Analyse et Conception Formelles

Lesson 2

Types, terms and functions
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Types: syntax

(7)

| bool | nat | char | ... base types

| a|'b| ... type variables

| =T functions

| Tx...xT tuples (ascii for x: *)
| T list lists

|

user-defined types

The operator = is right-associative, for instance:

nat = nat = bool is equivalent to nat = (nat = bool)
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Outline

® Terms

® Types
Typed terms
A-terms
Constructor terms

@® Functions defined using equations

® [ogic everywhere!
® Function evaluation using term rewriting
® Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures
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Typed terms: syntax
term = (term)

| a acForack
| term term function application
| Ay. term function definition with y € X
| (term, ..., term) tuples
| [term,..., term] lists
| (term::T) type annotation
|

a lot of syntactic sugar

Function application is left-associative, for instance:

f a b cis equivalent to ((f a) b) c

Example 1 (Types of terms)

Term Type Term Type
y 'a tl 'a
(tL,t2,t3) | ("'a x 'b x 'c) | [t1,t2,t3] 'a list
AY.y 'a="a Ayz. z |'a=b="b
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Types and terms: evaluation in Isabelle/HOL Terms and functions: semantics is the A-calculus
Semantics of functional programming languages consists of one rule:
(Ax.t)a —3 t{x+— a} (/-reduction)
To evaluate a term tin Isabelle .......... .. ... ... ... ... .. value "t where t{x ~+ a} is the term t where all occurrences of x are replaced by
Example 2 Example 3
Term Isabelle’s answer ®* (Ax.x+1)10 —»3 10+1
value "True" True::bool * AxAy.x+y)12 »5 Ay.14y)2 —»5 142
value 2 ) E.r-ror (cannot infer result type) ° (A(xx)-¥)(1,2) —p 2
value "(2::nat) 2::nat
value "[True,False]” [True,False]::bool list In Isabelle/HOL, to be S-reduced, terms have to be well-typed
value "(True, True,False)” | (True, True,False)::bool * bool * bool c e 4
value "[2,6,10]" Error (cannot infer result type) xampie
value "[(2::nat),6,10]" [2,6,10]::nat list Previous examples can be reduced because:
‘ ® (Ax.x+1): nat = nat and 10:: nat
® AxAy.x+y): nat= nat=-nat and 1:nat and 2: nat
® (A(x,y).y):(ax'b)="b and (1,2):: nat x nat
50 o e
Lambda-calculus — the quiz A word about curried functions and partial application
Definition 5 (Curried function)
A function is curried if it returns a function as result. )
Quiz 1
: : : : Example 6
® Function \(x,y). x is a function with two parameters
\_! | True ||| | False | The funct!on (Ax.Ay.x+y):: nat = nat = nat_is curried .
The function (A (x,y).x 4+ y) :: nat x nat = nat is not curried
. . ’a X b = ’a ’
® Type of function \(x,y). x is ’:=
’a = ’b = ’a Example 7 (Curried function can be partially applied!)
® Iff::nat = nat = nat how tocall f on1 and 2?. The function (A x.A y. x + y) can be applied to 2 or 1 argument!
(Wca> [ ¢12 ] o AXxAy.x+y)12 =5 Ay.14y)2 —»5 (14+2): nat
® /ff::nat X nat = nat how to call f on 1 and 27 e (AxAy.x+y)1 Oy L2t ) 5 0 = et vl s & (uetiont
Ay. —» : > !
(W:a.2 [l ¢12] AR L At A J
Exercise 1 (In Isabelle/HOL)
Use append::’a list = ’a list = ’a list to concatenate 2 lists
of bool, 2 lists of nat, and 3 lists of nat. )
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A word about curried functions and partial application (II)

® To associate the value of aterm tto a namen...... definition "n=t"

Exercise 2 (In Isabelle/HOL)
@ Define the (non-curried) function addNc adding two naturals
® Use addNc to add 5 to 6
©® Define the (curried) function add adding two naturals
® Use add to add 5 to 6

