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Abstract. Term Rewriting Systems (TRSs) are now commonly used as
a modeling language for applications. In those rewriting based models,
reachability analysis, i.e. proving or disproving that a given term is reach-
able from a set of input terms, provides an efficient verification technique.
Using a tree automata completion technique, it has been shown that
the non reachability of a term t can be verified by computing an over-
approximation of the set of reachable terms and proving that t is not in
the over-approximation. Since the verification of real programs gives rise to
rewrite models of significant size, efficient implementations of completion
are essential. We present in this paper a TRS transformation preserving
the reachability analysis by tree automata completion. This transforma-
tion makes the completion implementation based on rewriting techniques
possible. Thus, the reduction of a term to a state by a tree automaton is
fully handled by rewriting. This approach has been prototyped in Tom, a
language extension which adds rewriting primitives to Java. The first ex-
periments are very promising relative to the state-of-the-art tool Timbuk.

1 Introduction

In the context of infinite state systems verification, a rising approach uses Term
Rewriting Systems (TRSs) as a model and reachability analysis as a verification
technique. In comparison with some other modeling techniques, TRSs have a great
advantage: they can be both executed and verified. On one hand, comparing the
execution of a TRS with the execution of a program gives a pragmatic way to
check the coherence between the formal model and the program to be analyzed.
On the other hand, most of the verification techniques have their Term Rewriting
counterpart: model-checking [10], static analysis and abstract interpretation [13,
12, 19] or even interactive proofs [7]. Hence, it permits to use any of them on the
TRS model. Furthermore, since all those techniques operate on a common formal
model, i.e. TRS, this may lead to an elegant way to combine their verification
power. However, like in the general verification setting, efficiency problems occur
when trying to apply those rewriting techniques to real-size applications. This is
the case when using model-checking on TRS models of Java programs [18, 11] or
when using TRS based static analysis on cryptographic protocols [14] or on Java
Bytecode programs [5]. Thus, having efficient verification tools on TRS models is
crucial to guarantee their success as a modeling technique.
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In this paper, we aim at improving significantly the static analysis part. The
state of the art implementation is called Timbuk [16] and has been used to prove
properties on TRS models of cryptographic protocols [14, 6] and Java Bytecode
programs [5]. This tool constructs approximations of reachable terms using the
so-called tree automata completion algorithm. Starting from a set of initial terms
(representing respectively all possible function calls, initial configuration for par-
allel processes, etc.) it computes a regular super-set of all terms reachable by
rewriting initial terms. This over-approximation, recognized by a tree automaton,
represents either a super-set of all possible evaluations (partial or completed) for
functions, or a super-set of all possible processes’ behaviors for parallel processes.
Then, it is possible to check some properties related to reachability (in particular
safety and security properties) on this approximation. The work reported here
improves by a factor 10 in general, and up to 100 on some Java examples, the
efficiency of the tree automata completion. First, the proposed technique con-
sists of decomposing each rewrite rule of the TRS in several simpler rules and
to apply the completion on the transformed TRS. We show that the resulting
automaton is also an approximation and thus the reachability is preserved by
this TRS transformation. Second, an efficient implementation is obtained using
compilation techniques, thanks to Tom [3, 4], a Java extension that offers powerful
pattern-matching features.

After presenting the classical approach in Section 2, we present the transfor-
mation and prove that the reachability analysis after completion is preserved.
Then, we detail in Section 4 how it has been implemented in Tom and show
especially how some of the Tom features make the development painless. To con-
clude, we present in Section 5 promising experimental results on the verification
of cryptographic protocols and Java program analysis.

2 Preliminaries

2.1 Terms and TRSs

Comprehensive surveys can be found in [9, 2] for term rewriting systems, and in [8,
17] for tree automata and tree language theory.

Let F be a possibly infinite set of symbols, associated with an arity function
ar : F → N, and let X be a countable set of variables. Let <X be a total order
relation on variables. T (F ,X ) denotes the set of terms, and T (F) denotes the
set of ground terms (terms without variables). The set of variables of a term t is
denoted by Var(t). A substitution is a function σ from X into T (F ,X ), which can
be extended uniquely to an endomorphism of T (F ,X ). A position p for a term
t is a word over N. The empty sequence ε denotes the top-most position. The
set Pos(t) of positions of a term t is inductively defined by Pos(f(t1, . . . , tn)) =
{ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}, and Pos(t) = {ε} when t ∈ X . The depth
of a term t, denoted by depth(t) is the length of the maximal sequence in Pos(t).
If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term s.
We also denote by t(p) the symbol occurring in t at position p. Given a term
t ∈ T (F ,X ) and A a set of symbols, let PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}. Thus
PosF (t) is the set of positions of t, at each of which a function symbol appears.
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A term t is said to be flat if t is either a simple constant or a term of the form
f(x1, . . . , xn) where x1, . . . , xn ∈ X . We say a term t is almost flat if t is of the
form f(t1, . . . , tn) and the ti’s are flat terms or variables.

