CM ACF - Table of contents

- CM1 : Propositional logic and First order logic
— Why using logic for specifying/verifying programs.
- Propositional logic
- Formula syntax
- Interpretations and models (Interpretations, models, tautologies)

Isabelle/HOL commands (apply auto, nitpick)

- First-order logic
- Formula syntax Interpretations and models (Interpretations, Valuations, Models, Tautologies)
- Isabelle/HOL commands (apply auto, nitpick)
- Satisfiable formulas and contradictions
-CM 2 :Types, terms and functions
- Terms
- Types, typed terms : type inference and type annotations (value)
- λ-terms (syntax, semantics λ-calculus, curried functions, partial application, higher-order functions)
- Isabelle/HOL commands (definition)
- Constructor terms (Definition, Isabelle Theory Library)
- Functions defined using equations
- Logic everywhere! (Definition of total and partial functions with equations)
- Function evaluation using term rewriting (substitutions and rewriting)
- Partial functions
- Isabelle/HOL command (export_code

CM3 : Recursive functions and Algebraic Data Types \qquad

- Recursive functions

Recursive func

- Termination proofs with measures
- Difference between fun, function and primrec
- (Recursive) Algebraic Data Types
- Defining Algebraic Data Types using datatype
- Building objects of Algebraic Data Types
- Matching objects of Algebraic Data Types (with case and where)
- Type abbreviations (with type_synonym)
- CM4 : Proofs with a proof assistant
- Finding counterexamples
nitpick and models of finite domain
- quickcheck and random test generation
- Proving true formulas
——Proof by cases : apply (case tac x)
- Proof by induction : apply (induct x)
- generalize the goals induct with arbitrary variables - generalize the induction principle induct with specific rule principle
- Combination of decision procedures apply auto and apply simp

Solving theorems in the Cloud : sledgehamme

- Hints for building proofs in Isabelle/HOL
- CM5 : Crash Course on Scala
- Basics
- Base types and type inference
- Control : if and match - case
- Loops : For
- Structures: Arrays, Lists, Tuples, Maps
- Functions
- Basic functions
- Anonymous, Higher order functions and Partial application
- Object Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit definitions
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
- Interoperability between Java and Scala
- Isabelle/HOL export in Scala export_code
- CM6 : Certified Programming
- Certified program production lines
- What are the weak links?
- How to limit the trusted base? How to certify a compiler? How to certify a static analyzer of code?
- How to guarantee the correctness of proofs? (Difference between some proof assistants)
- Methodology for formally defining programs and properties
- Simple programs have simple proofs
- Generalize properties when possible
- Look for the smallest trusted base

CM7 : Program Verification Methods

- Basics (Specification, Oracle, Domain of Definition)
- Testing (random testing, white box testing)
- Model-checking
- Assisted proof
- Static Analysis (Abstract domains, abstract interpretation, proving the correctness of a static analyzer)
- A word about prototypes/models, accuracy, code generation
- Appendix : Isabelle/HOL Survival Kit

Analyse et Conception Formelles

Lesson 1

Propositional logic

First order logic

Outline

- Why using logic for specifying/verifying programs?
- Propositional logic
- Formula syntax
- Interpretations and models
- Isabelle/HOL commands
- First-order logic
- Formula syntax
- Interpretations and models
- Isabelle/HOL commands

Bibliography

- Cours de logique pour l'informatique, J-F. Raskin, http://www.ulb.ac.be/di/ssd/jfr/info-148.html
- Logique et fondements de l'informatique de Richard Lassaigne et Michel de Rougemont. Hermes 1993.
A selected bibliography on the Isabelle/HOL prover
- http://people.irisa.fr/Thomas.Genet/ACF/BiblioIsabelle

The web page of the course

- http://people.irisa.fr/Thomas.Genet/ACF

Solutions of Isabelle/HOL exercises (uploaded after each lecture)

- http://people.irisa.fr/Thomas.Genet/ACFSol
\qquad Acknowledgements \qquad
- Many thanks to T. Nipkow, J. Blanchette, L. Bulwahn and G. Riou for providing material, answering questions and for fruitful discussions.

Why using logic for specifying/verifying programs?

Why using logic for specifying/verifying programs?

Why using functional paradigm to program?

Why using logic for specifying/verifying programs?

Why using functional paradigm to program?

Why using functional paradigm to program?

Propositional logic: syntax and interpretations

Definition 1 (Propositional formula)

Let P be a set of propositional variables. The set of propositional formula is defined by
$\phi::=p|\neg \phi| \phi_{1} \vee \phi_{2}\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \longrightarrow \phi_{2} \quad$ where $p \in P$

Definition 2 (Propositional interpretation)
An interpretation I associates to variables of P a value in \{True, False\}.

Example 3

Let $\phi=\left(p_{1} \wedge p_{2}\right) \longrightarrow p_{3}$. Let $/$ be the interpretation such that $\iota \llbracket p_{1} \rrbracket=$ True, $I \llbracket p_{2} \rrbracket=$ True and $I \llbracket p_{3} \rrbracket=$ False.

Why using functional paradigm to program?

Isabelle/HOL proof assistant
SAT Solvers
SPASS, Vampire,
CVC4, Z3,
Quickcheck Nitpick

Propositional logic: syntax and interpretations (II)
We extend the domain of I to formulas as follows:
$\| \llbracket \neg \phi \rrbracket=\left\{\begin{array}{l}\text { True iff } I \llbracket \phi \rrbracket=\text { False } \\ \text { False iff } I \llbracket \phi \rrbracket=\text { True }\end{array}\right.$
$I \llbracket \phi_{1} \vee \phi_{2} \rrbracket=$ True iff $\ \llbracket \phi_{1} \rrbracket=$ True or $I \llbracket \phi_{2} \rrbracket=$ True
$I \llbracket \phi_{1} \wedge \phi_{2} \rrbracket=$ True iff $I \llbracket \phi_{1} \rrbracket=$ True and $I \llbracket \phi_{2} \rrbracket=$ True
$\iota \llbracket \phi_{1} \longrightarrow \phi_{2} \rrbracket=$ True iff $\left\{\begin{array}{l}I \llbracket \phi_{1} \rrbracket=\text { False or } \\ I \llbracket \phi_{1} \rrbracket=\text { True and } I \llbracket \phi_{2} \rrbracket=\text { True }\end{array}\right.$

Example 4

Let $\phi=\left(p_{1} \wedge p_{2}\right) \longrightarrow p_{3}$ and I the interpretation such that $I \llbracket p_{1} \rrbracket=$ True,
$l \llbracket p_{2} \rrbracket=$ True and $I \llbracket p_{3} \rrbracket=$ False.
We have $I \llbracket p_{1} \wedge p_{2} \rrbracket=$ True and $\llbracket \llbracket\left(p_{1} \wedge p_{2}\right) \longrightarrow p_{3} \rrbracket=$ False.

Propositional logic: syntax and interpretations (III)

The presentation using truth tables is generally preferred:

a	$\neg a$
False	True
True	False

a	b	$a \wedge b$
False	False	False
True	False	False
False	True	False
True	True	True

a	b	$a \longrightarrow b$
False	False	True
True	False	False
False	True	True
True	True	True

Propositional logic: decidability and tools in Isabelle/HOL

Property 1

In propositional logic, given ϕ, the following problems are decidable:

- Is $\models \phi$?
- Is there an interpretation I such that I $\models \phi$?
- Is there an interpretation I such that I $\vDash \phi$?
- To automatically prove that $\models \phi \ldots \ldots . .$.apply auto (if the formula is not valid, there remains some unsolved goals)
- To build I such that $I \neq \phi$ (or $I \models \neg \phi$)
.......................nitpick (i.e. find a counterexample... may take some time on large formula) Other useful commands \qquad
- To close the proof of a proven formula................................. . done
- To abandon the proof of an unprovable formula oops
- To abandon the proof of (potentially) provable formula sorry

Propositional logic: models

Definition 5 (Propositional model)
I is a model of ϕ, denoted by $I \models \phi$, if $I \llbracket \phi \rrbracket=$ True.

Definition 6 (Valid formula/Tautology)

A formula ϕ is valid, denoted by $\models \phi$, if for all I we have $I \models \phi$.

Example 7

Let $\phi=\left(p_{1} \wedge p_{2}\right) \longrightarrow p_{3}$ and $\phi^{\prime}=\left(p_{1} \wedge p_{2}\right) \longrightarrow p_{1}$. Let $/$ be the interpretation such that $I \llbracket p_{1} \rrbracket=$ True, $I \llbracket p_{2} \rrbracket=$ True and $I \llbracket p_{3} \rrbracket=$ False . We have $I \not \vDash \phi, I \models \phi^{\prime}$, and $\models \phi^{\prime}$.

Writing and proving propositional formulas in Isabelle/HOL

```
Example 8 (Valid formula)
lemma "(p1 /\ p2) --> p1"
apply auto
done
Example 9 (Unprovable formula)
lemma "(p1 /\ p2) --> p3"
nitpick
oops
```


Isabelle/HOL: ASCII notations

Symbol	ASCII notation
True	True
False	False
\wedge	$/ \wedge$
\vee	$\backslash /$
\neg	\sim
\neq	$\sim=$
\longrightarrow	$-->$
\longleftrightarrow	$=$
\forall	ALL
\exists	$?$
λ	$\%$

Propositional logic: exercises in Isabelle/HOL

Exercise 1

Using Isabelle/HOL, for each formula, say if it is valid or give a counterexample interpretation, otherwise.
(1) $A \vee B$
2) $(((A \wedge B) \longrightarrow \neg C) \vee(A \longrightarrow B)) \longrightarrow A \longrightarrow C$

3 If it rains, Robert takes his umbrella. Robert does not have his umbrella hence it does not rain.
4) $(A \longrightarrow B) \longleftrightarrow(\neg A \vee B)$

First-order logic: terms

Definition 10 (Terms)

Let \mathcal{F} be a set of symbols and ar a function such that ar : $\mathcal{F} \Rightarrow \mathbb{N}$ associating each symbol of \mathcal{F} to its arity (the number of parameter). Let \mathcal{X} be a variable set.

The set $\mathcal{T}(\mathcal{F}, \mathcal{X})$, the set of terms built on \mathcal{F} and \mathcal{X}, is defined by: $\mathcal{T}(\mathcal{F}, \mathcal{X})=\mathcal{X} \cup\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid \operatorname{ar}(f)=n\right.$ and $\left.t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{F}, \mathcal{X})\right\}$

Example 11

Let $\mathcal{F}=\{f: 1, g: 2, a: 0, b: 0\}$ and $\mathcal{X}=\{x, y, z\}$.
$f(x), a, \quad z, g(g(a, x), f(a)), g(x, x)$ are terms and belong to $\mathcal{T}(\mathcal{F}, \mathcal{X})$.
$f, a(b), f(a, b), x(a), f(a, f(b))$ do not belong to $\mathcal{T}(\mathcal{F}, \mathcal{X})$.

First-order logic: formula syntax

Definition 12 (Formulas)

Let P be a set of predicate symbols all having an arity, i.e. ar : $P \Rightarrow \mathbb{N}$.
The set of formulas defined on \mathcal{F}, \mathcal{X} and P is:
$\phi::=\neg \phi\left|\phi_{1} \vee \phi_{2}\right| \phi_{1} \wedge \phi_{2}\left|\phi_{1} \longrightarrow \phi_{2}\right| \forall x . \phi|\exists x . \phi| p\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{F}, \mathcal{X}), \quad x \in \mathcal{X}, \quad p \in P \quad$ and $\quad \operatorname{ar}(p)=n$.

Example 13

Let $P=\{p: 1, q: 2, \leq: 2\}, \mathcal{F}=\{f: 1, g: 2, a: 0\}$ and $\mathcal{X}=\{x, y, z\}$.
The following expressions are all formulas:

- $p(f(a))$
- $q(g(f(a), x), y)$
- $\forall x . \exists y . y \leq x$
- $\forall x . \forall y . \forall z . x \leq y \wedge y \leq z \longrightarrow x \leq z$

Interlude: a touch of lambda-calculus

We need to define anonymous functions

- Classical notation for functions

$$
\begin{array}{lll}
f: \mathbb{N} \times \mathbb{N} \Rightarrow \mathbb{N} & \text { or, for short, } & f: \mathbb{N}^{2} \Rightarrow \mathbb{N} \\
f(x, y)=x+y & & f(x, y)=x+y
\end{array}
$$

- Lambda-notation of functions

$$
\begin{aligned}
& f: \mathbb{N}^{2} \Rightarrow \mathbb{N} \\
& f=\lambda(x, y) \cdot x+y
\end{aligned}
$$

$\lambda x y \cdot x+y$ is an anonymous function adding two naturals

This corresponds to

- fun x y -> x+y in OCaml/Why3
- (x : Int, $\mathrm{y}:$ Int) $=>\mathrm{x}+\mathrm{y}$ in Scala

First-order logic syntax: the quiz

Quiz 1

Let $P=\{p: 1, q: 2, \leq: 2\}, \mathcal{F}=\{f: 1, g: 2, a: 0\}$ and $\mathcal{X}=\{x, y, z\}$.

- $f(g(a))$ is a term | V | True | R | False |
| :--- | :--- | :--- | :--- |
- a is a term

- x is a term

- $\forall x . x$ is a term \square
- $\forall x . x$ is a formula | V | True | R | False |
| :--- | :--- | :--- | :--- |
- $p(f(g(a, x)))$ is a formula | V | True | R | False |
| :--- | :--- | :--- | :--- |
- $\forall x \cdot p(x) \wedge x \leq y$ is a formula | V | True | R | False |
| :--- | :--- | :--- | :--- |

Interlude: a touch of lambda-calculus (in Isabelle HOL)

Isabelle $/ \mathrm{HOL}$ also use function update using $(:=)$ as in:

- $(\lambda x . x)(0:=1,1:=2)$ the identity function except for 0 that is mapped to 1 and 1 that is mapped to 2
- $\left(\lambda x_{.-}\right)(a:=b)$ a function taking one parameter and whose result is unspecified except for value a that is mapped to b

Predicates in Isabelle/HOL

- A predicate is a function mapping values to \{True, False\}

For instance the predicate p on $\{a, b\}$
$p=(\lambda x .-)(a:=$ False, $b:=$ False $)$

First-order formulas: interpretations and valuations

Definition 14 (First-order interpretation)

Let ϕ be a formula and D a domain. An interpretation I of ϕ on the domain D associates:

- a function $f_{l}: D^{n} \Rightarrow D$ to each symbol $f \in \mathcal{F}$ such that $\operatorname{ar}(f)=n$,
- a function $p_{I}: D^{n} \Rightarrow\{$ True, False $\}$ to each predicate symbol $p \in P$ such that $\operatorname{ar}(p)=n$.