O Using add, define the incr function adding 1 to a natural
® Apply incr to 5

@ Define a function appl adding 1 at the beginning of any list of
naturals, give an example of use
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A word about higher-order functions (Il)

Exercise 3 (In Isabelle/HOL)

@ Define a function triple which applies three times a given function
to an argument

® Using triple, apply three times the function incr on 0
© Using triple, apply three times the function appl on [2,3]
©® Usingmap :: ('a= 'b) = 'alist = 'b list

from the list [1,2, 3] build the list [2,3, 4]
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A word about higher-order functions

Definition 8 (Higher-order function)

A higher-order function takes one or more functions as parameters.

Example 9 (Some higher-order functions and their evaluation)
e AxAf.fx:'a=(a='b)="b
e \fAx.fx:('a='b)="a="'b

® \fAx.f(x+1)(x+1): (nat = nat = nat) = nat = nat

(A Ax. f(x+1)(x+1)) add 20
—»g (Ax.add (x +1)(x+1)) 20
—»5 add (20 + 1) (20 + 1)
=(AxAy.x+y)(20+1)(20+1)
—5 (20 + 1) + (20 + 1)

= 42
v
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Interlude: a word about semantics and verification
® To verify programs, formal reasoning on their semantics is crucial!
® To prove a property ¢ on a program P we need to precisely and
exactly understand P’s behavior
For many languages the semantics is given by the compiler (version)!
e C, Flash/ActionScript, JavaScript, Python, Ruby, ...

Some languages have a (written) formal semantics:
® Java ?, subsets of C (hundreds of pages)

® Proofs are hard because of semantics complexity (e.g. KeY for Java)

“http://docs.oracle.com/javase/specs/jls/se7/html/index.html

Some have a small formal semantics:
® Functional languages: Haskell, subsets of (OCaml, F# and Scala)

® Proofs are easier since semantics essentially consists of a single rule
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http://docs.oracle.com/javase/specs/jls/se7/html/index.html

Constructor terms

Isabelle distinguishes between constructor and function symbols

e A function symbol is associated to a function, e.g. inc

® A constructor symbol is not associated to any function

Definition 10 (Constructor term) J

A term containing only constructor symbols is a constructor term

A constructor term does not contain function symbols
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Constructor terms — the quiz

Quiz 2
® Nil is a term? \_! | True ||| . | False |
® Nil is a constructor term? \_! | True ||| . | False |
® (Cons (Suc 0) Nil) is a constructor term?

‘_. | True ||| . | False |
® ((Suc 0), Nil) is a constructor term? ‘_. | True ||| . | False |
® (inc (Suc 0)) is a constructor term? ‘_. | True ||| . | False |
® (Cons x Nil) is a constructor term? ‘_. | True ||| . | False |
® (inc x) is a constructor term? ‘_. | True ||| . | False |

)
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Constructor terms (I1)

All data are built using constructor terms without variables

...even if the representation is generally hidden by Isabelle/HOL

Example 11
e Natural numbers of type nat are terms: 0, (Suc 0), (Suc (Suc 0)),

® Integer numbers of type int are couples of natural numbers:
...(0,2), (0,1), (0,0), (1,0), ...

where (0,2) = (1,3) = (2,4) = ... all represent the same integer —2
® |ists are built using the operators
® Nil: the empty list
® Cons: the operator adding an element to the (head) of the list
Be careful! the type of Cons is Cons::’a = ’a list = ’a list

The term Cons 0 (Cons (Suc 0) Nil) represents the list [0, 1]
L e

Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:

® Usual decimal representation for naturals, integers and rationals
1, 2, -3, -45.67676, ...

