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Certification de résultat pour l’analyse de programme
relationnelle

Résumé : Nous proposons une analyse générique de programme relationnelle pour un langage de
bytecode impératif avec pile d’opérande, procédures, tableaux et variables globales. Cette analyse
est instanciée avec un domaine abstrait de polyèdres. Elle propose une inférence automatique
d’invariants de boucle et de préconditions/postconditions de procédures, ainsi qu’une vérification
efficace du résultat de l’analyse par un vérificateur simple. Les invariants, qui peuvent être grands,
peuvent être spécialisés pour prouver une propriété de sûreté en utilisant une technique automa-
tique de compression de taille de certificat. Le résultat de l’analyse peut être vérifié efficacement
en annotant le programme avec une partie des invariants et quelques certificats d’inclusion de
polyèdre, qui permettent d’éviter certaines calculs polyédriques complexes comme le calcul de
l’enveloppe convexe de deux polyèdres. Nous obtenons des certificats d’inclusion petits et facile-
ment vérifiables grâce au lemme de Farkas pour prouver l’absence de solution dans un système
d’inégalités linéaires. Le vérificateur ainsi obtenu est suffisamment simple pour être entièrement
certifié avec l’assistant à la preuve Coq.

Mots-clés : Analyse statique, interprétation abstraite, bytecode Java, Coq
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1 Introduction

Logic-based, static program verification, be it in form of abstract interpretation, symbolic model
checking or interactive proving of programs, is used in a number of ways to improve the confidence
in safety-critical systems and for protecting host machines from malicious code, as e.g., done by the
Java byte code verifier. As applications and the program logics grow in complexity, an automated
technique for verifying program invariants based on a program logics should ideally meet all of
the following three requirements:

� Automatic Inference: the complexity of both programs and the underlying logic can quickly
make it burdensome to conduct program proofs manually. Automatic inference of program
properties is necessary to obtain a technique that scales.

� Result certification: when inference is available, it often relies on advanced deductive methods
for inferring an invariant whose size and complexity make it difficult to ascertain its validity
manually. Efficient checking of the result of the inference or of any proposed invariant in
general becomes important.

� Small Trusted Computing Base (TCB): the result checker becomes the cornerstone of the
reliability of the verification framework. In order to reduce the part of the code base that
needs to be trusted without proof, the checker should be kept sufficiently simple and small
in order to be able to verify the checking algorithmics mechanically.

Program verification based on general Hoare-style program logics may follow the Verification
Condition Generator (VCGen) approach of e.g., Extended Static Checking by Flanagan, Leino et
al. [18] or use expressive type systems such as the dependent type systems of Xi and Pfenning [36]
for proving properties of programs. The approaches based on VCGens are generally complete for
partial correctness and will produce a set of verification conditions which, when satisfied, will allow
to conclude that a given program property holds in the logic. Verification conditions often fall into
fragments of logic that require them to be proved by dedicated decision procedures or theorem
provers. VCGens and the type-based approaches are primarily concerned with invariant checking
and discard part of the inference problem by relying on loop invariants and pre-post-condition of
methods to be provided by the programmer. In terms of small TCB, the VCGens remain complex
software which are hard to prove correct in extenso. The machine-checked formalizations e.g., by
Nipkow, Wildmoser et al. [33, 34] show that this is indeed possible to certify an entire VCGen
inside a proof assistant but also that this remains a major software certification challenge.

Another strand of program verification is based on abstract interpretation. Abstract inter-
pretation is an automatic technique for inferring program properties in the form of fixpoints of
monotone data flow functions. As a theory of proving programs it has strong semantic founda-
tions. At the same time it should be noted that the algorithmics of the domains underlying the
more advanced analyses such as polyhedral analysis (initially described by Cousot and Halbwachs
[15]) is highly non-trivial. Checking an invariant is in theory simple as it only requires one more
iteration to check that a property is indeed a fixpoint but, as said, this computation does in cer-
tain cases rely on non-trivial algorithmics that forms part of what must be trusted. In previous
work [11, 29], some of the authors formalised the theory of abstract interpretation inside the proof
assistant Coq and extracted Caml implementations of a variety of program analyses. This Certi-
fied Abstract Interpretation approach represents a systematic way of reducing the TCB of static
analyzers and fulfills the three requirements listed above. However, a fully mechanised correctness
proofs of more advanced program analysers such as an optimised, polyhedral-based analysis would
require an enormous effort in terms of program certification.

The purpose of this paper is to demonstrate that by focusing on certifying the result of the
analysis rather than the analysis itself, it is possible to develop a verification framework for ad-
vanced program properties that satisfies all of the three desired properties and, at the same time,
requires a significantly smaller effort in order to be proved correct. This idea was previously used
by Wildmoser et al [32] who use the result of an untrusted interval analysis in a VCGen for byte
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4 Besson, Jensen, Pichardie & Turpin

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key∧|vec0| = |vec|∧−2+3·low ≤ 2·high+mid∧−1+2·low ≤ high+2·mid∧−1+low ≤ mid ≤
1+high∧high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧2 ≤ |vec0| ∧2+high+mid ≤
|vec0|+ low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 1: Binary search

code and by Leroy [23] in his certification of a compiler back-end where he, rather than certifying
the complex graph-coloring algorithms for register allocation, proves the correctness of a checker
that verifies a given coloring returned by an untrusted graph-coloring algorithms. Here, we gener-
alise this idea by developing a relational analysis framework together with a certified checker. The
basic observation is that an abstract interpretation can be decomposed into an abstract domain
of properties, a generic program logic for reasoning about these properties and a fixpoint engine
for solving recursive equations over the abstract domains. The inference does not need to use
certified abstract domain operations and fixpoint engines, and the checking of invariants does not
need to use a fixpoint engine at all. We take advantage of this to design a checker that re-uses the
program logic but replaces the more complex domain operations with simpler ones, at the expense
of providing some extra information in the certificate accompanying a program.

2 Overview

In the first part of this paper, we will develop a fully relational, interprocedural analyser which
automatically infers an invariant for each control point in the program, a pre-condition that must
hold at the point of calling a procedure and a post-condition that is guaranteed to hold when the
procedure returns. Relational analyses are useful for finding loop invariants needed for proving
program safety, e.g. when verifying the resource usage of programs or verifying safety properties
related to safe memory access such as checking that all array accesses are within bounds. We will
take Safe Array Access as an example safety policy and illustrate our approach with the Binary
Search example given in Fig. 1, showing how the analysis will prove that the instruction that
accesses the array vec with index mid will not index out of bounds.

We have annotated the code of Binary Search with the invariants that have been inferred
automatically. Invariants refer to values of local and global variables and can also refer to the
length of an array. For example, the invariant (I3) asserts among other properties that when
entering the while loop, the relation 0 ≤ low < high < |vec| is satisfied. Similarly, the post-
condition ensures that the result is a valid index into the array being searched, or −1, indicating
that the element was not found. In addition, the analysis introduces a 0-indexed variable (such as
e.g. key0 in the example) for each parameter (and also for the global variables, of which there are
none in the example) in order to refer to its value when entering the procedure. The effect of this
is that the invariant on exit of the program defines a relation between the input and the output
of the procedure, thus yielding a summary relation for the procedure.

INRIA
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2.1 Compressing invariants

Abstract interpretations may give you more information than you need for proving a particular
property. In the case of the Binary Search example, if we are only interested in proving the validity
of array accesses, there are a number of relations between variables in the invariants that can be
forgotten. Reducing the number of constraints and the number of variables under consideration
can lead to a significant gain in execution time when it comes to checking a proposed invariant.
For example, pruning the invariants in Fig. 1 with respect to this property yields the simpler
invariant shown in Fig. 2:

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′1) |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I′2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′4) |vec| − |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧
// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0| − high− 1 ≥ 0

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|
}

// (I′6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 2: Binary search after invariant pruning

Notice that the inferred loop invariant I ′3 is close to what a specifying programmer of Bi-
nary Search might have come up with, but here produced automatically. We explain pruning of
procedures in Section 7.

2.2 Analysing a stack-based language

Polyhedral analysis of While languages is well understood but we want our framework to be able
to analyse byte code programs and not only source code. We could in theory avoid the problem by
transforming the program into three-address code and treat each stack location as a local variable
but this transformation is expensive from an algorithmic point of view, as it increases the number
of times that the relation has to be updated. Instead, we achieve the effect of this transformation
by defining an analysis for stack-oriented byte code that combines relational abstract interpretation
with symbolic execution, following an idea previously used for analysing Java byte code by Xi and
Xia [37] and Wildmoser et al [32]. This technique abstracts the environment of local variables by
a relation (e.g., a polyhedron) and replace the operand stack with a stack of symbolic expressions
used to “decompile” the operations on the operand stack. For example, the comparison of variables
low and high will be compiled to the byte codes below, which are analysed in a state consisting
of the relation I2 as defined in Fig. 1 and an abstract stack that evolves as values are pushed onto
the stack.