Example 15 (Some interpretations of $\phi=\forall x \cdot \operatorname{ev}(x) \longrightarrow \operatorname{od}(s(x))$)

- Let I be the interpretation such that domain $D=\mathbb{N}$ and $s_{I} \equiv \lambda x \cdot x+1 \quad e v_{I} \equiv \lambda x \cdot((x \bmod 2)=0) \quad o d_{I} \equiv \lambda x \cdot((x \bmod 2)=1)$
- Let I^{\prime} be the interpretation such that domain $D=\{a, b\}$ and $s_{l^{\prime}} \equiv \lambda x$.if $x=$ a then b else $a \quad e v_{l^{\prime}} \equiv \lambda x .(x=a) \quad o d_{l^{\prime}} \equiv \lambda x$.False

Definition 16 (Valuation)
Let D be a domain. A valuation V is a function $V: \mathcal{X} \Rightarrow D$.

First-order logic: satisfiability, models, tautologies

Definition 18 (Satisfiability)

I and V satisfy $\phi \quad$ (denoted by $(I, V) \models \phi) \quad$ if $(I, V) \llbracket \phi \rrbracket=$ True.

Definition 19 (First-order Model)

An interpretation I is a model of ϕ, denoted by $I \models \phi$, if for all valuation V we have $(I, V) \models \phi$.

Definition 20 (First-order Tautology)

A formula ϕ is a tautology if all its interpretations are models,
i.e. $(I, V) \models \phi$ for all interpretations I and all valuations V.

Remark 1

Free variables are universally quantified (e.g. $P(x)$ equivalent to $\forall x . P(x)$)

First-order logic: interpretations and valuations (II)

Definition 17

The interpretation I of a formula ϕ for a valuation V is defined by:

- $(I, V) \llbracket x \rrbracket=V(x)$ if $x \in \mathcal{X}$
- $(I, V) \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket=f_{l}\left((I, V) \llbracket t_{1} \rrbracket, \ldots,(I, V) \llbracket t_{n} \rrbracket\right)$ if $f \in \mathcal{F}$ and $\operatorname{ar}(f)=n$
- $(I, V) \llbracket p\left(t_{1}, \ldots, t_{n}\right) \rrbracket=p_{I}\left((I, V) \llbracket t_{1} \rrbracket, \ldots,(I, V) \llbracket t_{n} \rrbracket\right)$ if $p \in P$ and $a r(p)=n$
- $(I, V) \llbracket \phi_{1} \vee \phi_{2} \rrbracket=\operatorname{True} \operatorname{iff}(I, V) \llbracket \phi_{1} \rrbracket=\operatorname{True}$ or $(I, V) \llbracket \phi_{2} \rrbracket=\operatorname{True}$
- etc...
- $(I, V) \llbracket \forall x \cdot \phi \rrbracket=\bigwedge_{d \in D}(I, V+\{x \mapsto d\}) \llbracket \phi \rrbracket$
- $(I, V) \llbracket \exists x \cdot \phi \rrbracket=\bigvee_{d \in D}(I, V+\{x \mapsto d\}) \llbracket \phi \rrbracket$
where $(V+\{x \mapsto d\})(x)=d$ and $(V+\{x \mapsto d\})(y)=V(y)$ if $x \neq y$.

First-order logic: decidability and tools in Isabelle/HOL

Property 2

In first-order logic, given ϕ, the following problems are undecidable:

- $I s \neq \phi$?
- Is there an interpretation I (and valuation V) such that $(I, V) \models \phi$?
- Is there an interpretation I (and valuation V) such that $(I, V) \not \vDash \phi$?
- Try to automatically prove $\models \phi$
apply auto Uses decision procedures (e.g. arithmetic) to try to prove the formula. If it does not succeed, it does not mean that the formula is unprovable!
 If it does not succeed, it does not mean that there is no counterexample!

First-order logic: exercises in Isabelle/HOL

Exercise 2

Using Isabelle/HOL, for each formula, say if it is valid or give a counterexample interpretation and valuation otherwise.
(1) $\forall x \cdot p(x) \longrightarrow \exists x \cdot p(x)$
(2) $\exists x \cdot p(x) \longrightarrow \forall x \cdot p(x)$
(3) $\forall x \cdot \operatorname{ev}(x) \longrightarrow \operatorname{od}(s(x))$
(4) $\forall x y . x>y \longrightarrow x+1>y+1$
(5) $x>y \longrightarrow x+1>y+1$
(6) $\forall m n \cdot(\neg(m<n) \wedge m<n+1) \longrightarrow m=n$
(7) $\forall x \cdot \exists y \cdot x+y=0$

8 $\forall y \cdot(\neg p(f(y))) \longleftrightarrow p(f(y))$
(9) $\forall y \cdot(p(f(y)) \longrightarrow p(f(y+1)))$

First-order logic: satisfiability and models

Definition 21 (Satisfiable formula)

A formula ϕ is satisfiable if there exists an interpretation I and a valuation V such that $(I, V) \models \phi$.

Example 22

Let $\phi=p(f(y))$ with $\mathcal{F}=\{f: 1\}, P=\{p: 1\}, \mathcal{X}=\{y\}$.
The formula ϕ is satisfiable (there exists (I, V) such that $(I, V) \models \phi)$

- Let I be the interp. s.t. $D=\{0,1\}, \quad p_{I} \equiv \lambda x .(x=0), \quad f_{l}=\lambda x . x$
- Let V be the valuation such that $V(y)=0$

We have $(I, V) \models \phi$. With $V^{\prime}(y)=1,\left(I, V^{\prime}\right) \not \vDash \phi$. Hence, I is not a model of ϕ.

- Let I^{\prime} be the interp. s.t. $D=\{0,1\}, \quad p_{I^{\prime}} \equiv \lambda x .(x=0), \quad f_{\prime^{\prime}}=\lambda x .0$ We have $\left(I^{\prime}, V\right) \models \phi$ for all valuation V, hence I^{\prime} is a model of ϕ.

Isabelle/HOL notations: priority, associativity, shorthands

- Here are the logical operators in decreasing order of priority:
$\bullet=, \neg, \wedge, \vee, \longrightarrow, \forall, \exists$
- «a prioritary operator first chooses its operands»
- For instance
- $\neg \neg P=P$ means $\neg \neg(P=P)$!
- $A \wedge B=B \wedge A$ means $A \wedge(B=B) \wedge A$!
- $P \wedge \forall x \cdot Q(x)$ will be parsed as $(P \wedge \forall) x \cdot Q(x)$! Hence, write $P \wedge(\forall x . Q(x))$ instead!
- All binary operators are associative to the right, for instance $A \longrightarrow B \longrightarrow C$ is equivalent to $A \longrightarrow(B \longrightarrow C)$
- Nested quantifications $\forall x . \forall y . \forall z . P$ can be abbreviated into $\forall x y z . P$
- Free variables are universally quantified, i.e. $P(x)$ is equiv. to $\forall x . P(x)$

All Isabelle/HOL tools will prefer $P(x)$ to $\forall x . P(x)$
T. Genet (ISTIC/IRISA)

ACF-1
Satisfiability - the quiz

Quiz 2

Let $P=\{p: 1\}, \mathcal{F}=\{f: 1, a: 0, b: 0\}$ and $\mathcal{X}=\{x\}$.

- $f(a)$ is satisfiable | | V | True | R |
| :--- | :--- | :--- | :--- |$|$ False
- $p(f(a))$ is satisfiable | | V | True | R |
| :--- | :--- | :--- | :--- | False
- $p(f(x))$ is satisfiable | V | True | R | False |
| :--- | :--- | :--- | :--- |
- $p(f(x))$ is a tautology

- $\neg p(f(x))$ is satisfiable | V | True | R | False |
| :--- | :--- | :--- | :--- |
- $\neg p(f(x)) \wedge p(f(x))$ is satisfiable | V | True | R | False |
| :--- | :--- | :--- | :--- |
- $p(f(a)) \longrightarrow p(f(b))$ is satisfiable | V | True | R | False |
| :--- | :--- | :--- | :--- |

First-order logic: contradictions

Definition 23 (Contradiction)
A formula is contradictory (or unsatisfiable) if it cannot be satisfied, i.e. $(I, V) \not \models \phi$ for all interpretation I and all valuation V.

Property 3
A formula ϕ is contradictory iff $\neg \phi$ is a tautology.
Example 24 (See in Isabelle cm1.thy file)
Let $\phi=(\forall y . \neg p(f(y))) \longleftrightarrow(\forall y, p(f(y)))$. The formula ϕ is contradictory and $\neg \phi$ is a tautology.

Analyse et Conception Formelles

Lesson 2

Types, terms and functions

Types: syntax
$\tau \quad::=(\tau)$

$|$| bool \mid nat \mid char $\mid \ldots$ | base types |
| :--- | :--- |
| $\prime a\|' b\| \ldots$ | type variables |
| $\tau \Rightarrow \tau$ | functions |
| $\tau \times \ldots \times \tau$ | tuples (ascii for $\times: *$) |
| τ list | lists |
| \ldots | user-defined types |

The operator \Rightarrow is right-associative, for instance:

$$
\text { nat } \Rightarrow \text { nat } \Rightarrow \text { bool is equivalent to nat } \Rightarrow(\text { nat } \Rightarrow \text { bool })
$$

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

Typed terms: syntax
term $::=$ (term)

$|$| a | $a \in \mathcal{F}$ or $a \in \mathcal{X}$ |
| :--- | :--- |
| term term | function application |
| λy. term | function definition with $y \in \mathcal{X}$ |
| $($ term,\ldots, term $)$ | tuples |
| $[$ term,\ldots, term $]$ | lists |
| $($ term $:: \tau)$ | type annotation |
| \ldots | a lot of syntactic sugar |

Function application is left-associative, for instance:
$f a b c$ is equivalent to $((f a) b) c$
Example 1 (Types of terms)

Term	Type	Term	Type
y	a	t1	a
(t1, t2, t3)	($\mathrm{a} \times \times \mathrm{l} \times$ 'c)	[t1, t2, t3]	'a list
$\lambda \mathrm{y} . \mathrm{y}$	' $\mathrm{a} \Rightarrow \mathrm{l}$ '	$\lambda \mathrm{yz} . \mathrm{z}$	${ }^{\prime} \mathrm{a} \Rightarrow \mathrm{\prime}$ ' ${ }^{\prime}{ }^{\prime} \mathrm{b}$

Types and terms: evaluation in Isabelle/HOL

To evaluate a term t in Isabelle value " t "

Example 2

Term	Isabelle's answer
value "True""	True::bool
value "2"	Error (cannot infer result type)
value "(2::nat)"	$2::$ nat
value "[True,False]"	[True,False]::bool list
value "(True,True,False)"	(True,True,False)::bool * bool * bool
value "[2,6,10]"	Error (cannot infer result type)
value "[(2::nat),6,10]"	$[2,6,10]::$ nat list

Lambda-calculus - the quiz

Quiz 1

- Function $\lambda(x, y) \cdot x$ is a function with two parameters | V | True | R | False |
| :--- | :--- | :--- | :--- |
- Type of function $\lambda(x, y)$. x is

- If $\mathrm{f}:$: nat \Rightarrow nat \Rightarrow nat how to call f on 1 and 2?

| V | $f(1,2)$ | R | $\left(\begin{array}{lll}f & 1 & 2\end{array}\right)$ |
| :--- | :--- | :--- | :--- | :--- |

- Iff: : nat \times nat \Rightarrow nat how to call f on 1 and 2?

Terms and functions: semantics is the λ-calculus Semantics of functional programming languages consists of one rule:

$$
(\lambda x . t) a \rightarrow \beta \quad t\{x \mapsto a\} \quad(\beta \text {-reduction) }
$$

where $t\{x \mapsto a\}$ is the term t where all occurrences of x are replaced by a

Example 3

- $(\lambda x \cdot x+1) 10 \rightarrow \beta 10+1$
- $(\lambda x \cdot \lambda y \cdot x+y) 12 \rightarrow_{\beta}(\lambda y .1+y) 2 \rightarrow_{\beta} 1+2$
- $(\lambda(x, y) \cdot y)(1,2) \rightarrow \beta 2$

In Isabelle/HOL, to be β-reduced, terms have to be well-typed

Example 4

Previous examples can be reduced because:

- $(\lambda x . x+1)::$ nat \Rightarrow nat and $10::$ nat
- $(\lambda x \cdot \lambda y \cdot x+y)::$ nat \Rightarrow nat \Rightarrow nat and $1::$ nat and $2::$ nat
- $(\lambda(x, y) \cdot y)::($ 'a \times 'b) \Rightarrow 'b and $(1,2)::$ nat \times nat

A word about curried functions and partial application

Definition 5 (Curried function)

A function is curried if it returns a function as result.

Example 6

The function $(\lambda x . \lambda y \cdot x+y)::$ nat \Rightarrow nat \Rightarrow nat is curried
The function $(\lambda(x, y) \cdot x+y)::$ nat $\times n a t \Rightarrow n a t$ is not curried
Example 7 (Curried function can be partially applied!)
The function $(\lambda x . \lambda y . x+y)$ can be applied to 2 or 1 argument!

- $(\lambda x . \lambda y \cdot x+y) 12 \rightarrow_{\beta}(\lambda y .1+y) 2 \rightarrow_{\beta}(1+2):: n a t$
- $(\lambda x . \lambda y \cdot x+y) 1 \rightarrow_{\beta}(\lambda y .1+y)::$ nat \Rightarrow nat which is a function!

Exercise 1 (ln Isabelle/HOL)

Use append::'a list \Rightarrow 'a list \Rightarrow 'a list to concatenate 2 lists of bool, 2 lists of nat, and 3 lists of nat.

