Analyse et Conception Formelles

Lesson 2

Types, terms and functions

Types: syntax
$\tau \quad::=(\tau)$

$|$| bool \mid nat \mid char $\mid \ldots$ | base types |
| :--- | :--- |
| $\prime a\|' b\| \ldots$ | type variables |
| $\tau \Rightarrow \tau$ | functions |
| $\tau \times \ldots \times \tau$ | tuples (ascii for $\times: *$) |
| τ list | lists |
| \ldots | user-defined types |

The operator \Rightarrow is right-associative, for instance:

$$
\text { nat } \Rightarrow \text { nat } \Rightarrow \text { bool is equivalent to nat } \Rightarrow(\text { nat } \Rightarrow \text { bool })
$$

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

Typed terms: syntax
term $::=$ (term)

$|$| a | $a \in \mathcal{F}$ or $a \in \mathcal{X}$ |
| :--- | :--- |
| term term | function application |
| λy. term | function definition with $y \in \mathcal{X}$ |
| $($ term,\ldots, term $)$ | tuples |
| $[$ term,\ldots, term $]$ | lists |
| $($ term $:: \tau)$ | type annotation |
| \ldots | a lot of syntactic sugar |

Function application is left-associative, for instance:
$f a b c$ is equivalent to $((f a) b) c$
Example 1 (Types of terms)

Term	Type	Term	Type
y	a	t1	a
(t1, t2, t3)	($\mathrm{a} \times \times \mathrm{l} \times$ 'c)	[t1, t2, t3]	'a list
$\lambda \mathrm{y} . \mathrm{y}$	' $\mathrm{a} \Rightarrow \mathrm{l}$ '	$\lambda \mathrm{yz} . \mathrm{z}$	${ }^{\prime} \mathrm{a} \Rightarrow \mathrm{\prime}$ ' ${ }^{\prime}{ }^{\prime} \mathrm{b}$

Types and terms: evaluation in Isabelle/HOL

To evaluate a term t in Isabelle value " t "

Example 2

Term	Isabelle's answer
value "True""	True::bool
value "2"	Error (cannot infer result type)
value "(2::nat)"	$2::$ nat
value "[True,False]"	[True,False]::bool list
value "(True,True,False)"	(True,True,False)::bool * bool * bool
value "[2,6,10]"	Error (cannot infer result type)
value "[(2::nat),6,10]"	$[2,6,10]::$ nat list

Lambda-calculus - the quiz

Quiz 1

- Function $\lambda(x, y) \cdot x$ is a function with two parameters | V | True | R | False |
| :--- | :--- | :--- | :--- |
- Type of function $\lambda(x, y)$. x is

- If $\mathrm{f}:$: nat \Rightarrow nat \Rightarrow nat how to call f on 1 and 2?

| V | $f(1,2)$ | R | $\left(\begin{array}{lll}f & 1 & 2\end{array}\right)$ |
| :--- | :--- | :--- | :--- | :--- |

- Iff: : nat \times nat \Rightarrow nat how to call f on 1 and 2?

Terms and functions: semantics is the λ-calculus Semantics of functional programming languages consists of one rule:

$$
(\lambda x . t) a \rightarrow \beta \quad t\{x \mapsto a\} \quad(\beta \text {-reduction) }
$$

where $t\{x \mapsto a\}$ is the term t where all occurrences of x are replaced by a

Example 3

- $(\lambda x \cdot x+1) 10 \rightarrow \beta 10+1$
- $(\lambda x \cdot \lambda y \cdot x+y) 12 \rightarrow_{\beta}(\lambda y .1+y) 2 \rightarrow_{\beta} 1+2$
- $(\lambda(x, y) \cdot y)(1,2) \rightarrow \beta 2$

In Isabelle/HOL, to be β-reduced, terms have to be well-typed

Example 4

Previous examples can be reduced because:

- $(\lambda x . x+1)::$ nat \Rightarrow nat and $10::$ nat
- $(\lambda x \cdot \lambda y \cdot x+y)::$ nat \Rightarrow nat \Rightarrow nat and $1::$ nat and $2::$ nat
- $(\lambda(x, y) \cdot y)::($ 'a \times 'b) \Rightarrow 'b and $(1,2)::$ nat \times nat

A word about curried functions and partial application

Definition 5 (Curried function)

A function is curried if it returns a function as result.

Example 6

The function $(\lambda x . \lambda y \cdot x+y)::$ nat \Rightarrow nat \Rightarrow nat is curried
The function $(\lambda(x, y) \cdot x+y)::$ nat $\times n a t \Rightarrow n a t$ is not curried
Example 7 (Curried function can be partially applied!)
The function $(\lambda x . \lambda y . x+y)$ can be applied to 2 or 1 argument!