[] I2

7 : ipush 0 0 I2

8 : iload high high :: 0 I2

9 : iload low low :: high :: 0 I2

10 : isub (high−low) :: 0 I2

11 : if icmpge 56 [] I3

RR n° 6333



6 Besson, Jensen, Pichardie & Turpin

Before the comparison in instruction 11, the stack top contains the expression high−low, reflecting
that in the real execution the stack top at this point will contain the value of this expression. When
we learn from the test that the expression high>low evaluates to true in the state immediately
following the comparison (and only then), we update the relation accordingly to obtain invariant
I3. Similarly, we have to update the relation when assigning a new value to a variable. For
example, the instruction that assigns (high+low)/2 to mid is compiled and analysed as shown
below. Again, the relation I3 is only updated when the assignment to mid is done, to yield relation
I4.

[] I3

14 : iload low low I3

15 : iload high high :: low I3

16 : iadd (high+low) I3

17 : ipush 2 2 :: (high+low) I3

18 : idiv ((high+low)/2) I3

19 : istore mid [] I4

More generally, with the abstract stack of expressions, only the comparisons and assignment to
variables require updating the relation. In a polyhedron-based analysis this is a substantial saving.

2.3 Result checking with certificates

Checking an invariant obtained by computing a post-fixpoint of an abstract interpretation is in
theory simple as it only requires one more iteration to check that it is indeed a post-fixpoint.
In addition, only invariants at certain program points such as loop headers are required for re-
building an entire invariant in one iteration. Lightweight Bytecode Verification by Rose [30] and
the more general Abstraction-Carrying Code by Albert, Puebla and Hermenegildo [1] exploit this
to construct efficient checkers for invariant-based program certificates. For the code in Fig. 2, only
I ′2 is required.

The inference of invariants using our relational analysis uses an iterative fixpoint solver over an
abstract domain of polyhedra and is in principle amenable to the same technique. However, despite
efficient implementations of basic polyhedral operations, the algorithmic complexity of operations
such a computing the least upper bound (i.e. the convex hull) of two polyhedra remains high, and
certifying them in a proof assistant would be a major undertaking.

Instead, we propose an enriched certificate format which has the virtue of being simpler to
check, at the cost of sending more information than in basic fixpoint reconstruction. We exploit
that, for the checker, the only important property of the convex hull operators is that it produces
an upper bound of two polyhedra and therefore can be replaced by inclusion checks with respect
to an upper bound that is proposed by the certificates. Upper bounds are computed at join points
so in Fig. 2 we would also supply I ′5.

Safety checks also reduces to inclusions of polyhedra as verifying the array access vec[mid]
amounts to ensuring that I ′4 implies 0 ≤ mid < |vec|. By simple propositional reasoning, this
reduces to proving that the linear systems of constraints −mid−1 ≥ 0∧I ′4 and mid−|vec| ≥ 0∧I ′4
have no solution. Due to a result by Farkas, such problems can be checked efficiently using
certificates by a simple matrix computation. The key insight is that unsolvability follows from
the existence of a positive combination of the constraints which yield a strict negative constant.
This would lead to a contradiction because the sum and product of positive quantities cannot
be strictly negative. The certificate is therefore a vector which records the coefficients of the
positive combination. For example, the certificate [2;2;0;0;1;2] proves that the constraints
mid− |vec| ≥ 0 ∧ I ′4 are unsatisfiable, as the expression

2 · (mid− |vec|) + 2 · (|vec| − |vec0|) + 0 · · · ·+ 0 · · · ·+
1 · (2 · high− 2 · mid− 1) + 2 · (|vec0| − high− 1)

evaluates to −2. We explain these certificates in detail in Section 8.

INRIA
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2.4 Certified certificate checkers

The result checking technique explained above already drastically reduces the TCB of the analysis
result which only rely on the result checker. To further reduce the TCB, we have machine-
checked the result checker of our analysis in the Coq proof assistant. The main components of the
formalisation are

1. a predicate Safe:program→Prop which models the safe programs with respects to the the
semantics described in Section 4,

2. a function checker:program→certificate→bool, which checks the safety of a program using
a certificate containing a (partial) result of an analysis and some inclusion certificates,

3. a machine checked proof establishing the correctness of the checker:

Theorem checker_correct :
∀ p cert, checker p cert = true → Safe p.

The Trusted Computed Base is hence reduced to the Coq type checker and the formal definition
of program safety.

Once the certified result checker is verified (by the Coq type checker) and installed by the code
consumer, two scenarios can be envisaged to verify the safety of programs sent by producers. In the
first one, the consumer may use an efficient Ocaml version of the checker, extracted from the Coq
version thanks to the Coq extraction mechanism. The other alternative is related to proof by re-
flection. For each program p and certificate cert the consumer may build a foundational Coq proof
of Safe p. To do so he only has to check in Coq the term checker_correct p cert refl_eqtrue

where refl_eqtrue denotes a proof of true=true. It is the role of the Coq reduction engine to
verify during type checking if true=true is equivalent to checker p cert = true by running the
checker inside Coq. In this way we combine two desirable features which are often difficult to
reconcile in state-of-the art Proof Carrying Code: foundational proofs and small certificates.

3 Notations

Let A and B be sets. If A and B are disjoint then A + B is the disjoint sum of A and B. We
write A⊥ the set A + {⊥}. For f ∈ A → B⊥, dom(f) = {a ∈ A | f(x) 6= ⊥}. Let f ∈ A → B,
f [x 7→ v] is the function identical to f everywhere except for x for which it returns v. The notation
[x1 7→ v1; . . . ;xn → vn] stands for a function f of domain {x1, . . . , xn} such that f(xi) = vi. A∗

is the set of lists of elements of A. We write [] for the empty list and a0 :: . . . :: an−1 is a list l
of length n (|l| = n) whose head (resp. tail) is a0 (resp. an−1). l[i] is the i-th element of l. We
write ai the list that is the repetition of a, i times. Let V , W be totally ordered sets. For x ∈ V ,
ιV (x) is the index of x in set V and ι−1

V is the inverse function. We abuse notations and identify
A|V | with V → A i.e., given a finite ordered set, V = {x1, . . . , xn} such that x1 < . . . < xn, we
identify the finite mapping [x1 7→ v1, . . . xn 7→ vn] with the n-tuple (v1, . . . , vn). We will write
AV to denote both A|V | and V → A. Let ρ ∈ AV and V ′ ⊆ V , ρ|V ′ ∈ AV ′

is the restriction
of e over the variables of V ′ such that for all x ∈ V ′, ρ|V ′(x) = e(x). Given V and W disjoint
set of variables, ρ1 ∈ AV and e2 ∈ AW , we write ρ1 ⊕ ρ2 ∈ AV +W for the finite mapping such
that (ρ1 ⊕ ρ2)|V = ρ1 and (ρ1 ⊕ ρ2)|W = ρ2. Let W and W ′ ordered sets of same cardinality. If
ρ ∈ AV +W , then ρW→W ′ ∈ AV +W ′

is obtained by renaming the variables of W to the variables
in W ′. Formally, we have ρW→W ′(x) = ρ(x) if x ∈ V and ρW→W ′(x) = ρ(ι−1

W (ιW ′(x))) if x ∈ W ′.
To make the distinction clear between syntactic expressions and values, syntactic expressions are
bracketed (x·y). For example, we write x1 + ey a syntactic expression built by applying the +
operator to the constant 1 and the syntactic expression e.

RR n° 6333



8 Besson, Jensen, Pichardie & Turpin

4 A byte code language and its semantics

We use a simple stack-based byte code language to illustrate our ideas. Features include integers,
dynamically created (unidimensional) array of integers, static methods (procedures) and static
fields (global variables).

Programs are lists of methods and a method consists of a name, a number of arguments and
a list of instructions. In the following, f ranges over the set S of static field names, r ranges over
the set R = {r0, . . . , r|R|} of local variables and id ranges over the set MethId of method names.
Moreover, i and n range over N or Z depending on the context and p is used for control points.

P ∈ Prog = Meth∗

m ∈ Meth = Sig × Code
Sig = MethId× N

c ∈ Code = Instr∗

instr ∈ Instr
instr ::= Nop | Ipush n | Iinc r n where n ∈ Z

Pop | Dup | Ineg | Iadd | Isub | Imult | Idiv
Load r | Store r
Getstatic f | Putstatic f
Newarray | Arraylength | Iaload | Iastore
Goto p | If icmp cond p

where cond ∈ {=, 6=, <,≤}
Invoke sig where sig ∈ Sig
Iinput | Return

The instruction set has operators for integer arithmetic and for manipulating local variable,
static fields and an operand stack. Instructions on arrays permit to create, obtain the size of,
access and update arrays. The flow of control can be modified unconditionally (with Goto), and
conditionally with the family of conditional instructions If icmp cond which compare the top
elements of the run-time stack and branch according to the outcome. Input of data is modelled
with the instruction Iinput . The inter-procedural layer of the language contains an instruction
Invoke for invoking a method and an instruction Return which transfers control to the calling
method, and, at the same time returns the top of the operand stack as result by pushing it onto
the operand stack of the caller (see the operational semantics below).