A word about curried functions and partial application (II)

- To associate the value of a term t to a name $n \ldots$..... definition " $n=t$ "

Exercise 2 (ln Isabelle/HOL)

(1) Define the (non-curried) function addNc adding two naturals
(2) Use addNc to add 5 to 6
(3) Define the (curried) function add adding two naturals
(4) Use add to add 5 to 6
(5) Using add, define the incr function adding 1 to a natural
(6) Apply incr to 5
(7) Define a function app1 adding 1 at the beginning of any list of naturals, give an example of use

A word about higher-order functions (II)

Exercise 3 (In Isabelle/HOL)

(1) Define a function triple which applies three times a given function to an argument
(2) Using triple, apply three times the function incr on 0
(3) Using triple, apply three times the function app1 on [2,3]
(4) Using map :: $($ ' $a \Rightarrow$ 'b) \Rightarrow 'a list \Rightarrow 'b list from the list [1, 2, 3] build the list [2, 3, 4]

A word about higher-order functions

Definition 8 (Higher-order function)

A higher-order function takes one or more functions as parameters.
Example 9 (Some higher-order functions and their evaluation)

- $\lambda x . \lambda f . f x:: ' a \Rightarrow\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \Rightarrow^{\prime} b$
- $\lambda f . \lambda x . f x::\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \Rightarrow^{\prime} a \Rightarrow^{\prime} b$
- $\lambda f . \lambda x . f(x+1)(x+1)::(n a t \Rightarrow n a t \Rightarrow n a t) \Rightarrow n a t \Rightarrow n a t$
$(\lambda f . \lambda x . f(x+1)(x+1))$ add 20
$\rightarrow_{\beta}(\lambda x \cdot \operatorname{add}(x+1)(x+1)) 20$
$\rightarrow \beta$ add $(20+1)(20+1)$
$=(\lambda x \cdot \lambda y \cdot x+y)(20+1)(20+1)$
$\rightarrow \beta(20+1)+(20+1)$
$=42$

Interlude: a word about semantics and verification

- To verify programs, formal reasoning on their semantics is crucial!
- To prove a property ϕ on a program P we need to precisely and exactly understand P 's behavior

For many languages the semantics is given by the compiler (version)!

- C, Flash/ActionScript, JavaScript, Python, Ruby,

Some languages have a (written) formal semantics:

- Java ${ }^{\text {a }}$, subsets of C
(hundreds of pages)
- Proofs are hard because of semantics complexity
(e.g. KeY for Java)
${ }^{a}$ http://docs.oracle.com/javase/specs/jls/se7/html/index.html
Some have a small formal semantics:
- Functional languages: Haskell, subsets of (OCaml, F\# and Scala)
- Proofs are easier since semantics essentially consists of a single rule

Constructor terms

Isabelle distinguishes between constructor and function symbols

- A function symbol is associated to a function, e.g. inc
- A constructor symbol is not associated to any function

Definition 10 (Constructor term)

A term containing only constructor symbols is a constructor term

A constructor term does not contain function symbols

Constructor terms - the quiz

Quiz 2

- Nil is a term?
- Nil is a constructor term?

- (Cons (Suc 0) Nil) is a constructor term?

Constructor terms (II)

All data are built using constructor terms without variables ..even if the representation is generally hidden by Isabelle/HOL

Example 11

- Natural numbers of type nat are terms: 0 , (Suc 0), (Suc (Suc 0)),
- Integer numbers of type int are couples of natural numbers:
$\ldots(0,2),(0,1),(0,0),(1,0), \ldots$
where $(0,2)=(1,3)=(2,4)=\ldots$ all represent the same integer -2
- Lists are built using the operators
- Nil: the empty list
- Cons: the operator adding an element to the (head) of the list Be careful! the type of Cons is Cons: :'a \Rightarrow 'a list \Rightarrow 'a list

The term Cons 0 (Cons (Suc 0) Nil) represents the list $[0,1]$

Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:

- Usual decimal representation for naturals, integers and rationals $1,2,-3,-45.67676$,
- [] and \# for lists, e.g. Cons $0(\operatorname{Cons}(\operatorname{Suc} 0) \mathrm{NiI})=0 \#(1 \#[])=[0,1]$ (similar to [] and :: of OCaml)
- Strings using 2 quotes e.g. ' 'toto', (instead of "toto")

Exercise 4

(1) Prove that 3 is equivalent to its constructor representation
(2) Prove that $[1,1,1]$ is equivalent to its constructor representation
(3) Prove that the first element of list $[1,2]$ is 1
(4) Infer the constructor representation of rational numbers of type rat (5) Infer the constructor representation of strings

Isabelle Theory Library

Isabelle comes with a huge library of useful theories

- Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex ...
- Data structures: Lists, Sets, Tuples, Records, Maps ...
- Mathematical tools: Probabilities, Lattices, Random numbers, ...

All those theories include types, functions and lemmas/theorems

Example 12

Let's have a look to a simple one Lists.thy:

- Definition of the datatype (with shortcuts)
- Definitions of functions (e.g. append)
- Definitions and proofs of lemmas (e.g. length_append)
lemma "length (xs @ ys) = length xs + length ys"
- Exportation rules for SML, Haskell, Ocaml, Scala (code_printing)

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Isabelle Theory Library: using functions on lists

Some functions of Lists.thy

- append:: 'a list \Rightarrow 'a list \Rightarrow 'a list
- rev:: 'a list \Rightarrow 'a list
- length:: 'a list \Rightarrow nat
- map:: ('a \Rightarrow 'b) \Rightarrow 'a list \Rightarrow 'b list

Exercise 5

(1) Apply the rev function to list $[1,2,3]$
(2) Prove that for all value x, reverse of the list $[x]$ is equal to $[x]$
(3) Prove that append is associative
(4) Prove that append is not commutative
(5) Using map, from the list $[1,2,3]$ build the list $[2,4,6]$
(0 Prove that map does not change the size of a list

Defining functions using equations

- Defining functions using λ-terms is hardly usable for programming
- Isabelle/HOL has a "fun" operator as other functional languages

Definition 13 (fun operator for defining (recursive) functions)

fun $f:: ~ " \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ "
where

$$
\begin{array}{l|l}
" f t_{1}^{1} \ldots t_{n}^{1}=r^{1 "} & \begin{array}{l}
\text { where for all } i=1 \ldots n \text { and } k=1 \ldots m \\
\ldots \\
" f t_{1}^{m} \ldots t_{n}^{m}=r^{m "}
\end{array} \\
\begin{array}{l}
\left.t_{i}^{k}:: \tau_{i}\right) \text { are constructor terms possibly } \\
\text { with variables, and }\left(r^{k}:: \tau\right)
\end{array}
\end{array}
$$

Example 14 (The member function on lists (2 versions in cm2.thy))
fun member:: "'a => 'a list => bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"

Total and partial Isabelle/HOL functions

Definition 15 (Total and partial functions)

A function is total if it has a value (a result) for all elements of its domain.
A function is partial if it is not total.
Definition 16 (Complete Isabelle/HOL function definition)
fun $f:: ~ " \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ "
where $\quad f$ is complete if any call $f t_{1} \ldots t_{n}$ with

| $" f t_{1}^{1} \ldots t_{n}^{1}=r^{1} " \quad \|$$\left(t_{i}:: \tau_{i}\right), i=1 \ldots n$ is covered by one
 case of the definition. |
| :--- | :--- |
| $\ldots f t_{1}^{m} \ldots t_{n}^{m}=r^{m "} \quad$ |

$" f t_{1}^{m} \ldots t_{n}^{m}=r^{m} "$
Example 17 (Isabelle/HOL "Missing patterns" warning)
When the definition of f is not complete, an uncovered call of f is shown.

Function definition - the quiz (II)

Quiz 6 (Is this function definition correct?	V	Yes		No

fun pos2:: "nat \Rightarrow bool"
where
"pos2 0 = False" |
"pos2 $(x+1)=$ True"

Quiz 7 (Is this function definition correct? | V | Yes | | No |
| :--- | :--- | :--- | :--- |

fun isDivisor:: "nat \Rightarrow
nat \Rightarrow bool"
where
"isDivisor $\mathrm{x} y=(\exists \mathrm{z} . \mathrm{x} * \mathrm{z}=\mathrm{y})$ "

Total and partial Isabelle/HOL functions (II)

Theorem 18

Complete and terminating Isabelle/HOL functions are total, otherwise they are partial.

Question 1

Why termination of f is necessary for f to be total?

Remark 1

All functions in Isabelle/HOL needs to be terminating!

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:
(1) append Nil $x=x$
(* recall that Nil=[] *)
(2) append (x\#xs) $y=(x \#($ append $x s y))$

Replacement of equals by equals

Term rewriting
The first equation (append Nil x) $=\mathrm{x}$ means that

- (concatenating the empty list with any list x) is equal to x
- we can thus replace
- any term of the form (append Nil t) by t
(for any value t)
- wherever and whenever we encounter such a term append Nil t

Logic everywhere!

In the end, everything is defined using logic:

- data, data structures: constructor terms
- properties: lemmas (logical formulas)
- programs: functions (also logical formulas!)

Definition 19 (Equations (or simplification rules) defining a function)

A function f consists of a set of f.simps of equations on terms.
To visualize a lemma/theorem/simplification rule \qquad For instance: thm "length_append", thm "append.simps"
To find the name of a lemma, etc.
.thm

For instance: find_theorems "append" "_ + _"

Exercise 6

Use Isabelle/HOL to find the following formulas:

- definition of member (we just defined) and of nth (part of List.thy)
- find the lemma relating rev (part of List.thy) and length

Term Rewriting in three slides

- Rewriting term (append [] (append [] a)) using
(1) append Nil $\mathrm{x}=\mathrm{x}$
(2) append (x\#xs) y $=$ (x\#(append $x s y))$

- We note (append Nil (append Nil a)) \rightarrow (append Nil a) if
- there exists a position in the term where the rule matches
- there exists a substitution $\sigma: \mathcal{X} \mapsto \mathcal{T}(\mathcal{F})$ for the rule to match.

On the example $\sigma=\{x \mapsto a\}$

- We also have (append Nil a) \rightarrow a
and

Term Rewriting in three slides - Formal definitions

Definition 20 (Substitution)

A substitution σ is a function replacing variables of \mathcal{X} by terms of $\mathcal{T}(\mathcal{F}, \mathcal{X})$ in a term of $\mathcal{T}(\mathcal{F}, \mathcal{X})$.

Example 21

Let $\mathcal{F}=\{f: 3, h: 1, g: 1, a: 0\}$ and $\mathcal{X}=\{x, y, z\}$.
Let σ be the substitution $\sigma=\{x \mapsto g(a), y \mapsto h(z)\}$.
Let $t=f(h(x), x, g(y))$.
We have $\sigma(t)=f(h(g(a)), g(a), g(h(z)))$.

Term rewriting - the quiz

Quiz 8

Let $\mathcal{F}=\{f: 2, g: 1, a: 0\}$ and $\mathcal{X}=\{x, y\}$.

- Rewriting the term $f(g(g(a)))$ with equation $g(x)=x$ is
- To rewrite the term $f(g(g(a)))$ with $g(x)=x$ the substitution σ is | V | $\{x \mapsto a\}$ | R | $\{x \mapsto g(a)\}$ |
| :--- | :--- | :--- | :--- | :--- |
- Rewriting the term $f(g(g(y)))$ with equation $g(x)=x$ is Possible ||| R Impossible
- Rewriting the term $f(g(g(y)))$ with equation $g(f(x))=x$ is

$$
\begin{array}{|l|l||l|l}
\hline V & \text { Possible } & R & \text { Impossible } \\
\hline
\end{array}
$$

Term Rewriting in three slides - Formal definitions (II)
Definition 22 (Rewriting using an equation)
A term s can be rewritten into the term t (denoted by $s \rightarrow t$) using an Isabelle/HOL equation $l=r$ if there exists a subterm u of s and a substitution σ such that $u=\sigma(l)$. Then, t is the term s where subterm u has been replaced by $\sigma(r)$.

Example 23

Let $s=f(g(a), c)$ and $g(x)=h(g(x), b)$ the Isabelle/HOL equation.

$$
\begin{array}{lrllll}
\text { we have } & f\left(\begin{array}{ll}
g(a)
\end{array}, c\right) & \rightarrow f\left(\begin{array}{rl}
h(g(a), b) & , c) \\
\text { because } & g(x)
\end{array} \quad=\right. & h(g(x), b)
\end{array} \quad \text { and } \sigma=\{\mathrm{x} \mapsto a\}
$$

On the opposite $t=f(a, c)$ cannot be rewritten by $g(x)=h(g(x), b)$.

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function definition and only from left to right.

Isabelle evaluation $=$ rewriting terms using equations
(1) append Nil $x=x$
(2) append (x\#xs) $y=$ ($x \#(a p p e n d x s y)$)

Rewriting the term: append $[1,2][3,4]$ with (1) then (2) (Rmk 2)
First, recall that $[1,2]=(1 \#(2 \# N i l))$ and $[3,4]=(3 \#(4 \# N i l))!$

Example 24

See demo of step by step rewriting in Isabelle/HOL!

Isabelle evaluation = rewriting terms using equations (II)

```
(1) member e [] = False
```

(2) member $e(x \# x s)=$ (if $e=x$ then True else (member e xs))

Evaluation of test: member 2 [1,2,3]
\rightarrow if $2=1$ then True else (member $2[2,3]$)
by equation (2), because $[1,2,3]=1 \#[2,3]$
\rightarrow if False then True else (member 2 [2,3])
by Isabelle equations defining equality on naturals
\rightarrow member $2[2,3]$
by Isabelle equation (if False then x else $\mathrm{y}=\mathrm{y}$)
\rightarrow if $2=2$ then True else (member 2 [3])
by equation (2), because $[2,3]=2 \#[3]$
\rightarrow if True then True else (member 2 [3])
by Isabelle equations defining equality on naturals
\rightarrow True
by Isabelle equation (if True then x else $\mathrm{y}=\mathrm{x}$)

Lemma simplification $=$ Rewriting + Logical deduction (II)

```
(1) member e []
    = False
(2) member e (x \# xs) = (if e=x then True else (member e xs))
(3) append [] \(x=x\)
(4) append ( \(\mathrm{x} \# \mathrm{xs}\) ) \(\mathrm{y}=\mathrm{x} \#\) (append xs y )
```


Exercise 7

Is it possible to prove the lemma member u (append [u] v) by simplification/rewriting?

Exercise 8

Is it possible to prove the lemma member v (append $u[v])$ by simplification/rewriting?

Demo of rewriting in Isabelle/HOL!

