Module Fappli_IEEE


IEEE-754 arithmetic

Require Import Fcore.
Require Import Fcore_digits.
Require Import Fcalc_digits.
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
Require Import Fcalc_div.
Require Import Fcalc_sqrt.
Require Import Fprop_relative.

Section AnyRadix.

Inductive full_float :=
  | F754_zero : bool -> full_float
  | F754_infinity : bool -> full_float
  | F754_nan : full_float
  | F754_finite : bool -> positive -> Z -> full_float.

Definition FF2R beta x :=
  match x with
  | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
  | _ => R0
  end.

End AnyRadix.

Section Binary.

prec is the number of bits of the mantissa including the implicit one emax is the exponent of the infinities Typically p=24 and emax = 128 in single precision
Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
Hypothesis Hmax : (prec < emax)%Z.

Let emin := (3 - emax - prec)%Z.
Let fexp := FLT_exp emin prec.
Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.

Definition canonic_mantissa m e :=
  Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.

Definition bounded m e :=
  andb (canonic_mantissa m e) (Zle_bool e (emax - prec)).

Definition valid_binary x :=
  match x with
  | F754_finite _ m e => bounded m e
  | _ => true
  end.

Basic type used for representing binary FP numbers. Note that there is exactly one such object per FP datum. NaNs do not have any payload. They cannot be distinguished.
Inductive binary_float :=
  | B754_zero : bool -> binary_float
  | B754_infinity : bool -> binary_float
  | B754_nan : binary_float
  | B754_finite : bool ->
    forall (m : positive) (e : Z), bounded m e = true -> binary_float.

Definition FF2B x :=
  match x as x return valid_binary x = true -> binary_float with
  | F754_finite s m e => B754_finite s m e
  | F754_infinity s => fun _ => B754_infinity s
  | F754_zero s => fun _ => B754_zero s
  | F754_nan => fun _ => B754_nan
  end.

Definition B2FF x :=
  match x with
  | B754_finite s m e _ => F754_finite s m e
  | B754_infinity s => F754_infinity s
  | B754_zero s => F754_zero s
  | B754_nan => F754_nan
  end.

Definition radix2 := Build_radix 2 (refl_equal true).

Definition B2R f :=
  match f with
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
  | _ => R0
  end.

Theorem FF2R_B2FF :
  forall x,
  FF2R radix2 (B2FF x) = B2R x.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem B2FF_FF2B :
  forall x Hx,
  B2FF (FF2B x Hx) = x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem valid_binary_B2FF :
  forall x,
  valid_binary (B2FF x) = true.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem FF2B_B2FF :
  forall x H,
  FF2B (B2FF x) H = x.
Proof.
intros [sx|sx| |sx mx ex Hx] H ; try easy.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Theorem FF2B_B2FF_valid :
  forall x,
  FF2B (B2FF x) (valid_binary_B2FF x) = x.
Proof.
intros x.
apply FF2B_B2FF.
Qed.

Theorem B2R_FF2B :
  forall x Hx,
  B2R (FF2B x Hx) = FF2R radix2 x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem match_FF2B :
  forall {T} fz fi fn ff x Hx,
  match FF2B x Hx return T with
  | B754_zero sx => fz sx
  | B754_infinity sx => fi sx
  | B754_nan => fn
  | B754_finite sx mx ex _ => ff sx mx ex
  end =
  match x with
  | F754_zero sx => fz sx
  | F754_infinity sx => fi sx
  | F754_nan => fn
  | F754_finite sx mx ex => ff sx mx ex
  end.
Proof.
now intros T fz fi fn ff [sx|sx| |sx mx ex] Hx.
Qed.

Theorem canonic_canonic_mantissa :
  forall (sx : bool) mx ex,
  canonic_mantissa mx ex = true ->
  canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite ln_beta_F2R_Zdigits.
rewrite <- Zdigits_abs.
rewrite Z_of_nat_S_digits2_Pnat.
now case sx.
now case sx.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonic.
apply canonic_canonic_mantissa.
now destruct (andb_prop _ _ Hx) as (H, _).
Qed.