- $(\lambda x . \lambda y \cdot x+y) 12 \rightarrow_{\beta}(\lambda y .1+y) 2 \rightarrow_{\beta}(1+2):: n a t$
- $(\lambda x . \lambda y \cdot x+y) 1 \rightarrow_{\beta}(\lambda y .1+y)::$ nat \Rightarrow nat which is a function!

Exercise 1 (ln Isabelle/HOL)

Use append::'a list \Rightarrow 'a list \Rightarrow 'a list to concatenate 2 lists of bool, 2 lists of nat, and 3 lists of nat.

A word about curried functions and partial application (II)

- To associate the value of a term t to a name $n \ldots$..... definition " $n=t$ "

Exercise 2 (ln Isabelle/HOL)

(1) Define the (non-curried) function addNc adding two naturals
(2) Use addNc to add 5 to 6
(3) Define the (curried) function add adding two naturals
(4) Use add to add 5 to 6
(5) Using add, define the incr function adding 1 to a natural
(6) Apply incr to 5
(7) Define a function app1 adding 1 at the beginning of any list of naturals, give an example of use

A word about higher-order functions (II)

Exercise 3 (In Isabelle/HOL)

(1) Define a function triple which applies three times a given function to an argument
(2) Using triple, apply three times the function incr on 0
(3) Using triple, apply three times the function app1 on [2,3]
(4) Using map :: $($ ' $a \Rightarrow$ 'b) \Rightarrow 'a list \Rightarrow 'b list from the list [1, 2, 3] build the list [2, 3, 4]

A word about higher-order functions

Definition 8 (Higher-order function)

A higher-order function takes one or more functions as parameters.
Example 9 (Some higher-order functions and their evaluation)

- $\lambda x . \lambda f . f x:: ' a \Rightarrow\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \Rightarrow^{\prime} b$
- $\lambda f . \lambda x . f x::\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \Rightarrow^{\prime} a \Rightarrow^{\prime} b$
- $\lambda f . \lambda x . f(x+1)(x+1)::(n a t \Rightarrow n a t \Rightarrow n a t) \Rightarrow n a t \Rightarrow n a t$
$(\lambda f . \lambda x . f(x+1)(x+1))$ add 20
$\rightarrow_{\beta}(\lambda x \cdot \operatorname{add}(x+1)(x+1)) 20$
$\rightarrow \beta$ add $(20+1)(20+1)$
$=(\lambda x \cdot \lambda y \cdot x+y)(20+1)(20+1)$
$\rightarrow \beta(20+1)+(20+1)$
$=42$

Interlude: a word about semantics and verification

- To verify programs, formal reasoning on their semantics is crucial!
- To prove a property ϕ on a program P we need to precisely and exactly understand P 's behavior

For many languages the semantics is given by the compiler (version)!

- C, Flash/ActionScript, JavaScript, Python, Ruby,

Some languages have a (written) formal semantics:

- Java ${ }^{\text {a }}$, subsets of C
(hundreds of pages)
- Proofs are hard because of semantics complexity
(e.g. KeY for Java)
${ }^{a}$ http://docs.oracle.com/javase/specs/jls/se7/html/index.html
Some have a small formal semantics:
- Functional languages: Haskell, subsets of (OCaml, F\# and Scala)
- Proofs are easier since semantics essentially consists of a single rule

Constructor terms

Isabelle distinguishes between constructor and function symbols

- A function symbol is associated to a function, e.g. inc
- A constructor symbol is not associated to any function

Definition 10 (Constructor term)

A term containing only constructor symbols is a constructor term

A constructor term does not contain function symbols

Constructor terms - the quiz

Quiz 2

- Nil is a term?
- Nil is a constructor term?

- (Cons (Suc 0) Nil) is a constructor term?

