
Formal Verification of Control-flow Graph Flattening

Sandrine Blazy
IRISA - Université Rennes 1

sandrine.blazy@irisa.fr

Alix Trieu
IRISA - ENS Rennes

alix.trieu@ens-rennes.fr

Abstract
Code obfuscation is emerging as a key asset in security by obscu-
rity. It aims at hiding sensitive information in programs so that they
become more difficult to understand and reverse engineer. Since the
results on the impossibility of perfect and universal obfuscation,
many obfuscation techniques have been proposed in the literature,
ranging from simple variable encoding to hiding the control flow of
a program.

In this paper, we formally verify in Coq an advanced code ob-
fuscation called control-flow graph flattening, that is used in state-
of-the-art program obfuscators. Our control-flow graph flattening
is a program transformation operating over C programs, that is in-
tegrated into the CompCert formally verified compiler. The seman-
tics preservation proof of our program obfuscator relies on a simu-
lation proof performed on a realistic language, the Clight language
of CompCert. The automatic extraction of our program obfuscator
into OCaml yields a program with competitive results.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Validation

Keywords program obfuscation, verified compiler, C semantics

1. Introduction
Code obfuscation is emerging as a key asset in security by obscu-
rity. It aims at hiding sensitive information in programs so that they
become more difficult to understand and reverse engineer. When an
attacker is reverse engineering an obfuscated code, he needs much
more effort to extract relevant information from the resulting pro-
gram [16].

Code obfuscation is used to protect the intellectual property of
a software, or to hide a secret in a software (e.g. keys or water-
marks) [9]. For example, code obfuscation is a technique to diver-
sify software, and thus to protect it. Indeed, when a software is ob-
fuscated in many different ways, each resulting binary code must
be attacked separately, dramatically increasing the effort required
to reverse engineer these binary codes and to realize that they stem
from a same source program [8].

Many obfuscation techniques have been published in the litter-
ature (see [8] for a comprehensive survey). Results on the impos-
sibility of perfect and universal obfuscation, such as [3], did not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPP ’16, January 18–19, 2016, Saint Petersburg, Florida, USA.
Copyright c© 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

dishearten researchers and practitioners in developing new obfus-
cation techniques. Well-known examples of basic obfuscations are
variable renaming, constant encoding (e.g. multiplying by 3 all in-
teger constants of a program). Other examples of simple obfusca-
tions are variable splitting, array splitting and array merging. Such
obfuscations are syntactic and transform data. They can be per-
formed on source code or on compiled code.

Other code obfuscations aim at hiding the control flow of a pro-
gram. A first example is loop unrolling. Another example is the in-
sertion of opaque predicates. This well-known and efficient exam-
ple is commonly used to prevent an attacker from relying on static
analysis during reverse engineering. An opaque predicate is a con-
ditional expression that always evaluates to a same boolean value,
and consists of complex formulae that are difficult to analyze. In-
serting an opaque predicate in a statement s adds in the program an
if-statement such that its condition is the opaque predicate, one of
its branches is s while the other branch is a sequence of statements
that is dead-code, whose purpose is to make the control-flow graph
(CFG) more complex.

Advanced code obfuscations are semantic program transforma-
tions that hide the control flow. A representative and challeng-
ing example that is implemented in state-of-the-art and industrial
compilers (e.g. [7, 11, 15]) is CFG flattening. This transformation
breaks the CFG of a program by removing all easily identifiable
if-statements and loops. These structures are then flattened as they
all become different cases of a large switch statement routing the
control flow through the statements of the right case (see section 2
for an example program and details).

Usually, the main concern when defining a program obfusca-
tion is the fact that it does not break down the performances of
the compiled code. Surprisingly, very few works in the literature
are concerned by semantics preservation of program obfuscations.
However, some obfuscations (e.g. CFG flattening) are non-trivial
semantic transformations. Even if they are well understood, their
implementations on real languages such as C are still error-prone.

To the best of our knowledge, the only mechanized proof of
correctness of some code obfuscations is introduced in [4], where
the code obfuscations are basic obfuscations, that operate over a
small imperative language. In this paper we go beyond this ap-
proach and formally verify an advanced code obfuscation, CFG
flattening. Moreover, our semantics-preserving program obfusca-
tor is integrated into the CompCert formally verified compiler [12]
and operates over the Clight language of the compiler.