Theorem B2FF_inj :
  forall x y : binary_float,
  B2FF x = B2FF y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
intros H.
now inversion H.
intros H.
now inversion H.
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2, H3.
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

Theorem B2R_inj:
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0_compat.
now apply F2R_lt_0_compat.
assert (mx = my /\ ex = ey).
refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
apply canonic_canonic_mantissa.
exact (proj1 (andb_prop _ _ Hx)).
apply canonic_canonic_mantissa.
exact (proj1 (andb_prop _ _ Hy)).
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

Definition is_finite_FF f :=
  match f with
  | F754_finite _ _ _ => true
  | F754_zero _ => true
  | _ => false
  end.

Theorem is_finite_FF2B :
  forall x Hx,
  is_finite (FF2B x Hx) = is_finite_FF x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_FF_B2FF :
  forall x,
  is_finite_FF (B2FF x) = is_finite x.
Proof.
now intros [| | |].
Qed.

Definition Bopp x :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall x, Bopp (Bopp x) = x.
Proof.
now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall x,
  B2R (Bopp x) = (- B2R x)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; apply sym_eq ; try apply Ropp_0.
simpl.
rewrite <- F2R_opp.
now case sx.
Qed.


Theorem is_finite_Bopp: forall x,
  is_finite (Bopp x) = is_finite x.
Proof.
now intros [| | |].
Qed.



Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
Proof.
intros mx ex Hx.
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
generalize (ln_beta_F2R_Zdigits radix2 (Zpos mx) ex).
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold ln_beta_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold fexp, FLT_exp.
generalize (Zdigits radix2 (Zpos mx)).
intros ; zify ; subst.
clear -H H2. clearbody emin.
omega.
Qed.

Theorem abs_B2R_lt_emax :
  forall x,
  (Rabs (B2R x) < bpow radix2 emax)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
rewrite <- F2R_Zabs, abs_cond_Zopp.
now apply bounded_lt_emax.
Qed.

Theorem bounded_canonic_lt_emax :
  forall mx ex,
  canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
  bounded mx ex = true.
Proof.
intros mx ex Cx Bx.
apply andb_true_intro.
split.
unfold canonic_mantissa.
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
unfold canonic_exp.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonic, Fexp in Cx.
rewrite Cx.
unfold canonic_exp, fexp, FLT_exp.
destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
apply Zmax_lub.
cut (e' - 1 < emax)%Z. clear ; omega.
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Zabs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
unfold emin.
generalize (prec_gt_0 prec).
clear -Hmax ; omega.
Qed.

mantissa, round and sticky bits
Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.

Definition shr_1 mrs :=
  let '(Build_shr_record m r s) := mrs in
  let s := orb r s in
  match m with
  | Z0 => Build_shr_record Z0 false s
  | Zpos xH => Build_shr_record Z0 true s
  | Zpos (xO p) => Build_shr_record (Zpos p) false s
  | Zpos (xI p) => Build_shr_record (Zpos p) true s
  | Zneg xH => Build_shr_record Z0 true s
  | Zneg (xO p) => Build_shr_record (Zneg p) false s
  | Zneg (xI p) => Build_shr_record (Zneg p) true s
  end.

Definition loc_of_shr_record mrs :=
  match mrs with
  | Build_shr_record _ false false => loc_Exact
  | Build_shr_record _ false true => loc_Inexact Lt
  | Build_shr_record _ true false => loc_Inexact Eq
  | Build_shr_record _ true true => loc_Inexact Gt
  end.

Definition shr_record_of_loc m l :=
  match l with
  | loc_Exact => Build_shr_record m false false
  | loc_Inexact Lt => Build_shr_record m false true
  | loc_Inexact Eq => Build_shr_record m true false
  | loc_Inexact Gt => Build_shr_record m true true
  end.

Theorem shr_m_shr_record_of_loc :
  forall m l,
  shr_m (shr_record_of_loc m l) = m.
Proof.
now intros m [|[| |]].
Qed.

Theorem loc_of_shr_record_of_loc :
  forall m l,
  loc_of_shr_record (shr_record_of_loc m l) = l.
Proof.
now intros m [|[| |]].
Qed.

Definition shr mrs e n :=
  match n with
  | Zpos p => (iter_pos p _ shr_1 mrs, (e + n)%Z)
  | _ => (mrs, e)
  end.