Lemma simplification $=$ Rewriting + Logical deduction

(1) member e []
= False
(2) member $\mathrm{e}(\mathrm{x} \# \mathrm{xs})=$ (if $\mathrm{e}=\mathrm{x}$ then True else (member $\mathrm{e} x$))

Proving the lemma: member y $[z, y, v]$
\rightarrow if $y=z$ then True else (member y [y,v])
by equation (2), because $[z, y, v]=z \#[y, v]$
\rightarrow if $y=z$ then True else (if $y=y$ then True else (member $y[v])$) by equation (2), because $[y, v]=y \#[v]$
\rightarrow if $\mathrm{y}=\mathrm{z}$ then True else (if True then True else (member y [v])) because $y=y$ is trivially True
\rightarrow if $y=z$ then True else True by Isabelle equation (if True then x else $\mathrm{y}=\mathrm{x}$)
\rightarrow True by logical deduction (if b then True else True) \longleftrightarrow True ns
Evaluation of partial functions using rewriting by equational definitions may not result in a constructor term

Exercise 9

Let index be the function defined by:
fun index:: "'a => 'a list => nat"
where
"index $y(x \# x s)=(i f \quad x=y$ then 0 else $1+(i n d e x$ y xs))"

- Define the function in Isabelle/HOL
- What does it computes?
- Why is index a partial function? (What does Isabelle/HOL says?)
- For index, give an example of a call whose result is:
- a constructor term
- a match failure
- Define the property relating functions index and List.nth

Scala export + Demo

To export functions to Haskell, SML, Ocaml, Scala
For instance, to export the member and index functions to Scala:
export_code member index in Scala
test.scala \qquad
object cm2 \{
def member [A : HOL.equal] (e: A, x1: List[A]): Boolean = (e, x1) match \{
case $(e, N i l)=>$ false
case (e, x : : xs) $=>$ (if (HOL.eq[A] (e, x)) true else member $[A]$ (e, xs))
\}
def index[A : HOL.equal] (y: A, x1: List[A]): Nat =
($\mathrm{y}, \mathrm{x} 1$) match \{
case ($\mathrm{y}, \mathrm{x}:: \mathrm{xs}$) \Rightarrow (if (HOL.eq[A] (x, y)) Nat(0)
else $\operatorname{Nat}(1)+\operatorname{index}[A](y, x s))$
ACF-2 \square

Analyse et Conception Formelles

Lesson 3

Recursive Functions and Algebraic Data Types

Outline

(1) Recursive functions

- Definition
- Termination proofs with measures
- Difference between fun, function and primrec

2 (Recursive) Algebraic Data Types

- Defining Algebraic Data Types using datatype
- Building objects of Algebraic Data Types
- Matching objects of Algebraic Data Types
- Type abbreviations

Acknowledgements:
some material is borrowed from T. Nipkow and S. Blazy's lectures

Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a problem depends on solutions to smaller instances of the same problem»

- The «bad» news: in Isabelle/HOL, there is no while, no for, no mutable arrays and no pointers, ...
- The good news: you don't really need them to program!
- The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion

- What theory says: expressive power of recursive-only languages and imperative languages is equivalent
- What OCaml programmers say: it is as it should always be
- What Java programmers say: may be tricky but you will always get by

Recursive Functions

- A function is recursive if it is defined using itself.
- Recursion can be direct
fun member:: "'a => 'a list => bool"
where

```
"member e [] = False" |
"member e (x#xs) = (e=x \/ (member e xs))"
```

- ... or indirect. In this case, functions are said to be mutually recursive.
fun even:: "nat => bool"
and odd:: "nat => bool"
where

"even 0	$=$ True"
"even (Suc x)	$=$ odd $x "$
"odd 0	$=$ False"
"odd (Suc x)	$=$ even x "

Terminating Recursive Functions

In Isabelle/HOL, all the recursive functions have to be terminating!
How to guarantee the termination of a recursive function? (practice)

- Needs at least one base case (non recursive case)
- Every recursive case must go towards a base case
- ... or every recursive case «decreases» the size of one parameter

How to guarantee the termination of a recursive function? (theory)

- If $f:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ then define a measure function $g:: \tau_{1} \times \ldots \times \tau_{n} \Rightarrow \mathbb{N}$
- Prove that the measure of all recursive calls is decreasing | To prove termination of $f f\left(t_{1}\right)$ | $\rightarrow f\left(t_{2}\right)$ |
| ---: | :--- |
| Prove that $g\left(t_{1}\right)$ | $>g\left(t_{2}\right)$ |$>\ldots$
- The ordering > is well founded on \mathbb{N}
i.e. no infinite decreasing sequence of naturals $n_{1}>n_{2}>\ldots$

Proving termination with measure - the quiz

Quiz 1

- Proving termination of a function f ensures that the evaluations of $(f t)$ will terminate for | V | some t | R | all possible t |
| :--- | :--- | :--- | :--- |
- For a function $\mathrm{f}:$:' a list \Rightarrow 'a list a measure function should be of type | | 'a list \Rightarrow 'a list | R | 'a list \Rightarrow nat |
| :---: | :---: | :---: | :---: |
- For the function $\mathrm{f}:$:nat list \Rightarrow nat list
"f [] = []" |
"f (x\#xs) = (if $x=1$ then [x] else xs)"

| V | We do not need a measure function |
| :---: | :--- | R The only possible measure is λx. (length x)

- For function $\mathrm{f}:$:nat list \Rightarrow nat list

> "f [] = [] " |

"f (x\#xs) $=$ (if $x=1$ then $(f(x \# x s))$ else (f $x s)) "$ | V | There is no measure function |
| :---: | :--- |
| R | The only possible measure is $\lambda x .($ length $x)$ |

Terminating Recursive Functions (II)

How to guarantee the termination of a recursive function? (theory)

- If $f:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ then define a measure function $g:: \tau_{1} \times \ldots \times \tau_{n} \Rightarrow \mathbb{N}$
- Prove that the measure of all recursive calls is decreasing $\begin{aligned} \text { To prove termination of } f f\left(t_{1}\right) & \rightarrow f\left(t_{2}\right) \\ \text { Prove that } & \rightarrow\left(t_{1}\right)\end{aligned}>g\left(t_{2}\right)>\ldots$.

Example 1 (Proving termination using a measure)
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
(1) We define the measure $g=\lambda(x, y)$. (length $y)$
(2) We prove that $\forall \mathrm{exxs} . g(\mathrm{e},(\mathrm{x} \# \mathrm{xs}))>g(\mathrm{e}, \mathrm{xs})$

Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)

- Define the recursive function using fun
- Isabelle/HOL automatically tries to build a measure ${ }^{1}$
- If no measure is found the function is rejected
- If it is not terminating, make it terminating!
- Try to modify it so that its termination is easier to show

Otherwise

- Re-define the recursive function using function (sequential)
- Manually give a measure to achieve the termination proof

[^0]
Terminating Recursive Functions (IV)

Example 2

A definition of the member function using function is the following:
function (sequential) member::"'a \Rightarrow 'a list \Rightarrow bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
apply pat_completeness Prove that the function is "complete" apply auto i.e. patterns cover the domain
done
Prove its termination using the measure
termination member proposed in Example 1
apply (relation "measure $(\lambda(x, y)$. (length $y)) ")$
apply auto
done
T. Genet (ISTIC/IRISA)

Terminating Recursive Functions (VI)

Automatic termination proofs (fun definition) are generally enough

- Covers 90% of the functions commonly defined by programmers
- Otherwise, it is generally possible to adapt a function to fit this setting

Most of the functions are terminating by construction (primitive recursive)
Definition 3 (Primitive recursive functions: primrec)
Functions whose recursive calls «peels off» exactly one constructor
Example 4 (member can be defined using primrec instead of fun)
primrec member:: "'a => 'a list => bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
For instance, in List.thy:

- 26 "fun", 34 "primrec" with automatic termination proofs
- 3 "function" needing measures and manual termination proofs.
T. Genet (ISTIC/IRISA)

Terminating Recursive Functions (V)

Exercise 1

Define the following functions, see if they are terminating. If not, try to modify them so that they become terminating.
fun f::"nat => nat"
where
"f $x=f(x-1) "$
fun f2::"int => int"
where
"f2 $x=(i f x=0$ then 0 else $f 2(x-1)) "$
fun f3: :"nat => nat => nat"
where
"f3 x y= (if $x>=10$ then 0 else f3 ($x+1$) ($y+1)$)"

Recursive functions, exercises

Exercise 2

Define the following recursive functions

- A function sumList computing the sum of the elements of a list of naturals
- A function sumNat computing the sum of the n first naturals
- A function makeList building the list of the n first naturals State and verify a lemma relating sumList, sumNat and makeList

Outline

(1) Recursive functions

- Definition
- Termination proofs with orderings
- Termination proofs with measures
- Difference between fun, function and primrec

2 (Recursive) Algebraic Data Types

- Defining Algebraic Data Types using datatype
- Building objects of Algebraic Data Types
- Matching objects of Algebraic Data Types
- Type abbreviations

(Recursive) Algebraic Data Types

Basic types and type constructors (list, $\Rightarrow,^{*}$) are not enough to:

- Define enumerated types
- Define unions of distinct types
- Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)

To define type τ parameterized by types $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$:

Building objects of Algebraic Data Types

Any definition of the form

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau=$	$C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}}$
	\ldots
	$C_{k} \tau_{1, k} \ldots \tau_{1, n_{k}}$

also defines constructors C_{1}, \ldots, C_{k} for objects of type $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau$
The type of constructor C_{i} is $\tau_{i, 1} \Rightarrow \ldots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau$

Example 7

```datatype 'a list = Nil \| Cons 'a "'a list"```	defines constructors
Nil::'a list and Cons: :'a $\Rightarrow$ 'a Hence,   - Cons (3: :nat) (Cons 4 Nil ) is an obj   - Cons (3: :nat) is an object of type	$\text { ist } \Rightarrow \text { 'a list }$   of type nat list   list $\Rightarrow$ nat list

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau=C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}} \quad$ with $C_{1}, \ldots, C_{n}$
capitalized identifiers

Example 6 (The type of (polymorphic) lists, defined using datatype) datatype 'a list = Nil

$\left.=$| $=$ | $C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}}$ |
| :--- | :--- |
|  | $\ldots$ |
|  | $C_{k} \tau_{1, k} \ldots \tau_{1, n_{k}}$ | \right\rvert\,

| Cons 'a "'a list"

## Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case l of Nil => ... | (Cons x r) $=>$...)
possibly with wildcards, i.e. "_"

$$
\text { (case i of } 0 \Rightarrow \ldots \mid\left(\text { Suc _ }^{\prime}\right) \Rightarrow \ldots \text {. . }
$$

and nested patterns

$$
\text { (case lof (Cons } 0 \text { Nil) } \Rightarrow>\ldots \text {. (Cons (Suc x) Nil) } \Rightarrow \text {...) }
$$

possibly embedded in a function definition

```
fun first::"'a list =>'a list"
 where
"first Nil = Nil" | "first [] = []" |
"first (Cons x _) = (Cons x Nil)" "first (x#_) = [x]"
```


## Building objects of Algebraic Data Types - the quiz

## Quiz 2 (we define datatype abstInt= Any | Mint int )

- How to build an object of type abstInt from integer 13?

- How to build the object Any of type abstInt?

- To check if a variable x: :abstInt contains an integer how to do?

$V$	(case x of (Mint _) $\Rightarrow>$ True \| Any $\Rightarrow$ False)
$R$	$\mathrm{x}=$ (Mint _)

- Let f be defined by
f::abstInt $\Rightarrow$ abstInt $\Rightarrow$ abstInt
"f (Mint x) (Mint y) = (Mint x+y)" |
"f _ = Any"

What is the value of:


## Algebraic Data Types, exercises

## Exercise 3

Define the following types and build an object of each type using value

- The enumerated type color with possible values: black, white and grey
- The type token union of types string and int
- The type of (polymorphic) binary trees whose elements are of type 'a Define the following functions
- A function notBlack that answers true if a color object is not black
- A function sumToken that gives the sum of two integer tokens and 0 otherwise
- A function merge: :color tree $\Rightarrow$ color that merges all colors in a color tree (leaf is supposed to be black)


## Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types To introduce a type abbreviation type_synonym

For instance:

- type_synonym name="(string * string)"
- type_synonym ('a,'b) pair="('a * 'b)"

Using those abbreviations, objects can be explicitly typed:

- value "(''Leonard'',''Michalon''): :name"
- value "(1,''toto''): (nat,string) pair"
... though the type synonym name is ignored in Isabelle/HOL output $)^{2}$


## Analyse et Conception Formelles

## Lesson 4

Proofs with a proof assistant

## Outline

(1) Finding counterexamples

- nitpick
- quickcheck
(2) Proving true formulas
- Proof by cases: apply (case_tac x)
- Proof by induction: apply (induct x)
- Combination of decision procedures: apply auto and apply simp
- Solving theorems in the Cloud: sledgehammer

Acknowledgements: some material is borrowed from T. Nipkow's lectures and from Concrete Semantics by Nipkow and Klein, Springer Verlag, 2016.

More details (in french) about those proof techniques can be found in:

- http://people.irisa.fr/Thomas.Genet/ACF/TPs/pc.thy
- CM4 video and "Principes de preuve avancés" video

Prove logic formulas ... to prove programs