All results presented in this paper have been mechanically veri-
fied using the Coq proof assistant [18]. The complete development
is available online [1]. This paper makes the three following con-
tributions:

1. a proof of correctness of CFG flattening, an advanced obfusca-
tion formally verified in Coq,

2. a fully executable program obfuscator, integrated into the
CompCert C compiler,

int i;
i = 0;
while (i < 100) {
i++;

}

(a) Original program

i = 0;

(i < 100)

i++;

true

false

(b) Original CFG

pc = 1;

(pc != 0)

switch (pc)

(i < 100)

pc = 3; pc = 0;

break;

i = 0;

pc = 2;

break;

i ++;

pc = 2;

break;

true

case 2

true
false

case 1
case 3

false

(c) Obfuscated CFG

int i;
int pc;
pc = 1;
while (pc != 0) {
switch (pc) {

case 1:
i = 0;
pc = 2;
break;

case 2:
if (i < 100) {
pc = 3;
break;

} else {
pc = 0;
break;

}
case 3:

i++;
pc = 2;
break;

}
}

(d) Obfuscated program

Figure 1: Example of CFG flattening: original program with its CFG, the resulting CFG and the resulting program.

3. experiments showing that our obfuscator can be applied on
realistic programs.

The remainder of this paper is organized as follows. First, Sec-
tion 2 briefly introduces our obfuscation based on CFG flattening.
Then, Section 3 explains the Clight semantics that is defined in
CompCert. The next two sections are devoted to the formal verifi-
cation of our program obfuscator: Section 5 explains our main cor-
rectness theorem and the simulation relation it relies on, and Sec-
tion 6 details some lemmata necessary to the proof. In Section 7,
we describe the experimental evaluation of the implementation of
our obfuscator. Related work is discussed in Section 8, followed by
concluding remarks.

2. Control-flow Graph Flattening
The CFG flattening of a program consists in flattening the control
flow of each function by first breaking up the nesting of loops and
if-statements, and then hiding each of them in a case of a large
switch statement, that is wrapped inside the body of a loop. Thus,
the different basic blocks which were originally at different nesting
levels are put next to each other in the CFG. Finally, the control
flow of the program is ensured by a variable acting as a program
counter that is updated at each execution of a case of the switch
statement.

Figure 1 shows an example of CFG flattening, where the small
program on the left of the figure is obfuscated into the program
shown at the right of the figure. The obfuscation removes the while
loop of the original program. It adds a switch statement such that
the two assignments and the condition in the original program (i.e.
the three basic blocks of the CFG) are hidden in distinct cases
of this switch statement, which is wrapped inside a loop whose
condition depends on the program counter. The CFG is flattened,
due to the different cases of the switch statement, and the program
counter is used to redirect the control flow.

Moreover, a new variable called pc is added to route the con-
trol flow through the right case of the switch statement, and the

switch statement becomes the body of a loop whose condition
depends only on pc. Each execution of a case in the switch state-
ment consists in executing a statement of the original program, fol-
lowed by the assignment of pc to a new value corresponding to the
next case to execute and last a break statement to exit the switch
statement (and hence the loop body). In the end, the execution of
the loop stops after executing the last statement of the original pro-
gram.

The main weaknesses of CFG flattening are twofold: it may
degrade the performances of the generated code, and the program
counter variable may be recognizable during reverse engineering.
For these reasons, industrial obfuscators do not perform CFG flat-
tening on whole programs, but only on selected pieces of code. This
solution is not specific to control flow obfuscation, and commonly
used for all kinds of obfuscations. Most of the time, these pieces
of code are selected manually by the programmer who wants to
protect for example an algorithm in a larger software.

Other solutions for improving the stealth of CFG flattening is to
combine this obfuscation with other simpler obfuscations. Two ba-
sic obfuscations are useful for obfuscating the supplementary code
added by the CFG flattening: variable splitting that will obfuscate
the program counter (e.g. by splitting it into two variables that are
updated at different program points) and constant encoding that
will change randomly the constant values of the cases in the added
switch statements, so that they do not correspond to consecutive
numbers starting from 1 as in the example of Figure 1.