A TRS R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ) and l 6∈ X . A
rewrite rule l → r is left-linear (resp. right-linear) if each variable of l (resp. r)
occurs only once within l (resp. r). A TRS R is left-linear (resp. right-linear) if
every rewrite rule l→ r of R is left-linear (resp. right-linear). A TRS R is linear
if it is right and left-linear. The TRS R induces a rewriting relation→R on terms
whose reflexive transitive closure is written →?

R. The set of R-descendants of a
set of terms E ⊆ T (F ,X ) is R∗(E) = {t ∈ T (F ,X ) | ∃s ∈ E s.t. s→?

R t}.

2.2 Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [17]. However, it is possible
to over-approximate it [12] using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata that will be used to
represent set E and over-approximation of R∗(E).

LetQ be an infinite set of symbols, with arity 0, called states such thatQ∩F =
∅. T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is a
quadruple A = 〈F ,Q,Qf , ∆〉, where the finite set of final states Qf is such that
Qf ⊆ Q and ∆ is a finite set of normalized transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set
∆) is denoted by →∆. When ∆ is clear from the context, →∆ is also denoted by
→A.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →?

A q}. The language recognized by A
is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton.

Example 1. Let A be the tree automaton such that Qf = {q0} and ∆ = {a→ q4,
b → q5, c → q6, d → q7, f(q4, q5) → q1, h(q6) → q2, h(q7) → q3, g(q1, q2) →
q0, g(q1, q3) → q0}. The language recognized by A is L(A) = {g(f(a, b), h(c)),
g(f(a, b), h(d))}. This example is used throughout this paper to explain the con-
cepts and algorithms presented in the paper.

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [13, 12], computes a tree automaton AkR such that L(AkR) =
R∗(L(A)) when it is possible (for the classes of TRSs where an exact computation
is possible, see [12]) and such that L(AkR) ⊇ R∗(L(A)) otherwise.
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The tree automata completion works as follows. From A = A0
R completion

builds a sequence A0
R.A1

R . . .AkR of automata such that if s ∈ L(AiR) and s→R t
then t ∈ L(Ai+1

R ). If we find a fix-point automaton AkR such that R∗(L(AkR)) =
L(AkR), then we have L(AkR) = R∗(L(A0

R)) (or L(AkR) ⊇ R∗(L(A)) if R is not
in the class of [12]). To build Ai+1

R from AiR, we achieve a completion step which
consists of finding critical pairs between →R and →Ai

R
. To define the notion of

critical pair, we extend the definition of substitutions to terms of T (F ∪Q). If
there exists a substitution σ : X 7→ Q, a rule l → r ∈ R, and q ∈ Q satisfying
lσ →∗Ai

R
q and lσ →R rσ, we say that 〈rσ, q〉 is a critical pair. Note that since R,

AiR, and the set of states of Q used in AiR are finite, there is only a finite number
of critical pairs. Note also that, in our case, it is enough to consider only root
overlap between rules of R and transitions of AiR. For every critical pair detected
between R and AiR such that rσ 6→∗Ai

R
q, the tree automaton Ai+1

R is constructed

by adding a new transition rσ → q to AiR such that Ai+1
R recognizes rσ in q, i.e.

rσ →Ai+1
R

q.

lσ R
//

∗Ai
R

��

rσ

∗

Ai+1
R

ooq

However, the transition rσ → q is not necessarily a normalized transition of the
form f(q1, . . . , qn) → q and so it has to be normalized first. Since normalization
consists of associating state symbols to subterms of the left-hand side of the new
transition, it always succeeds. Note that, when using new states to normalize the
transitions, completion is as precise as possible. However, without approxima-
tion, completion is likely not to terminate (because of general undecidability re-
sults [17]). To enforce termination, and produce an over-approximation, the com-
pletion algorithm is parametrized by a set N of approximation rules. When the set
N is used during completion to normalize transitions, the obtained tree automata
are denoted by A1

N,R, . . . ,AkN,R. Each such rule describes a context in which a
list of rules can be used to normalize a term. For all s, l1, . . . , ln ∈ T (F ∪Q,X )
and for all x, x1, . . . , xn ∈ Q ∪ X , the general form for an approximation rule is:

[s→ x]→ [l1 → x1, . . . , ln → xn].

The expression [s→ x] is a pattern to be matched with the new transitions t→ q′

obtained by completion. The expression [l1 → x1, . . . , ln → xn] is a set of rules
used to normalize t. To normalize a transition of the form t → q′, we match s
with t and x with q′, obtain a substitution σ from the matching and then we
normalize t with the rewrite system {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore,
if ∀i ∈ [1..n], xi ∈ Q or xi ∈ Var(li) ∪ Var(s) ∪ {x} then, since σ : X 7→ Q,
x1σ, . . . , xnσ are necessarily states. If a transition cannot be fully normalized
using approximation rules N , normalization is finished using some new states, see
Example 2. Such normalization rules can either be defined by hand, in order to
prove precise properties on specific systems or can be automatically generated in
more specific settings [5, 6].
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The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions are, if completion
terminates then it produces an over-approximation of reachable terms [12].

Theorem 1 ([12]). Let R be a left-linear TRS, A be a tree automaton, and N
be a set of approximation rules. If completion terminates on AkN,R then

L(AkN,R) ⊇ R∗(L(A)).