A program state is composed of a frame stack, the value of static fields and a heap of arrays
and has the form <(m, p, s, l)∗, g, h>. Each frame is a triple composed of a method m, a control
point p to be executed next, an operand stack s local to a frame and l a partial mapping from
local variables to values. The global heap h is used for storing allocated arrays and is modelled
as a partial function from memory locations to arrays. A special error state Error models the
run-time error arising from indexing an array outside its bounds.

ref ∈ Location
v ∈ Val = Z + Location
s ∈ Stack = Val∗

l ∈ LocVar = R → Val
a ∈ Array = Z∗
h ∈ Heap = Location → Array⊥
g ∈ Static = S → Val

Frame = Meth × N× Stack × LocVar
State = Frame∗ × Static ×Heap

+ {Error}

The byte code language is given an operational semantics via a transition relation → between
states. Some of the rules of the definition of → are shown in Fig. 3. In the semantics, for a method
m = ((id, n), c), we write m[p] for c[p]. Note that the language is untyped: registers and fields

INRIA



Result certification for relational program analysis 9

may (and will) point successively to values of different types during execution. Instructions that
require arguments with a certain type get stuck in case of error. Also, the number of registers |R|
is the same for all methods. Unused registers and uninitialised fields have the value 0. Finally, we
only consider states <st, g, h> such that every location appearing in st, g is in dom(h), which is
clearly preserved by the semantics in Fig. 3.

s, l, g, h
Ipush n−→ n :: s, l, g, h n2 :: n1 :: s, l, g, h

Iadd−→ n1 + n2 :: s, l, g, h

l(r) = n

s, l, g, h
Iinc r i−→ s, l[r 7→ n + i], g, h s, l, g, h

Load r−→ l(r) :: s, l, g, h

v :: s, l, g, h
Store r−→ s, l[r 7→ v], g, h s, l, g, h

Getstatic f−→ g(f) :: s, l, g, h

h(ref ) = ⊥ n ≥ 0

n :: s, l, g, h
Newarray−→ ref :: s, l, g, h[ref 7→ 0n]

h(ref ) = a 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload−→ a[i] :: s, l, g, h

h(ref ) = a ¬ 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload−→ Error

m[p] = instr s, l, g, h
instr−→ s′, l′, g′, h′

<(m, p, s, l) :: st, g, h> →P <(m, p + 1, s′, l′) :: st, g′, h′>

m[p] = If icmp cond p’ n1 cond n2

<(m, p, n2 :: n1 :: s, l) :: st, g, h> →P <(m, p′, s, l) :: st, g, h>

m[p] = If icmp cond p’ ¬ n1 cond n2

<(m, p, n2 :: n1 :: s, l) :: st, g, h> →P <(m, p + 1, s, l) :: st, g, h>

m[p] = Invoke (mn,n) m′ = ((mn,n), c) ∈ P

<(m, p, (vn−1 :: . . . :: v0 :: s), l) :: st, g, h> →P

<m′, 0, [], [r0 7→ v0; . . . ; rn−1 7→ vn−1; rn 7→ 0; . . . ; r|R| 7→ 0] :: (m, p, s, l) :: st, g, h>

m[p] = Return

<(m, p, v :: s, l) :: (m′, p′, s′, l′) :: st, g, h> →P <(m′, p′+1, v :: s′, l′) :: st, g, h>

Figure 3: Operational semantics of the byte code language

5 Relational analysis of byte code

In this section, we describe a generic, relational analysis for byte code, parameterised with respect
to a numeric relational domain used to abstract the values of the local and global variables of the
program.

5.1 Symbolic analysis of the stack

Rather than treating each stack location as a new local variable and include this variable in the
numeric abstraction describing the state, we integrate a symbolic de-compilation into the analysis
that abstracts a stack location by a symbolic expression describing how the value at that stack
location is computed from the values of the local variables. The operand stack is hence abstracted
by a stack of symbolic expressions which represents relation between operands, static fields and
local variables.

The following definition of expressions and guards has two purposes: they form the basis of
the abstract domain for stacks (Expr only), which is specific to stack-based byte code, and they
serve as the interface with the numeric relational domain, which is parametric. Note that those
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10 Besson, Jensen, Pichardie & Turpin

two aspects of the analysis are completely independent apart from that.

ExprV 3 e ::= n | x | ? | e � e x ∈ V, � ∈ {+,−,×, /}
GuardV 3 t ::= e on e on∈ {=, 6=, <,≤, >,≥}

The expression ? represents an unknown value and is responsible for the non-deterministic eval-
uation of expressions. Analyses will use this expression to model interactive inputs and abstract
away numeric quantities not in the scope of the analysis. For instance, our analysis will not keep
track of values stored in arrays.

The semantics JeKρ and JtKρ of expressions and guards with respect to an environment ρ ∈
V → Z are given below.

JnKρ = {n} JxKρ = {ρ(x)} J?Kρ = Z
Je1�e2Kρ = {n1 � n2 | n1 ∈ Je1K, n2 ∈ Je2K}
Je1one2Kρ ⇐⇒ ∃ n1 ∈ Je1Kρ, n2 ∈ Je2Kρ n1 on n2

Note that this is not the whole concretisation function for symbolic expressions, which is described
later (see Fig. 4).

Symbolic stacks Concrete operand stacks are abstracted by lists of symbolic expressions. To
deal correctly with values which are returned after a method call we use auxiliary variables in a
given set A, so the symbolic abstract domain for stacks is Expr∗R+S+A.

5.2 Numeric relational domain specification

Apart from symbolic expressions stacks, the byte code analysis is specified with respect to an
abstract numeric relational interface (defined below) that can be instantiated with standard rela-
tional abstract domains. We thus assume a domain D parameterised over a (finite) totally ordered
set of variables V .

Language independent operators An abstract element is mapped to a set of environments
in ZV by the concretisation function γ : DV → P(ZV ). To manage sets of variables, D is equipped
with a projection operator ∃V ′ : DV +V ′ → DV , an extension operator EV ′ : DV → DV +V ′ and
a renaming operator ·W→W ′ : DV +W → DV +W ′ .The abstract domain is also equipped with a
partial order v ⊆ DV ×DV and meet and upper bound operators u,t : DV ×DV → DV . These
components are language-independent.

Language dependent operators The abstract assignment of an expression e ∈ ExprV to a
variable x ∈ V is modelled by the operator Jx := eK] : DV → DV . A guard t ∈ GuardV may
be abstracted by two operators assume](t), ensure](t) : Dv: the assume] operator computes an
over-approximation of the guard, while ensure] computes an under-approximation.

Definition 5.1 states formally the requirements over the operators of abstract domain DV .

Definition 5.1. An abstract domain D is a family of sets DV with:

� a concretisation function γ : DV → P(ZV ),

� a decidable ordering relation v ⊆ DV × DV such that

d v d′ ⇒ γ(d) ⊆ γ(d′),

INRIA



Result certification for relational program analysis 11

� a projection ∃V ′ : DV +V ′ → DV , an extension EV ′ : DV → DV +V ′ and a renaming ·W→W ′ :
DV +W → DV +W ′ operators such that:

γ(∃V ′(d)) = {ρ|V | ρ ∈ γ(d)}
γ(EV ′(d)) = {ρ | ρ|V ∈ γ(d)}
γ(dW→W ′) = {ρW→W ′ | ρ ∈ γ(d)} ,

� a meet operator u : DV × DV → DV such that

γ(d u d′) = γ(d) ∩ γ(d′),

� an upper bound operator t : DV × DV → DV such that

γ(d t d′) ⊇ γ(d) ∪ γ(d′),

� an abstract assignment operator Jx := eK] : DV → DV s.t.

γ(Jx := eK](d)) ⊇ {ρ[x 7→ v] | ρ ∈ γ(d) ∧ v ∈ JeKρ},

� assume], ensure] : GuardV → DV such that

γ(ensure](t)) ⊆ {ρ | JtKρ} ⊆ γ(assume](t)).

With the operator assume# of the numerical domain we define the abstract test JtK] : DV → DV

of a guard t ∈ GuardV by:

Jeone′K](l]) = assume](eone′) u l] if on∈ {=, <,≤, >,≥}
Je6=e′K](l]) = (assume](e′<e) u l]) t (assume](e<e′) u l])

The specific rule for 6= is necessary to ensure a good precision with convex polyhedra.

5.3 Analysis specification

The byte code analysis is defined by specifying for each byte code an abstract transfer function
which maps abstract states to abstract states (for non-jumping intraprocedural instruction at
least). The abstract states are pairs of the form (s], l]) where l] is a relation between local, global
and auxiliary variables and s] is an abstract stack whose elements are symbolic expressions built
from these variables. More precisely, the analysis manipulates the following sets of variables:

R: set of local variables r0, . . . , r|L|−1 of methods,

R0: set of old local variables rold
0 , . . . , rold

|P |−1 of methods, representing their initial values t the
beginning of method execution,

S: set of static fields f0, . . . , f|S|−1 of the program

S0: set of old static fields fold
0 , . . . , fold

|S|−1 of the program used to model values of static fields at
the beginning of method execution

A: set of auxiliary variable aux 0, . . . , aux |A|−1 used to keep track of results of methods in the
symbolic operand stack

Moreover, we use a “primed” version X ′ of the variable set X for renaming purposes. For each
method the analysis computes a signature Pre → Post whose meaning is

if the method is called with in a context where its arguments and the static fields
satisfy the property Pre then if the method returns, then its result, its arguments, and
the initial and final values of static fields satisfy the property Post .