```
fun nth:: "nat => 'a list => 'a"
where
"nth 0 (x\#_)=x" |
"nth \(x\) (y\#ys)= (nth (\(x-1\)) ys)"
fun index:: "'a => 'a list => nat"
where
"index \(x\) (\(y \# y s\)) \(=(\) if \(x=y\) then 1 else \(1+(i n d e x ~ x ~ y s)) "\)
lemma nth_index: "nth (index e l) l= e"
```

How to prove the lemma nth_index? (Recall that everything is logic!)
What we are going to prove is thus a formula of the form:


## Finding counterexamples

Why? because « $90 \%$ of the theorems we write are false!»

- Because this is not what we want to prove!
- Because the formula is imprecise
- Because the function is false
- Because there are typos...

Before starting a proof, always first search for a counterexample!
Isabelle/HOL offers two counterexample finders:

- nitpick: uses finite model enumeration
+ Works on any logic formula, any type and any function
- Rapidly exhausted on large programs and properties
- quickcheck: uses random testing, exhaustive testing and narrowing
- Does not covers all formula and all types
+ Scales well even on large programs and complex properties


## Nitpick

To build an interpretation $/$ such that $I \not \vDash \phi$ (or $I \vDash \neg \phi$ ) ........ nitpick nitpick principle: build an interpretation $I \models \neg \phi$ on a finite domain $D$

- Choose a cardinality $k$
- Enumerate all possible domains $D_{\tau}$ of size $k$ for all types $\tau$ in $\neg \phi$
- Build all possible interpretations of functions in $\neg \phi$ on all $D_{\tau}$
- Check if one interpretation satisfy $\neg \phi$ (this is a counterexample for $\phi$ )
- If not, there is no counterexample on a domain of size $k$ for $\phi$ nitpick algorithm:
- Search for a counterexample to $\phi$ with cardinalities 1 upto $n$
- Stops when I such that $I \models \neg \phi$ is found (counterex. to $\phi$ ), or
- Stops when maximal cardinality $n$ is reached ( 10 by default), or
- Stops after 30 seconds (default timeout)


## Nitpick (III)

nitpick options:

- timeout=t, set the timeout to $t$ seconds (timeout=none possible)
- show_all, displays the domains and interpretations for the counterex.
- expect=s, specifies the expected outcome where scan be none (no counterexample) or genuine (a counterexample exists)
- card=i-j, specifies the cardinalities to explore

For instance:
nitpick [timeout=120, show_all, card=3-5]

## Exercise 2

- Explain the counterexample found for rev $1=1$
- Is there a counterexample to the lemma nth_index?
- Correct the lemma and definitions of index and nth
- Is the lemma append_commut true? really?


## Nitpick (II)

## Exercise 1

By hand, iteratively check if there is a counterexample of cardinality 1,2,3 for the formula $\phi$, where $\phi$ is length la $<=1$.

## Remark 1

- The types occurring in $\phi$ are 'a and 'a list
- One possible domain $D^{\prime}$ a of cardinality 1: $\left\{a_{1}\right\}$
- One possible domain $D^{\prime}$ a list of cardinality $1:\{[]\}$ Domains have to be subterm-closed, thus $\left\{\left[a_{1}\right]\right\}$ is not valid
- One possible domain $D_{ı}$ of cardinality 2: $\left\{a_{1}, a_{2}\right\}$
- Two possible domains Dıa list of cardinality 2: $\left\{[],\left[a_{1}\right]\right\}$ and $\left\{[],\left[a_{2}\right]\right\}$
- One possible domain $D_{1}$ of cardinality 3: $\left\{a_{1}, a_{2}, a_{3}\right\}$
- Twelve possible domains $D^{\prime}$ a list of cardinality 3: $\left\{[],\left[a_{1}\right],\left[a_{1}, a_{1}\right]\right\}$, $\left\{[],\left[a_{1}\right],\left[a_{2}\right]\right\},\left\{[],\left[a_{1}\right],\left[a_{3}, a_{1}\right]\right\}, \ldots \quad\left\{[],\left[a_{1}\right],\left[a_{3}, a_{2}\right]\right\}$


## Quickcheck

To build an interpretation I such that $/ \not \vDash \phi$ (or $I \models \neg \phi$ ) .... quickcheck quickcheck principle: test $\phi$ with automatically generated values of size $k$ Either with a generator

- Random: values are generated randomly (Haskell's QuickCheck)
- Exhaustive: (almost) all values of size $k$ are generated (TP4bis)
- Narrowing: like exhaustive but taking advantage of symbolic values No exhautiveness guarantee!! with any of them quickcheck algorithm:
- Export Haskell code for functions and lemmas
- Generate test values of size 1 upto $n$ and, test $\phi$ using Haskell code
- Stops when a counterexample is found, or
- Stops when max. size of test values has been reached (default 5), or
- Stops after 30 seconds (default timeout)


## Quickcheck (II)

quickcheck options:

- timeout=t, set the timeout to t seconds
- expect=s, specifies the expected outcome where s can be no_counterexample, counterexample or no_expectation
- tester=tool, specifies generator to use where tool can be random, exhaustive or narrowing
- size=i, specifies the maximal size of testing values

For instance: quickcheck [tester=narrowing,size=6]

## Exercise 3 (Using quickcheck)

- find a counterexample on TPO (solTPO.thy, CM4_TPO)
- find a counterexample for length_slice


## Remark 2

Quickcheck first generates values and then does the tests. As a result, it may not run the tests if you choose bad values for size and timeout.

## What to do next?

When no counterexample is found what can we do?

- Increase the timeout and size values for nitpick and quickcheck?
- ... go for a proof!

Any proof is faster than an infinite time nitpick or quickcheck
Any proof is more reliable than an infinite time nitpick or quickcheck
(They make approximations or assumptions on infinite types)

The five proof tools that we will focus on:
(1) apply case_tac
(2) apply induct
(3) apply auto
(4) apply simp
(5) sledgehammer

## Counter-example finders - the quiz

Quiz 1 (On (N)itpick and (Q)uickcheck counter-example finders)

- If $Q / N$ finds a counter-example on $\phi$|  |  | $\phi$ |
| :--- | :--- | :--- |
|  |  | $\phi$ is contradictory |
|  | $R$ | $\phi$ is not valid |
|  |  |  |
- If $Q / N$ do not find a cex on $\phi$

- Which of $Q / N$ is the most powerful?


Quiz 2 (If Isabelle/HOL accepts lemma $\phi$ closed by done)

- Then \begin{tabular}{|l|l|}
\cline { 2 - 3 } \& $V$ <br>
\hline

$|$ is valid $|$

- <br>
\cline { 2 - 3 } <br>
\cline { 2 - 3 } <br>
\cline { 2 - 3 }
\end{tabular}
- There may remain some counter-example

T. Genet (ISTIC/IRISA)

ACF-4

How do proofs look like?
A formula of the form $A_{1} \wedge \ldots \wedge A_{n}$ is represented by the proof goal:
goal (n subgoals):

1. $A_{1}$
n. $A_{n}$

Where each subgoal to prove is either a formula of the form

$$
\begin{array}{lll}
\bigwedge x_{1} \ldots x_{n} \cdot B & \begin{array}{l}
\text { meaning }
\end{array} & \text { prove } B, \text { or } \\
\bigwedge x_{1} \ldots x_{n} & B \Longrightarrow C \\
\bigwedge x_{1} \ldots x_{n} & B_{1} \Longrightarrow \ldots B_{n} \Longrightarrow C & \begin{array}{l}
\text { meaning } \\
\text { meaning }
\end{array} \\
\text { prove } B \longrightarrow C \text { or } \\
\text { m } B_{1} \wedge \ldots \wedge B_{n} \longrightarrow C
\end{array}
$$

$$
\text { and } \bigwedge x_{1} \ldots x_{n} \text { means that those variables are local to this subgoal. }
$$

Example 1 (Proof goal)
goal (2 subgoals):

1. member [] e $\Longrightarrow$ nth (index e []) [] $=e$
2. $\wedge \mathrm{a} 1 . \mathrm{e} \neq \mathrm{a} \Longrightarrow$ member $(\mathrm{a} \# \mathrm{l}) \mathrm{e} \Longrightarrow$

## Proof by cases

... possible when the proof can be split into a finite number of cases

## Proof by cases on a formula F

Do a proof by cases on a formula $F$
apply (case_tac "F")
Splits the current goal in two: one with assumption F and one with $\neg \mathrm{F}$

```
Example 2 (Proof by case on a formula)
With apply (case_tac "F::bool")
goal (1 subgoal): goal (2 subgoals):
1. A b becomes 1. F\LongrightarrowA\LongrightarrowB
 2. \negF\LongrightarrowA}\Longrightarrow\textrm{F
```


## Exercise 4

Prove that for any natural number $x$, if $x<4$ then $x * x<10$.

## Proof by induction

«Properties on recursive functions need proofs by induction»
Recall the basic induction principle on naturals:

$$
P(0) \wedge \forall x \in \mathbb{N} .(P(x) \longrightarrow P(x+1)) \quad \longrightarrow \quad \forall x \in \mathbb{N} . P(x)
$$

All recursive datatype have a similar induction principle, e.g. 'a lists:

```
P([])\wedge\foralle\in'a. }\forallI\in'a list. (P(I)\longrightarrowP(e#I)) \longrightarrow 仡I G'a list.P(I)
```

Etc...

## Example 4

datatype 'a binTree= Leaf | Node 'a "'a binTree" "'a binTree"

[^1]
## Proof by cases (II)

Proof by cases on a variable x of an enumerated type of size $n$
Do a proof by cases on a variable x..............apply (case_tac "x") Splits the current goal into $n$ goals, one for each case of x .

Example 3 (Proof by case on a variable of an enumerated type)
In Course 3, we defined datatype color= Black | White | Grey With apply (case_tac "x")
goal (3 subgoals):

goal (1 subgoal):	comes	1. $\mathrm{x}=\mathrm{Black} \Longrightarrow \mathrm{P}$
1. P (x::color)		2. $\mathrm{x}=$ White
		3. $\mathrm{x}=$ Grey $\Longrightarrow \mathrm{P} \mathrm{x}$

## Exercise 5

On the color enumerated type or course 3, show that for all color $x$ if the notBlack x is true then x is either white or grey.
T. Genet (ISTIC/IRISA)

ACF-4

## Proof by induction (II)

$P([]) \wedge \forall e \in$ 'a. $\forall I \in$ 'a list. $(P(I) \longrightarrow P(e \# I)) \longrightarrow \forall I \in$ 'a list. $P(I)$

## Example 5 (Proof by induction on lists)

Recall the definition of the function append:

$$
\begin{aligned}
\text { (1) append [] } 1 & =1 \\
\text { (2) append (x\#xs) } 1 & =x \#(\text { append } x s \text { 1) }
\end{aligned}
$$

To prove $\forall I \in$ 'a list. (append $I[])=I$ by induction on $I$, we prove:
(1) append [][]$=[]$, proven by the first equation of append
(2) $\forall e \in '$ a. $\forall I \in$ 'a list.

$$
(\text { append } I[])=I \longrightarrow(\text { append }(e \# I)[])=(e \# I)
$$

using the second equation of append, it becomes
$($ append $I[])=I \longrightarrow e \#($ append $I[])=(e \# I)$ using the (induction) hypothesis, it becomes

$$
(\text { append } I[])=I \longrightarrow e \# I=(e \# I)
$$

## Proof by induction: apply (induct x)

To apply induction principle on variable $x$.............apply (induct $x$ )
Conditions on the variable chosen for induction (induction variable):

- The variable $x$ has to be of an inductive type (nat, datatypes, ...) Otherwise apply (induct $x$ ) fails
- The terms built by induction cases should easily be reducible!

Example 6 (Choice of the induction variable)
(1) append [ ] $1=1$
(2) append (x\#xs) $1=x \#(a p p e n d x s 1)$

To prove $\forall I_{1} I_{2} \in$ 'a list. (length $\left(\right.$ append $\left.\left.I_{1} I_{2}\right)\right) \geq\left(\right.$ length $\left.I_{2}\right)$
An induction proof on $I_{1}$, instead of $I_{2}$, is more likely to succeed:

- an induction on $I_{1}$ will require to prove: (length (append $\left.\left(e \# I_{1}\right) I_{2}\right) \geq\left(\right.$ length $\left.I_{2}\right)$
- an induction on $I_{2}$ will require to prove: (length (append $\left.I_{1}\left(e \# I_{2}\right)\right) \geq\left(\right.$ length $\left.\left(e \# I_{2}\right)\right)$


## Proof by induction: generalize the goals

By defaut apply induct may produce too weak induction hypothesis

## Example 7

When doing an apply (induct $x$ ) on the goal P (x::nat) (y::nat) goal (2 subgoals):

1. $P 0$ y

In the subgoals, $y$ is
2. $\wedge x \cdot P \mathrm{x} y \Longrightarrow P(\operatorname{Suc} \mathrm{x}) \mathrm{y}$ fixed/constant!

## Example 8

With apply (induct $x$ arbitrary:y) on the same goal goal (2 subgoals):

The subgoals range over

Proof by induction: apply (induct x) (II)

## Exercise 6

Recall the datatype of binary trees we defined in lecture 3. Define and prove the following properties:
(1) If member $\mathrm{x} t$, then there is at least one node in the tree t .
(2) Relate the fact that x is a sub-tree of y and their number of nodes.

## Exercise 7

Recall the functions sumList, sumNat and makeList of lecture 3. Try to state and prove the following properties:
(1) Relate the length of list produced by makeList i and i
(2) Relate the value of sumNat i and i
(3) Give and try to prove the property relating those three functions

## Proof by induction: : induction principles

Recall the basic induction principle on naturals:

$$
P(0) \wedge \forall x \in \mathbb{N} .(P(x) \longrightarrow P(x+1)) \quad \longrightarrow \quad \forall x \in \mathbb{N} . P(x)
$$

In fact, there are infinitely many other induction principles

- $P(0) \wedge P(1) \wedge \forall x \in \mathbb{N} .((x>0 \wedge P(x)) \longrightarrow P(x+1)) \quad \longrightarrow \quad \forall x \in \mathbb{N} . P(x)$
- ...
- Strong induction on naturals

$$
\forall x, y \in \mathbb{N} .((y<x \wedge P(y)) \longrightarrow P(x)) \quad \longrightarrow \quad \forall x \in \mathbb{N} . P(x)
$$

- Well-founded induction on any type having a well-founded order $\ll$ $\forall x, y .((y \ll x \wedge P(y)) \longrightarrow P(x)) \longrightarrow \forall x . P(x)$
any y

1. \y. P O y
2. $\lfloor x y \cdot P x y \Longrightarrow P(\operatorname{Suc} x) y$

## Exercise 8

Prove the sym lemma on the leq function.

Proof by induction: : induction principles (II)

Apply an induction principle adapted to the function call ( $f x y z$ ) apply (induct x y z rule:f.induct)
Apply strong induction on variable $x$ of type nat
............................apply (induct x rule:nat_less_induct) Apply well-founded induction on a variable x
...apply (induct x rule:wf_induct)

## Exercise 9

Prove the lemma on function divBy2.

## Combination of decision procedures auto and simp (II)

Want to know what those tactics do?

- Add the command using [[simp_trace=true]] in the proof script
- Look in the output buffer


## Example 9

Switch on tracing and try to prove the lemma:

```
lemma "(index (1::nat) [3,4,1,3]) = 2"
using [[simp_trace=true]]
apply auto
```


## Combination of decision procedures auto and simp

Automatically solve or simplify all subgoals ............apply auto
apply auto does the following:

- Rewrites using equations (function definitions, etc)
- Applies a bit of arithmetic, logic reasoning and set reasoning
- On all subgoals
- Solves them all or stops when stuck and shows the remaining subgoals


## Automatically simplify the first subgoal

apply simp does the following:

- Rewrites using equations (function definitions, etc)
- Applies a bit of arithmetic
- on the first subgoal
- Solves it or stops when stuck and shows the simplified subgoal


## Sledgehammer


«Sledgehammers are often used in destruction work...»

## Sledgehammer

«Solve theorems in the Cloud»

Architecture:


Prove the first subgoal using state-of-the-art ${ }^{2}$ ATPs sledgehammer

- Call to local or distant ATPs: SPASS, E, Vampire, CVC4, Z3, etc.
- Succeeds or stops on timeout (can be extended, e.g. [timeout=120])
- Provers can be explicitely selected (e.g. [provers= z3 spass]
- A proof consists of applications of lemmas or definition using the Isabelle/HOL tactics: metis, smt, simp, fast, etc.
${ }^{1}$ Automatic Theorem Provers
${ }^{2}$ See http://www.tptp.org/CASC/
T. Genet (ISTIC/IRISA)

Hints for building proofs in Isabelle/HOL
When stuck in the proof of prop1, add relevant intermediate lemmas:
(1) In the file, define a lemma before the property prop1
(2) Name the lemma (say lem1) (to be used by sledgehammer)
(3) Try to find a counterexample to lem1
(4) If no counterexample is found, close the proof of lem1 by sorry
(5) Go back to the proof of prop1 and check that lem1 helps
(6) If it helps then prove lem1. If not try to guess another lemma

To build correct theories, do not confuse oops and sorry:

- Always close an unprovable property by oops
- Always close an unfinished proof of a provable property by sorry

Example 10 (Everything is provable using contradictory lemmas)
We can prove that $1+1=0$ using a false lemma.

## Sledgehammer (II)

## Remark 3

By default, sledgehammer does not use all available provers. But, you can remedy this by defining, once for all, the set of provers to be used:
sledgehammer_params [provers=cvc4 spass z3 e vampire]

## Exercise 10

Finish the proof of the property relating nth and index

## Exercise 11

Recall the functions sumList, sumNat and makeList of lecture 3. Try to state and prove the following properties.
(1) Prove that there is no repeated occurrence of elements in the list produced by makeList
(2) Finish the proof of the property relating those three functions

## Analyse et Conception Formelles

## Lesson 5

Crash Course on Scala

## Scala in a nutshell

- "Scalable language": small scripts to architecture of systems
- Designed by Martin Odersky at EPFL

- Pure object model: only objects and method calls ( $\neq$ Java)
- With functional programming: higher-order, pattern-matching, ...
- Fully interoperable with Java (in both directions)
- Concise smart syntax ( $\neq$ Java)
- A compiler and a read-eval-print loop integrated into the IDE
Scala worksheets!!


## Bibliography

- Programming in Scala, M. Odersky, L. Spoon, B. Venners. Artima. http://www.artima.com/pins1ed/index.html
- An Overview of the Scala Programming Language, M. Odersky \& al. http://www.scala-lang.org/docu/files/ScalaOverview.pdf
- Scala web site. http://www.scala-lang.org

Acknowledgements $\qquad$

- Many thanks to J. Noyé and J. Richard-Foy for providing material, answering questions and for fruitful discussions.


## Outline

(1) Basics

- Base types and type inference
- Control: if and match - case
- Loops (for) and structures: Lists, Tuples, MapsFunctions
- Basic functions
- Anonymous, Higher order functions and Partial application
(3) Object Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
(4) Interactions with Java
- Interoperability between Java and Scala
(5) Isabelle/HOL export in Scala


## Outline

1. Basics

- Base types and type inference
- Control : if and match - case
- Loops (for) and structures: Lists, Tuples, Maps
(2) Functions
- Basic functions
- Anonymous, Higher order functions and Partial application
(3) Object Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
(4. Interactions with Java
- Interoperability between Java and Scala
(5) Isabelle/HOL export in Scala

Class hierarchy


## Base types and type annotations

- 1:Int, "toto":String, 'a':Char, ():Unit
- Every data is an object, including base types! e.g. 1 is an object and Int is its class
- Every access/operation on an object is a method call!
e.g. $1+2$ executes: 1.+(2)
(o.x(y) is equivalent to $0 \mathrm{x} y$ )


## Exercise 1

Use the max (Int) method of class Int to compute the maximum of $1+2$ and 4.

## Class hierarchy




Class hierarchy

... (other Java classes) ...
... (other Scala classes) ...


Class hierarchy

... (other Java classes) ...

> ... (other Scala classes) ...


Subtyping and class hierarchy - the quiz

## Quiz 1

(1) 12 is of type Int.
(2) Int is a subtype of Any.
(3) 12 is of type Any.
(4) Int is a subtype of Double.
(5) 12 of type Double.
(6) null of type List.
(7) 12 of type Nothing.
(8) "toto" of type Any.

$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False
$V$	True	$R$	False

## val and var

- val associates an object to an identifier and cannot be reassigned
- var associates an object to an identifier and can be reassigned
- Scala philosophy is to use val instead of var whenever possible
- Types are (generally) automatically inferred

```
scala> val x=1
// or val x:Int = 1
x: Int = 1
scala> x=2
<console>:8: error: reassignment to val
 x=2
scala> var y=1
y: Int = 1
scala> y=2
y: Int = 2
```

match - case expressions

- Replaces (and extends) the usual switch - case construction
- The syntax is the following:
e match \{

```
 case pattern1 //patterns can be constants
 case pattern2 => r2 //or terms with variables
 //or terms with holes: ','
 case _ => rn
```

\}

- Remark: the type of this expression is the supertype of $\mathrm{r} 1, \mathrm{r} 2, \ldots \mathrm{rn}$


## if expressions

- Syntax is similar to Java if statements .. but that they are not statements but typed expressions
- if (condition) e1 else e2

Remark: the type of this expression is the supertype of e1 and e2

- if (condition ) e1 // else ()

Remark: the type of this expression is the supertype of e1 and Unit

```
Quiz 2 (What is the smallest type for the following expressions)
(1) if (\(1==2\)) 1 else 2
(2) if (1==2) 1 else "toto"
(3) if \((1==2) 1\)
(4) if (1==1) println(1)
```


T. Genet (ISTIC/IRISA)

ACF-5
14 / 39

## Match-case - the quiz

Quiz 3 (What is the value of the following expression?)
val $x=$ "bonjour"
x match \{
case "au revoir" => "goodbye"
case _ => "don't know"
case "bonjour" => "hello"
\}
Quiz 4 (What is the value of the following expression?)
val $x=$ "bonj"
x match \{
case "au revoir" => "goodbye"
case "bonjour" => "hello"

\}

## (Immutable) Lists: List [A]

- List definition (with type inference) val l= List (1,2,3,4,5)
- Adding an element to the head of a list val 11= 0::l
- Adding an element to the queue of a list val 12= l1:+6
- Concatenating lists val 13= 11++12
- Getting the element at a given position val $\mathrm{x}=\mathrm{l} 2(2)$
- Doing pattern-matching over lists

12 match \{
case Nil => 0
case e::_ => e
\}
T. Genet (ISTIC/IRISA)

Immutable lists - the quiz
Quiz 8 (Is this program valid?)
var li= List (1,2,3)
li= li ++ List(5,6) $\square$

Quiz 9 (What is the result printed by this program?)
val t1= $\operatorname{Array}(4,5,6)$
val t2= t1
$\mathrm{t} 2(1)=-4$

println(t1(1))
Quiz 10 (What is the result printed by this program?)
var li= List(1,2,3)
var l2= li
$12=12 . \operatorname{updated}(1,10)$

$V$	10	$R$	2

Immutable lists - the quiz

```
Quiz 5 (Is this program valid?)
val li= List("zero","un","deux")
li(1)="one"
```

Quiz 6 (Is this program valid?)
var li= List("zero","un","deux")
li(1)="one"

Quiz 7 (Is this program valid?)
val li= List(1,"toto", 2)
val 12= li ++ List(3,4)
T. Genet (ISTIC/IRISA)

## for loops

- for (ident <- s ) e

Remark: s has to be a subtype of Traversable (Arrays, Collections, Tables, Lists, Sets, Ranges, ...)

- Usual for-loops can be built using .to(...)
" (1).to (5)" $\equiv$ "1 to $5 "$ results in Range (1, 2, 3, 4, 5)


## Exercise 2

Given val $\mathrm{lb}=\mathrm{List}(1,2,3,4,5)$ and using for, build the list of squares of 1 b .

## Exercise 3

Using for and println build a usual $10 \times 10$ multiplication table.
println(li(1))
(Immutable) Tuples: (A, B , C , ...)

- Tuple definition (with type inference)
scala> val $t=(1, " t o t o ", 18.3)$
$\mathrm{t}: \quad$ (Int, String, Double) $=(1$, toto, 18.3)
- Tuple getters: t._1, t._2, etc.
- ... or with match - case:
t match \{ case (2,"toto", , ) => "found!" case (, x, _) $=>\mathrm{x}$
\}
The above expression evaluates in "toto"


## Outline

(1) Basics

- Base types and type inference
- Control: if and match - case
- Loops (for) and structures: Lists, Tuples, MapsFunctions
- Basic functions
- Anonymous, Higher order functions and Partial application
(3) Object Mode
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
(4.) Interactions with Java
- Interoperability between Java and Scala5. Isabelle/HOL export in Scala


## (Immutable) maps : Map [A, B]

- Map definition (with type inference) val m= Map('C' -> "Carbon",'H' -> "Hydrogen")
Remark: inferred type of $m$ is Map [Char, String]
- Finding the element associated to a key in a map, with default value m.getOrElse('K', "Unknown")
- Adding an association in a map val m1= m+(יO' -> "Oxygen")
- A Map $[A, B]$ can be traversed (using for) as a Collection of pairs of type Tuple [A, B], e.g. for $((k, v)<-m)\{\ldots\}$


## Exercise 4

Print all the keys of map m1

## Basic functions

- $\operatorname{def} \mathrm{f}(\arg 1:$ Type1, $\ldots$, argn:Typen ) : Typef $=\{$ e $\}$

Remark 1: type of e (the type of the last expression of e) is Typef
Remark 2: Typef can be inferred for non recursive functions
Remark 3: The type of $f$ is: (Type1,..., Typen) Typef

```
Example 1
def plus(x:Int,y:Int):Int={
 println("Sum of "+x+" and "+y+" is equal to " }+(x+y)
 x+y // no return keyword
 } // the result of the function is the last expression
```


## Exercise 5

Using a map, define a phone book and the functions addName (name:String, tel:String), getTel (name:String) : String, getUserList:List [String] and getTelList:List [String].

## Anonymous functions and Higher-order functions

- The anonymous Scala function adding one to x is: ( $(\mathrm{x}:$ Int) $=>\mathrm{x}+1$ )
Remark: it is written $(\lambda x \cdot x+1)$ in Isabelle/HOL
- A higher order function takes a function as a parameter e.g. method/function map called on a List $[A]$ takes a function ( $A=>B$ ) and results in a List[B]

```
scala> val l=List(1,2,3)
l: List[Int] = List(1, 2, 3)
scala> l.map ((x:Int) => x+1)
res1: List[Int] = List(2, 3, 4)
```


## Exercise 6

Using map and the capitalize method of the class String, define the capUserList function returning the list of capitalized user names.

## Outline

- Base types and type inference
- Control : if and match - case
- Loops (for) and structures: Lists, Tuples, Maps
(2) Functions
- Basic functions
- Anonymous, Higher order functions and Partial applicationObject Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
(4) Interactions with Java
- Interoperability between Java and ScalaIsabelle/HOL export in Scala


## Partial application

- The '_' symbol permits to partially apply a function e.g. getTel (_) returns the function associated to getTel

```
Example 2 (Other examples of partial application)
(_:String).size (_:Int) + (_:Int) (_:String) == "toto"
```


## Exercise 7

Using map and partial application on capitalize, redefine the function capUserList.

## Exercise 8

Using the higher order function filter on Lists, define a function above ( n :String) :List (String) returning the list of users having a capitalized name greater to name n .

## Class definition and constructors

```
- class \(\underbrace{\text { C(v1: type1, } \ldots \text {, vn:typen) }}\{\ldots\) \}
 the primary constructor
e.g. class Rational(n:Int,d:Int)\{
 val num=n // can use var instead
 val den=d // to have mutable objects
 def isNull():Boolean=(this.num==0)
 \}
```

- Objects instances can be created using new:

$$
\text { val r1= new Rational }(3,2)
$$

- Fields and methods of an object can be accessed via "dot notation" if (r1.isNull()) println("rational is null") val double_r1= new Rational(r1.num*2,r1.den)


## Exercise 9

Complete the Rational class with an add(r:Rational):Rational function.

## Overriding, operator definitions and implicit conversions

- Overriding is explicit: override $\operatorname{def} f(\ldots)$


## Exercise 10

Redefine the toString method of the Rational class.

- All operators ' + ', '*', '==', '>', . . . can be used as function names e.g. def $+(x:$ Int $):$ Int $=\ldots$

Remark: when using the operator recall that $\mathrm{x} .+(\mathrm{y}) \equiv \mathrm{x}+\mathrm{y}$

## Exercise 11

Define the ' + ' and '*' operators for the class Rational.

- It is possible to define implicit (automatic) conversions between types e.g. implicit def bool2int(b:Boolean):Int= if b 1 else 0


## Exercise 12

Add an implicit conversion from Int to Rational.

## Singleton objects

- Singleton objects are defined using the keyword object

```
trait IntQueue {
 def get:Int
 def put(x:Int):Unit
}
object InfiniteQueueOfOne extends IntQueue{
 def get=1
 def put(x:Int)={}
}
```

- A singleton object does not need to be "created" by new

InfiniteQueueOfOne.put (10)
InfiniteQueueOfOne.put (15)
val $x=$ InfiniteQueueOfOne.get

## Traits

- Traits stands for interfaces (as in Java)

```
trait IntQueue {
 def get:Int
 def put(x:Int):Unit
}
```

- The keyword extends defines trait implementation
class MyIntQueue extends IntQueue\{
private var $\mathrm{b}=$ List[Int]()
def get= \{val h=b(0); b=b.drop(1); h\}
def $\operatorname{put}(x: \operatorname{Int})=\{\mathrm{b}=\mathrm{b}:+\mathrm{x}\}$
\}


## Type abstraction and Polymorphism

Parameterized function/class/trait can be defined using type parameters