Lemma inbetween_shr_1 :
  forall x mrs e,
  (0 <= shr_m mrs)%Z ->
  inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
  inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
Proof.
intros x mrs e Hm Hl.
refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
2: apply bpow_gt_0.
2: now case (shr_r (shr_1 mrs)) ; split.
change (Z2R 2) with (bpow radix2 1).
rewrite <- bpow_plus.
rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
unfold inbetween_float, F2R. simpl.
rewrite Z2R_plus, Rmult_plus_distr_r.
replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
easy.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
rewrite (F2R_change_exp radix2 e).
2: apply Zle_succ.
unfold F2R. simpl.
rewrite <- 2!Rmult_plus_distr_r, <- 2!Z2R_plus.
rewrite Zplus_assoc.
replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
exact Hl.
ring_simplify (e + 1 - e)%Z.
change (2^1)%Z with 2%Z.
rewrite Zmult_comm.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Theorem inbetween_shr :
  forall x m e l n,
  (0 <= m)%Z ->
  inbetween_float radix2 m e x l ->
  let '(mrs, e') := shr (shr_record_of_loc m l) e n in
  inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
Proof.
intros x m e l n Hm Hl.
destruct n as [|n|n].
now destruct l as [|[| |]].
2: now destruct l as [|[| |]].
unfold shr.
rewrite iter_nat_of_P.
rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
induction (nat_of_P n).
simpl.
rewrite Zplus_0_r.
now destruct l as [|[| |]].
simpl iter_nat.
rewrite inj_S.
unfold Zsucc.
rewrite Zplus_assoc.
revert IHn0.
apply inbetween_shr_1.
clear -Hm.
induction n0.
now destruct l as [|[| |]].
simpl.
revert IHn0.
generalize (iter_nat n0 shr_record shr_1 (shr_record_of_loc m l)).
clear.
intros (m, r, s) Hm.
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Definition Zdigits2 m :=
  match m with Z0 => m | Zpos p => Z_of_nat (S (digits2_Pnat p)) | Zneg p => Z_of_nat (S (digits2_Pnat p)) end.

Theorem Zdigits2_Zdigits :
  forall m,
  Zdigits2 m = Zdigits radix2 m.
Proof.
unfold Zdigits2.
intros [|m|m] ; try apply Z_of_nat_S_digits2_Pnat.
easy.
Qed.

Definition shr_fexp m e l :=
  shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).

Theorem shr_truncate :
  forall m e l,
  (0 <= m)%Z ->
  shr_fexp m e l =
  let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
intros m e l Hm.
case_eq (truncate radix2 fexp (m, e, l)).
intros (m', e') l'.
unfold shr_fexp.
rewrite Zdigits2_Zdigits.
case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
intros He.
unfold truncate.
rewrite He.
simpl.
intros H.
now inversion H.
intros p Hp.
assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
clear -Hp ; zify ; omega.
destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
assert (Hx0 : (0 <= x)%R).
apply Rle_trans with (F2R (Float radix2 m e)).
now apply F2R_ge_0_compat.
exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
intros mrs e'' H3 H4 H1.
generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
rewrite H1.
intros (H2,_).
rewrite <- Hp, H3.
assert (e'' = e').
change (snd (mrs, e'') = snd (fst (m',e',l'))).
rewrite <- H1, <- H3.
unfold truncate.
now rewrite Hp.
rewrite H in H4 |- *.
apply (f_equal (fun v => (v, _))).
destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
rewrite H5, H6.
case mrs.
now intros m0 [|] [|].
intros p Hp.
unfold truncate.
rewrite Hp.
simpl.
intros H.
now inversion H.
Qed.

Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
  | mode_NE => ZnearestE
  | mode_ZR => Ztrunc
  | mode_DN => Zfloor
  | mode_UP => Zceil
  | mode_NA => ZnearestA
  end.

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
Proof.
destruct m ; unfold round_mode ; auto with typeclass_instances.
Qed.

Definition overflow_to_inf m s :=
  match m with
  | mode_NE => true
  | mode_NA => true
  | mode_ZR => false
  | mode_UP => negb s
  | mode_DN => s
  end.