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.

Example 2. Let A be the tree automaton given in Example 1. In the following
we illustrate the effect of approximation rules. First, we consider the TRS R =
{g(f(a, x), h(y)) → g(f(a, f(a, x)), h(h(y)))}, composed of a single rule. The set
of R-descendants of L(A) is R∗(L(A)) = {g(fn(a, b), hn({c, d})) | n ≥ 0}.
Let N be the set of approximation rules such that N = {[g(f(a, f(a, x)), h(h(y)))
→ z] → [a → q4, f(q4, x) → q5, f(q4, q5) → q5, h(y) → q6, h(q6) → q6,
g(q5, q6) → z]}. Intuitively, the approximated set of descendants will be the fol-
lowing: L(A2

N,R) = {g(fn(a, b), hm({c, d})) | n,m ≥ 0}.
To get this result, we first compute the critical pairs. Let us consider σ1 =

{x 7→ q5, y 7→ q6} and σ2 = {x 7→ q5, y 7→ q7}, we have:

1. g(f(a, q5), h(q6))→∗A q0 and g(f(a, q5), h(q6))→R g(f(a, f(a, q5)), h(h(q6))),
2. g(f(a, q5), h(q7))→∗A q0 and g(f(a, q5), h(q7))→R g(f(a, f(a, q5)), h(h(q7))).

Let us call l = g(f(a, x), h(y)) and r = g(f(a, f(a, x)), h(h(y))) the respective left-
hand side and right-hand side of the rule of R. The transitions (1) rσ1 → q0 and
(2) rσ2 → q0 have to be normalised using N . To normalize the transition (1), we
match the pattern of the approximation rule , i.e. g(f(a, f(a, x)), h(h(y))), with
rσ1 and match z with q0, and thus obtain a substitution σ = {x 7→ q5, y 7→ q6, z 7→
q0}. Applying σ to [a→ q4, f(q4, x)→ q5, f(q4, q5)→ q5, h(y)→ q6, h(q6)→ q6,
g(q5, q6) → z] gives [a → q4, f(q4, q5) → q5, h(q6) → q6, g(q5, q6) → q0]. This last
system is used to normalize the transition rσ1 → q0 into the set S1 = {a → q4,
f(q4, q5) → q5, h(q6) → q6, g(q5, q6) → q0}. At the same time, the same process
is performed for the transition (2), resulting in S2 = {a → q4, f(q4, q5) → q5,
h(q7) → q6, h(q6) → q6, g(q5, q6) → q0}. The tree automaton A1

N,R is then
obtained by adding S1 ∪ S2 to A.

The completion process continues for another step. As there are no more crit-
ical pair, it ends on A2

N,R = A1
N,R whose set of transitions is {a → q4, b → q5,

c → q6, d → q7, f(q4, q5) → q1, h(q6) → q2, h(q7) → q3, g(q1, q2) → q0,
g(q1, q3) → q0, f(q4, q5) → q5, h(q6) → q6, g(q5, q6) → q0, h(q7) → q6}. We have
L(A2

N,R) = {g(fn(a, b), hm({c, d})) | n,m ≥ 0} which is an over-approximation
of R∗(L(A)) = {g(fn(a, b), hn({c, d})) | n ≥ 0}.

The tree automata completion algorithm and the approximation mechanism
are implemented in the Timbuk [16] tool. In the previous example, once the fix-
point automaton AkN,R has been computed, it is possible to check whether some
terms are reachable, i.e. recognized by AkN,R or not. This can be done using tree
automata intersections [12]. Another way to do that is to search for instances of a
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pattern t, where t is a linear term of T (F ,X ), in the tree automaton. Given t it is
possible to check if there exists a substitution σ : X 7→ Q and a state q ∈ Q such
that tσ →∗Ak

N,R
q. If such a solution exists then it proves that there exists a term

s ∈ T (F), a position p ∈ Pos(s) and a substitution σ′ : X 7→ T (F) such that
s[tσ′]p ∈ L(AkN,R) ⊇ R∗(L(A)), i.e. that tσ′ occurs as a subterm in the language
recognized by L(AkN,R). On the other hand, if there is no solution then it proves
that no such term is in the over-approximation, hence it is not in R∗(L(A)), i.e.
it is not reachable. For instance, the pattern g(h(x), f(y, z)) has no solution on
A2
N,R of Example 2, meaning that no term containing any ground instance of this

pattern is reachable from g(f(a, b), h(c)) and from g(f(a, b), h(d)).

3 TRS Transformation Preserving Reachability

In this section, we propose a TRS transformation preserving the reachability anal-
ysis of the original one. This transformation makes the completion implementation
in Section 4 simpler because of the particular form of the resulting rules.

3.1 Definition of the TRS Transformation φ

We first propose in Definition 4 a function which associates to a term over F and
X a term which we consider as its context.

