), m’ = lookup(name, c)

((m/,0,]], storeparams(ref :: s,m’)), (m, pc + 1, popparams(ref :: s,m’), 1) :: fs,h, k)

Figure 2: example of bytecodes operating at the state level

4.3 Java Bytecode Semantics

In this section we will show some representative examples of the Java Bytecode Semantics.

Figure 1 presents some rules of the semantics operating at the frame level. Considering
the frame (pc, m, s, (), pc denotes the current program point, m the current method identifier,
s the current stack and [ the current array of local variables.

The semantics of the first two instructions is straightforward, the store; instruction is
used to store the value at the top of the current stack in the i** register, where z —; [
denotes the new resulting array of local variables.

Figure 2 presents some rules of the semantics operating at the state level. For a state
((m,pe, s,1), fs, h, k), the symbols pc, m, s and [ denote the current frame components, fs
the current stack of awaiting frames, h the current heap and k the current static heap.

The getField,qme instruction push on the stack the value stored in the field name of the
object whose reference is at the top of the stack. The internal function get f(name, ref, h, k)
is used to access this value in the corresponding heap.

invokeVirtual,qame is used to invoke a method in a dynamic way. This method is chosen
from its name and the class of the reference at the top of the stack. The internal function
class(ref, h, k) is used to get the reference’s class ¢ and lookup(name, ¢) to get the method
identifier m’ corresponding to this name and this class. We also need two more internal
functions to manage the parameters of the method (pushed on the stack before invoking):
storeparams(ref :: s,m’) to build an array of local variables from values on the top of the
operand stack and popparams(ref :: s,m’) to remove from the current operand stack the

INRIA
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1 | frame(name(foo, A), pp2,s,1) —  xframe(pop, name(foo, A), pp2, s,1)
2 | zframe(pop, m,pc, stack(x,s),l) —  frame(m,next(pc),s,l)
3 | next(pp2) —  pp3

Figure 3: pop instruction by rewriting rules

parameters used by m’. With those tools, it is possible to build a new frame pointing at the
first program point of m’ and to push the current frame on the frame stack.

4.4 Java Bytecode Semantics using Rewriting Rules

In this section we analyse in more detail how to encode an operational semantics of a pro-
gramming language into rewriting rules in a way that makes the resulting system amenable
to approximation by the techniques described in this paper. The first constraint is that the
term rewriting system has to be left-linear (See Theorem 1). Another problem is that one
step in an operational semantics involves one visible step and many intermediate ones mod-
eling internal functions (such as getf, getParams, ...). However, these intermediate steps
should not appear in the final result and must thus be easy to filter out. To this end, we
introduce a notion of intermediate frames (named z frame). We now show how to express
the examples of the Java Bytecode Semantics in section 4.3 by means of rewriting rules.

In the following, symbols m, ¢, pc, s, I, fs, h, k, x, y, a, b, adr, 10, I1, 12, size, h, hO,
h1, ha are variables.

For a given program point pc in a given method m, we build an z frame term very similar
to the original frame term but with the current instruction explicitly stated. The x frames
are used to compute intermediate steps. Then it is possible to write generic rewriting rules for
the instructions of the semantics. If an instruction requires several internal rewriting steps,
we will only rewrite the corresponding x frame term until the execution of the instruction
ends.

We take the example of a pop instruction at the second program point in a method A
of a class foo (Figure 3). Rule 1 builds a xframe term by explicitly adding the current
instruction to the frame term. Rule 2 describes pop’s semantics. Rule 3 is trivial and allows
to get to next program point.

Our goal is to build the set of reachable program state as precisely as we can. With
regards to this aspect, using two different symbols presents two advantages. First, a frame
term always represents a “real” program state, thus making easier to browse the result of
our analysis. Second, since we ensure that all internal steps are enclosed in z frame terms,
frame terms do not contain partially evaluated terms, thus avoiding non-determinism of
rewriting. To illustrate this, Figure 4 presents a wrong way to represent add instruction’s
semantics. The main problem in this one comes from rule 2, where the computation of xadd
is carried out in the next frame term. It produces a lot of frame terms for a single program
point and thus creates a lot of possible rewriting branches.
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1| frame(name(foo, A),pp2,s,l) —  zframe(add,name(foo, A), pp2, s,1)
2 | xframe(add, m, pc, stack(b, stack(a, s)),l) —  frame(m,next(pc), stack(xadd(a,b), s),1)
3 | zadd(succ(a), succ(b)) —  zadd(a, succ(succ(b)))
4 | zadd(succ(a), pred(b)) —  zadd(a,b)
5 | xzadd(pred(a), pred(b)) —  zadd(a,pred(pred(b)))
6 | zadd(pred(a), succ(b)) —  zadd(a,b)
7 | xadd(zero,b) — b
8 | zadd(a,zero) - a
9 | next(pp2 —  pp3