```
trait Queue[T]{ // more generic than IntQueue
 def get:T
 def push(x:T):Unit
}
class MyQueue[T] extends Queue[T]{
 protected var b= List[T]()
 def get={val h=b(0); b=b.drop(1); h}
 def put(x:T)={b=b:+x}
}
def first[T1,T2](pair:(T1,T2)):T1=
 pair match case (x,y) => x
```


## Case classes

- Case classes provide a natural way to encode Algebraic Data Types e.g. binary expressions built over rationals: $\frac{18}{27}+-\left(\frac{1}{2}\right)$

```
trait Expr
case class BinExpr(o:String,l:Expr,r:Expr) extends Expr
case class Constant(r:Rational) extends Expr
case class Inv(e:Expr) extends Expr
```

- Instances of case classes are built without new e.g. the object corresponding to $\frac{18}{27}+-\left(\frac{1}{2}\right)$ is built using: BinExpr ("+", Constant (new Rational $(18,27))$, Inv(Constant(new Rational (1,2))))


## Outline

(1) Basics

- Base types and type inference
- Control : if and match - case
- Loops (for) and structures: Lists, Tuples, Maps
(2) Functions
- Basic functions
- Anonymous, Higher order functions and Partial application
(3) Object Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matching
(4) Interactions with Java
- Interoperability between Java and ScalaIsabelle/HOL export in Scala


## Outline

(1) Basics

```
- Base types and type inference
- Control: if and match - case
- Loops (for) and structures: Lists, Tuples, Maps
```

(2) Functions

- Basic functions
- Anonymous, Higher order functions and Partial application
(3) Object Model
- Class definition and constructors
- Method/operator/function definition, overriding and implicit defs
- Traits and polymorphism
- Singleton Objects
- Case classes and pattern-matchingnteractions with Java
- Interoperability between Java and Scala
(5) Isabelle/HOL export in Scala


## Isabelle/HOL exports Scala case classes and functions...

## theory tp

[...]
datatype 'a tree= Leaf | Node "'a * 'a tree * 'a tree"
fun member: : "'a $\Rightarrow$ 'a tree $\Rightarrow$ bool"
where
"member _ Leaf = False" |
"member $\mathrm{x}(\operatorname{Node}(\mathrm{y}, \mathrm{l}, \mathrm{r}))=($ if $\mathrm{x}=\mathrm{y}$ then True else ((member x l)
$V(m e m b e r ~ x ~ r))) ' ~$
$\qquad$ to Scala $\qquad$
object tp \{

```
abstract sealed class tree[+A] // similar to traits
```

case object Leaf extends tree[Nothing]
case class Node[A](a:)) extends tree[A]
def member[A : HOL.equal](uu: A, x1: tree[A]): Boolean =
(uu, x1) match
case (uu, Leaf) => false
case (x, $\operatorname{Node((y,~(l,~r))))~} \Rightarrow$ (if (HOL.eq[A] (x, y)) true
else member $[A](x, l) \|$ member $[A](x, r))$
... and some more cryptic code for Isabelle/HOL equality
object HOL \{

```
trait equal [A] {
 val `HOL.equal`: (A, A) => Boolean
```

    \}
    def equal[A](a: A, b: A)(implicit A: equal[A]): Boolean =
        A.'HOL.equal' ( \(a, b\) )
    def eq[A : equal] (a: \(A, b: A):\) Boolean \(=\operatorname{equal}[A](a, b)\)
    \}

To link Isabelle/HOL code and Scala code, it can be necessary to add:

```
implicit def equal_t[T]: HOL.equal[T] = new HOL.equal[T] {
 val 'HOL.equal' = (a: T, b: T) => a==b
}
```

Which defines HOL. equal [T] for all types $T$ as the Scala equality ==

# Analyse et Conception Formelles 

## Lesson 6

Certified Programming

B code production line


- The first certified code production line used in the industry
- For security critical code
- Used for onboard automatic train control of metro 14 (RATP)
- Several industrial users: RATP, Alstom, Siemens, Gemalto


## Outline

(1) Certified program production lines

- Some examples of certified code production lines
- What are the weak links?
- How to certify a compiler?
- How to certify a static analyzer of code?
- How to guarantee the correctness of proofs?
(2) Methodology for formally defining programs and properties
- Simple programs have simple proofs
- Generalize properties when possible
- Look for the smallest trusted base


## Scade/Astree/CompCert code production line



- The (next) Airbus code production line
- For security critical code (e.g flight control)
- Scade uses model-checking to verify programs or find counterexamples
- Astree is a static analyzer of $C$ programs proving the absence of
- division by zero, out of bound array indexing
- arithmetic overflows
- Frama-C is a proof tool for C programs based on Why, automated provers like Alt-Ergo, CVC4, Z3, etc. and the Coq proof assistant
- CompCert is a certified C compiler (X. Leroy \& S. Blazy, etc.)


## Isabelle to Scala line



- Used for specification and verification of industrial size softwares e.g. Operating system kernel seL4 (C code)
- Code generation not yet used at an industrial level
- More general purpose line than previous ones
- All proofs performed in Isabelle are checked by a trusted kernel
- Formalization/Verification of other parts is ongoing research e.g. some research efforts for certifying a JVM

How to limit the trusted base?


## What are the weak links of such lines?


(1) The initial choice of algorithms and properties
(2) The verification tools (analyzers and proof assistants)
(3) Code generators/compilers
$\Longrightarrow$ we need some guaranties on each link!
(1) Certification of compilers
(2) Certification of static analyzers
(3) Verification of proofs in proof assistant
(4) Methodology for formally defining algorithms and properties
$\Longrightarrow$ we need to limit the trusted base!

How to limit the trusted base?


How to limit the trusted base?


The trusted base

How to certify a static analyzer (SAn)?
(TP67)


What is the property to prove?
$\forall \mathbf{P} . \operatorname{SAn}(\mathbf{P})=$ True $\longrightarrow$ «nothing bad happens when executing $\mathbf{P}_{\text {» }}$
How can we prove this?

- Again, we need to formally describe behaviors of programs:
- Formal semantics of language of $\mathbf{P}$, define eval (prog, inputs)
- We need to formalize the analyzer and what is a «bad» behavior
- Formalize «bad», i.e. define a BAD predicate on program results
- Formalize the analyser SAn
- Then, prove that the static analyzer is safe:

$$
\forall \mathbf{P} . \forall \text { inputs. }(\operatorname{SAn}(\mathbf{P})=\text { True }) \longrightarrow \neg \operatorname{BAD}(\operatorname{eval}(\mathbf{P}, \text { inputs }))
$$

- Again, proving this by hand is unrealistic
- Use a proof assistant... analyzer is correct if the proof assistant is!

How to certify a compiler?


What is the property to prove?
$\forall$ P1. P1 «behaves» like P2
How can we prove this?

- Need to formally describe behaviors of programs:
- Formal semantics for language A and language B
- Close to defining an interpreter (using terms and functions) ( $\approx$ TP4) i.e. define evalA (prog,inputs) and evalB(prog,inputs)
- Then, prove that $\forall \mathbf{P 1} \mathbf{P} 2$ s.t. $\mathbf{P} 2=\operatorname{compil}(\mathbf{P} 1)$ :
- $\forall$ inputs. evalA(P1, inputs) stops $\longleftrightarrow$ evalB(P2,inputs) stops, and
- $\forall$ inputs. evalA $(\mathbf{P 1} 1$, inputs $)=\operatorname{evalB}(\mathbf{P} 2$,inputs $)$
- Proving this by hand is unrealistic (recall the size of Java semantics)
- Use a proof assistant... compiler is correct if the proof assistant is!


## Static analysis - the quiz

## Quiz 1

- What is a static analyzer good at?

- Is a static analyzer running the program to analyze?

- Is a static analyzer has access to the user inputs? $\square$
- Given a program $\mathbf{P}$, eval and BAD, can we verify by computation that for all inputs, $\neg \mathrm{BAD}(\mathrm{eval}(\mathbf{P}$,inputs))?
- Given a program $\mathbf{P}$, and SAn can we verify by computation that $\operatorname{SAn}(\mathbf{P})=$ True?


How to certify a static analyzer (SAn)?
Isabelle file cm6.thy

## Exercise 1

Define a static analyzer san for such programs:
san:: program $\Rightarrow$ bool

## Exercise 2

Define the BAD predicate on program states:
BAD:: pgState $\Rightarrow$ bool

## Exercise 3

Define the correctness lemma for the static analyzer san.

How to guarantee correctness of proofs in proof assistants?


How to be convinced by the proofs done by a proof assistant?

- Relies on complex algorithms
- Relies on complex logic theories
- Relies on complex decision procedures
$\Longrightarrow$ there may be bugs everywhere!

In the end, we managed to do this...


## Weak points of proof assistants

A proof in a proof assistant is a tree whose leaves are axioms


Difference with a proof on paper:

- Far more detailed
- A lot of axioms
- Shortcuts: External decision procedures

Axioms $\Longrightarrow$ fewer details
Decision Proc. $\Longrightarrow$ automatization

Axioms and decision procedures are the main weaknesses of proof assistants Choices made in Coq, Isabelle/HOL, PVS, ACL2, etc. are very different

Proof handling : differences between proof assistants

	Coq	PVS	Isabelle	ACL2
Axioms	minimum   and fixed	free	minimum   and fixed	free
Decision   procedures	proofs   checked   by Coq	trusted   (no check) $)$	proofs   checked   by Isabelle	trusted   (no check)
Proof terms	built-in	no	additional	no
System   automatization	basic	in between	in between	good
Counterexample   generator	basic	basic	yes	yes

## Outline

(1) Certified program production lines

- Some examples of certified code production lines
- What are the weak links?
- How to certify a compiler?
- How to certify a static analyzer of code?
- How to guarantee the correctness of proofs?
(2) Methodology for formally defining programs and properties
(1) Simple programs have simple proofs
(2) Generalize properties when possibleLook for the smallest trusted base

Proof checking: how is it done in Isabelle/HOL?
Isabelle/HOL have a well defined and «small » trusted base

- A kernel deduction engine (with Higher-order rewriting)
- Few axioms for each theory (see HOL.thy, HOL/Nat.thy)
- Other properties are lemmas, i.e. demonstrated using the axioms

All proofs are carried out using this trusted base:

- Proofs directly done in Isabelle (auto/simp/induct/...)
- All proofs done outside (sledgehammer) are re-interpreted in Isabelle using metis or smt that construct an Isabelle proof


## Example 1

Prove the lemma $(x+4) *(y+5) \geq x * y$ using sledgehammer.
(1) Interpret the found proof using metis
(2) Switch on tracing: add
using [[simp_trace=true,simp_trace_depth_limit=5]]
before the apply command
(3) Re-interpret the proof

## Simple programs have simple proofs: Simple is beautiful

## Example 2 (The intersection function of TP2/3)

An «optimized» version of intersection is harder to prove.
(1) Program function $f(x)$ as simply as possible... no optimization yet!

- Use simple data structures for $x$ and the result of $f(x)$
- Use simple computation methods in $f$
(2) Prove all the properties lem1, lem2, ... needed on $f$

3 (If necessary) program fopt ( $x$ ) an optimized version of $f$

- Optimize computation of fopt
- Use optimized data structure if necessary
(4) Prove that $\forall x . \quad f(x)=$ fopt $(x)$
(5) Using the previous lemma, prove again lem1, lem2, ... on fopt

Simple programs have simple proofs (II)

## Exercise 4

The function fastReverse is a tail-recursive version of reverse. Prove the classical lemmas on fastReverse using the same properties of reverse:

- fastReverse (fastReverse l)=1
- fastReverse (l1@12)= (fastReverse 12)@(fastReverse 11)


## Exercise 5

Prove that the fast exponentiation function fastPower enjoys the classical properties of exponentiation:

- $x^{y} * x^{z}=x^{(y+z)}$
- $(x * y)^{z}=x^{z} * y^{z}$
- $x^{y^{z}}=x^{(y * z)}$

Generalize properties when possible
Exercise 6 (On functions member and intersection of TP2/3)

- Prove that
$(($ member ell) $\wedge($ member e 12) $) \longrightarrow($ member e (intersection l1 12))
- How to generalize this property?
- What is the problem with the given function intersection?


## Exercise 7 (On function clean of TP2/3)

- Prove that clean $[\mathrm{x}, \mathrm{y}, \mathrm{x}]=[\mathrm{y}, \mathrm{x}]$
- How to generalize this property of clean?
- What is the problem with the given definition of function clean?


## Exercise 8 (On functions member and delete of TP2/3)

- Try to prove that
member x $1 \longrightarrow$ member y $l \longrightarrow \mathrm{x} \neq \mathrm{y} \longrightarrow$ (member x (delete y l)
- How to generalize the property to ease the proof?


## Limit the trusted base in your Isabelle theories

Trusted base $=$ functions that you cannot prove and have to trust Basic functions on which lemmas are difficult to state

To verify a function $f$, define lemmas using $f$ and:

- functions of the trusted base
- other proven functions


## Example 3

In TP2/3, which functions can be a good trusted base?
Remark: Then can be some interdependent functions to prove!
Example 4 (Prove a parser and a prettyPrinter on programs)

- parser:: string $\Rightarrow$ prog
- prettyPrinter:: prog $\Rightarrow$ string

The property to prove is: $\forall \mathrm{p}$. parser (prettyPrinter p ) $=\mathrm{p}$ prettyPrinter is more likely to be trusted since it is simpler

Analyse et Conception Formelles

## Lesson 7

Program verification methods

## Disclaimer

Theorem 1 (Rice, 1953)
Any nontrivial property about the language recognized by a Turing machine is undecidable.
"The more you prove the less automation you have"

## Outline

(1) Testing
(2) Model-checking
(3) Assisted proof
(4) Static Analysis
(5) A word about protoypes/models, accuracy, code generation

The basics

## Definition 2 (Specification)

A complete description of the behavior of a software.

## Definition 3 (Oracle)

An oracle is a mechanism determining whether a test has passed or failed, w.r.t a specification.

Definition 4 (Domain (of Definition))
The set of all possible inputs of a program, as defined by the specification.

## Notations

Spec the specification
Mod a formal model or formal prototype of the software Source the source code of the software

EXE the binary executable code of the software
D the domain of definition of the software
Oracle an oracle
D\# an abstract definition domain
Source\# an abstract source code
Oracle\# an abstract oracle

Testing principles (random generators)


This is what Isabelle/HOL quickcheck does (and TP4Bis)

Testing principles


Testing principles (white box testing)


Definition 5 (Code coverage)
The degree to which the source code of a program has been tested, e.g. a statement coverage of $70 \%$ means that $70 \%$ of all the statements of the software have been tested at least once.

## Demo of white box testing in Evosuite

Objective: cover $100 \%$ of code (and raised exceptions)

```
Example 6 (Program to test with Evosuite)
public static int Puzzle(int[] v, int i){
 if (v[i]>1) {
 if (v[i+2]==v[i]+v[i+1]) {
 if (v[i+3]==v[i]+18)
 throw new Error("hidden bug!");
 else return 1;}
 else return 2;}
 else return 3;
}
```


## Testing, to sum up

Strong and weak points

+ Done on the code $\longrightarrow$ Finds real bugs!
+ Simple tests are easy to guess
- Good tests are not so easy to guess! (Recall TP0?)
+ Random and white box testing automate this task. May need an oracle: a formula or a reference implementation.
- Finds bugs but cannot prove a property
+ Test coverage provides (at least) a metric on software quality


## Some tool names

Klee, SAGE (Microsoft), PathCrawler (CEA), Evosuite, many others . .

## One killer result

SAGE (running on 200 PCs/year) found $1 / 3$ of security bugs in Windows 7 https://www.microsoft.com/en-us/security-risk-detection/

## Demo of white box testing in Evosuite

Generates tests for all branches (1, 2, 3, null array, hidden bug, etc)
One of the generated JUnit test cases:

```
@Test(timeout = 4000)
public void test5() throws Throwable {
 int[] intArray0 = new int[18];
 intArray0[1] = 3;
 intArray0[3] = 3;
 intArray0[4] = 21; // an array raising hidden bug!
 try {
 Main.Puzzle(intArray0, 1);
 fail("Expecting exception: Error");
 } catch(Error e) {
 verifyException("temp.Main", e);
 }
}

Model-checking principles

Where \(\models\) is the usual logical consequence. This property is not shown by doing a logical proof but by checking (by computation) that ...