RR n° 6333



12 Besson, Jensen, Pichardie & Turpin

instr Finstr

Nop (s], l]) → (s], l])
Ipush n (s], l]) →

`
n :: s], l]

´
Pop (e :: s], l]) →

`
s], l]

´
Dup (e :: s], l]) →

`
e :: e :: s], l]

´
Iadd (e2 :: e1 :: s], l]) →

`
xe2 + e1y :: s], l]

´
Isub (e2 :: e1 :: s], l]) →

`
xe2 − e1y :: s], l]

´
Imult (e2 :: e1 :: s], l]) →

`
xe2 × e1y :: s], l]

´
Idiv (e2 :: e1 :: s], l]) →

`
xe2/e1y :: s], l]

´
Ineg (e :: s], l]) →

`
x0− ey :: s], l]

´
Iinput (s], l]) → (? :: s], l])
Load r (s], l]) →

`
xry :: s], l]

´
Store r (e :: s], l]) →

`
s][?/r], Jr := eK](l])

´
Getstatic f (s], l]) →

`
xfy :: s], l]

´
Putstatic f (e :: s], l]) →

`
s][?/f ], Jf := eK](l])

´
Iinc r n (s], l]) →

`
s][xr − ny/r], Jr := r + nK](l])

´
Newarray (e :: s], l]) →

`
e :: s], l]

´
Arraylength (e :: s], l]) →

`
e :: s], l]

´
Iaload (e2 :: e1 :: s], l]) →

`
? :: s], l]

´
Iastore (e3 :: e2 :: e1 :: s], l]) →

`
s], l]

´
m[p] = instr 6∈ {Goto p’, If icmp cond p’, Invoke sig,Return}

Finstr(Loc(m, p)) v Loc(m, p + 1)
m[p] = Goto p

Loc(m, p) v Loc(m, p)

m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])`
s], Je1 cond e2K](l])

´
v Loc(m, p′)

m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])“
s], Je1 cond e2K](l])

”
v Loc(m, p + 1)

m[p] = Invoke (mn,n) ((m’,n),c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])“
∃R+S0+A

“dn−1
i=0 assume](ei = rold

i ) u ∃R0 (l])
””

S→S0
v Pre((mn, n), c′)

m[p] = Invoke sig (sig,c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])0BB@
xaux jy :: s][?/aux j ],

∃S′+{res}Jaux j := resK

0@ l]
S→S′

u ∃R0

„ dn−1
i=0 assume](ei = rold

i )S→S′

u Post(sig, c′)S0→S′

« 1A
1CCA v Loc(m, p + 1)

where p is the index of the j−th Invoke in m
m[p] = Return Loc(m, p) = (e :: s], l])

∃R+A(Jres := eK](l])) v Post(m)
(m, n, c) ∈ P

d|S|−1
i=0 assume](fi = fold

i )
dn−1

i=0 assume](rold
i = ri) u Pre(m) v Loc(m, 0)

((main, 0), c) ∈ P

> v Pre((main, 0), c)

Figure 4: Relational byte code analysis with stack de-compilation

Preconditions are actually chosen by over-approximating the context in which each method may
actually be invoked. Additionally the analysis computes at each control point of each method a
local invariant between the current (R) and initial (R0) values of local variables, the current (S)
and initial (S0) values of static fields, and some auxiliary variables (A) which are used temporarily
to remember results of method calls which are still on the stack

Definition 5.2 (Abstract domain). The abstract value for a program P is described by an element
(Pre,Post ,Loc) of the lattice

State# = Meth → DR0+S0

× Meth → DR0+S0+S+{res}
× Meth × N →

(
ExprR+S+A

? × DR0+S0+R+S+A

)
⊥
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The analysis is specified as a solution of a constraint (inequation) system associated to each
program. The constraint system is formally defined in Fig 4. Note that extensions are left
implicit. For non-jumping intraprocedural instructions, the constraint is defined via a transfer
function in Expr? × DR0+S0+R+S+A → (Expr? × DR0+S0+R+S+A)⊥. We (ab)use notation and
write (e :: s], l]) →

(
e :: e :: s], l]

)
for the function that maps a state of the form (e :: s], l])

to the resulting state
(
e :: e :: s], l]

)
and other states to ⊥. The analysis maintains a symbolic

version of the operand stack and most of the transfer functions are defined as symbolic executions.
The transfer functions for the stack operations Nop, Pop and Dup mimic the semantics of those
operations so e.g., Dup will duplicate the expression on top of the (abstract) operand stack and
hence is abstracted by the function (e :: s], l]) →

(
e :: e :: s], l]

)
. The abstraction of the instruction

Load r for fetching the value of local variable r just pushes the expression xry onto the abstract
stack (rather than projecting an abstract value of r from the relation describing the local variables).
Similarly, the abstraction of the addition operation Iadd pops the two topmost expressions e1 and
e2 from the abstract stack and replaces them with the symbolic expression xe2 + e1y.

The transfer function for the Store r operation updates the abstract environment of local
variables with the constraint that r is now equal to the value given by the expression e on top
of the abstract stack top. Formally, this is done using the operation Jx := eK] provided by the
interface of the relational domain. By the same token, all occurrences of the sub-expression xxy
in the abstract stack become invalid, as r now (potentially) has changed value, and are replaced
by the “don’t know” expression x?y. The analysis abstracts arrays references by the length of the
referenced array, so the transfer functions for Newarray(which takes the length as argument and
returns a reference to the created array) becomes the identity function. Similarly for Arraylength.

For all non-jumping instructions, we generate a constraint saying that the state following the
instruction should include the result of applying the transfer function of the instruction to the
state preceding the instruction. For the conditional If icmp cond p’, we use the abstract tests
provided by the relational domain to take the outcome of the test into account, so e.g., at program
point p′ we know that the condition cond holds between the two top elements of the stack. If
these are given by expressions e1 and e2 then we know that the symbolic expression xe1 cond e2y
evaluates to true in the current environment. The expression Je1 cond e2K](l]) in the rule for
conditionals updates the environment of local variables (l] to take this information into account.
A similar constraint is generated for the program point p + 1 using this time the negation cond of
the condition cond.

The analysis of method calls is the most complicated part. The complications partly arise
because we have several kinds of variables (static fields, local and auxiliary variables) whose
different scope must be catered for. The analysis gives rise to two constraints: one that relates
the state before the call to the pre-condition of the method and one that registers the impact of
the call on the state immediately following the call site.

When invoking a method m′ from method m, we compute an abstract state that holds before
starting executing m′ and which constrains the Pre(m′) component of the abstract element de-
scribing m′. This state registers that the n topmost expressions e1, . . . , en on the abstract stack
corresponds to the actual arguments that will be bound to the local variables of the callee m′,
by injecting the constraints ei = rold

i into the relational domain and adding them to the current
state as given by l]. Care must be exercised not to confound the parameters R0 of the caller
with the parameters of the callee, hence the projecting out of R0 before joining the constraints.
Furthermore, the local variables R, the initial values of static fields S0 and the auxiliary variables
A of method m have a different meaning in the context of method m′ and are removed from the
abstract state at the start of m′ too. Finally, the current value of static fields S in m at the
point of the method call becomes the initial value of the static fields when analysing m′, hence
the renaming of S into S0. The entire start state for m′ is thus described by the expression(

∃R+S0+A

(
l

i

assume](ei = rold
i ) u ∃R0(l

])

))
S→S0
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14 Besson, Jensen, Pichardie & Turpin

The second rule for Invoke describes the impact of the method call on its successor state. We
use an auxiliary variable aux j (chosen to be free in s#) to name the result of a method call which
is pushed onto the stack. This variable is constrained to be equal to the variable res which receives
the value returned by m′. The rest of the left-hand side expression of the constraint

l]S→S′ u ∃R0

(
l

i

assume](ei = rold
i )S→S′ u Post(m′)S0→S′

)

serves to link the post-condition Post(m′) of the method with the state l] of the call site. These
are linked via the local variables xi constrained to be equal to the argument expressions ei and
via the global static fields S. Again, some renaming and hiding of variables is required: e.g., the
initial values of the static fields in m′, referred to by S0, correspond to the values of the static
fields before the call in the state l] and in the expressions ei, referred to by S. The renamings
S0 → S′ and S → S′, respectively, ensures that these values are identified.

Two rules are used to initiate the analysis of a method (constraint on Loc(m, 0)) and of the
entire program (constraint on Pre((main, n), c)). To initialise the analysis of a method m, the
precondition Pre(m) is conjoined with the constraints linking the variable fold

i to the current value
of the static field fi and linking the parameters rold

i with the local variables ri, in accordance with
how parameters are handled in e.g. Java byte code. The analysis of the main method starts in
the completely unconstrained state >.

5.4 Inference

The constraint system presented in the previous section can be turned into a post-fixpoint problem
by standard techniques. Consequently, the solutions of the system can be characterised as the set
of post-fixpoints {x | F ](x) v x} of a suitable monotone operator F ] ∈ State] → State] operating
on the global abstract domain State] of the analysis. Assuming that State] is a complete lattice1

we know that the least solution lfpF ] of this problem exists and can be over-approximated by
any post-fixpoint of F ]. Computing such a post-fixpoint is the role of chaotic iterations [14]
which operate on the equation system associated with the constraint system and choose a suitable
iteration strategy [9]. Iteration is sped up by using widening on well-chosen control points. Neither
the iteration strategy nor the widening operators belong to the TCB since the validity of the result
can be checked with a post-fixpoint test.