Figure 4: add instruction by rewriting rules, first way

1 | frame(name(foo, A),pp2,s,1) — xframe(add, name(foo, A),pp2, s, 1)

2 | zframe(add, m,pc, stack( —  zframe(zadd(a,b),m,pc, s, 1)
suce(b), stack(a, s)),1)

3 | zframe(result(xz),m,pc,s,l) —  frame(m,next(pc), stack(z, s),l)

4 | zadd(succ(a), succ(b)) —  zadd(a, succ(suce(h)))

5 | xadd(succ(a), pred(b)) —  zadd(a,b)

6 | xadd(pred(a),pred(b)) —  zadd(a,pred(pred(b)))

7 | xzadd(pred(a), succ(b)) —  zadd(a,b)

8 | zadd(zero,b) —  result(b)

9 | zadd(a,zero) —  result(a)

10 | next(pp2) —  pp3

Figure 5: add instruction by rewriting rules, second way

Figure 5 presents a more deterministic way to do it. Once the frame term is rewritten
to a xframe term (rule 1), the next step (rule 2) use a rewriting sub-system xadd (rules
4 to 9). It works the same as previous example, but this time we use a new constructor
(result) to store the result of the addition. Then rule 3 puts it on the top of the stack. This
way we switch from x frame to frame context when the internal computation of the ‘add’
instruction ends, thus making sure we do not produce useless frame terms.

So far, all the rewriting rules are generic, i.e. do not depend on the bytecode program.
Let us now give some rules depending on the program p itself. The store; instruction is a
good example. Since the way we handle local variables depends on [(p) (maximal number of
local variables in p, see section 4.2) it will vary from a program to another. In our example,
we assume that [(p) = 3, see Figure 6. Note that we introduce as many ground terms
(local0 : 0, locall : 0 and local2 : 0) and variables ({0, I1 and (2) as I(p).
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1 | frame(name(foo, A),pp2,s,1) — xframe(store(local0), pp2, name(foo, A), s|l)
2 | zframe(store(local0),pc,m, —  frame(next(pc),m,s,locals(z,l1,12))
stack(x, s),locals(10,11,12))

3 | xframe(store(locall),pc,m, —  frame(next(pc),m,s,locals(l0,x,12))
stack(z, s),locals(10,11,12))

4 | zframe(store(local2),pc,m, —  frame(next(pc), m,s,locals(10,11,x))
stack(x, s),locals(10,11,12))

5 | next(pp2) —  pp3

Figure 6: store; instruction by rewriting rules

1 | frame(name(foo, A), pp2,s,1) —  zframe(invokeVirtual(set),
name(foo, A), pp2, s,1)
2 | state(x frame(invokeVirtual(set), —  state(frame(name(set, A), pp0, s,
m, pe, stack(loc(A, adr), locals(loc(A, adr), z,nillocal)),
stack(z, s)),1), fs,h, k) stack(storedframe(m, pe, s,1), fs), h, k)
3 | state(z frame(invokeVirtual(set), —  state(frame(name(set, A), pp0, s,
m, pc, stack(loc(B, adr), locals(loc(B, adr), x,nillocal)),
stack(z, s)),1), fs,h, k) stack(storedframe(m, pc, s,1), fs), h, k)
4 | state(zframe(invokeVirtual(reset), —  state(frame(name(reset, B), pp0, s,
m, pe, stack(loc(B, adr), locals(loc(B, adr), nillocal, nillocal)),
s),1), fs,h, k) stack(storedframe(m, pe, s,1), fs), h, k)
5 | next(pp2) —  pp3

Figure 7: invokeVirtual,ame instruction by rewriting rules

The invokevirtual, ome instruction raises another problem. This time we need to compile
some information about methods and class hierarchy into the rules. Basically, we need to
know what is the precise method to invoke, given a class identifier and a method name. Let
us consider two classes, A and B, B extending A. Let set be a method implemented in the
class A (and thus available from B) with one parameter and reset a method implemented
in the class B (and thus unavailable from A) with no parameter. Figure 7 presents the
resulting rules for this simple example. The choice we made about heap representation is
beneficial here, since the class of the object on the top of the stack is directly available in the
reference itself. Here we can take advantage of this and avoid to encode the lookup function
by rewriting.