Model-checking principles (II)

Where D, Mod and Oracle are finite.
\[
\begin{aligned}
& \text { Model-checking, to sum-up } \\
& \text { Strong and weak points } \\
& \text { + Automatic and efficient } \\
& \text { + Can find bugs and prove the property } \\
& \text { - For finite models only (e.g not on source code!) } \\
& \text { + Can deal with huge finite models (} 10^{120} \text { states) } \\
& \text { More than the number of atoms in the universe! } \\
& \text { + Can deal with finite abstractions of infinite models e.g. source code } \\
& \text { - Incomplete on abstractions (but can find real bugs!) }
\end{aligned}
\]

\section*{Some tool names}

SPIN, SMV, (bug finders) CBMC, SLAM, ESC-Java, Java path finder, .

\section*{One killer result}

INTEL processors are commonly model-checked

Model-checking principle explained in Isabelle/HOL

Automaton digiCode.as and Isabelle file cm7.thy

\section*{Exercise 1}

Define the lemma stating that whatever the initial state, typing \(A, B, C\) leads execution to Final state.

\section*{Exercise 2}

Define the lemma stating that the only possibility for arriving in the Final state by typing three letters is to have typed \(A, B, C\).

Assisted proof principles

Where \(\models\) is the usual logic consequence. This is proven directly on formulas Mod and Spec. This proof guarantees that...

Assisted proof principles (II)

Where D, Mod, Oracle can be infinite.

Static Analysis principles

Where abstraction \(\leadsto \rightarrow\) is a correct abstraction

Assisted proof, to sum-up

\section*{Strong and weak points}
+ Can do the proof or find bugs (with counterexample finders)
+ Proofs can be certified
- Needs assistance
- For models/prototypes only (not on source nor on EXE)
+ Proof holds on the source code if it is generated from the prototype

\section*{Some tool names}

B, Coq, Isabelle/HOL, ACL2, PVS, ... Why, Frama-C, ...

\section*{One killer result}

CompCert certified C compiler
T. Genet (ISTIC/IRISA)

Static Analysis principles (II)

Where abstraction \(\leadsto \rightarrow\) is a correct abstraction

\section*{Static Analysis principles - Abstract Interpretation (III)}

The abstraction ' \(m \rightarrow\) ' is based on the abstraction function abs:: \(D \Rightarrow D^{\#}\)
Depending on the verification objective, precision of abs can be adapted
Example 7 (Some abstractions of program variables for \(D=i n t\))
(1) abs:: int \(\Rightarrow\{\perp, \top\}\) where \(\perp \equiv\) "undefined" and \(T \equiv\) "any int"
(2) abs:: int \(\Rightarrow\{\perp\), Neg, Pos, Zero, NegOrZero, PosOrZero, \(T\}\)
(3) abs:: int \(\Rightarrow\{\perp\} \cup\) Intervals on \(\mathbb{Z}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Example 8 (Program abstraction with abs (1), (2) and (3)} \\
\hline & (1) & (2) & (3) \\
\hline \(\mathrm{x}:=\mathrm{y}+1\); & \(\mathrm{x}=\perp\) & \(\mathrm{x}=\perp\) & \(\mathrm{x}=\perp\) \\
\hline read (x) ; & \(\mathrm{x}=\mathrm{T}\) & \(\mathrm{x}=\mathrm{T}\) & \(\mathrm{x}=]-\infty ;+\infty\) [\\
\hline \(\mathrm{y}:=\mathrm{x}+10\) & \(\mathrm{y}=\mathrm{T}\) & \(y=T\) & \(y=]-\infty ;+\infty\) [\\
\hline \(\mathrm{u}:=15\); & \(\mathrm{u}=\mathrm{T}\) & \(\mathrm{u}=\mathrm{Pos}\) & \(\mathrm{u}=[15 ; 15]\) \\
\hline \(\mathrm{x}:=|\mathrm{x}|\) & \(\mathrm{x}=\mathrm{T}\) & \(\mathrm{x}=\) PosOrZero & \(\mathrm{x}=[0 ;+\infty[\) \\
\hline \(\mathrm{u}:=\mathrm{x}+\mathrm{u}\); & \(\mathrm{u}=\mathrm{T}\) & \(\mathrm{u}=\mathrm{Pos}\) & \(u=[15 ;+\infty[\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Static Analysis principle explained in Isabelle/ } \mathrm{HOL} \\
& \text { To abstract int, we define absInt as the abstract domain }\left(\mathrm{D}^{\#}\right) \text { : } \\
& \text { datatype absInt= Neg } \mid \text { ZerolPos } \mid \text { Undef } \mid \text { Any } \\
& \text { Remark } 1 \\
& \text { Have a look at the concretization function (called concrete) defining sets } \\
& \text { of integers represented by abstract elements Neg, Zero, etc. } \\
& \text { Exercise } 3 \\
& \text { Define the function absPlus:: absInt } \Rightarrow \text { absInt } \Rightarrow \text { absInt (noted }+\#) \\
& \text { Exercise } 4(\text { Prove that }+\# \text { is a correct abstraction of }+ \text {) } \\
& x \in \operatorname{concrete}\left(x^{a}\right) \wedge y \in \operatorname{concrete~}\left(y^{a}\right) \longrightarrow(x+y) \in \operatorname{concrete}\left(x^{a}+\# y^{a}\right)
\end{aligned}
\]

Static Analysis: proving the correctness of the analyzer

- Formalize semantics of Source language, i.e. formalize an eval
- Formalize the oracle: BAD predicate on program states
- Formalize the abstract domain \(D^{\#}\)
- Formalize the static analyser SAn:: program \(\Rightarrow\) bool
- Prove correctness of SAn: \(\forall \mathbf{P} . \operatorname{SAn}(\mathbf{P}) \longrightarrow(\neg \operatorname{BAD}(\operatorname{eval}(\mathbf{P})))\)
-... Relies on the proof that \(m \rightarrow\) is a correct abstraction

\section*{Static Analysis, to sum-up}

\section*{Strong and weak points}
+ Can prove the property
+ Automatic
+ On the source code
- Not designed to find bugs

\section*{Some tool names}

Astree (Airbus), Polyspace, Sawja, Infer (Facebook)...

\section*{One killer result}

Astree was used to successfully analyze \(10^{6}\) lines of code of the Airbus A380 flight control system

To sum-up on all presented techniques

- Some properties are too complex to be verified using a static analyzer
- Testing can only be used to check finite properties
- Model-checking deals only with finite models (to be built by hand)
- Static analysis is always fully automatic
T. Genet (ISTIC/IRISA)

ACF-7
A word about models/prototypes
Program verification using "formal methods" relies on:

This is the case for model-checking and assisted proof.

To sum-up on all presented techniques

- Testing works on EXE, Static analysis on source code, others on models/prototypes
- Model-checking, assisted proof and static analysis have a similar guarantee level except that assisted proofs can be certified
T. Genet (ISTIC/IRISA)

ACF-7

Testing prototypes is a common practice in engineering

It is crucial for early detection of problems! Do you know Tacoma bridge?

Testing prototypes is an engineering common practice (II)
More and more, prototypes are mathematical/numerical models

If the prototype is accurate: any detected problem is a real problem!
Problem on the prototype \(\longrightarrow\) Problem on the real system
But in general, we do not have the opposite:
No problem on the prototype \(\longrightarrow\) No problem on the real system

\section*{About "Property \(\xrightarrow{\text { Abstraction }}\) Logic formula"}

This is the only remaining difficulty, and this step is necessary!

\section*{Back to TP0, it is very difficult for two reasons:}
(1) The "what to do" is not as simple as it seems
- Many tests to write and what exactly to test?
- How to be sure that no test was missing?
- Lack of a concise and precise way to state the property Defining the property with a french text is too ambigous!
(2) The "how to do" was not that easy

Logic Formula \(=\) factorization of tests
- guessing 1 formula is harder than guessing 1 test
- guessing 1 formula is harder than guessing 10 tests
- guessing 1 formula is not harder than guessing 100 tests
- guessing 1 formula is faster than writing 100 tests (TP0 in Isabelle)
- proving 1 formula is stronger than writing infinitely many tests

Why code exportation is a great plus?
Code exportation produces the program from the model itself!

Thus, we here have a great bonus:
[TP5, TP67, TP89, CompCert]
No problem on the prototype \(\longrightarrow\) No problem on the real system
If the exported program is not efficient enough it can, at least, be used as a reference implementation (an oracle) for testing the optimized one.

\section*{About formal methods and security}

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

Be serious, do hackers read scientific papers?
or use academic stuff?
Yes, they do!

Hackers do read scientific papers!

T. Genet (ISTIC/IRISA)

ACF-7
Hackers do read scientific papers!
When Organized Crime Applies Academic Results A Forensic Analysis of an In-Card Listening Device

Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria

Journal of Cryptographic Engineering 2015
\({ }^{1}\) École normale supérieure Computer Science Department
45 rue d'Ulm, \(\begin{gathered}\text { F-75230 Paris CEDEX } 05, \text { France }\end{gathered}\)

\section*{About formal methods and security}

You have to use formal methods to secure your software ... because hackers will use them to find new attacks!
(1 formula) + (counter-example generator) \(\longrightarrow\) attack!
- Fuzzing of implementations using model-checking
- Finding bugs (to exploit) using white-box testing
- Finding errors in protocols using counter-example gen. (e.g. TP89)
\(\Longrightarrow\) You will have to formally prove security of your software!
－define a function using equations
timeout＝t，quickch
－timeout＝t，quickcheck searches for a counterexample during at most \(t\) seconds．
－tester＝tool，specifies the type of testing to perform，where tool can be random， show＿all，nitpick displays the she nitpick displays the chosen domains and interpretations for the counterexamp to hold．
timeout＝t，nitpick searches for a counterexample during at most \(t\) seconds．（timeout＝none is also possible）
expect＝s，specifies the expected outcome of the nitpick call，where \(s\) can be none（no found counterexample） or genuine（a counterexample has been found）．
- card＝i－j，specifies the cardinalities to use for building the SAT problem． or genuine（a counterexample has been found）．
－card＝i－j，specifies the cardinalities to use for building the SAT problem．
eval＝l，gives a list 1 of terms to eval with the values found for the counterexample．
nitpick［timeout＝120，card＝3－5，eval＝＂member e l＂＂length l＂］
正

－do a proof by cases on a variable x or on a formula F ．．．．．．apply（case＿tac＂x＂）or apply（case＿tac＂F＂）
－try to prove the first subgoal with Sledgehammer \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\) ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(>\) Isabelle \(>\) Sledgehammer

2 To go further．．．and faster
＂count \(\bar{e}(x \# x s)=(i f e=x\) then \((1+(c o u n t ~ e x s))\) else（count e xs））＂ －define an Abstract Data Type
datatype＇a list＝Nil｜Cons＇a＂＇a list＂

\section*{1．6 Code exportation}
－export code（in Scala，Haskell，OCaml，SML）for a list of functions
export＿code function1 function2 function3 in Scala

－apply an induction principle adapted to the function call（f \(x y z\) ）．apply（induct \(x\) y \(z\) rule：f．induct） －automatically solve or simplify the first subgoal apply simp －options of nitpick
－size＝i，specifies the maximal size of the search space of testing values
－tester＝tool，specifies the type of testing to perform，where tool can be random，exhaustive or narrowing． expect＝s，specifies the expected outcome of quickcheck，where \(s\) can be no＿counterexample（no found
counterexample），counterexample（a counterexample has been found）or no＿expectation（we don＇t know）．
－eval＝l，gives a list lof terms to eval with the values found for the counterexample．Not supported for narrowing and random testers．
quickcheck［tester＝narrowing，eval＝［＂member e l＂，＂length l＂］］
－setting option values for all calls to nitpick
> nitpick＿params［timeout \(=120\) ，expect＝none］

－setting option values for all calls to quickcheck
surexed－yวṬdqṬu•
－options for quickcheck
左解

－```

[^0]: ${ }^{1}$ Actually, it tries to build a termination ordering but it has the same objective.

[^1]: $P($ Leaf $) \wedge \forall e \in$ 'a. $\forall t 1 t 2 \in$ 'a binTree.
 $(P(t 1) \wedge P(t 2) \longrightarrow P($ Node e $t 1 t 2)) \longrightarrow \forall t \in$ 'a binTree. $P(t)$