Definition 4. Let F ′ be the set of function symbols Ct with t ∈ T (F ,X ) and
F ∩ F ′ = ∅. We define the function ρ : T (F ,X ) → T (F ′,X ) such that ∀t ∈
T (F ,X ):

ρ(t) =

Ct(x1, . . . , xn) where Var(t) = {x1, . . . , xn} and xi <X xi+1 if
t = f(t1, . . . , tn)

t if t ∈ X

Example 3. Consider l = g(f(a, x), h(y)) which is the left hand-side of the rule in
Example 2. Then, ρ(l) is equal to Cg(f(a,x),h(y))(x, y). Note that for any ground
term t, ρ(t) = Ct.

The following definition allows the construction of a set of rules from a given
term. This TRS allows the rewriting of the given term t into its context Ct.
This definition is central for the construction of the transformation φ(R) given in
Definition 6.

Definition 5. Given a term t ∈ T (F ,X ) and the function ρ : T (F ,X ) →
T (F ′,X ):

Trsρ(t) =
{
{f(ρ(t1), . . . , ρ(tn))→ ρ(t)} ∪

⋃n
i=1 Trsρ(ti) if t = f(t1, . . . , tn)

∅ if t ∈ X .

Example 4. Let l = g(f(a, x), h(y)) be the left hand-side of the rule in Exam-
ple 2. Then, Trsρ(l) = {a → Ca, f(Ca, x) → Cf(a,x)(x), h(y) → Ch(y)(y),
g(Cf(a,x)(x), Ch(y)(y))→ Cg(f(a,x),h(y))(x, y)}.
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Now we define the transformed TRS φ(R).

Definition 6 (TRS Transformation). Given a set of rewrite rules R:

φ(R) =
⋃

l→r∈R

Trsρ(l) ∪ {ρ(l)→ r}

Example 5. Let R be the TRS defined in Example 2. As there is only one rule
l → r with l = g(f(a, x), h(y)) and r = g(f(a, f(a, x)), h(h(y))), we have φ(R) =
Trsρ(l) ∪ {Cl(x, y)→ r} where Trsρ(l) is defined as in Example 4.

Note that for any TRS R, the TRS φ(R) has two properties. First, for each
rule l→ r of φ(R), l is almost flat (see the definition in Section 2.1). So depth(l) is
in the worst case equal to three. And second, for a rule l→ r ∈ R, r is reachable
by rewriting from l and using φ(R). The latter is emphasized in the following
proposition.

Proposition 1. Let R be a left-linear TRS, for any rule l→ r ∈ R:

r ∈ φ(R)∗(l)

Proof. Direct consequence of Definition 6. ut

Another trivial property of φ(R) is about its linearity which is the same as R.

Proposition 2. If R is a left-linear TRS, then so is φ(R).

Proof. Direct consequence of Definitions 6 and 4. ut

3.2 Preservation of Reachability

As claimed at the very beginning of this section, the reachability analysis per-
formed on φ(R) can be propagated to the one performed on R itself. In other
words, given a set of terms E, an over-approximation of the set of terms reach-
able from E and using φ(R) is also an over-approximation of the set of reachable
terms which can be computed from E using R.

Theorem 2. Let R and A be respectively a left-linear TRS and a tree automaton
such that A = 〈F ,Q,Qf , ∆〉. Let A′ be a tree automaton such that A′ = 〈F ∪
F ′,Q,Qf , ∆〉 where F ′ is specified as in Definition 4. For any set of approximation
rules N , if completion terminates on A′kN,φ(R) then

R∗(L(A)) ⊆ L(A
′k
N,φ(R)).

Proof. Let t and u be two ground terms over F such that t →R u. There exists
a rule l → r in R, a substitution µ : X → T (F) and a position p of t such
that t|p = lµ and u = t[rµ]p. According to Proposition 1, for a rule l → r ∈
R, r ∈ φ(R)∗(l). Thus, t →∗φ(R) u. Consequently, for R and A′, R∗(L(A′)) ⊆
φ(R)∗(L(A′)). Note that since A′ differs from A only because of its set F ′ of
symbols, we have L(A) = L(A′) and thus R∗(L(A)) ⊆ φ(R)∗(L(A′)). According
to Theorem 1 and Proposition 2, φ(R)∗(L(A′)) ⊆ L(A′kN,φ(R)). So one can deduce

that R∗(L(A)) ⊆ L(A′kN,φ(R)). ut
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Note that given A, R and N , one can perform completion using φ(R) and N
without modifying N . Moreover, for each r′ of l′ → r′ ∈ φ(R), either r′ occurs in
the right-hand side of a rule in R, or r′ is a flat term. The former is normalized
by the set of approximation rules if it is necessary. For the latter, any transition
resulting from the application of such a rule is already normalised. For example,
given an automaton A and the rule g(Cf(a,x)(x), Ch(y)(y))→ Cg(f(a,x),h(y))(x, y)
introduced in Example 4, if there exists σ : X → Q and q a state of A such that
g(Cf(a,x)(σ(x)), Ch(y)(σ(y))) →∗A q, then Cg(f(a,x),h(y))(σ(x), σ(y)) → q is added
to A. And this transition is already normalised. Consequently, N does not act for
this kind of rule.

