Analyse et Conception Formelles

Lesson 3

Recursive Functions and Algebraic Data Types

Outline

(1) Recursive functions

- Definition
- Termination proofs with measures
- Difference between fun, function and primrec

2 (Recursive) Algebraic Data Types

- Defining Algebraic Data Types using datatype
- Building objects of Algebraic Data Types
- Matching objects of Algebraic Data Types
- Type abbreviations

Acknowledgements:
some material is borrowed from T. Nipkow and S. Blazy's lectures

Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a problem depends on solutions to smaller instances of the same problem»

- The «bad» news: in Isabelle/HOL, there is no while, no for, no mutable arrays and no pointers, ...
- The good news: you don't really need them to program!
- The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion

- What theory says: expressive power of recursive-only languages and imperative languages is equivalent
- What OCaml programmers say: it is as it should always be
- What Java programmers say: may be tricky but you will always get by

Recursive Functions

- A function is recursive if it is defined using itself.
- Recursion can be direct
fun member:: "'a => 'a list => bool"
where

```
"member e [] = False" |
"member e (x#xs) = (e=x \/ (member e xs))"
```

- ... or indirect. In this case, functions are said to be mutually recursive.
fun even:: "nat => bool"
and odd:: "nat => bool"
where

"even 0	$=$ True"
"even (Suc x)	$=$ odd $x "$
"odd 0	$=$ False"
"odd (Suc x)	$=$ even x "

Terminating Recursive Functions

In Isabelle/HOL, all the recursive functions have to be terminating!
How to guarantee the termination of a recursive function? (practice)

- Needs at least one base case (non recursive case)
- Every recursive case must go towards a base case
- ... or every recursive case «decreases» the size of one parameter

How to guarantee the termination of a recursive function? (theory)

- If $f:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ then define a measure function $g:: \tau_{1} \times \ldots \times \tau_{n} \Rightarrow \mathbb{N}$
- Prove that the measure of all recursive calls is decreasing | To prove termination of $f f\left(t_{1}\right)$ | $\rightarrow f\left(t_{2}\right)$ |
| ---: | :--- |
| Prove that $g\left(t_{1}\right)$ | $>g\left(t_{2}\right)$ |$>\ldots$
- The ordering > is well founded on \mathbb{N}
i.e. no infinite decreasing sequence of naturals $n_{1}>n_{2}>\ldots$

Proving termination with measure - the quiz

Quiz 1

- Proving termination of a function f ensures that the evaluations of $(f t)$ will terminate for | V | some t | R | all possible t |
| :--- | :--- | :--- | :--- |
- For a function $\mathrm{f}:$:' a list \Rightarrow 'a list a measure function should be of type | | 'a list \Rightarrow 'a list | R | 'a list \Rightarrow nat |
| :---: | :---: | :---: | :---: |
- For the function $\mathrm{f}:$:nat list \Rightarrow nat list
"f [] = []" |
"f (x\#xs) = (if $x=1$ then [x] else xs)"

| V | We do not need a measure function |
| :---: | :--- | R The only possible measure is λx. (length x)

- For function $\mathrm{f}:$:nat list \Rightarrow nat list

> "f [] = [] " |

"f (x\#xs) $=$ (if $x=1$ then $(f(x \# x s))$ else (f $x s)) "$ | V | There is no measure function |
| :---: | :--- |
| R | The only possible measure is $\lambda x .($ length $x)$ |

Terminating Recursive Functions (II)

How to guarantee the termination of a recursive function? (theory)

- If $f:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ then define a measure function $g:: \tau_{1} \times \ldots \times \tau_{n} \Rightarrow \mathbb{N}$
- Prove that the measure of all recursive calls is decreasing $\begin{aligned} \text { To prove termination of } f f\left(t_{1}\right) & \rightarrow f\left(t_{2}\right) \\ \text { Prove that } & \rightarrow\left(t_{1}\right)\end{aligned}>g\left(t_{2}\right)>\ldots$.

Example 1 (Proving termination using a measure)
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
(1) We define the measure $g=\lambda(x, y)$. (length $y)$
(2) We prove that $\forall \mathrm{exxs} . g(\mathrm{e},(\mathrm{x} \# \mathrm{xs}))>g(\mathrm{e}, \mathrm{xs})$

Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)

- Define the recursive function using fun
- Isabelle/HOL automatically tries to build a measure ${ }^{1}$
- If no measure is found the function is rejected
- If it is not terminating, make it terminating!
- Try to modify it so that its termination is easier to show

Otherwise

- Re-define the recursive function using function (sequential)
- Manually give a measure to achieve the termination proof

[^0]
Terminating Recursive Functions (IV)

Example 2

A definition of the member function using function is the following:
function (sequential) member::"'a \Rightarrow 'a list \Rightarrow bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
apply pat_completeness Prove that the function is "complete" apply auto i.e. patterns cover the domain
done
Prove its termination using the measure
termination member proposed in Example 1
apply (relation "measure $(\lambda(x, y)$. (length $y)) ")$
apply auto
done
T. Genet (ISTIC/IRISA)

Terminating Recursive Functions (VI)

Automatic termination proofs (fun definition) are generally enough

- Covers 90% of the functions commonly defined by programmers
- Otherwise, it is generally possible to adapt a function to fit this setting