Our formally verifed CFG flattening transforms C programs. It
operates over the Clight language, a simpler version of C where
expressions contain no side-effects and there is a single kind of
loop. Clight is the first intermediate language of the CompCert
compiler. Our CFG flattening is integrated into CompCert as an
obfuscation pass. We thus only need to prove the correctness of our
obfuscation and then rely on CompCert to get for free the semantics
preservation of our obfuscation from source programs to compiled
programs.

The proof of correctness of CFG flattening relies on a non-trivial
forward simulation theorem stating that each statement of the ini-
tial program is also executed in a similar way in the obfuscated pro-
gram, where the corresponding statement is followed by statements
that are added to flatten the control flow of the program. Similarly
to other simulation proofs already present in CompCert, the gist
of this proof is the definition of the matching relation between pro-
gram states. Moreover, a peculiarity of our proof (and our matching
relation) is that it requires to handle with care the control flow of
the initial program (e.g. continue and break statements in loops),
as explained in Section 5.

3. The Clight Semantics in CompCert
This section defines the syntax and semantics of Clight. The proof
of correctness of our obfuscator relies on an inductive reasoning on
this semantics.

3.1 Syntax
Clight is structured into expressions, statements and functions.
Within expressions, all side-effect free operators of C are sup-
ported, but not assignment operators nor function calls. Assign-
ments and function calls are presented as statements and cannot
occur within expressions. The syntax of Clight is defined in [5].
Since this paper, the Clight language evolved; its syntax is defined
in Figure 2. There is now a single kind of loop (loop s1 s2)
representing infinite loops. It executes s1 then s2 repeatedly. A
continue in statement s1 branches to statement s2. The C loops
are derived forms of this infinite loop. For example, the while loop
that we use in this paper is defined as follows.

Definition while(e: expr)(s: statement) :=
loop ((if(e)then skip else break) ; s) skip.

Another recent feature of the Clight language is that an expres-
sion can refer to temporary variables, which are a separate class of
local variables that do not reside in memory and whose address can-
not be taken. As a consequence, there are two kinds of assignments:
assignments to a temporary variable and assignments to other vari-
ables. In this paper, to simplify the syntax of Clight, we use the
same notation a1 = a2 to denote any of these assignments.

For functions returning “option” types, bxc (read: “some x”)
corresponds to success with return value x, and [] (read: “none”)
corresponds to failure. In grammars, a∗ denotes 0, 1 or several
occurrences of syntactic category a, and a? denotes an optional
occurrence of syntactic category a.

Moreover, a switch statement consists in an expression and a
list of cases. A case is a statement labeled by an integer constant
(case n) or by the keyword default [5]. Given a switch case sw,
we use the notation sw[n] to select (if any) the appropriate case of
sw, given the value n of the selector expression.

Furthermore, in this paper, to simplify the syntax of Clight, we
use the same symbol ; for denoting both a sequence of two state-
ments and also a sequence of switch cases. We also omit in Fig-
ure 2 goto statements and external functions, as we do not trans-
form them, and only show the declaration of internal functions.

3.2 Semantics
The semantics of Clight is defined using a small-step style with
continuations, supporting the reasoning on nonterminating pro-
grams. It differs from the previous semantics of Clight that was de-
fined in [5] following a big-step style, without continuations. More
precisely, the semantics of expressions is defined with a big-step
style as in [5], and the semantics of statements is a continuation-
based small-step semantics, that is is defined in Figure 3.

Expressions: a ::= id variable identifier
| tid temporary variable
| n integer constant
| f float constant
| sizeof(τ) size of a type
| alignof(τ) alignment of a type
| op1 a unary arithmetic op.
| a1 op2 a2 binary arithmetic op.
| *a pointer dereferencing
| a. id field access
| &a taking the address of
| (τ)a type cast

Unary operators: op1 ::= - | ~ | ! | absf
Binary operators: op2 ::= + | - | * | / | % arithmetic operators

| << | >> | & | | | ^ bitwise operators
| < | <= | > | >=
| == | != relational operators

Statements: s ::= skip empty statement
| a1 = a2 assignment
| a1 = a2(a∗) function call
| a(a∗) procedure call
| s1;s2 sequence
| if(a) s1 else s2 conditional
| switch(a) ls multi-way branch
| loop(s1,s2) s infinite loop
| break exit from current loop
| continue next iteration

of the current loop
| return a? return from

current function
Switch cases: c ::= default default case

| case n labeled case

List of switch cases: ls ::= c : s; ls
| empty list

Variables: dcl ::= (τ id)∗ name and type
Functions: F ::= τ id(dcl1) dcl1 = parameters,

{dcl2; dcl2 = local var.
s} body

Programs: P ::= dcl; global variables
F∗; functions,
main= id entry point

Figure 2: Abstract syntax of Clight (excerpt).