Definition binary_overflow m s :=
  if overflow_to_inf m s then F754_infinity s
  else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).

Definition binary_round_aux mode sx mx ex lx :=
  let '(mrs', e') := shr_fexp (Zpos mx) ex lx in
  let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
  match shr_m mrs'' with
  | Z0 => F754_zero sx
  | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
  | _ => F754_nan
  end.

Theorem binary_round_aux_correct :
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
  (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
  let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
    is_finite_FF z = true
  else
    z = binary_overflow mode (Rlt_bool x 0).
Proof with
auto with typeclass_instances.
intros m x mx ex lx Bx Ex z.
unfold binary_round_aux in z.
revert z.
rewrite shr_truncate. 2: easy.
refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Zle_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Zle_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
rewrite <- (Zabs_eq m1').
replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
rewrite F2R_Zabs.
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 := Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
rewrite shr_truncate. 2: apply Zle_refl.
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros Hm2.
rewrite Hm2.
intros z.
repeat split.
rewrite Rlt_bool_true.
repeat split.
apply sym_eq.
case Rlt_bool ; apply F2R_0.
rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
rewrite <- ln_beta_F2R_Zdigits, <- Hr, ln_beta_abs.
2: discriminate.
rewrite H1b.
rewrite canonic_exp_abs.
fold (canonic_exp radix2 fexp (round radix2 fexp (round_mode m) x)).
apply canonic_exp_round_ge...
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0_compat.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
rewrite shr_truncate. 2: easy.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
simpl Zabs.
case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
assert (bounded m2 e2 = true).
apply andb_true_intro.
split.
unfold canonic_mantissa.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
rewrite <- ln_beta_F2R_Zdigits.
apply sym_eq.
now rewrite H3 in H4.
discriminate.
exact He2.
apply (conj H).
rewrite Rlt_bool_true.
repeat split.
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
rewrite (Rlt_bool_false _ (bpow radix2 emax)).
refine (conj _ (refl_equal _)).
unfold binary_overflow.
case overflow_to_inf.
apply refl_equal.
unfold valid_binary, bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
rewrite Z_of_nat_S_digits2_Pnat.
change Fcalc_digits.radix2 with radix2.
replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
unfold fexp, FLT_exp, emin.
generalize (prec_gt_0 prec).
clear -Hmax ; zify ; omega.
change 2%Z with (radix_val radix2).
case_eq (Zpower radix2 prec - 1)%Z.
simpl Zdigits.
generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
clear ; omega.
intros p Hp.
apply Zle_antisym.
cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
apply Zdigits_gt_Zpower.
simpl Zabs. rewrite <- Hp.
cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
apply lt_Z2R.
rewrite 2!Z2R_Zpower. 2: now apply Zlt_le_weak.
apply bpow_lt.
apply Zlt_pred.
now apply Zlt_0_le_0_pred.
apply Zdigits_le_Zpower.
simpl Zabs. rewrite <- Hp.
apply Zlt_pred.
intros p Hp.
generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
clear -Hp ; zify ; omega.
apply Rnot_lt_le.
intros Hx.
generalize (refl_equal (bounded m2 e2)).
unfold bounded at 2.
rewrite He2.
rewrite Bool.andb_false_r.
rewrite bounded_canonic_lt_emax with (2 := Hx).
discriminate.
unfold canonic.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <- Hr.
apply generic_format_abs...
apply generic_format_round...
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.

Definition Bsign x :=
  match x with
  | B754_nan => false
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

Definition sign_FF x :=
  match x with
  | F754_nan => false
  | F754_zero s => s
  | F754_infinity s => s
  | F754_finite s _ _ => s
  end.

Theorem Bsign_FF2B :
  forall x H,
  Bsign (FF2B x H) = sign_FF x.
Proof.
now intros [sx|sx| |sx mx ex] H.
Qed.