Most of the functions are terminating by construction (primitive recursive)
Definition 3 (Primitive recursive functions: primrec)
Functions whose recursive calls «peels off» exactly one constructor
Example 4 (member can be defined using primrec instead of fun)
primrec member:: "'a => 'a list => bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"
For instance, in List.thy:

- 26 "fun", 34 "primrec" with automatic termination proofs
- 3 "function" needing measures and manual termination proofs.
T. Genet (ISTIC/IRISA)

Terminating Recursive Functions (V)

Exercise 1

Define the following functions, see if they are terminating. If not, try to modify them so that they become terminating.
fun f::"nat => nat"
where
"f $x=f(x-1) "$
fun f2::"int => int"
where
"f2 $x=(i f x=0$ then 0 else $f 2(x-1)) "$
fun f3: :"nat => nat => nat"
where
"f3 x y= (if $x>=10$ then 0 else f3 ($x+1$) ($y+1)$)"

Recursive functions, exercises

Exercise 2

Define the following recursive functions

- A function sumList computing the sum of the elements of a list of naturals
- A function sumNat computing the sum of the n first naturals
- A function makeList building the list of the n first naturals State and verify a lemma relating sumList, sumNat and makeList

Outline

(1) Recursive functions

- Definition
- Termination proofs with orderings
- Termination proofs with measures
- Difference between fun, function and primrec

2 (Recursive) Algebraic Data Types

- Defining Algebraic Data Types using datatype
- Building objects of Algebraic Data Types
- Matching objects of Algebraic Data Types
- Type abbreviations

(Recursive) Algebraic Data Types

Basic types and type constructors (list, $\Rightarrow,^{*}$) are not enough to:

- Define enumerated types
- Define unions of distinct types
- Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)

To define type τ parameterized by types $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$:

Building objects of Algebraic Data Types

Any definition of the form

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau=$	$C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}}$
	\ldots
	$C_{k} \tau_{1, k} \ldots \tau_{1, n_{k}}$

also defines constructors C_{1}, \ldots, C_{k} for objects of type $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau$
The type of constructor C_{i} is $\tau_{i, 1} \Rightarrow \ldots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau$

Example 7

```datatype 'a list = Nil \| Cons 'a "'a list"```	defines constructors
Nil::'a list and Cons: :'a $\Rightarrow$ 'a Hence,   - Cons (3: :nat) (Cons 4 Nil ) is an obj   - Cons (3: :nat) is an object of type	$\text { ist } \Rightarrow \text { 'a list }$   of type nat list   list $\Rightarrow$ nat list

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tau=C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}} \quad$ with $C_{1}, \ldots, C_{n}$
capitalized identifiers

Example 6 (The type of (polymorphic) lists, defined using datatype) datatype 'a list = Nil

$\left.=$| $=$ | $C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}}$ |
| :--- | :--- |
|  | $\ldots$ |
|  | $C_{k} \tau_{1, k} \ldots \tau_{1, n_{k}}$ | \right\rvert\,

| Cons 'a "'a list"

## Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case l of Nil => ... | (Cons x r) $=>$...)
possibly with wildcards, i.e. "_"

$$
\text { (case i of } 0 \Rightarrow \ldots \mid\left(\text { Suc _ }^{\prime}\right) \Rightarrow \ldots \text {. . }
$$

and nested patterns

$$
\text { (case lof (Cons } 0 \text { Nil) } \Rightarrow>\ldots \text {. (Cons (Suc x) Nil) } \Rightarrow \text {...) }
$$

possibly embedded in a function definition

```
fun first::"'a list =>'a list"
 where
"first Nil = Nil" | "first [] = []" |
"first (Cons x _) = (Cons x Nil)" "first (x#_) = [x]"
```


## Building objects of Algebraic Data Types - the quiz

## Quiz 2 (we define datatype abstInt= Any | Mint int )

- How to build an object of type abstInt from integer 13?

- How to build the object Any of type abstInt?

- To check if a variable x: :abstInt contains an integer how to do?

$V$	(case x of (Mint _) $\Rightarrow>$ True \| Any $\Rightarrow$ False)
$R$	$\mathrm{x}=$ (Mint _)

- Let f be defined by
f::abstInt $\Rightarrow$ abstInt $\Rightarrow$ abstInt
"f (Mint x) (Mint y) = (Mint x+y)" |
"f _ = Any"

What is the value of:


## Algebraic Data Types, exercises

## Exercise 3

Define the following types and build an object of each type using value

- The enumerated type color with possible values: black, white and grey
- The type token union of types string and int
- The type of (polymorphic) binary trees whose elements are of type 'a Define the following functions
- A function notBlack that answers true if a color object is not black
- A function sumToken that gives the sum of two integer tokens and 0 otherwise
- A function merge: :color tree $\Rightarrow$ color that merges all colors in a color tree (leaf is supposed to be black)


## Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types To introduce a type abbreviation type_synonym

For instance:

- type_synonym name="(string * string)"
- type_synonym ('a,'b) pair="('a * 'b)"

Using those abbreviations, objects can be explicitly typed:

- value "(''Leonard'',''Michalon''): :name"
- value "(1,''toto''): (nat,string) pair"
... though the type synonym name is ignored in Isabelle/HOL output $)^{2}$


[^0]:    ${ }^{1}$ Actually, it tries to build a termination ordering but it has the same objective.