The continuations allow a uniform representation of statement
execution and enable us to use the induction principles generated
by Coq when reasoning on program executions [2]. They can be
seen as a control stack and describe the computations that remain to
be performed after the statement under consideration has executed
completely. The continuations (of type cont) handle local control
flow: Kseq handles sequential execution, Kloop1 (resp. Kloop2)
handles the first (resp. second) part of a loop, and Kswitch catches
break statements arising out of a switch statement. Kstop repre-
sents the termination of the computation. Kcall handles function
return; it carries not only a control aspect but an activation record
of its own, indicating to the callee function where to store its return
value and how to restore the environments of the caller function.

A semantics state (of type state) can either be a call state,
a return state or a regular state [13]. Each state has a continua-
tion k representing the statements to execute from this state. A
call state C(f,args,k,m) represents the state when one is about
to call the function f with arguments args and memory m which
basically maps memory addresses with values. Similarly, a return
state R(res,k,m) represents a function that returns the value res
in memory state m. Regular states S(f,s,k,e,le,m) are used dur-
ing the execution of the current function f. There are two kinds of
environment, e maps variables with their memory addresses where
their values are stored at, le maps variables directly with their val-
ues but only for variables whose addresses are never taken. This is
useful for optimizations during compilation as these variables do
not need to reside in the memory and can be put in registers.

The Clight small-step semantics for statements is defined as an
inductive predicate called step. It consists of 17 semantic rules
for evaluating expressions and 25 rules defining the execution of
statements, together with many other rules devoted to C unary
and binary operators and also memory stores and loads. In this
paper, for clarity reasons, we consider step as a transition relation
between two states and omit the trace recording the input/output
events that are triggered during transitions.

As an example, we only show a few transition rules defined in
the step semantics. The step_set rule states that the statement
id=a assigning a temporary variable id modifies the value of
variable id to v (if a evaluates to v in the environment provided
by e, le and m) and updates the local environment le accordingly.
The step_seq rule states that to execute the statement s1;s2, the
statement s1 needs to be executed first and the statement s2 is
added to the continuation k to form Kseq s2 k and execute s2
later. When s1 finishes its execution, the rule step_skip_seq is
used to remove s2 from the continuation and promote it to the next
statement s to be executed.

The remaining rules of Figure 3 define the execution of an infi-
nite loop (loop s1 s2). The first part s1 of the loop is first exe-
cuted (rule step_loop), and the continuation k becomes (Kloop1
s1 s2 k) when entering the loop. When all the statements of s1
are executed, s1 is reduced into the skip statement, and the rule
step_s_or_c_loop1 is triggered to execute the second part s2
of the loop. Again, the continuation starting with Kloop2 indi-
cates the entry in this second part. When all the statements of s2
are executed, s2 is reduced into the skip statement, and the rule
step_skip_loop2 is triggered to execute again the statements of
the loop. The only way to exit the loop is to execute a break state-
ment. For example, the rule break_loop1 states that the execution
of a break statement during the execution of s1 reduces the break
into skip and triggers the exit from the loop (i.e. s1 and s2 are
skipped and the continuation (Kloop1 s1 s2 k) becomes k)).

In the rest of this paper, the reflexive transitive closure of the
step relation is denoted by star, and its transitive closure is
denoted by plus. The set of reachable states of a program P is
denoted by reach(P) = star s0 s’, where s0 represents an

Inductive cont: Type :=
| Kstop (* Program ended *)
| Kseq(s2:statement) (k:cont)

(* after s1 in s1;s2 *)
| Kloop1(s1:statement) (s2:statement) (k:cont)

(* after s1 in loop s1 s2 *)
| Kloop2(s1:statement) (s2:statement) (k:cont)

(* after s2 in loop s1 s2 *)
| Kswitch (k:cont) (* catches break statements *)
| Kcall(oi:option ident) (* where to store result *)

(f: function) (* calling function *)
(e:env) (* local env of f *)
(le:temp_env) (* temporary env of f *)
(k:cont).