Multiplication

Lemma Bmult_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z := binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
    is_finite_FF z = true
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex Hx sy my ey Hy x y.
unfold x, y.
rewrite <- F2R_mult.
simpl.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
apply binary_round_aux_correct.
constructor.
rewrite <- F2R_abs.
apply F2R_eq_compat.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Z_of_nat_S_digits2_Pnat.
generalize (H _ _ Hx) (H _ _ Hy).
clear x y sx sy Hx Hy H.
unfold fexp, FLT_exp.
refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
clear -Hmax.
unfold emin.
intros dx dy dxy Hx Hy Hxy.
zify ; intros ; subst.
omega.
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.

Definition Bmult m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => B754_nan
  | B754_zero _, B754_infinity _ => B754_nan
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bmult_correct :
  forall m x y,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
    B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
    is_finite (Bmult m x y) = andb (is_finite x) (is_finite y)
  else
    B2FF (Bmult m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ split ; apply refl_equal | apply bpow_gt_0 | auto with typeclass_instances ] ).
simpl.
case Bmult_correct_aux.
intros H1.
case Rlt_bool.
intros (H2, H3).
split.
now rewrite B2R_FF2B.
now rewrite is_finite_FF2B.
intros H2.
now rewrite B2FF_FF2B.
Qed.

Definition Bmult_FF m x y :=
  match x, y with
  | F754_nan, _ => x
  | _, F754_nan => y
  | F754_infinity sx, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity sx, F754_finite sy _ _ => F754_infinity (xorb sx sy)
  | F754_finite sx _ _, F754_infinity sy => F754_infinity (xorb sx sy)
  | F754_infinity _, F754_zero _ => F754_nan
  | F754_zero _, F754_infinity _ => F754_nan
  | F754_finite sx _ _, F754_zero sy => F754_zero (xorb sx sy)
  | F754_zero sx, F754_finite sy _ _ => F754_zero (xorb sx sy)
  | F754_zero sx, F754_zero sy => F754_zero (xorb sx sy)
  | F754_finite sx mx ex, F754_finite sy my ey =>
    binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact
  end.

Theorem B2FF_Bmult :
  forall m x y,
  B2FF (Bmult m x y) = Bmult_FF m (B2FF x) (B2FF y).
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
apply B2FF_FF2B.
Qed.


Definition shl_align mx ex ex' :=
  match (ex' - ex)%Z with
  | Zneg d => (shift_pos d mx, ex')
  | _ => (mx, ex)
  end.

Theorem shl_align_correct :
  forall mx ex ex',
  let (mx', ex'') := shl_align mx ex ex' in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
  (ex'' <= ex')%Z.
Proof.
intros mx ex ex'.
unfold shl_align.
case_eq (ex' - ex)%Z.
intros H.
repeat split.
rewrite Zminus_eq with (1 := H).
apply Zle_refl.
intros d Hd.
repeat split.
replace ex' with (ex' - ex + ex)%Z by ring.
rewrite Hd.
pattern ex at 1 ; rewrite <- Zplus_0_l.
now apply Zplus_le_compat_r.
intros d Hd.
rewrite shift_pos_correct, Zmult_comm.
change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
split.
replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
apply F2R_change_exp.
apply Zle_0_minus_le.
replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
now rewrite Hd.
apply Zle_refl.
Qed.

Theorem snd_shl_align :
  forall mx ex ex',
  (ex' <= ex)%Z ->
  snd (shl_align mx ex ex') = ex'.
Proof.
intros mx ex ex' He.
unfold shl_align.
case_eq (ex' - ex)%Z ; simpl.
intros H.
now rewrite Zminus_eq with (1 := H).
intros p.
clear -He ; zify ; omega.
intros.
apply refl_equal.
Qed.

Definition shl_align_fexp mx ex :=
  shl_align mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex)).

Theorem shl_align_fexp_correct :
  forall mx ex,
  let (mx', ex') := shl_align_fexp mx ex in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
  (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
unfold shl_align_fexp.
generalize (shl_align_correct mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex))).
rewrite Z_of_nat_S_digits2_Pnat.
case shl_align.
intros mx' ex' (H1, H2).
split.
exact H1.
rewrite <- ln_beta_F2R_Zdigits. 2: easy.
rewrite <- H1.
now rewrite ln_beta_F2R_Zdigits.
Qed.

Definition binary_round m sx mx ex :=
  let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx mz ez loc_Exact.