® [] and # for lists, e.g. Cons 0 (Cons (Suc0) Nil) = 0#(1#]]) = [0, 1]
(similar to [] and :: of OCaml)

e Strings using 2 quotes e.g. ’>’toto’’ (instead of "toto")

Exercise 4
@ Prove that 3 is equivalent to its constructor representation
@® Prove that [1,1,1] is equivalent to its constructor representation
© Prove that the first element of list [1,2] is 1
O Infer the constructor representation of rational numbers of type rat

@ Infer the constructor representation of strings
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Isabelle Theory Library

Isabelle comes with a huge library of useful theories
e Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex ...
e Data structures: Lists, Sets, Tuples, Records, Maps . ..
e Mathematical tools: Probabilities, Lattices, Random numbers, ...

All those theories include types, functions and lemmas/theorems

Example 12

Let's have a look to a simple one Lists.thy:
¢ Definition of the datatype (with shortcuts)
® Definitions of functions (e.g. append)

® Definitions and proofs of lemmas (e.g. length append)
lemma "length (xs @ ys) = length xs + length ys”

e Exportation rules for SML, Haskell, Ocaml, Scala (code_printing)

/31
Outline
® Terms
® Types
® Typed terms
® \-terms
® Constructor terms
® Functions defined using equations
® |ogic everywhere!
® Function evaluation using term rewriting
® Partial functions
1957

Isabelle Theory Library: using functions on lists

Some functions of Lists.thy
® append:: ’a list = ’a list = ’a list
® rev: ’a list = ’a list
® length:: ’a list = nat
® map:: (’a = ’b) = ’a list = ’b list

Exercise 5
@ Apply the rev function to list [1,2,3]
@® Prove that for all value x, reverse of the list [x] is equal to [x]
© Prove that append is associative
O Prove that append is not commutative
@ Using map, from the list [1,2,3] build the list [2,4, 6]

® Prove that map does not change the size of a list
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Defining functions using equations

® Defining functions using A-terms is hardly usable for programming

® Isabelle/HOL has a "fun" operator as other functional languages

Definition 13 (fun operator for defining (recursive) functions)
funf:'"n=>...=>m=>r1"

where
"ftl .t = b | whereforalli=1...nand k=1...m
| (tk:7) are constructor terms possibly
"t = M with variables, and (r*::7)

Example 14 (The member function on lists (2 versions in cm2.thy))

fun member:: "’a => ’a list => bool"
where

"member e []
"member e (x#xs)

False" |
(if e=x then True else (member e xs))"
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Function definition — the quiz Function definition — the quiz (II)

Quiz 3 (Is this function definition correct? [N | Yes || [l | No |)
f;n f:: "mat = mnat = bool® Quiz 6 (Is this function definition correct? ‘_. | Yes ||| R] | No |)
where
"fxy = (x+ y)" fun pos2:: "nat = bool"
’ where
Quiz 4 (Is this function definition correct? ‘_. | VYes || R] | No |) ::gz:g (()X=+F?;Si"h|,ue,.
fun g:: "nat = nat = bool" ’
where . : . o _onc
e @ g = Telesh Quiz 7 (Is this function definition correct? \_! | Yes ||| . | No |)
< fun isDivisor:: "nat =
Quiz 5 (Is this function definition correct? [N | Yes || [l | No |) nat = bool"
" " where
i;lelrzos“ nat = bool "isDivisor x y = ( z. x * z = y)" )
"pos 0 = False" |
"pos (Suc x) = True"

Ve e
Total and partial Isabelle/HOL functions Total and partial Isabelle/HOL functions (I1)
Definition 15 (Total and partial functions)
A function is total if it has a value (a result) for all elements of its domain.
o P Theorem 18
A function is partial if it is not total. o ) )
‘ Complete and terminating Isabelle/HOL functions are total, otherwise they
o . o tial.
Definition 16 (Complete Isabelle/HOL function definition) are parta b
funf:'"'n=>...=>1m5,=>1" Question 1
wl:erel 1 1 fis compl?te if any ca.II ft ...ty with Why termination of f is necessary for f to be total?
ftp ...t = r | (i ::7), i=1...nis covered by one /
;'.,.rtlm o | case of the definition. Remark 1
U
/ All functions in Isabelle/HOL needs to be terminating!
Example 17 (Isabelle/HOL "Missing patterns” warning)
When the definition of f is not complete, an uncovered call of f is shown.
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Outline