Inductive state: Type :=
| C(f: function)(args: list val)(k: cont)(m: mem)
| R(res: val)(k: cont)(m: mem)
| S(f: function)(s: statement)(k: cont)(e: env)

(le: temp_env)(m: mem).

Inductive step: state -> state -> Prop :=
| step_set: forall f id a k e le m v,

eval_expr e le m a v ->
step (S f (id=a) k e le m)

(S f skip k e (PTree.set id v le) m)
| step_seq: forall f s1 s2 k e le m,

step (S f (s1;s2) k e le m)
(S f s1 (Kseq s2 k) e le m)

| step_skip_seq: forall f s k e le m,
step (S f skip (Kseq s k) e le m)

(S f s k e le m)
| step_break_seq: forall f s k e le m,

step (S f break (Kseq s k) e le m)
(S f break k e le m)

| step_continue_seq: forall f s k e le m,
step (S f continue (Kseq s k) e le m)

(S f continue k e le m)
| step_loop: forall f s1 s2 k e le m,

step (S f (loop s1 s2) k e le m)
(S f s1 (Kloop1 s1 s2 k) e le m)

| step_s_or_c_loop1: forall f s1 s2 k e le m x,
x = skip \/ x = continue ->
step (S f x (Kloop1 s1 s2 k) e le m)

(S f s2 (Kloop2 s1 s2 k) e le m)
| step_break_loop1: forall f s1 s2 k e le m,

step (S f break (Kloop1 s1 s2 k) e le m)
(S f skip k e le m)

| step_skip_loop2: forall f s1 s2 k e le m,
step (State f skip (Kloop2 s1 s2 k) e le m)

(S f (loop s1 s2) k e le m)
| step_break_loop2: forall f s1 s2 k e le m,

step (S f break (Kloop2 s1 s2 k) e le m)
(S f skip k e le m)

| ...

Figure 3: Small-step semantics of Clight (excerpt).

initial state. Let us note that diverging programs are modeled as
infinite sequences of reduction steps.

4. Formalization of Control-Flow Graph
Flattening

CFG flattening is a program transformation that modifies the con-
trol flow of the program. Indeed, the body of the program is broken
up into multiple basic blocks and then encapsulated into a switch
statement with each block constituting a different case. The switch
statement has then the responsibility of selecting the right case to
execute, which is ensured by an additional variable that acts as a
program counter. Finally, the switch statement is then encapsu-
lated into a loop statement in order to simulate the program (e.g.
see Figure 1).

Figure 4 shows an excerpt of our obfuscation that performs
CFG flattening on a program and generates an obfuscated program.
Obfuscating a program consists in obfuscating each of its functions,
which requires to find in each function a fresh local variable pc,
and then to call (obf_body pc body(f)) to add the declaration
of pc and to obfuscate all the statements of the function body. The
variable pc is declared as an unsigned int, which corresponds
to a 32-bits unsigned machine integer in CompCert. So, if the
statements to obfuscate produce more than 232 cases (which never
happens in practice), an error is raised as some cases would not
be able to be reached as their corresponding number would be too
high.

As in the example in Figure 1, the obfuscated program is a
loop whose condition is (pc!=0) and whose body is a switch
statement switching on the values of pc and such that the differ-
ent case statements correspond to the flattened statements. More
precisely, each basic statement s (i.e. an assignment, a function
call, a return statement or a skip statement) is flattened into
a case statement (case counter: s; pc=k; break). The flat-
tening of statements is performed by the function called flatten
that is working out how to correctly number the switch cases. More-
over, break and continue do not have a defined semantics outside
of loops, thus flatten will raise an error if it encounters such a
statement.

The flattening of other statements calls recursively the flattening
of all the basic statements. For instance, the flattening of a sequence
s1;s2 consists in generating 1) the switch cases corresponding
to the flattening of each basic statement of s1 and 2) the switch
cases corresponding to the flattening of each basic statement of s2
(i.e. starting from a counter equal to counter+|s1|), where |s|
denotes the length of the statement s (i.e. the number of its basic
statements).

In the expression (flatten pc body counter k), the pa-
rameter called counter represents the initial value of the program
counter (i.e. it is the number of the first switch case of the gen-
erated sequence of switch cases). The k parameter behaves as a
continuation and represents the value of the next statement to ex-
ecute (according to the control flow of the original program). This
parameter is required to handle the recursive calls of the flatten
function.