Theorem binary_round_correct :
  forall m sx mx ex,
  let z := binary_round m sx mx ex in
  valid_binary z = true /\
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) x /\
    is_finite_FF z = true
  else
    z = binary_overflow m sx.
Proof.
intros m sx mx ex.
unfold binary_round.
generalize (shl_align_fexp_correct mx ex).
destruct (shl_align_fexp mx ex) as (mz, ez).
intros (H1, H2).
set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
replace sx with (Rlt_bool x 0).
apply binary_round_aux_correct.
constructor.
unfold x.
now rewrite <- F2R_Zabs, abs_cond_Zopp.
exact H2.
unfold x.
case sx.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
Qed.

Definition binary_normalize mode m e szero :=
  match m with
  | Z0 => B754_zero szero
  | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e))
  | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e))
  end.

Theorem binary_normalize_correct :
  forall m mx ex szero,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)))) (bpow radix2 emax) then
    B2R (binary_normalize m mx ex szero) = round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)) /\
    is_finite (binary_normalize m mx ex szero) = true
  else
    B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0).
Proof with
auto with typeclass_instances.
intros m mx ez szero.
destruct mx as [|mz|mz] ; simpl.
rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
apply bpow_gt_0.
generalize (binary_round_correct m false mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, Rz')).
split.
now rewrite B2R_FF2B.
now rewrite is_finite_FF2B.
intros Hz' (Vz, Rz).
rewrite B2FF_FF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
generalize (binary_round_correct m true mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, Rz')).
split.
now rewrite B2R_FF2B.
now rewrite is_finite_FF2B.
intros Hz' (Vz, Rz).
rewrite B2FF_FF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
Qed.

Addition
Definition Bplus m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy =>
    if Bool.eqb sx sy then x else B754_nan
  | B754_infinity _, _ => x
  | _, B754_infinity _ => y
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx sy then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, _ => y
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    let ez := Zmin ex ey in
    binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
      ez (match m with mode_DN => true | _ => false end)
  end.

Theorem Bplus_correct :
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
    B2R (Bplus m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
    is_finite (Bplus m x y) = true
  else
    (B2FF (Bplus m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
Proof with
auto with typeclass_instances.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
simpl.
case (Bool.eqb sx sy) ; try easy.
now case m.
apply bpow_gt_0.
rewrite Rplus_0_l, round_generic, Rlt_bool_true...
apply abs_B2R_lt_emax.
apply generic_format_B2R.
rewrite Rplus_0_r, round_generic, Rlt_bool_true...
apply abs_B2R_lt_emax.
apply generic_format_B2R.
clear Fx Fy.
simpl.
set (szero := match m with mode_DN => true | _ => false end).
set (ez := Zmin ex ey).
set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z).
assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) +
  F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)).
rewrite 2!F2R_cond_Zopp.
generalize (shl_align_correct mx ex ez).
generalize (shl_align_correct my ey ez).
generalize (snd_shl_align mx ex ez (Zle_min_l ex ey)).
generalize (snd_shl_align my ey ez (Zle_min_r ex ey)).
destruct (shl_align mx ex ez) as (mx', ex').
destruct (shl_align my ey ez) as (my', ey').
simpl.
intros H1 H2.
rewrite H1, H2.
clear H1 H2.
intros (H1, _) (H2, _).
rewrite H1, H2.
clear H1 H2.
rewrite <- 2!F2R_cond_Zopp.
unfold F2R. simpl.
now rewrite <- Rmult_plus_distr_r, <- Z2R_plus.
rewrite Hp.
assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
rewrite <- Hp.
intros Bz.
destruct (Bool.bool_dec sx sy) as [Hs|Hs].
refine (conj _ Hs).
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0_compat.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
rewrite <- (Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0_compat.
now apply F2R_ge_0_compat.
elim Rle_not_lt with (1 := Bz).
generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
intros Bx By (Hx',_) (Hy',_).
generalize (canonic_canonic_mantissa sx _ _ Hx') (canonic_canonic_mantissa sy _ _ Hy').
clear -Bx By Hs.
intros Cx Cy.
destruct sx.
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := By).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0_compat.
destruct sy.
2: now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 := Bx).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0_compat.
generalize (binary_normalize_correct m mz ez szero).
case Rlt_bool_spec.
easy.
intros Hz' Vz.
specialize (Sz Hz').
split.
rewrite Vz.
now apply f_equal.
apply Sz.
Qed.