The last instruction we present here, getField, loads the value of a field of an object
stored in the heap. We use a sub rewriting system to extract the object, we are looking for,
from the corresponding heap. We consider a small example of a class A with no fields and a
class B with a field field0. In our setting, the heap is made of 3 different heaps here. The
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14 Y. Boichut, T. Genet, T. Jensen & L. Leroux

—
~—

1 | frame(name(foo, A), pp2,s,1) —  xframe(getField(f),name(foo, 1), pp2, s,
state(x frame(getField(field0), —  state(xframe(zGetField(B, field0,hl,
m, pc, stack(loc(B, adr), s),1), size,adr), m,,pc, s,l), fs,

fs, heaps(h0, heap(size, hl), ha), k) heaps(h0, heap(size, hl), ha), k)

3 | xframe(xGetField(B, field0 —  frame(m,next(pc), stack(z, s),1)

, stackB(objectB(x), hl),

succ(zero), zero), m, pe, s, 1)

4 | zGetField(B, field0, hl, —  zGetField(B, field0, hl, size, adr)
succ(size), succ(adr))

5 | xGetField(B, field0, stackB(x,hl);~ xGetField(B, field0, hl, succ(size), zero)
suce(succ(size)), zero)

6 | next(pp2) —  pp3

Figure 8: getF'ield instruction by rewriting rules

first one is for class A, the second for class B and the last one for arrays (See Figure 8).
Rule 2 extracts from the general heap the one corresponding to class A. Rules 4 and 5 locate
the object corresponding to the address. Rules 3 put the value of the field we were looking
for, on the stack.

Note that, modeling the semantics and the program by rewriting rules is not enough
to build an analysis. We also need stubs for native libraries used by the program. As an
example, we implement one for some of the methods from the javaioInputStream class.
We model interactions of a Java program state with its environment using a term of the
form IO(s,i,0) where s is the state, ¢ is the input stream and o the output stream.

5 Class Analysis using Rewriting Theory

In most program analysis, it is often necessary to know the control flow graph. For Java,
as for all object-oriented languages, the control flow depends on the data flow. When a
method is invoked, to know which one is executed, the class of the involved object is needed.
For instance, on the Java program of Figure 9, x.foo() calls this.bar (). To know which
version of the bar is called, it is necessary to know the class of this and thus the class
of x in x.foo() call. The method actually invoked is determined dynamically during the
program run. Class analysis aims at statically determining the class of objects stored in
fields and local variables, and allows to build a more precise control flow graph valid for all
possible executions. Note that in this very example, exceptions around System.in.read ()
are required by the Java compiler. However, at present, we do not take them into account
in the control flow.

There are different standard class analysis, from simple and fast to precise and expensive.
We consider k-CFA analysis [17]. For those analysis, primitive types are abstracted by the
name of their type and references are abstracted by the class of the objects they points to.

INRIA



Rewriting Approzimations for Fast Prototyping of Static Analyzers 15

class A{ ol= new A();
int y; 02= new B();
void foo(){this.bar();} try{
void bar(){y=1;} x=8ystem.in.read();
} }
class B extends A{ catch (java.io.IOException e)
void bar(){y=2;} {x=0;}
} while (x !'= 0){
class Testq{ execute(ol);
public void execute(A x){ execute(02);
x.foo(); try{
3 x=System.in.read(); }
public void main(String[] argv){ catch (java.io.IOException e)
A o1; {x=0;}}
B 02; }
int x; 3

Figure 9: Java Program Example

In 0-CFA analysis, each method is analyzed only once and, thus, merges the parameters of
the different calls to this method. k-CFA is able to distinguish between different calls to the
same method by taking into account up to k frames on the top of the frame stack.