In order to flatten an infinite loop (loop s1 s2), the expres-
sion (flatten pc (loop s1 s2) counter k) first generates a
switch case numbered by counter and modifies pc to counter+1.
Then, it flattens s1 by numbering the flattened statements from
counter+1 to (counter+|s1|) and its last case is asked to mod-
ify the pc variable to (counter+|s1|+1), which corresponds to
the first number of the flattening of s2. Then, s2 is flattened such
that at its end the pc variable is modified back to counter to cor-
rectly model the control flow of the loop.

Definition obf (P: program) := ...
(* For each function f of P, call obf_fun f *)

Definition obf_fun (f:function) := ...
(* find in f a fresh local variable pc

call obf_body pc body(f) *)

Definition obf_body (pc: ident) (body: statement) :=
if |body| >= 2^32 then

Error ("Program too big")
else

OK (unsigned int pc = 1;
while (pc != 0) {

switch (pc) (flatten pc body 1 0)
})

Fixpoint flatten (pc: ident)(s: statement)
(counter k: Z) :=

match s with
| skip => (case counter: skip; pc=k; break)
| a = b => (case counter: a=b; pc=k; break)
| s1; s2 =>

(flatten pc s1 (counter) (counter+|s1|));
(flatten pc s2 (counter+|s1|) k)

| if b then s1 else s2 =>
(case counter: if b then pc=counter+1

else pc=counter+1+|s1|; break);
(flatten pc s1 (counter+1) (counter+1+|s1|));
(flatten pc s2 (counter+1+|s1|) k)

| loop s1 s2 =>
(case counter: pc=counter+1; break);
(flatten_loop pc s1 (counter+1)

(counter+1+|s1|) (counter+1+|s1|) k);
(flatten_loop pc s2 (counter+1+|s1|) counter 0 k)
| break | continue => Error
| ...
end.

Fixpoint flatten_loop (pc: ident)(s: statement)
(counter k to_continue to_break: Z) :=

match s with
| continue =>

(case counter: pc = to_continue; break)
| break => (case counter: pc = to_break; break)
...
end.

Figure 4: Code of our CFG flattening obfuscation (excerpt).

Furthermore, the function flatten uses an auxiliary function
called flatten_loop which is the same as flatten except that
it now knows how to transform break and continue statements
thanks to the to_break and to_continue extra arguments, which
indicate how to renumber the pc variable.

The only way to get out of a loop is through a break statement.
Thus, in a loop, a break statement is transformed into a pc=k
statement, with k representing where the control flow is supposed
to go after the loop statement has finished executing. Similarly,
a continue in s1 is transformed into a pc=counter+1+|s1|
statement. However, continue statements are guaranteed not to
appear in s2 as they do not have a semantics defined there, thus
whatever the argument given as to_continue has no impact.

In the definition of obf_body in Figure 4, the expression
(flatten pc body 1 0) produces the sequence of switch cases

corresponding to the program body by assigning the number 1 to its
first statement and telling that the last case must change the value
of pc to 0, which corresponds to the exit condition of the loop that
encapsulates the switch statement. For example, the expression
(flatten pc skip 1 0) produces the following switch case:
(case 1: skip; pc=0; break).

5. Correctness of Control-Flow Graph Flattening
This section defines our main correctness theorem and explains the
main difficulties encountered during the corresponding proof. First,
we describe our main simulation theorem and explain our solution
to apply it on all kinds of program executions that are defined
in the Clight semantics: terminating executions, but also infinite
executions (called diverging executions in CompCert). Then, we
detail the different matching relations we have defined in order to
prove the simulation theorem.

5.1 Main simulation theorem
To prove that the CFG flattening preserves the Clight semantics, we
rely on a standard technique used throughout CompCert and show
a forward simulation diagram expressed in the following theorem.
Given an initial program P1 and its corresponding obfuscated pro-
gram P2, it states that each transition step in P1 must correspond
to transitions in P2 and preserve as an invariant a relation between
states of P1 and P2.