5.5 Safety checks

Once the analysis has inferred correct invariants, this information is used to check if they enforce
the suitable safety policy. In a context of array bound checking we must check that each array
access is within the bounds of the array. As a consequence, for each occurence of an instruction
Iaload or Iastore at a program point (m, pc), we test if the local invariant Loc(m, pc) computed
by the analysis ensures a safe array access.

Definition 5.3 (Abstract safety checks). We say a set of local invariant Loc ∈ (N → (Expr? × DP+S0+L+S+A)⊥)
verifies all safety checks of a program if and only if

∀m ∈ P, pc ∈ N,
m[p] = Iaload ⇒

Loc(m, pc) = (e2 :: e1 :: s], l]) ⇒
l] v ensure](x0 ≤ e2y) ∧ l] v ensure](xe2 < e1y)

∧
m[p] = Iastore ⇒

Loc(m, pc) = (e3 :: e2 :: e1 :: s], l]) ⇒
l] v ensure](x0 ≤ e2y) ∧ l] v ensure](xe2 < e1y)

1For the polyhedra abstract domain this assumption is too strong but we can relax it by considering a complete
lattice containing State] and all its upper bounds [15].
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βV : Heap × (V → Val) → (V → Z⊥)
(h, z) 7→ λx. z(x) if z(x) ∈ Z

|h(z(x))| if z(x) ∈ dom(h)

γexpr
h,g,l,a : ExprR+S+A → P(Val), h ∈ Heap, g ∈ Static, l ∈ LocVar

and a ∈ Val → Z
e 7→ JeKβR+S+A(h,l⊕g⊕a)

∪
n
ref ∈ dom(h)

˛̨̨
|h(ref )| ∈ JeKβR+S+A(h,l⊕g⊕a)

o

γPre : DR0+S0 → P(Static × Heap × LocVar)
pre 7→

˘
(g0, h0, l0) | βR0+S0 (h0, l0 ⊕ g0) ∈ γ(pre)

¯
γPost : DR0+S0+S+{res} → P((Static × Heap × LocVar)× (Static × Heap × Val))

post 7→


((g0, h0, l0), (g, h, v)) |
βS0+R0+S+{res}(h0, g0 ⊕ l0 ⊕ g ⊕ [res 7→ v]) ∈ γ(post)

ff
γLoc :

Expr?

× DR0+S0+R+S+A
→ P

„
(Static × Heap × LocVar)
× (Static × Heap × Stack × LocVar)

«
(e1 :: · · · :: en, loc) 7→

8<:
((g0, h0, l0), (g, h, v1 :: · · · :: vn, l)) |

∃a ∈ A → Z, ∀i ∈ J1, nK, vi ∈ γexpr
h,g,l,a(ei) ∧

βS0+R0+S+R+A(h0, g0 ⊕ l0 ⊕ g ⊕ l ⊕ a) ∈ γ(loc)

9=;
Figure 5: Concretisation functions

5.6 Soundness of the analysis

Fig. 5 gives the concretisation functions for the abstract domains. The auxiliary abstraction
function β maps everything to an integer, abstracting arrays by their length. γexpr defines con-
cretisation of a symbolic expression with respect to an environment. γPre maps pre-conditions
to sets of calling contexts, γPost maps post-conditions to relations between calling contexts and
return contexts, and γLoc maps local invariants to relations between calling contexts and local
program states. Note that concretisations contain only states such that all locations that are
being referenced are defined in the heap.

Definition 5.4 (Reachable states). For a method m in a program P , a heap h, a static heap g,
a set of local variables l, a frame stack st, the set JP Km

h,g,l,st of reachable state from an execution
of m starting in an initial configuration (h, g, l, st) is defined by

JP Km
h,g,l,st =

{
s | <(m, 0, [], l′) :: st, g, h>

≥st−−→
∗
P s

}
where ≥st−−→

∗
P is the reflexive transitive closure of →P restricted to states who have a form < . . . ::

(m, . . .) :: st, . . . >.

The purpose of ≥st−−→
∗
P is to collect only the states in between the start and the end of the

execution of a particular stack frame.

Definition 5.5 (Safe method). A method m in a program P is said to be safe wrt. a precondition
Pre ⊆ Heap × Static ×LocVar if for all stack frames st and all (h, g, l) ∈ Pre, Error 6∈ JP Km

h,g,l,st.

Theorem 5.6 (Correctness).
Let P be a program and (Pre,Post ,Loc) a solution of the constraint system associated with P . If
Loc satisfies all safety checks then every method m in P is safe wrt. to Pre(m). In particular,

<(((main, n), c), 0, [], λr.0) :: [], λf.0, λref .⊥ > 6→P Error

Proof. The proof is divided into two parts. We first prove that each reachable intermediate state
at a point (m, p) satisfies the property γLoc(Loc(m, p)), that each method m is called in a context
satisfying γPre(Pre(m)) and that its return value (if it exists) satisfies γPost(Loc(m)). In the
second part we prove that if a state at some point (m, p) satisfies γLoc(Loc(m, p)) as well as the
abstract safety check associated with this point, then no error happens in the next semantic step.
To deal with the steps corresponding to procedure calls, the proof makes use of an intermediate
big-step operational semantics. Details are omitted for lack of space.
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s1

s2

s3

r1

r2

Figure 6: Dual representation of polyhedra

6 Polyhedral analysis

We now instantiate the relational analysis framework using linear relations in the form of convex
polyhedra. Polyhedral program analysis has a well-established theory [15] with several implemen-
tations [4, 21]. Here, we recall the basics of this theory.

Definition 6.1. Convex polyhedra of dimension n (Pn ⊆ Qn) are (convex) subsets of Qn that can
be expressed as a finite intersection of half-planes of Qn.

Polyhedra can be represented as sets of linear constraints. It is desirable to keep these sets in
normal form i.e., without redundant constraints. For this purpose, polyhedra libraries maintain a
dual representation of polyhedra based on generators in which a convex polyhedron is the convex
hull of a (finite) set of vertices, rays and lines. Vertices, rays and lines are respectively extremal
points, infinite directions and bi-directional infinite directions of the polyhedron. Fig. 6 shows a
a polyhedron with four constraints whose dual representation is made of three vertices (s1,s2,s3)
and two rays (r1,r2).

The efficiency of the algorithm that maintains the normal form of the double description is of
crucial importance. For this task, state-of-the-art polyhedral libraries [4, 21] use Chernikova’s algo-
rithm [13]. In the worst case, the number of generators is exponential in the number of constraints
(and vice-versa) but, in practise, the double description offers a good performance. To alleviate
further the cost of normalising polyhedra, these libraries switch lazily from one representation to
the other.

Polyhedral cannot directly handle expressions that fall outside the linear fragment. It would
be sound but unsatisfactory to abstract those expressions towards an arbitrary value i.e., the ?
expression. More information can be retained by linearising expressions [26]. For instance, the
precise analysis of Binary Search (Fig. 1) requires a precise model of euclidean divisions. Given
an integer constant n, the guard y = x/n is abstracted by the linear guards 0 ≤ x − n · y < n.
Multiplications can also be linearised by using the range of variables.

We now briefly explain how polyhedral algorithms implement the abstract numeric relational
domain specified in Definition 5.1. To be implemented efficiently, the double description of poly-
hedra is needed, using Chernikova’s algorithm to reconstruct the coherence of the double repre-
sentation.

The convex polyhedron can directly be cast into an abstract numeric domain by mapping
variables of the domain to dimensions of the polyhedron. Hence, we get DV = P|V | and the
concretisation:

γ(P ) = {ρ ∈ ZV | ρ ∈ P ∩ ZV }

Renaming of variables consists in applying a permutation to the dimensions of polyhedron. The
extension operation which add new variables consists in inserting new unconstrained dimensions
at the relevant indexes.
Projections can be efficiently performed on the generator description of polyhedra in linear time.
Each generator is projected by erasing the now irrelevant dimensions.
Intersections are computed by taking the union of the constraints of each polyhedron.
The convex hull, i.e., least upper bound, is computed by taking the union of the generators of
both polyhedra.

INRIA
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An assignment Jx := eK] is modelled by the linear transformation (if e is linear) that keeps all
the variables unchanged except x which is mapped to e. The transformation is applied to the
generators.
Inclusion tests are using both representation at once. Checking the containment of two polyhedra
(P v Q) amounts to verifying that the generators of P satisfy the constraints of Q.
Widening operators are used by the fixpoint iterator to ensure convergence. For convex polyhe-
dra, there exist various widening operators [15, 3].
Assume and ensure operators are responsible for interpreting guards of the target language. If
the guard t is linear, a polyhedron is built from it and no abstraction takes place. Otherwise, t
has to be linearised. In the worst case, universal (resp. empty) polyhedra can be used as sound
(though very imprecise) fallbacks.

7 Fixpoint pruning

The result of the polyhedral byte code analysis will be a fixpoint of the transfer functions, rep-
resenting an invariant of the program under analysis. This invariant will often contain more
information than necessary for proving a particular safety policy such as absence of indexing out-
side array bounds. In the following we show how to prune an invariant with respect to a given
safety policy, resulting in an invariant that is smaller and cheaper to verify.

7.1 Witnesses and pruning

We have applied the technique described in [7] for pruning constraint-based invariants, with some
adaptations allowing to handle our interprocedural polyhedral analysis on byte code better. First
we recall the definition of witnesses for this particular analysis.