Constructor terms (II)

All data are built using constructor terms without variables ..even if the representation is generally hidden by Isabelle/HOL

Example 11

- Natural numbers of type nat are terms: 0 , (Suc 0), (Suc (Suc 0)),
- Integer numbers of type int are couples of natural numbers:
$\ldots(0,2),(0,1),(0,0),(1,0), \ldots$
where $(0,2)=(1,3)=(2,4)=\ldots$ all represent the same integer -2
- Lists are built using the operators
- Nil: the empty list
- Cons: the operator adding an element to the (head) of the list Be careful! the type of Cons is Cons: :'a \Rightarrow 'a list \Rightarrow 'a list

The term Cons 0 (Cons (Suc 0) Nil) represents the list $[0,1]$

Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:

- Usual decimal representation for naturals, integers and rationals $1,2,-3,-45.67676$,
- [] and \# for lists, e.g. Cons $0(\operatorname{Cons}(\operatorname{Suc} 0) \mathrm{NiI})=0 \#(1 \#[])=[0,1]$ (similar to [] and :: of OCaml)
- Strings using 2 quotes e.g. ' 'toto', (instead of "toto")

Exercise 4

(1) Prove that 3 is equivalent to its constructor representation
(2) Prove that $[1,1,1]$ is equivalent to its constructor representation
(3) Prove that the first element of list $[1,2]$ is 1
(4) Infer the constructor representation of rational numbers of type rat (5) Infer the constructor representation of strings

Isabelle Theory Library

Isabelle comes with a huge library of useful theories

- Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex ...
- Data structures: Lists, Sets, Tuples, Records, Maps ...
- Mathematical tools: Probabilities, Lattices, Random numbers, ...

All those theories include types, functions and lemmas/theorems

Example 12

Let's have a look to a simple one Lists.thy:

- Definition of the datatype (with shortcuts)
- Definitions of functions (e.g. append)
- Definitions and proofs of lemmas (e.g. length_append)
lemma "length (xs @ ys) = length xs + length ys"
- Exportation rules for SML, Haskell, Ocaml, Scala (code_printing)

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Isabelle Theory Library: using functions on lists

Some functions of Lists.thy

- append:: 'a list \Rightarrow 'a list \Rightarrow 'a list
- rev:: 'a list \Rightarrow 'a list
- length:: 'a list \Rightarrow nat
- map:: ('a \Rightarrow 'b) \Rightarrow 'a list \Rightarrow 'b list

Exercise 5

(1) Apply the rev function to list $[1,2,3]$
(2) Prove that for all value x, reverse of the list $[x]$ is equal to $[x]$
(3) Prove that append is associative
(4) Prove that append is not commutative
(5) Using map, from the list $[1,2,3]$ build the list $[2,4,6]$
(0 Prove that map does not change the size of a list

Defining functions using equations

- Defining functions using λ-terms is hardly usable for programming
- Isabelle/HOL has a "fun" operator as other functional languages

Definition 13 (fun operator for defining (recursive) functions)

fun $f:: ~ " \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ "
where

$$
\begin{array}{l|l}
" f t_{1}^{1} \ldots t_{n}^{1}=r^{1 "} & \begin{array}{l}
\text { where for all } i=1 \ldots n \text { and } k=1 \ldots m \\
\ldots \\
" f t_{1}^{m} \ldots t_{n}^{m}=r^{m "}
\end{array} \\
\begin{array}{l}
\left.t_{i}^{k}:: \tau_{i}\right) \text { are constructor terms possibly } \\
\text { with variables, and }\left(r^{k}:: \tau\right)
\end{array}
\end{array}
$$

Example 14 (The member function on lists (2 versions in cm2.thy))
fun member:: "'a => 'a list => bool"
where
"member e [] = False" |
"member e (x\#xs) = (if e=x then True else (member e xs))"

Total and partial Isabelle/HOL functions

Definition 15 (Total and partial functions)

A function is total if it has a value (a result) for all elements of its domain.
A function is partial if it is not total.
Definition 16 (Complete Isabelle/HOL function definition)
fun $f:: ~ " \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau$ "
where $\quad f$ is complete if any call $f t_{1} \ldots t_{n}$ with

| $" f t_{1}^{1} \ldots t_{n}^{1}=r^{1} " \quad \|$$\left(t_{i}:: \tau_{i}\right), i=1 \ldots n$ is covered by one
 case of the definition. |
| :--- | :--- |
| $\ldots f t_{1}^{m} \ldots t_{n}^{m}=r^{m "} \quad$ |

$" f t_{1}^{m} \ldots t_{n}^{m}=r^{m} "$
Example 17 (Isabelle/HOL "Missing patterns" warning)
When the definition of f is not complete, an uncovered call of f is shown.

Function definition - the quiz (II)

Quiz 6 (Is this function definition correct?	V	Yes		No

fun pos2:: "nat \Rightarrow bool"
where
"pos2 0 = False" |
"pos2 $(x+1)=$ True"

Quiz 7 (Is this function definition correct? | V | Yes | | No |
| :--- | :--- | :--- | :--- |

fun isDivisor:: "nat \Rightarrow
nat \Rightarrow bool"
where
"isDivisor $\mathrm{x} y=(\exists \mathrm{z} . \mathrm{x} * \mathrm{z}=\mathrm{y})$ "

Total and partial Isabelle/HOL functions (II)

Theorem 18

Complete and terminating Isabelle/HOL functions are total, otherwise they are partial.