We have shown in this section that the TRS transformation is sound from a
reachability point of view: each term actually reachable by R can be computed
using φ(R). Indeed, for an over-approximation App computed using φ(R) from a
set of terms E (R∗(E) ⊆ App), if a term t /∈ App then t is actually unreachable
from E using either φ(R) or R.

4 Implementation in Tom

In this section, we show how the completion with φ(R) has been implemented in
the Tom language. The main principle of Tom is to integrate rewriting statements
into Java. After the compilation, every Tom statement is translated into Java and
we obtain a standalone Java program. In this section, we show how Tom pattern-
matching features have been the key of the completion implementation with φ(R).
See [3] for more details about the Tom language features.

4.1 General process

In Figure 1, we present the general process which leads to the implementation of
the completion. In order to compare easily our implementation with Timbuk, we
use a similar input format.

Completion

Automaton

Specification
CCG

Completion 
Code 

Generator

Tom compiler

Java 
completion 

specific to the 
input

Specification
input file

Fig. 1. CCG application: from a Specification to its dedicated Completion Program
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For a given Timbuk specification, the application CCG generates a Tom pro-
gram of the completion algorithm dedicated to this specification. Actually, this
program is composed of three files. The file Specification defines the alge-
braic signature and the file Completion describes the completion implementation.
These two files are specific to the input specification file. The last file Automaton
is generic and corresponds to a Tom program in which all data structures han-
dling tree automata can be found. These Tom files are finally compiled into Java
files providing an efficient application dedicated to the completion on the given
Timbuk specification.

To present how completion is encoded in Tom, we consider again the Example 2
in the following sections.

4.2 The Specification file

Tom provides several constructs to manipulate algebraic structures. In particular,
it is possible to directly define an algebraic signature and from this signature, Tom
generates a typed term structure that can be directly used by a Java programmer.

For the Example 2, the signature generated by CCG in the file Specification
contains the set of symbols F , a new constructor denoted q(int), for specifying
states. The transitions are represented using the constructor transition of arity
2. Each context symbol Ct of the set F ′ introduced by φ(R) is denoted C_i. The
signature also contains a variadic operator called sons which is used to represent
expanded states. The expanded states of a state q corresponds to the list, built
using the variadic operator sons, of all t_i such that transition(t_i,q) is a
transition of the current automaton. For example, for the tree automaton given
in Example 2, the expanded state of q0, denoted q(0) in the implementation, is
sons(g(q(1),q(2)), g(q(1),q(3))).

Below, we give the signature generated by our compiler CCG, for the automa-
ton A and the set of rules R given in Example 2. The constructors Ca, Cf(a,x),
Ch(y) and Cg(f(a,x),h(y)) have been respectively renamed into C1, C2, C3 and C4.

Term = f(Term,Term)

| g(Term,Term)

| h(Term)

| a() | b() | c() | d()

| q(int)

| sons(Term*)

| C1() | C2(Term) | C3(Term)| C4(Term,Term)

| transition(config:Term,state:Term)

4.3 The Automaton file

A tree automaton is an object of the class Automaton. This class is mainly com-
posed of two fields: transitionsByFunctionSymbol and expandedForms, both of
sort HashTable. The keys of the former are the function symbols of the generated
signature and its values are the sets of transitions. Given a function symbol f (a
key), the corresponding value is the set composed of transitions whose left-hand
side is built from f. The latter stores the expanded form of states. Both hash-tables
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are updated during the completion process. Another field newTransitions stores
the new transitions built by a completion step. Both data structures expandedForms
and transitionsByFunctionSymbol are updated according to this field when the
method update() implemented in this class is invoked. This method resets the
set newTransitions to the empty set. There are also other fields specifying the
final states, handling the new states introduced and so on.

4.4 The Completion file

The code of this class is automatically generated from the automaton A and the
TRS R given in the input specification. This class contains one field currentA
of sort Automaton representing the current automaton, as well as methods to
implement the completion with φ(R).

In Example 2, the main method completeAllSteps iterates by applying every
rule and updating currentA until reaching a fix-point (if it exists). The function
hasNewTransitions() returns true if the set newTransitions is not empty.
An execution of this algorithm is detailed in Appendix A. Note that for each
rule of φ(R), a method completeStepWithRule[i] is generated. Such a method
performs one completion step for a given rule.

public void completeAllSteps(){

do {

// Current automaton update

currentA.update();

// Completion step with a -> C1

completeStepWithRule1();

// Completion step with f(C1,x) -> C2(x)

completeStepWithRule2();

// Completion step with h(y) -> C3(y)

completeStepWithRule3();

// Completion step with g(C2(x),C3(y)) -> C4(x,y)

completeStepWithRule4();

// Completion step with C4(x,y) -> g(f(a,f(a,x)),h(h(y)))

completeStepWithRule5();

} while(currentA.hasNewTransitions());

}

We recall that, to perform a completion step, we need to find, for each rule
l→ r ∈ φ(R), all substitutions σ : X → Q such that lσ →∗A q and rσ 6→∗A q. Here,
we use uttermost Tom matching on variadic operators to implement efficiently this
operation. This is possible because in φ(R), the left-hand sides are almost flat (see
the definition in Section 2.1).