Definition 7.1. A witness for a program P is a solution (Pre, Post, Loc) to the constraint system
associated with P that satisfies the safety checks of P (see Definition 5.3).

We use this as the basis for building certificates, relying on the fact that if there exists a witness
for P then P is safe (see Theorem 5.6). Part of the witness is sent to the checker in the constraint
representation only (see Section 6), so we aim at extracting a weaker witness with fewer linear
constraints than the one produced by the inference algorithm of Section 5.4 (if the analysis is
accurate enough for the program). Pruning leaves the symbolic expression stacks of the witness
unchanged because the checker recomputes them (and hence nothing is transmitted about this
part).

It is easy to see that there is generally no unique weakest witness nor a unique witness with
the minimum number of constraints (because the analysis is not distributive). Also, the idea of
starting from the safety requirements to compute backward a witness that satisfies them cannot
achieve the same precision as a forward analysis, because intuitively it would have to guess the
invariants that a forward analysis naturally discovers. For these reasons we use a technique of
pruning that removes as many linear constraints as possible from a given witness.

7.2 Abstract algorithm

We use a variation of the greedy heuristic presented in [7]. In the following we identify polyhedra
with sets of constraints. We use

Var = {prem | m ∈ P} ∪ {postm | m ∈ P}
∪ {locm,p | m ∈ P, m = ((mn, n), c), p < |c|}

to denote the set of unknowns of the constraint system associated with P . For an abstract element
x = (Pre, Post, Loc) we define the set of linear constraints of x:
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prune(w) :=
let w′ = ∅
while w′ is not a witness do

choose a constraint C and k ∈ w′
|dep(C) s.t. w′, {k} 6` C

(or a check C such that w′ 6` C)
choose x ⊆ (w \ w′)|dep(C) such that w′ ∪ x, {k} ` C

(respectively, w′ ∪ x ` C)
w′ := w′ ∪ x

done
return w′

Figure 7: Witness pruning algorithm

x =
⋃

m∈P

{(locm,p, k) | Loc(m, p) = (s#, l#), k ∈ l#}
∪ {(prem, k) | k ∈ Pre(m)}
∪ {(postm, k) | k ∈ Post(m)}

For V ⊆ Var we define x|V = {(var, k) ∈ x | var ∈ V } and x|V is defined accordingly.
Recall that the constraint system for P is a set of constraints of the form F (x) v x|{v}

where v ∈ Var . For a constraint c we note x, y ` C if F (x) v y|{v} (we can do so since the
expression stacks are fixed) and x ` C for x, x ` C. We will overload the notation and write
also x ` C if x satisfies the safety check C. Then, for every such constraint C, we define a set
dep(C) ⊆ Var that represents the dependencies of this constraint, in the sense that if x, y ` C
then x|dep(C), y ` C. The definition of dep is straightforward. For example, if C is the constraint
Finstr(Loc(m, p)) v Loc(m, p + 1) corresponding to an non-jumping intraprocedural instruction
(see the first part of Fig. 4), then dep(C) = {locm,p}. For the constraint . . . v Loc(m, p + 1) of an
Invoke sig instruction, dep(C) = {locm,p,post(sig,c)} where (sig, c) ∈ P .

The pruning algorithm is shown in Fig. 7. The main issue in this non-deterministic algorithm
is the choice of the subset x: we obviously want a minimal one in the sense of set inclusion
(achievable in reasonable time by monotonicity), but it is not unique.

7.3 Efficient pruning for polyhedral byte code analysis

Our strategy is to take a minimal such x that almost minimizes a cost function taking into account
the number of linear constraints, the number of non-null coefficients in them, and, for Invoke, the
number of post constraints (as opposed to loc). This allows us to obtain a witness with simpler
invariants and signatures. The heuristic blindly applies the definition of ` while labelling (part of)
the search space. The dependency function dep helps by reducing the number of linear constraints
to be considered at each step.

Finally, we face a problem specific to the polyhedra domain when pruning an invariant: in
order to keep things small, the polyhedra are usually represented in a minimal form in which the
relation between a set of dimensions does not necessarily appear as a dedicated linear constraint,
but often as a consequence of several other relations. For example, the constraint x ≤ z is implicit
in x ≤ y ≤ z. For the purpose of finding a small invariant, we may benefit from being able to
include such constraints. Our solution is to add some implicit constraints to the invariant before
pruning it. More precisely, for a polyhedron in DV , we add all the projections ∃V \V ′ (see Section 6)
where V ′ is a subset of V of cardinality at most n. For the maximal number n of dimensions in the
implicit constraints to be generated, ∞ seems too costly for non-trivial programs, and unnecessary.
It turns out that 3 is enough for all of our examples, which is not surprising because very few
correctness proofs actually rely on linear invariants involving more than three variables.
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8 Result checking of polyhedral analysis

A result checker for abstract interpretation based static analysis can be reduced to an (optimised)
fixpoint checker [1], with the downside that the abstract domains are still part of the TCB.
Formally certifying optimised polyhedral libraries [4, 21] is feasible but would require an enormous
certification effort. Instead, we propose a lightweight verifier of polyhedral analyses using a result
checking methodology which has two advantages: i) the TCB is small, and ii) the checking time
is optimised.

8.1 The polyhedral domain revisited

Chernikova’s algorithm is at the origin of the computational complexity of convex polyhedra
operations, so a first approach would be to design a result checker for Chernikova’s algorithm
i.e., a normal form checker. This has the inconvenience that most of the polyhedral operations
would be annotated with their result together with a certificate attesting that it is in normal
form. Instead, we develop a checker which only uses the constraint representation of polyhedra
and which never need to normalise. Moreover, projections are not computed but delayed using a
set of extra existential variables. More precisely, our polyhedra are represented by a list of linear
expression over two disjoint sets of variables V and E. Variables in v ∈ V are genuine variables
while e ∈ E are (existential) variables that represent dimensions which have been projected out.

Definition 8.1. Let V and E be disjoint sets of variables.

PV = Lin∗V +E

where
LinV +E = {xc1 × x1 + · · ·+ cn × xny | ci ∈ Z ∧ xi ∈ V + E}.

Given es ∈ PV , the concretisation function is defined by

γV (es) = {ρ|V | ∀k ∈ es, Jk ≥ 0Kρ}

In the following, we show how to implement the polyhedral operations using (only) polyhedra in
constraint form.
Renaming simply consists in applying the renaming to the expressions within the polyhedron.
Because the existential variables belong to a disjoint set, no capture can occur. In addition, for
this encoding, extension is a no-op because unused variables have no impact on the internal
representation.

es ∈ PV ⇒ ∀W ⊇ V, es ∈ PW

Using Fourier-Motzkin elimination (see e.g.), [31], projections can be computed directly over
the constraint representation of polyhedra However, in the worst case, the number of constraints
grows exponentially in the number of variables to project. To solve this problem, we delay the
projection and simply register them as existentially quantified. This is done by renaming these
variables to fresh variables.
To compute intersections, care must be taken not to mix up the existential variables. To avoid
capture, existentially variables are renamed to variables that are fresh for both polyhedra. There-
after, the intersection is implemented by taking the union of the expressions.
To implement the assume and ensure operators, the involved expressions are first linearised and
the obtained linear inequality is put into the form e ≥ 0 which now belongs to the set Lin defined
above.
For convex polyhedra, assignment is efficiently implemented as an atomic operation. However,
it can be expressed in terms of the previous operators: given x′ a fresh variable, an assignment
can be defined as follows.

Jx := eK](P ) =
(
∃{x}

(
P u assume](x′ = e)

))
{x′}→{x}
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It is this latter definition that we use.
Widening operators are only used during the fixpoint iteration, and are not needed at checking
time.
Convex Hull is the typical operation that is straightforward to implement using the generator
representation of polyhedra. Using a relaxation technique, it is possible to express the convex
hull as the projection of a polyhedron of higher dimension [2] but since this requires to compute
projections this does not scale. Even with our delaying of projections, the size of the polyhedron
doubles. Instead of computing a convex hull, we follow the result certification methodology and
provide a certificate polyhedron that is the result of the convex hull computation. Furthermore,
our result checker need not check that the result is exactly the convex hull but only that it is an
upper bound by doing a double inclusion test.

isUpperBound(P,Q,UB) ≡ P v UB ∧Q v UB

To implement inclusion tests, we push the result certification methodology further and use
inclusion certificates. The form of certificates and their generation are described below.

8.2 Result certification for polyhedral inclusion

Farkas lemma (Lemma 8.2) is a theorem of linear programming (see for instance [31]) which gives
a notion of emptiness certificate for polyhedra. In this part, we show how this result can be
i) lifted to obtain an inclusion checker; ii) extended further to deal with existential variables. Our
inclusion checker vcheck takes as input a pair of polyhedra (P,Q) and an inclusion certificate. It
will only return true if the certificate allows to conclude that P is indeed included in Q (P v Q).

Lemma 8.2 (Farkas Lemma). Let A ∈ Qm×n and b ∈ Qn. The following statements are equiva-
lent:

� For all x ∈ Qn, ¬(A · x ≥ b)

� There exists ic ∈ Qm satisfying At · ic = 0̄ and bt · ic > 0.

The soundness (⇐) of certificates is the easy part and is all that is needed in the machine-
checked proof. It follows that the existence of a certificate ensures the infeasibility of the linear
constraints and therefore that the polyhedron made of these constraints is empty.