Starting from a term rewriting system R modeling the semantics of Java program, a
tree automaton A recognizing a set of initial Java program states, we aim at computing an
automaton AlfV’R over approximating R*(L(.A)). We developed a prototype which produces
R and A from a Java .class file. For the file Test.class, generated by the compilation of
the Java program of Figure 9, R is composed of 275 rewrite rules. The analysis itself is per-
formed using Timbuk [13]. Successively, this section details a 0-CFA, a 1-CFA and an even
more precise analysis achieved using the same TRS R and automaton A, but using different
sets of approximation rules. On this program, the set of reachable program states is infi-
nite (and thus approximations are necessary) because the instruction x=System. in.read (),
reading values in the input stream, is embedded in an unbounded loop. As long as the value
stored in the variable x is different from 0, the computation goes on. Moreover, since we
want to analyse this program for any possible stream of integers, in the automaton A the
input stream is unbounded.

5.1 0-CFA Analysis

For a 0-CFA analysis, all integers are abstracted by their type, i.e. they are defined by the
following transitions in A: zero — qint, succ(qint) — Gint and pred(qint) — Gint. The input
stream is also specified by A as being an infinite stack of integer. This can be done thanks
to the following transitions: nilstackin — ¢, and stackin(gint, ¢in) — gin- Approximation
rules for integers, stream and references are defined in the following way: [z — y] —
[zero — Gint, succ(Gint) — Gint, pred(qint) — Qint, nilstackin — qin, stackin(gint, qin) —
Gin,loc(A, &) — grefa,loc(B, 3) — greyp| where z, y, o and [ are variables. The pattern
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Figure 10: Principle of approximation rules for a 0-CFA analysis

[t — y] matches any new transition to normalize and the rules loc(A,z) — grera and
loc(B,y) — grerp merge all references to an object of the class A and an object of the class
B into the states grcy4 and g .y, respectively.

The approximation rules for frames and states are built according to the principle illus-
trated in Figure 10. Independently of the current state of the execution in which the method
m of the class c is invoked, the frames representing two different calls to m are merged. The
set of approximation rules IV is completed by giving such an approximation rule for each
method of each class. Using N, we can automatically obtain a fixpoint automaton A}\‘,‘,‘%
over-approximating the set of all reachable Java program states. The result of the 0-CFA
class analysis can be obtained, for each program location (a program point in a method in a
class), by asking for the possible classes for each object in the stack or in the local variables.
For instance, to obtain the set of possible classes ?c for the object passed as parameter to
the method execute, i.e. the possible classes for the second local variable at program point
pp0 of execute, one can use the following pattern:

frame(name(execute, Test), pp0, _, locals(_,loc(?c, _),...))

The result obtained for this pattern is that there exists two possible values for 7¢: g4 and
qp which are the states recognizing respectively the classes A and B. This is coherent with 0-
CFA which is not able to discriminate between the two possible calls to the execute method.
Note that, for analysing unbounded recursive calls, the regular nature of approximations
allows to finitely abstract the infinite frame stacks. This is however not detailed in this

paper.

5.2 1-CFA Analysis

For 1-CFA, we need to refine the set of approximation rules into N’. In N’ the rules
on integers, input stream and references are similar to the ones used for 0-CFA. In N’,
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Execution 1 state Execution 1 state
o1 -7 frame - stack h k (s1,52} stack h k
name pp0 _ locs. storedframe  rem storedframe  rem
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Figure 11: Principle of approximation rules for a 1-CFA analysis

approximation rules for states and frames are designed according to the principle illustrated
in Figure 11. Contrary to Figure 10, the frames for the method m of the class ¢ are merged
if the corresponding method calls have been done from the same program point (in the same
method m’ of the class ¢’). For example, there are two approximation rules for the method
execute of the class Test: one applying when execute is invoked from the program point
ppl8 of the method main, and one applying when it is done from the program point pp21 of
this same method. Applying the same principle for all the methods, we obtain a complete

set of approximation rules N’. Using N’, completion terminates on A}\‘,‘QR. The following
patterns:

state( frame(name(execute, Test), pp0, ,locals(_,loc(?c, ),...)), stack(storeframe( ,ppl8,...), )...)

state( frame(name(execute, Test), pp0, ,locals(_,loc(?c, ),...)), stack(storeframe( ,pp21,...), )...)

gives a more precise result than 0-CFA| since each pattern as only one solution for 7c:
qa for the first and ¢gp for the second. Note that using a similar pattern to query A}é_%z, the
0-CFA automaton, gives g4 and ¢p as solution for 7¢ for both program points.