In particular, according to Definition 6, l can be only of the form

(1) f(t1, . . . , tn) with ti ∈ X or ti = Ck(x1, . . . , xm), for i ∈ [1, n], Ck ∈ F ′, and
x1, . . . , xm ∈ X , or

(2) Ck′(x1, . . . , xn), Ck′ ∈ F ′ and x1, . . . , xn ∈ X .

When l is of the form (2), finding a substitution σ such that lσ →∗A q consists
of looking for every transition of A of the form Ck′(q1, . . . , qn)→ q and matching
their left-hand side with Ck′(x1, . . . , xn).
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When l is of the form (1), every substitution σ satisfying lσ →∗A q is such that
∃q1, . . . qn, n states of A, for which ∀ti, either tiσ = qi, or tiσ → qi is a transition
of A, and f(q1, . . . , qn) → q is a transition of A. In the following we show how
this operation can be realized using list matching on variadic operators.

Let l′ be l = f(t1, . . . , tn) where every ti of the form Ck(x1, . . . , xm) has been
replaced by the Tom pattern sons(_*,C_k(x_1,...,x_m),_*). Let us consider
a transition f(q1, . . . , qn) → q ∈ A. Remember that we look for σ such that
f(t1, . . . , tn)σ →∗A q. Such a σ exists if t1σ →∗A q1, . . . , tnσ →∗A qn. Thanks to
our encoding using sons, we can expand every qi such that the corresponding
ti in l is not a variable. Finding σ simply consists of matching l′ against the
expanded form of f(q1, . . . , qn). Moreover, when the right-hand side r is of the
form Ck(x1, . . . , xm), verifying that rσ 6→∗A q consists just of checking that rσ is
in the expanded form of q.

Let us consider the following rule g(Cf(a,x)(x), Ch(y)(y))→ Cg(f(a,x),h(y))(x, y).
Its completion method is completeStepWithRule4 and it is implemented in Tom
as follows.

public void completeStepWithRule4() {

for (Term tr: currentA.getExpectedTransitions("g")) {

Term t = tr.getconfig();

Term te = t.expandForRule4(currentA);

Term q = tr.getstate();

Term qe = q.expand(currentA);

%match(te) {

g(sons(_*,C2(x),_*),sons(_*,C3(y),_*)) -> {

if (! qe.contains(‘C4(x,y)) {

currentA.addNewTransitions(‘transition(C4(x,y),q));

}

}

}

}

}

The method getExpectedTransitions("g") returns a set of transitions whose
topmost function symbol of its left-hand side is g. The function symbol g is the
symbol occurring at the root of the left-hand side of the considered rule i.e.
g(Cf(a,x)(x), Ch(y)(y)) → Cg(f(a,x),h(y))(x, y). The instruction tr.getconfig()
(resp. tr.getstate()) returns the value stored in the first (resp. second) subterm
of tr (see the signature in Section 4.2). According to the current tree automa-
ton, the function expand returns the expanded form of a state and the function
expandForRule4 builds the expanded form of t required for this rule. As in this
rule, each child of the left-hand side is of the form C_k(...), this form corresponds
to t where each child (state) has been replaced by its expanded form.

In this function, two new Tom constructs are used. The first one is the ‘
(back-quote), whose action is to build a term in memory from the algebraic sig-
nature described in Section 4.3. For instance, the last instruction of the method
completeStepWithRule4 builds the ground term ‘transition(C4(x,y),q) (with
the variables x and y at this program point) and stores it into the set newTransitions
of currentA.
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The second construct provided by Tom is the %match, which executes an ac-
tion associated to a pattern, when this one matches the subject. In the example
above, the first part of the pattern sons(_*,C2(x),_*) means that we try to find
each element of the list, placed under the symbol sons, which is of the form C2(x).
The second part sons(_*,C3(y),_*)) is interpreted similarly. The complete pat-
tern g(sons(_*,C2(x),_*),sons(_*,C3(y),_*)) matches for every couple of
elements of the form C2(x) and C3(y) and computes the corresponding substitu-
tion for x and y. At the right-hand side of this pattern, there is a Java action that
calls the method addNewTransitions on currentA. addNewTransitions takes as
parameter either a transition or a collection of transitions and adds it (or them)
into the set newTransitions. This action is executed as many times as the pattern
matches.
Note that the methods completeStepWithRule1, completeStepWithRule2 and
completeStepWithRule3 can be defined similarly.

Below, we consider the method completeStepWithRule5 corresponding to the
rule C4(x,y) -> g(f(a,f(a,x)),h(h(y))). This method differs from the other
ones mainly because the right-hand side is neither flat, nor almost flat. So to test
if rσ 6→∗A q, we use the function reduceIn(t,q) that returns true if t can be
reduced to q by the current automata currentA. Moreover, the resulting transition
must be normalized using the approximation rules N. Note that this normalization
is not necessary for the other rules because the resulting transitions are already
normalized.

public void completeStepWithRule5() {

for (Term tr: currentA.getExpectedTransitions("C4")) {

Term t = tr.getconfig();

Term te = t.expandForRule5();

Term q = tr.getstate();

%match(te) {

C4(x,y) -> {

if (! currentA.reduceIn(‘g(f(a,f(a,x)),h(h(y))),q)) {

currentA.addANewTransitions(Norm(N,

‘transition(g(f(a,f(a,x)),h(h(y))),q)));

}

}

}

}

}

In this example, as no child of the rule left-hand side is of the form C_k(...),
expandForRule5 returns simply t.