Definition Bminus m x y := Bplus m x (Bopp y).

Theorem Bminus_correct :
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
    B2R (Bminus m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
    is_finite (Bminus m x y) = true
  else
    (B2FF (Bminus m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
Proof with
auto with typeclass_instances.
intros m x y Fx Fy.
replace (negb (Bsign y)) with (Bsign (Bopp y)).
unfold Rminus.
rewrite <- B2R_Bopp.
apply Bplus_correct.
exact Fx.
now rewrite is_finite_Bopp.
now destruct y as [ | | | ].
Qed.

Division
Definition Fdiv_core_binary m1 e1 m2 e2 :=
  let d1 := Zdigits2 m1 in
  let d2 := Zdigits2 m2 in
  let e := (e1 - e2)%Z in
  let (m, e') :=
    match (d2 + prec - d1)%Z with
    | Zpos p => (m1 * Zpower_pos 2 p, e + Zneg p)%Z
    | _ => (m1, e)
    end in
  let '(q, r) := Zdiv_eucl m m2 in
  (q, e', new_location m2 r loc_Exact).

Lemma Bdiv_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z :=
    let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in
    match mz with
    | Zpos mz => binary_round_aux m (xorb sx sy) mz ez lz
    | _ => F754_nan
    end in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
    FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
    is_finite_FF z = true
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex Hx sy my ey Hy.
replace (Fdiv_core_binary (Zpos mx) ex (Zpos my) ey) with (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey).
2: now unfold Fdiv_core_binary ; rewrite 2!Zdigits2_Zdigits.
refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
intros (Pz, Bz).
simpl.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
  / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0).
unfold Rdiv.
destruct mz as [|mz|mz].
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
apply binary_round_aux_correct.
rewrite Rabs_mult, Rabs_Rinv.
now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp.
case sy.
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
revert Pz.
generalize (Zdigits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
case sy ; simpl.
change (Zneg my) with (Zopp (Zpos my)).
rewrite F2R_Zopp.
rewrite <- Ropp_inv_permute.
rewrite Ropp_mult_distr_r_reverse.
case sx ; simpl.
apply Rlt_bool_false.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_pos.
rewrite <- F2R_opp.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_true.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
case sx.
apply Rlt_bool_true.
rewrite F2R_Zopp.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0_compat.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
apply Rlt_bool_false.
apply Rmult_le_pos.
now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
Qed.

Definition Bdiv m x y :=
  match x, y with
  | B754_nan, _ => x
  | _, B754_nan => y
  | B754_infinity sx, B754_infinity sy => B754_nan
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_nan
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

Theorem Bdiv_correct :
  forall m x y,
  B2R y <> R0 ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
    B2R (Bdiv m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
    is_finite (Bdiv m x y) = is_finite x
  else
    B2FF (Bdiv m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros m x [sy|sy| |sy my ey Hy] Zy ; try now elim Zy.
revert x.
unfold Rdiv.
intros [sx|sx| |sx mx ex Hx] ;
  try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ split ; apply refl_equal | apply bpow_gt_0 | auto with typeclass_instances ] ).
simpl.
case Bdiv_correct_aux.
intros H1.
unfold Rdiv.
case Rlt_bool.
intros (H2, H3).
split.
now rewrite B2R_FF2B.
now rewrite is_finite_FF2B.
intros H2.
now rewrite B2FF_FF2B.
Qed.

Square root
Definition Fsqrt_core_binary m e :=
  let d := Zdigits2 m in
  let s := Zmax (2 * prec - d) 0 in
  let e' := (e - s)%Z in
  let (s', e'') := if Zeven e' then (s, e') else (s + 1, e' - 1)%Z in
  let m' :=
    match s' with
    | Zpos p => (m * Zpower_pos 2 p)%Z
    | _ => m
    end in
  let (q, r) := Zsqrt m' in
  let l :=
    if Zeq_bool r 0 then loc_Exact
    else loc_Inexact (if Zle_bool r q then Lt else Gt) in
  (q, Zdiv2 e'', l).