Thus, an inclusion certificate ic is a vector of Qm and checking a certificate consists of 1) com-
puting a matrix-vector product (At · ic) 2) verifying that the result is a null vector; 3) computing a
scalar product (bt · ic); and 4) verifying that the result is strictly positive. All in all, the certificate
checker runs in quadratic-time in terms of arithmetic operations.

Certificates generation can be recast as a linear programming problem that can be efficiently
solved by either the Simplex or interior point methods. The set of certificates is characterised by
the convex polyhedron

Cert =
{
ic
∣∣ic ≥ 0̄ ∧ bt · ic > 0 ∧At · ic = 0̄

}
As a result, finding an extremal certificate amounts to solving a linear optimisation problem. For
instance, the solution of the linear program min{ct · 1̄ | c ∈ Cert} minimises the sum of the
coefficients of the certificate. In theory, such a minimisation might not yield a compact certificate
because the optimisation is done over the rationals – there are very small rationals that require
many bits. However, in practise, the technique is sufficiently efficient.

From emptiness to inclusion Lemma 8.3 states that in the absence of existential variables
an inclusion check amounts to emptiness checks.
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Lemma 8.3. Given P, P ′ ∈ PV +E, we have

∀e′ ∈ P ′, γV +E(−e′−1 :: P ) = ∅

if and only if
γV +E(P ) ⊆ γV +E(P ′).

Proof. By construction, polyhedra in PV +E do not have existential variables. Hence, we have
γV +E(P ′) =

⋂
e′∈P ′ γV +E(e′::[]). Moreover, the complement of a linear constraint e′ ≥ 0 is

−e′ − 1 ≥ 0. These facts allow to reduce inclusion to a set of emptiness tests.

Lemma 8.4 states that to do an inclusion test, it is sound to drop existential variables.

Lemma 8.4. Let P and P ′ be polyhedra in constraint form.

γV +E(P ) ⊆ γV +E(P ′) ⇒ γV (P ) ⊆ γV (P ′)

Proof. The Lemma follows from the definition of γ and the fact that the restriction operator on
environments is monotone.

Together, Lemma 8.3 and Lemma 8.4 allow the design of a sound result checker for inclusion
tests of form P ⊆ P ′. In general, the checker is incomplete but this only shows up in cases where
P ′ has existential variables. However, inclusions only need to be certified when P ′ is a polyhedron
computed by the analyser and such a P ′ does not contain existential variables, so the inclusion
checker is always used in a context where it is complete.

9 Implementation and Experiments

The relational bytecode analysis has been implemented in Caml and instantiated with the efficient
NewPolka polyhedral library [21] as its relational abstract domain. The programs we analyse
are genuine Java programs where unsupported instructions have been automatically replaced by
conservative numerical instructions e.g., Getfield replaces the top-most element of the stack by an
arbitrary value. The analyser then computes a solution to the constraint system generated from a
program. From these invariants, loop headers and join points are extracted. Inclusion certificates
required by the checker are generated using the GNU Linear Programming Toolkit [24] which
features a Simplex computing in exact rational arithmetic. Loop headers and join point invariants
constitute (the part of) the analyser result that is sent to the checker. The certificate is made of
the inclusion certificates.

As invariants computed by static analysers often contain more information than necessary for
proving a particular safety policy i.e., the absence of array out-of-bounds accesses, it is interesting
to prune the analysis result and eliminate invariants that are useless for proving a given safety
property. The advantages are twofold: invariants to check are smaller and their verification
cheaper. We have adapted the technique described in [7] for pruning constraint-based invariants,
thus allowing to handle our interprocedural polyhedral analysis (Section 7). For our benchmarks,
pruning can halve the number of constraints to verify. This reduction can sometimes but not
always produce a similar reduction in checking time. The reduction is especially visible when the
analyser tends to generate huge invariants which cannot be exploited. This is e.g., the case for
FFT where the analyser approximates an exponential with a complex polyhedron without any
positive effect on the number of successful safety checks.

For each program we provide the checking time with after fixpoint pruning, using either an
extracted checker (Caml) or the checker running in Coq. In the first approach the Coq result
checker is automatically transformed into a Caml program by the Coq extraction mechanism.
In the second approach, the result checker is directly run inside the reduction engine of Coq to
compute a foundational proof of safety of the program. Fig. 8 presents our experimental results.
The benchmarks are relatively modest in size and do not use that many variables and it is well
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known that full-blown polyhedral analyses have scalability problems. Our analyser will not avoid
this but can be instantiated with simpler relational domains such as e.g., octagons, without having
to change the checker. The programs and the analysis results can be found on-line [35] and replayed
in Coq or with an extracted Caml checker. We consider two families of programs. The first one
consists of benchmarks used by Xi to demonstrate the dependent type system for Xanadu [36]. For
this family we automatically prove the absence of out-of-bound accesses. The second is taken from
the Java benchmark suite SciMark for scientific and numerical computing where our polyhedral
analysis prove safety for array accesses except for the more intricate multi-dimensional arrays
representing matrices. This explains why certain scores are below 100%. When the analyser
cannot prove all the array accesses safe, we obtain a certificate by using a refined version of the
safety property where all but a designated subset of array accesses are required to be correct.

Program size score #variables certificate size checking time (Caml/ Coq)
BSearch 80 100% 6 131 1.4 / 11.6
HeapSort 143 100% 9 334 3.7 / 35.5
QuickSort 276 100% 9 462 128.7 / 974.0
Random 883 83% 8 390 8.0 / 44.3
Jacobi 135 50% 19 132 1.7 / 9.2
LU 559 45% 16 997 17.4 / 91.5
SparseCompRow 90 33% 15 72 1.1 / 6.1
FFT 591 78% 30 645 22.7 / 193.8

Figure 8: Size in number of instructions, score in ratio succeeded checks / total checks, certificates
in bytes, checking time in milliseconds

The checking time is very small (less than one second), which is especially noteworthy given
that the checker is run in Coq. We clearly benefit here from our efficient implementation and the
optimised reduction engine of Coq [19]. Compared to the extracted version, the Coq checker is at
most 10 times slower.

10 Towards a Certified Lightweight Array Bound Checker
for Java Bytecode

The work we have reported in the previous sections demonstrates the feasibility of efficiently
checking, in a foundational way, the result of a relational static analyser. Our aim is now to
scale this approach on a more realistic fragment of Java (mainly its full sequential part) for a
competitive array bound checker.

To do so, we have designed a new static analyser of Java bytecode programs with several new
features. The prototype is written in OCaml. In a second time we will develop a certified result
checker in Coq. In this section we present the main characteristics of the analyser. All components
are schematically presented in Figure 9.

10.1 Parsing of .class files

We rely on the Javalib Ocaml library2 that gives us a factorized representation of bytecode in-
structions with full inlining of constant pool indirections.

10.2 Removing operand stack manipulation

The JVM is a stack-based virtual machine. This intensive use of the operand stack make it difficult
to adapt standard static analysis techniques that have been first designed for more standard

2http://javalib.gforge.inria.fr/
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Figure 9: Architecture of the array bound analyser

(variable-based) 3-address codes. A naive translation from a stack-based code to 3-address code
may result in an explosion of temporary variables, which in turn may complicate analyses of
relational program analyses.

In Section 5.1 we rely on a stack of symbolic expressions to represents relation between
operands, static fields and local variables. We adapt here this idea to transform a bytecode
program into a stack-less representation. Instead of doing this transformation during the analysis,
we perform it once for all before the analysis, instead of re-transforming at each iteration of the
analysis.

The transformation algorithm is described and proved correct in a separate research report [17].
We give just give here an example of its result. Figure 10 presents a simple source program, its
bytecode and its stackless representation and finally the symbolic operand stack that is computed
during transformation. In this example the variable x is denoted by number 1 in the bytecode
representation and r1 its counterpart in the stackless representation. The iload 1 instruction
generates a nop instruction but pushes the symbol r1 on top of the symbolic operand stack. The
ifne 8 instruction uses the symbolic stack to recover the original guard (x==0) of the program.
It generates a conditional jump to line 8 and pops the first (and only) element of the symbolic
operand stack. The next instruction iconst 1 generates a nop instruction and pushes the symbol
1 on top of the symbolic operand stack. The effect of the next instruction goto 9 is more subtle:
since the target of the jump is a branching point, the transformation takes care to generate the
same symbolic stack from both predecessors of line 9. To do so, it generates a fresh variable b9

and generates the necessary assignment before the jump. The next instruction iconst -1 takes
the same precaution. Finally the instruction ireturn pop the top of the symbolic stack to return
the corresponding expression.

Thanks to this transformation our static analysis just need to reason on a simple language with
expression trees. Note that we do not expect the result verifier to rely on the same preliminary
transformation: we plan to keep a symbolic manipulation similar to Section 5.1 during fixpoint
checking. This is possible because the transformation algorithm operates mainly in one pass on
each methods.