Question 1

Why termination of f is necessary for f to be total?

Remark 1

All functions in Isabelle/HOL needs to be terminating!

Outline

(1) Terms

- Types
- Typed terms
- λ-terms
- Constructor terms
(2) Functions defined using equations
- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:
(1) append Nil $x=x$
(* recall that Nil=[] *)
(2) append (x\#xs) $y=(x \#($ append $x s y))$

Replacement of equals by equals

Term rewriting
The first equation (append Nil x) $=\mathrm{x}$ means that

- (concatenating the empty list with any list x) is equal to x
- we can thus replace
- any term of the form (append Nil t) by t
(for any value t)
- wherever and whenever we encounter such a term append Nil t

Logic everywhere!

In the end, everything is defined using logic:

- data, data structures: constructor terms
- properties: lemmas (logical formulas)
- programs: functions (also logical formulas!)

Definition 19 (Equations (or simplification rules) defining a function)

A function f consists of a set of f.simps of equations on terms.
To visualize a lemma/theorem/simplification rule \qquad For instance: thm "length_append", thm "append.simps"
To find the name of a lemma, etc.
.thm

For instance: find_theorems "append" "_ + _"

Exercise 6

Use Isabelle/HOL to find the following formulas:

- definition of member (we just defined) and of nth (part of List.thy)
- find the lemma relating rev (part of List.thy) and length

Term Rewriting in three slides

- Rewriting term (append [] (append [] a)) using
(1) append Nil $\mathrm{x}=\mathrm{x}$
(2) append (x\#xs) y $=$ (x\#(append $x s y))$

- We note (append Nil (append Nil a)) \rightarrow (append Nil a) if
- there exists a position in the term where the rule matches
- there exists a substitution $\sigma: \mathcal{X} \mapsto \mathcal{T}(\mathcal{F})$ for the rule to match.

On the example $\sigma=\{x \mapsto a\}$

- We also have (append Nil a) \rightarrow a
and

Term Rewriting in three slides - Formal definitions

Definition 20 (Substitution)

A substitution σ is a function replacing variables of \mathcal{X} by terms of $\mathcal{T}(\mathcal{F}, \mathcal{X})$ in a term of $\mathcal{T}(\mathcal{F}, \mathcal{X})$.

Example 21

Let $\mathcal{F}=\{f: 3, h: 1, g: 1, a: 0\}$ and $\mathcal{X}=\{x, y, z\}$.
Let σ be the substitution $\sigma=\{x \mapsto g(a), y \mapsto h(z)\}$.
Let $t=f(h(x), x, g(y))$.
We have $\sigma(t)=f(h(g(a)), g(a), g(h(z)))$.

Term rewriting - the quiz

Quiz 8

Let $\mathcal{F}=\{f: 2, g: 1, a: 0\}$ and $\mathcal{X}=\{x, y\}$.

- Rewriting the term $f(g(g(a)))$ with equation $g(x)=x$ is
- To rewrite the term $f(g(g(a)))$ with $g(x)=x$ the substitution σ is | V | $\{x \mapsto a\}$ | R | $\{x \mapsto g(a)\}$ |
| :--- | :--- | :--- | :--- | :--- |
- Rewriting the term $f(g(g(y)))$ with equation $g(x)=x$ is Possible ||| R Impossible
- Rewriting the term $f(g(g(y)))$ with equation $g(f(x))=x$ is

$$
\begin{array}{|l|l||l|l}
\hline V & \text { Possible } & R & \text { Impossible } \\
\hline
\end{array}
$$

Term Rewriting in three slides - Formal definitions (II)
Definition 22 (Rewriting using an equation)
A term s can be rewritten into the term t (denoted by $s \rightarrow t$) using an Isabelle/HOL equation $l=r$ if there exists a subterm u of s and a substitution σ such that $u=\sigma(l)$. Then, t is the term s where subterm u has been replaced by $\sigma(r)$.

Example 23

Let $s=f(g(a), c)$ and $g(x)=h(g(x), b)$ the Isabelle/HOL equation.

$$
\begin{array}{lrllll}
\text { we have } & f\left(\begin{array}{ll}
g(a)
\end{array}, c\right) & \rightarrow f\left(\begin{array}{rl}
h(g(a), b) & , c) \\
\text { because } & g(x)
\end{array} \quad=\right. & h(g(x), b)
\end{array} \quad \text { and } \sigma=\{\mathrm{x} \mapsto a\}
$$

On the opposite $t=f(a, c)$ cannot be rewritten by $g(x)=h(g(x), b)$.