5.3 Getting more precise when necessary

Assume that we want to show that, after the execution of the previous program, field y has
always a value 1 for objects of class A and 2 for objects of class B. This cannot be done by
1-CFA nor by any k-CFA since, in those analysis, integers are abstracted by their type. One
of the advantage of our technique is its ability to easily make approximation more precise
by retrieving some approximation rules.

We can now refine the approximation of the naturals by distinguishing between 0, 1, 2
and 3 or more. This can be done using the following transitions: 0 — qo, succ(qo) — q1,
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suce(qr) — qa, suce(qa) — gint and succ(qine) — Gint- For specifying the negative integers,
the following transitions are used: pred(qo) — Gnegint and pred(gnegint) — Gnegint- The
input stream representation is also modified by the following transitions: nilstackin — gy,
stackin(qnegint, in) — Qin, Stackin(Qint, ¢in) — @in and stackin(q;, ¢in) — ¢in with j =
0,...,2.

In fact, no other approximation is needed to ensure termination of the completion. On
the fixpoint automaton, we are then able to show that, when the Java program terminates,
there is only two possible configurations of the heap. Either the heap contains an object of
class A and an object of class B whose fields are both initialized to 0, or it contains an object
of class A whose field has the value 1 and an object of class B whose field has the value 2.
These verifications have been performed using a pattern matching with all the frames whose
pp value is the the last control point of the program.

This result is not surprising. The first result is possible when there is zero iteration of the
loop (x is set to 0 before the instruction while (x != 0){). The second result is obtained
for 1 or more iterations. Nevertheless, this kind of result was impossible to obtain with the
two previous analysis presented in Section 5.1 and 5.2.

6 Related works

Term rewriting systems have been used to define and prototype semantics for a long time.
However, this subject has recently raised up for a verification purpose. In [6, 16], rewriting is
also used as operational semantics for Java. However, the verification done on the obtained
rewriting system is closer to finite model-checking or to simulation, since it can only deal with
finite state programs. Moreover, no abstraction mechanism is proposed. On the opposite,
in [15], abstractions on reachability analysis are defined but they seem to be too restrictive to
deal with programming language semantics. Instead of tree automata, Meseguer, Palomino
and Marti-Oliet use equations to define approximated equivalence classes. More precisely,
they use terminating and confluent term rewriting systems normalizing every term of a class
to its representative. In order to guarantee safety of approximations, approximation and
specification rules must satisfy strong syntactic constraints. Roughly, approximation TRS
and specification TRS have to commute. Such property seems hard to prove on a TRS
encoding the Java semantics.

Takai [19] also proposed a theoretical version of approximated reachability analysis over
term rewriting systems, without the left-linearity restriction we have. This work also com-
bines equations and tree automata. However, again, syntactic restrictions imposed on the
equations are strong and would prevent us from constructing the kind of approximation we
use on Java bytecode.

Compared to classical static classes analysis (like in [17]), depending of the approxima-
tion rules we need to ensure termination of our algorithm, we can get the several ranges
of precision of k-CFA. Starting from an automatically generated approximation, it is also
possible to adapt approximation rules so as to get a more precise abstraction and prove
specific properties on a program.
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7 Conclusion

We have defined a technique for producing a TRS R modeling the operational semantics of
a given Java program p. In this setting, given a set of inputs E the set R*(F) represents
the set of program states reachable by p on inputs E, i.e. the collecting semantics of p.

The set of reachable states is not exactly computable in general so we use approximations
to force the computation of R*(E) to terminate. The advantage of this approximation
technique is that its safety is guaranteed by the underlying theory and does not have to be
proved for each proposed abstraction.

Approximation rules defining usual analysis, such as k-CFA analysis, can clearly be
automatically produced from the program source. We are currently experimenting some
other analysis where the regular nature of the approximation could be beneficial. First
to come to mind are shape analysis and race detection in multi-threaded programs. In
addition, we expect to have the same precision as symbolic evaluation techniques, like in [§],
with cautious approximation generation.
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