RR n° 6333



24 Besson, Jensen, Pichardie & Turpin

int f(int x) {return (x==0) ? 1 : -1;}

(a) source program

int f(int);
0: iload 1
1: ifne 8
4: iconst 1
5: goto 9

8: iconst -1
9: ireturn

(b) bytecode program

int f(int);
0: nop;
1: if r1 != 0 goto 8;
4: nop;
5: b9 := 1;

goto 9;
8: b9 := -1;
9: return b9;

(c) stackless program

0: []
1: [r1]
4: []
5: [1]

8: []
9: [b9]

(d) symbolic stack

Figure 10: Example of bytecode transformation

10.3 Constraint generation

For each method of a program we generate a set of numerical symbolic constraints. Figure 11
presents a Java method (binary search), its stackless representation and the constraint system
that is generated for this method. On the left part of the constraint system, we note the corre-
sponding line number where the constraint has been generated. The system constrains three kind
of variables: Pre, Post and Loc(i) where i is a line number. Words in italic mode correspond to
reserve words. The first constraint binds the values of the variables key and vec with the formal
parameters of the method. The constraint generator only keeps expressions that can be expressed
in a simple numeric language with variable, constants and numeric operations. Hence, at line 12,
it keeps the expression ((high − low)/2) + low but forgets (key 6= vec[mid]) at line 32 because
it contains an array expression. The special operator [local :=?] projects all local variables (here
low, mid, high, key and vec.length). It is used to constrain the post-condition Post which only
deals with parameters and final result.

Auxiliary analyses are necessary to generate some of these constraints. It is for example
necessary to recover array types in order to predict which expression will definitively handle
rectangular arrays, with which dimensions. In this example, it allows us to predict that vec
handles an array of one dimension.

10.4 Fixpoint solving

Each constraint system is given to a generic fixpoint solver [20] that over-approximates its fix-
points. More precisely, for any value of the precondition variable Pre, it computes a value for the
postcondition Post. This technique allows us to obtain a context-sensitive analysis which has the
same level of precision that a full inlining of methods. In case of recursive calls, we iter the fixpoint
resolution between methods, using widenings to ensure convergence. The technique is taken and
adapted from the last chapter of Patrick Cousot’s PhD thesis [16].

The constraints are interpreted on top of any abstract domain of the Apron library [21], as
octagons [25] or polyhedra [15]. Java arithmetic overflow is taken into account by systematically
proving that no overflow/underflow occurs. As a consequence, in the binary search example of
Figure 11, the expression ((high−low)/2)+low is proved to be safe with respect to overflow/un-
derflow, while (high + low)/2 would have lead to a true alarm. When such a case occurs, the
analysis over-approximates the value of the expression by >.
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static int bsearch(int key, int[] vec) {
int low = 0;
int high = vec.length - 1;
while (high > low) {

int mid = (high -low) / 2 + low;
if (key == vec[mid]) return mid;
else if (key < vec[mid])

high = mid - 1;
else low = mid + 1;

}
return -1;

}

(a) source program

static int bsearch(int key, int[] vec)
0. low := 0
2. high := vec.length-1
7. if (high <= low) goto 56

12. mid := ((high-low)/2)+low
21. if (key != vec[mid]) goto 32
29. return mid
32. if (key >= vec[mid]) goto 48
40. high := mid-1
45. goto 53
48. low := mid+1
53. goto 7
56. return -1

(b) stackless bytecode representation

[key = param0][vec.length = param1.length]Pre v Loc(0)
0. [low := 0]Loc(0) v Loc(2)
2. [high := vec.length− 1]Loc(2) v Loc(7)
7. [high ≤ low]Loc(7) v Loc(56)

[high > low]Loc(7) v Loc(12)
12. [mid := ((high− low)/2) + low]Loc(12) v Loc(21)
21. Loc(21) v Loc(32)

Loc(21) v Loc(29)
29. [local :=?][result := mid]Loc(29) v Post
32. Loc(32) v Loc(48)

Loc(32) v Loc(40)
40. [high := mid− 1]Loc(40) v Loc(45)
45. Loc(45) v Loc(53)
48. [low := mid + 1]Loc(48) v Loc(53)
53. Loc(53) v Loc(7)
56. [local :=?][result := −1]Loc(56) v Post

(c) constraint system

Figure 11: Example of constraint generation
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Figure 12: Evaluation of the precision of the intra-procedural part of the analyser on the Java
Grande Forum benchmarks

10.5 Preliminary experiments

The goal of this implementation is to obtain an array bound checker that with a state-of-the-art
precision and then design a certified result checker for it. In order to achieve the first goal we have
run the analyser on the same benchmark suite, Java Grande Forum benchmarks [10], as Niedzielski
et al. [28]. The benchmarks were modified to express to cope with their intra-procedural analysis.
They have also run teh ABCD analyser [8] on the same programs. We have bridle our analysis
in order to not propagate out of method calls and run our analysis on the same benchmark suite
(with the same modifications, kindly provided by the authors of [28]). The result is shown in
Figure. 12. For all benchs (except one) we obtain a similar or better precision. This results should
however be interpreted with precaution because some of the checks eliminated in [28] may not
have been counted here.

11 Related work

A number of relational abstract domains (octagons [25], convex polyhedra [15], polynomial equal-
ities [27]) have been proposed with various trade-offs between precision and efficiency, and intra-
procedural relational abstract interpretation for high-level imperative languages is by now a mature
analysis technique. However, to the best of our knowledge the present work is the first extension
of this to an inter-procedural analysis for byte code. Dependent type systems for Java-style byte
code for removing array bounds checks have been proposed by Xi and Xia [37]. The analysis of
the stack uses singleton types to track the values of stack elements, achieving the same as our
symbolic stack expressions. The analysis is intra-procedural and does not consider methods (they
are added in a later work [36] which also adds a richer set of types). The type checking relies on
loop invariants. We have run our analysis on the example Xanadu programs given by Xi and have
been able to infer the invariants necessary for verifying safe array access automatically.

The area of certified program verifiers has been an active field recently. Wildmoser, Nipkow
et al. [33] were the first to develop a fully certified VCGen within Isabelle/HOL for verifying
arithmetic overflow in Java byte code. The certification of abstract interpreters has been developed
by Cachera, Pichardie et al. [11, 29]. for a variety of analyses including class analysis of Java byte
code and interval analysis. Lee et al. [22] have certified the type analysis of a language close to
Standard ML in LF and Leroy [23] has certified some of the data flow analyses of a compiler back-
end. Leroy also observes that for certain, more involved analyses such as the register allocation,
it is simpler and sufficient to certify a checker of the result than the analysis itself. The same idea
is used by Wildmoser et al. [32] who certifies a VCGen that uses untrusted interval analysis for
producing invariants and that relies on Isabelle/HOL decision procedures to check the verification
conditions generated with the help of these invariants. Their technique for analysing byte code is
close to ours in that they also use symbolic expressions to analyse the operand stack and the main
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contribution of the work reported here with respect to theirs is to develop this result checking
approach for a fully relational analysis.

The idea of removing useless parts from an invariant was developed independently by Besson
et al. [7] and by Yang et al. [38] who call it abstract value slicing. Both works deal with intra-
procedural invariants and both are based on a dependency computation that selects, for every
constraint F (X) v Y of the constraint system of P and every subset of an abstract state Y , a
sufficient subset of X that satisfies the constraint. The two methods differ in the way that this
choice is done but both have been shown viable for intra-procedural pruning of relational invariants.
The present work is an extension of the principles underlying the non-deterministic algorithm in
[7] to handle the pre-/post-conditions arising from the interprocedural analysis. Finally, it should
be noted that the fixpoint compression is orthogonal to and compatible with the optimisation of
iteration strategies for fixpoint checking underlying Lightweight Bytecode Verification [30] and the
more general abstraction-carrying code [1, 6]. Our checker combines both techniques.

12 Conclusions and future work

This paper demonstrates the feasibility of an interprocedural relational analysis which automati-
cally infers polyhedral loop invariants and pre-/post-condition for programs in an imperative byte
code language. The machine-generated invariants can be pruned wrt. a particular safety policy
to yield compact program certificates. To simplify the checking of these certificates, we have de-
vised a result checker for polyhedra which uses inclusion certificates (issued from a result due to
Farkas) instead of computing convex hulls of polyhedra at join points. This checker is much sim-
pler to prove correct mechanically than the polyhedral analyser and provides a means of building
a foundational proof carrying code that can make use of industrial strength relational program
analysis.

Future work concerns extensions to incorporate richer domains of properties such as disjunc-
tive completion of polyhedra or non-linear (polynomial) invariants. The certificate format and
the result checker can accommodate the disjunctive completions, the inclusion certificates from
Section 8.2 can be generalised to deal with non-linear inequalities as well [5]. However, the anal-
yses for inferring such properties are in their infancy. On a language level, the challenge is to
extend the analysis to cover the object oriented aspects of Java byte code. The inclusion of static
fields and arrays in our framework provides a first step in that direction but a full extension would
notably require an additional analysis to keep track of aliases between objects.

A promising domain of application for our relational analysis technique is to verify the dynamic
allocation and consumption of resources and in particular to ensure statically that a program
always acquires a necessary amount of resources before consuming them. The approach of Chander
et al. [12] relies on the programmer to provide loop invariants and pre- and post-conditions for
methods in order to link program variables to the amount of resources available and perform
powerful transformations such as hoisting resource allocations out of loops. Our inter-procedural
byte code analyser could infer the necessary invariants and pre-/post-conditions and in the same
vein provide the checker for integrating this into a mobile code resource certification scheme.
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