® Terms

® Types
Typed terms
A-terms
Constructor terms

@® Functions defined using equations
® [ ogic everywhere!
® Function evaluation using term rewriting
® Partial functions
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Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

(* recall that Nil=[]

Replacement of equals by equals = Term rewriting

The first equation (append Nil x) = x means that
® (concatenating the empty list with any list x) is equal to x

® we can thus replace

® any term of the form (append Nil t) by t
® wherever and whenever we encounter such a term append Nil t

(for any value t)

*)

v
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Logic everywhere!
In the end, everything is defined using logic:
® data, data structures: constructor terms
® properties: lemmas (logical formulas)
® programs: functions (also logical formulas!)

Definition 19 (Equations (or simplification rules) defining a function)
A function £ consists of a set of f.simps of equations on terms. J

To visualize a lemma/theorem /simplification rule .................... thm
For instance: thm "length_append", thm "append.simps"

To find the name of a lemma, etc. ...................... find_theorems
For instance: find theorems "append" "_ + _"

Exercise 6

Use Isabelle/HOL to find the following formulas:
e definition of member (we just defined) and of nth (part of List.thy)
® find the lemma relating rev (part of List.thy) and length
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Term Rewriting in three slides

® Rewriting term (append [] (append [] a)) using
(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

append append — a
N
Nil/ append —» Nil/ \@ X
Ni X

® We note (append Nil (append Nil a)) — (append Nil a) if
® there exists a position in the term where the rule matches
® there exists a substitution o : X +— T (F) for the rule to match.
On the example 0 = {x — a}

® We also have (append Nil a) — a

append —» append

Nil/ \a x
Ni a
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and Ni append

X
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Term Rewriting in three slides — Formal definitions Term Rewriting in three slides — Formal definitions (I1)
Definition 22 (Rewriting using an equation)

A term s can be rewritten into the term t (denoted by s — t) using an

Definition 20 (Substitution) Isabelle/HOL equation 1=r if there exists a subterm u of s and a
A substitution o is a function replacing variables of X by terms of substitution o such that u = o(1). Then, t is the term s where subterm u
T(F,X) in a term of T(F,X). has been replaced by o(r). )
Example 21 Example 23
Let F={f:3,h:1,g:1,a:0} and X = {x,y,2}. Let s = f(g(a),c) and g(x) = h(g(x),b) the Isabelle/HOL equation.
_— have f( g(a) ,c) — f( h(g(a),b) ,c)

Let o be the substitut = h(z)}. we , ) ;

et o be the substitution 0 = {x — g(a),y — h(z)} because & (x) _ o) ) and o — {x s a}
Lt & = P05 0l On the opposite t = f(a, c) cannot be rewritten by g(x) = h(g(x),b).
We have o(t) = f(h(g(a)), g(a), g(h(z)))-

’ Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function
definition and only from left to right.

v
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Term rewriting — the quiz Isabelle evaluation = rewriting terms using equations

(1) append Nil x
(2) append (x#xs) y

X
(x# (append xs y))