Lemma Bsqrt_correct_aux :
  forall m mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (Zpos mx) ex) in
  let z :=
    let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in
    match mz with
    | Zpos mz => binary_round_aux m false mz ez lz
    | _ => F754_nan
    end in
  valid_binary z = true /\
  FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
  is_finite_FF z = true.
Proof with
auto with typeclass_instances.
intros m mx ex Hx.
replace (Fsqrt_core_binary (Zpos mx) ex) with (Fsqrt_core radix2 prec (Zpos mx) ex).
2: now unfold Fsqrt_core_binary ; rewrite Zdigits2_Zdigits.
simpl.
refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
intros (Pz, Bz).
destruct mz as [|mz|mz].
elim (Zlt_irrefl prec).
now apply Zle_lt_trans with Z0.
refine (_ (binary_round_aux_correct m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz ez lz _ _)).
rewrite Rlt_bool_false. 2: apply sqrt_ge_0.
rewrite Rlt_bool_true.
easy.
rewrite Rabs_pos_eq.
refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
fold fexp.
intros (eps, (Heps, Hr)).
rewrite Hr.
assert (Heps': (Rabs eps < 1)%R).
apply Rlt_le_trans with (1 := Heps).
fold (bpow radix2 0).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; omega.
apply Rsqr_incrst_0.
3: apply bpow_ge_0.
rewrite Rsqr_mult.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
unfold Rsqr.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
apply Rle_0_sqr.
apply bpow_gt_0.
now apply bounded_lt_emax.
apply Rlt_le_trans with 4%R.
apply Rsqr_incrst_1.
apply Rplus_lt_compat_l.
apply (Rabs_lt_inv _ _ Heps').
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
now apply (Z2R_le 0 2).
change 4%R with (bpow radix2 2).
apply bpow_le.
generalize (prec_gt_0 prec).
clear -Hmax ; omega.
apply Rmult_le_pos.
apply sqrt_ge_0.
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
rewrite Rabs_pos_eq.
2: apply sqrt_ge_0.
apply Rsqr_incr_0.
2: apply bpow_ge_0.
2: apply sqrt_ge_0.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0_compat.
apply Rle_trans with (bpow radix2 emin).
unfold Rsqr.
rewrite <- bpow_plus.
apply bpow_le.
unfold emin.
clear -Hmax ; omega.
apply generic_format_ge_bpow with fexp.
intros.
apply Zle_max_r.
now apply F2R_gt_0_compat.
apply generic_format_canonic.
apply (canonic_canonic_mantissa false).
apply (andb_prop _ _ Hx).
apply round_ge_generic...
apply generic_format_0.
apply sqrt_ge_0.
rewrite Rabs_pos_eq.
exact Bz.
apply sqrt_ge_0.
revert Pz.
generalize (Zdigits radix2 (Zpos mz)).
unfold fexp, FLT_exp.
clear.
intros ; zify ; subst.
omega.
elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply sqrt_ge_0.
Qed.

Definition Bsqrt m x :=
  match x with
  | B754_nan => x
  | B754_infinity false => x
  | B754_infinity true => B754_nan
  | B754_finite true _ _ _ => B754_nan
  | B754_zero _ => x
  | B754_finite sx mx ex Hx =>
    FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
  end.

Theorem Bsqrt_correct :
  forall m x,
  B2R (Bsqrt m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
  is_finite (Bsqrt m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end.
Proof.
intros m [sx|[|]| |sx mx ex Hx] ; try ( now simpl ; rewrite sqrt_0, round_0 ; auto with typeclass_instances ).
simpl.
case Bsqrt_correct_aux.
intros H1 (H2, H3).
case sx.
refine (conj _ (refl_equal false)).
apply sym_eq.
unfold sqrt.
case Rcase_abs.
intros _.
apply round_0.
auto with typeclass_instances.
intros H.
elim Rge_not_lt with (1 := H).
now apply F2R_lt_0_compat.
split.
now rewrite B2R_FF2B.
now rewrite is_finite_FF2B.
Qed.

End Binary.