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function definition and only from left to right.

Isabelle evaluation $=$ rewriting terms using equations
(1) append Nil $x=x$
(2) append (x\#xs) $y=$ ($x \#(a p p e n d x s y)$)

Rewriting the term: append $[1,2][3,4]$ with (1) then (2) (Rmk 2)
First, recall that $[1,2]=(1 \#(2 \# N i l))$ and $[3,4]=(3 \#(4 \# N i l))!$

Example 24

See demo of step by step rewriting in Isabelle/HOL!

Isabelle evaluation = rewriting terms using equations (II)

```
(1) member e [] = False
```

(2) member $e(x \# x s)=$ (if $e=x$ then True else (member e xs))

Evaluation of test: member 2 [1,2,3]
\rightarrow if $2=1$ then True else (member $2[2,3]$)
by equation (2), because $[1,2,3]=1 \#[2,3]$
\rightarrow if False then True else (member 2 [2,3])
by Isabelle equations defining equality on naturals
\rightarrow member $2[2,3]$
by Isabelle equation (if False then x else $\mathrm{y}=\mathrm{y}$)
\rightarrow if $2=2$ then True else (member 2 [3])
by equation (2), because $[2,3]=2 \#[3]$
\rightarrow if True then True else (member 2 [3])
by Isabelle equations defining equality on naturals
\rightarrow True
by Isabelle equation (if True then x else $\mathrm{y}=\mathrm{x}$)

Lemma simplification $=$ Rewriting + Logical deduction (II)

```
(1) member e []
    = False
(2) member e (x \# xs) = (if e=x then True else (member e xs))
(3) append [] \(x=x\)
(4) append ( \(\mathrm{x} \# \mathrm{xs}\) ) \(\mathrm{y}=\mathrm{x} \#\) (append xs y )
```


Exercise 7

Is it possible to prove the lemma member u (append [u] v) by simplification/rewriting?

Exercise 8

Is it possible to prove the lemma member v (append $u[v])$ by simplification/rewriting?

Demo of rewriting in Isabelle/HOL!

Lemma simplification $=$ Rewriting + Logical deduction

(1) member e []
= False
(2) member $\mathrm{e}(\mathrm{x} \# \mathrm{xs})=$ (if $\mathrm{e}=\mathrm{x}$ then True else (member $\mathrm{e} x$))

Proving the lemma: member y $[z, y, v]$
\rightarrow if $y=z$ then True else (member y [y,v])
by equation (2), because $[z, y, v]=z \#[y, v]$
\rightarrow if $y=z$ then True else (if $y=y$ then True else (member $y[v])$) by equation (2), because $[y, v]=y \#[v]$
\rightarrow if $\mathrm{y}=\mathrm{z}$ then True else (if True then True else (member y [v])) because $y=y$ is trivially True
\rightarrow if $y=z$ then True else True by Isabelle equation (if True then x else $\mathrm{y}=\mathrm{x}$)
\rightarrow True by logical deduction (if b then True else True) \longleftrightarrow True ns
Evaluation of partial functions using rewriting by equational definitions may not result in a constructor term

Exercise 9

Let index be the function defined by:
fun index:: "'a => 'a list => nat"
where
"index $y(x \# x s)=(i f \quad x=y$ then 0 else $1+(i n d e x$ y xs))"

- Define the function in Isabelle/HOL
- What does it computes?
- Why is index a partial function? (What does Isabelle/HOL says?)
- For index, give an example of a call whose result is:
- a constructor term
- a match failure
- Define the property relating functions index and List.nth

Scala export + Demo

To export functions to Haskell, SML, Ocaml, Scala
For instance, to export the member and index functions to Scala:
export_code member index in Scala
test.scala \qquad
object cm2 \{
def member [A : HOL.equal] (e: A, x1: List[A]): Boolean = (e, x1) match \{
case $(e, N i l)=>$ false
case (e, x : : xs) $=>$ (if (HOL.eq[A] (e, x)) true else member $[A]$ (e, xs))
\}
def index[A : HOL.equal] (y: A, x1: List[A]): Nat =
($\mathrm{y}, \mathrm{x} 1$) match \{
case ($\mathrm{y}, \mathrm{x}:: \mathrm{xs}$) \Rightarrow (if (HOL.eq[A] (x, y)) Nat(0)
else $\operatorname{Nat}(1)+\operatorname{index}[A](y, x s))$
ACF-2 \square