Thus, the files Completion, Specification and Automaton are generated
and compiled with Tom. The resulting Java files are then compiled and the file
Completion.class can be executed using the command java.

5 Experiments

We give in this section significant examples to demonstrate the efficiency of
this technique. In the table below, the automaton size is given as (nb of tran-
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sitions / nb of states). The benchmarks were done on a intel based platform
(2×Pentium 3GHz, running under FreeBSD), using Tom 2.5, Timbuk 2.2 and
Java 1.5.

Combinatory NSPK View-Only Java prog. 1 Java prog. 2

TRS size (nb of rules) 1 13 15 279 303

Initial Automaton size 43 / 23 14 / 4 21 / 18 26 / 49 33 / 33

Tom:
Final Automaton size 8043 / 23 171 / 21 938 / 89 1974 / 637 1611 / 672
Time (secs) 5.9 5.9 150 360 303

Timbuk:
Final Automaton size 8043 / 23 151 / 16 730 / 74 1127 / 334 751 / 335
Time (secs) 51.1 19.7 6420 25266 37387

Combinatory example: This tiny example emphasizes that our proto-
type is better than Timbuk in particular when a large number of substitutions
is computed during the completion. Let R = {g(f(x1), h(h(h(x2, x3), x4), x5))→
u(x1, x2, x3, x4, x5)} and A be the tree automaton whose transition set is the fol-
lowing: {nil → qh, f(qa1) → qf , g(qf , qh) → qg} ∪ {t → qt, h(qh, qt) → qh | t ∈
{ai, bi, ci, di | i = 1, . . . , 5}}. For the variables x1, x3, x4 and x5 there are twenty
possible instantiations during the completion. The variables x1 and x2 take only
and respectively the values qa1 and qh. So, there are 203 transitions to compute
by completion.

Needham-Schröeder Public Key Protocol: NSPK is a security protocol
whose goal is to ensure the mutual authentication of two participants. The first
version established in 1976 has been corrected by G. Lowe in 1995. Indeed, in
this first version, a man-in-the-middle attack was possible. The second version of
NSPK was already verified using Timbuk in [14]. Using the same approximation
rules, our prototype leads also to an over-approximation allowing us to verify this
protocol. The computation time of our prototype is better than Timbuk was.

The View-Only protocol: Let us now focus on the View-Only protocol.
This protocol is a component of the Smartright system [20] designed by Thomson.
In the context of home digital network, this system prevents users from unlawfully
copying movie broadcasts on the network. The view-only devices are a decoder
(DC) and a digital TV set (TVS). They share a secret key Kab securely sealed in both
of them. The goal of this protocol is to periodically change a secret control word
(CW) enabling to decode the current broadcast program. The Timbuk specification
of this protocol is described in [15]. The same properties have been successfully
verified with our encoding i.e. secrecy of CW, authentication of CW (no control
word sent by the intruder has been accepted) and no replay attack on CW. The
fix-point automaton has been obtained within a couple of minutes, while Timbuk
terminates within 107 minutes.

Java programs: In [5], Java program analysis is performed using approxi-
mations, i.e. tree automata completion. Starting from a Java byte code program
P , a TRS encoding the Java Virtual Machine and the semantics of P is automat-
ically produced. The Java program 1 is the one detailed in [5]. For this program,
a fix-point automaton is obtained with Tom within 360 seconds whereas it takes
several hours for Timbuk to obtain the result. On this fix-point, the same analysis
as in [5] have been successfully performed.
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The Java program 2 represents the construction of two linear chained lists
of integers. One is supposed to contain only positive integers, and the other only
negative ones. Integers are entered and stored in the corresponding list while their
value is different from 0. For verifying this program, we define approximation rules
in such a way that all integers are abstracted into three equivalence classes (equal
to 0, strictly positive and strictly negative), the input stream is specified as an
infinite stack of integers and abstractions are performed on the memory in order
to handle an infinite number of object creations. On both fix-point automaton,
we can conclude that there are: no positive integer in the list of negative ones and
no negative integer in the list of positive ones.

Our experiments show that the new implementation is faster than the last
version of Timbuk. And this is the case for examples dealing with numerous com-
binations and computations. It is often the case when we are dealing with ap-
proximations. We have also applied the transformation φ on the input TRS of
the Timbuk tool. Thanks to these experiments, we are convinced that φ is not the
only reason for our better performance. In Timbuk, the most time consuming op-
eration is the computation of critical pairs. Indeed, for every rule l→ r, we need
to find every ground instance of l which can be reduced to a state q of the current
automaton. In [12], a solution based on tree automata intersections is proposed
but it remains inefficient when the number of rules and the size of their left-hand
side are huge. In our case, as CCG generates a completion algorithm dedicated to
a given specification, we do not need to implement a general matching algorithm
as in Timbuk. Moreover, since the left-hand sides of φ(R) rules are almost flat,
we use only the Tom pattern-matching features to compute critical pairs.