Quiz 8 Rewriting the term: append [1,2] [3,4] with (1) then (2) (Rmk 2)
Let];: i 2’5;’;' 1’3';)} and ' = {,’;’y}‘ _ _ First, recall that [1,2] = (1#(2#Nil)) and [3,4] = (3#(4#Nil))!
([ ] =
ewriting the term f(g(g(a))) with equation _g(x X IS . append (1#(2#N11)) (3#(4ANIL)) wp——
| Possible || . | Impossible | . .
(1# (append (2#Nil) (3#(4#Nil))))}
* To rewrite the term f(g(g(a))) with g(x) = x the substitution o is with 0 = {x = 1,xs = (2#Nil), y — (3#(4#Nil))}
‘_. | {x— a} ||| . | {x—g(a)} | (1# (append (2#Nil) (3#(4#Nil)))) —(2)
» _ , (1# (2#(append Nil (3#(4#Nil)))))
* Rewriting the term f(g(g(y))) with equation g(x) = x is _ with o = {x > 2,xs = Nil,y — (3#(4#Nil))}
| Possible || Bl | Impossible | (1#(2# (append Nil (3#(4#Nil)))))  —y)
® Rewriting the term f(g(g(y))) with equation g(f(x)) = x i (%#(2# (3#(4#N11)) )) - [1,2,3,4] !
\_! | Possible ||| . | mp0551b/e | with o = {x — (3#(4#Nil))}
Example 24
See demo of step by step rewriting in Isabelle/HOL! J
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Isabelle evaluation = rewriting terms using equations (I1)

(1) member e [] = False
(2) member e (x # xs)= (if e=x then True else (member e xs))

Evaluation of test: member 2 [1,2,3]
—» if 2=1 then True else (member 2 [2,3])
by equation (2), because [1,2,3] = 1#[2,3]
—» if False then True else (member 2 [2,3])
by Isabelle equations defining equality on naturals
—» member 2 [2,3]
by Isabelle equation (if False then x else y = y)
—» if 2=2 then True else (member 2 [3])
by equation (2), because [2,3] = 2#[3]
—» if True then True else (member 2 [3])
by Isabelle equations defining equality on naturals
— True
by Isabelle equation (if True then x else y = x)
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Lemma simplification= Rewriting + Logical deduction (II)

(1) member e []
(2) member e (x # xs)

False
(if e=x then True else (member e xs))

(3) append [] x =x
(4) append (x # xs) y x # (append xs y)

Exercise 7

Is it possible to prove the lemma member u (append [u] v) by
simplification/rewriting?

Exercise 8

Is it possible to prove the lemma member v (append u [v]) by
simplification/rewriting?

Demo of rewriting in Isabelle/HOL!
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Lemma simplification= Rewriting + Logical deduction

(1) member e [] = False
(2) member e (x # xs)= (if e=x then True else (member e xs))

Proving the lemma: member y [z,y,v]
—» if y=z then True else (member y [y,v])
by equation (2), because [z,y,v] = z#[y,v]
— if y=z then True else (if y=y then True else (member y [v]))
by equation (2), because [y,v] = y#[v]
— if y=z then True else (if True then True else (member y [v])
because y=y is trivially True
— if y=z then True else True
by Isabelle equation (if True then x else y = x)
— True
by logical deduction (if b then True else True)+—True
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Evaluation of partial functions

Evaluation of partial functions using rewriting by equational definitions
may not result in a constructor term

Exercise 9

Let index be the function defined by:

fun index:: "’a => ’a list => nat"
where
"index y (x#xs) = (if x=y then O else 1+(index y xs))"

Define the function in Isabelle/HOL
What does it computes?
Why is index a partial function? (What does Isabelle/HOL says?)

For index, give an example of a call whose result is:

® a constructor term
® 3 match failure

® Define the property relating functions index and List.nth

p
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Scala export + Demo
To export functions to Haskell, SML, Ocaml, Scala

export_code member index in Scala

test.scala

........ export_code
For instance, to export the member and index functions to Scala:

object cm2 {

def member[A : HOL.equall(e: A, x1: List[A]): Boolean
(e, x1) match {

case (e, Nil) => false
case (e, x :: xs) => (if (HOL.eq[A]l(e, x)) true

else member[A] (e, xs))
}

def index[A : HOL.equal] (y: A, x1: List[A]): Nat
(y, x1) match {
case (y, x :: xs) =>

(if (HOL.eq[A](x, y)) Nat(0)

else Nat(1) + index[A](y, xs))
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