6 Conclusion

In this paper, we have developed an original and efficient implementation of tree
automata completion. The first contribution is to have shown that decomposing
the TRS into smaller rules preserves the over-approximation property. The second
contribution is to have shown that, because of the special form of the decomposed
rules, it is possible to define completion in a non-standard way. Instead of sophis-
ticated and heavy algorithms over tree automata, our completion is built using
simple rewriting techniques. Finally, another contribution of this paper is to pro-
pose an implementation taking advantage of the list-matching compilation feature
of Tom to greatly improve the efficiency. On Java programs, which are now our
main concerns, the obtained results are up to 100 times faster than the current
state of the art implementation, i.e. Timbuk. The implementation proposed in this
paper is a first promising step towards efficient verification tools for infinite state
systems. We plan to apply this tool to the static analysis of industrial Java appli-
cations in the context of the RAVAJ project [1]. Since Tom generates thread-safe
code – code supporting simultaneous execution by multiple threads – we are cur-
rently studying a multi-threaded implementation of the completion. This could
also be a way to greatly improve the overall performance of our tree automata
completion tool.
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A Implementation of Example 2: detailed steps

Let us detail how the functions generated for the example 2 are applied. The
transitions are of the form f(q1, . . . , qn)→ qm and then their Tom representations
are of the form transition(f(q(1),...,q(n)),q(m)). In the following, to make
the presentation simpler, a state q(i) is denoted qi. Similarly, C_k is denoted Ck.
Let us start with the tree automaton A given in Example 1.

Step 1. First, the method completeStepWithRule1 applies the rule a → C1 on
the transition transition(a(), q4). As in the classical completion, the transition
transition(C1(), q4) is added to the set newTransitions. At the same time, we
can apply the third rule h(y) → C3(y) on the transitions transition(h(q6), q2)
and transition(h(q7), q3) with the method completeStepWithRule3. Indeed
the configurations h(q6) and h(q7) are not changed by expandForRule3 and
match with h(y). Thus, transition(C3(q6), q2) and transition(C3(q7), q3) are
added to the set newTransitions. The rules 2, 4 and 5 cannot be executed
since the symbols C1, C2, C3 and C4 do not occur in any transitions of A. The
set newTransitions is not empty, so a new iteration is started. The instruc-
tion currentA.update() is executed and consequently, the expanded form of q2,
q3 and q4 are updated and equal to sons(h(q6), C3(q6)), sons(h(q7), C3(q7)) and
sons(C1(), a()) respectively.

Step 2. The rules 1 and 3 can be applied a new, but no new transitions are added
since they have been added at the previous completion step already. Now, the rule
2 can be applied. Indeed, expandForRule2, for transition(f(q4, q5), q1), trans-
forms f(q4, q5) into f(sons(C1(), a()), q5) Thus, transition(C2(q5), q1) is added
into newTransitions. The rules 4 and 5 cannot be applied yet. At the end of
iteration, the set newTransitions is not empty, so a new iteration is started.
The instruction currentA.update() is executed and consequently, the expanded
form of q1 is updated and equal to sons(f(q4, q5), C2(q5)).

Step 3. We can now apply the rule 4 i.e. g(C2(x), C3(y))→ C4(x, y). By applying
the function expandForRule4 the configurations g(q1, q2) and g(q1, q3) are trans-
formed into g(sons(f(q4, q5), C2(q5)), sons(h(q6), C3(q6))) (resp. g(sons(f(q4, q5),
C2(q5)), sons(h(q7), C3(q7)))). Therefore transition(C4(q5, q6), q0) and transi
tion(C4(q5, q7), q0) are added to the set newTransitions. Since newTransitions
is not empty, a new iteration starts. The expanded form of q0 is updated and
equal to sons(g(q1, q2), g(q1, q3), C4(q5, q6), C4(q5, q7).

Step 4. So at this new iteration, the last rule can thus be applied with these two
last transitions. By applying the function completeStepWithRule5 the configu-
rations C4(q5, q6) and C4(q5, q7) match with C4(x, y) and after normalization with
the approximations rules (with the function Norm the following transitions are
added to the set newTransitions: transition(a, q4), transition(f(q4, q5), q5),
transition(h(q6), q6), transition(h(q7), q6) and transition(g(q5, q6), q0).
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Step 5. The current automaton is not a fix-point yet. The fix-point is obtained one
completion step later after having added the transitions transition(C3(q6), q6)
and transition(C3(q7), q6) obtained by executing completeStepWithRule3 and
the transition transition(C2(q5), q5) resulting of the execution of the method
completeStepWithRule2.

Note that the tree automaton A2
N,R computed in Example 2 is included in

this fix-point automaton. So, it is actually an over-approximation of R∗(L(A)) =
{g(fn(a, b), hn({c, d})) | n ≥ 0}.