Theorem 1. Let P1 be a program and P2 its corresponding ob-
fuscated program (i.e. P2=obf(P1)). Then, we have the following
simulation relation between reachable states of both programs (i.e.
s1,s1’ ∈ reach(P1) and s2,s2’ ∈ reach(P2)): for each step
(step s1 s1’) of the execution of P1, and each state s2 of the
execution of P2 that matches with s1, there exists a state s2’ that
matches with s1’ and that is reached after zero, one or several
steps from s2.

In Coq, we call match_states the matching relation between
states. The simulation relation is written in Coq in Figure 5. The
measure is defined over transition states. It is however only used for
regular states, which contain information on the statement to exe-
cute, its continuation and environments. It is difficult to guess how
environments are modified during the execution of the program, the
measure thus actually only uses the statement and its continuation
to define itself.

More precisely, there are two situations in the simulation di-
agrams that we prove (hence the or at the beginning of the last
line in the Coq definition); they are depicted in Figure 5. First
(left of Figure 5), as explained in the previous section, most state-
ments of P1 are flattened into a non-empty sequence of statements
(e.g. an assignment is flattened into a sequence of three state-
ments that is wrapped inside a switch case). So, the simulation di-
agram states that for two matching states s1 and s2, the execution
(step s1 s1’) of such a statement in P1 must match with the
execution (plus s2 s2’) of the corresponding sequence of state-
ments, and the resulting states s1’ and s2’ must match as well.

Second (right of Figure 5), some other statements of P1 are not
transformed and do no exist in P2. For such statements, the simula-
tion diagram states that an execution (step s1 s1’) in P1 corre-
sponds to no execution in P2, that is we must have (star s2 s2’),
as the star relation comprises empty executions. In such situations,
we use a measure associated with the execution states of P1 that
decreases to ensure that there is no infinite stuttering steps (that
can happen because of diverging executions, see [13]). Indeed, if
P1 diverges (i.e. there are infinitely many transition steps), then P2
must also diverge. The measure m is a natural integer and there-
fore cannot decrease indefinitely, which thus ensures that infinitely

Definition simulation: forall (s1 s1’:state),
step s1 s1’ ->
forall (s2:state), match_states s1 s2 ->
(exists s2’, plus s2 s2’ /\ match_states s1’ s2’)
\/(measure s1’<measure s1 /\ match_states s1’ s2).

s1 s2

s′1 s′2

∼

∼

+

s1 s2

s′1

∼

with m(s′1)< m(s1)

∼

Figure 5: Simulation relation (in Coq) and corresponding simula-
tion diagram. Plain lines are hypotheses, dashed lines are conclu-
sions.

many transition steps are also simulated by infinitely many transi-
tion steps.

There are a few cases where a transition in the original program
corresponds to no transition in the transformed program, the main
one is when a statement is reduced to skip in the original pro-
gram, this skip is purely semantic and does not appear syntacti-
cally in the program, it thus has no corresponding case in the trans-
formed program. The second case is step_break_seq (see Fig-
ure 3), the original program pops the continuation until it finds a
Kloop or Kswitch to catch the break statement, whereas the trans-
formed program already knows which case to execute. Similarly
with step_continue_seq, there is no corresponding transition in
the transformed program. The last case is step_seq, the original
must unfold s1;s2 to know that the next statement to execute is
s1 whereas the transformed program sees no such thing as it has
been flattened and already knows that s1 is the next statement to
execute. Consequently, the measure m that we define must respect
the following conditions.

m(s, k) < m(skip, Kseq s k)
m(s1, Kseq s2 k) < m(s1;s2, k)
m(continue, k) < m(continue, Kseq s k)
m(break, k) < m(break, Kseq s k)
m(s’, Kloop2 s s’ k) < m(skip, Kloop1 s s’ k)
m(loop s s’, k) < m(skip, Kloop2 s s’ k)

One may wonder why the flatten function adds an extra
case (case counter:pc=counter+1;break) which only modi-
fies the program counter variable when loops are flattened. This is
actually used to simulate the transition step step_loop in Figure 3.
It would otherwise have no corresponding transition step without
the extra case that we add, and would add an additional condi-
tion that m must respect: m(s1,Kloop1 s1 s2 k) < m(loop s1
s2,k). When combined with the previous ones, one can derive an
absurdity.

m(s1,Kloop1 s1 s2 k) < m(loop s1 s2,k)
m(s2,Kloop2 s1 s2 k) < m(skip,Kloop1 s1 s2 k)
m(loop s1 s2,k) < m(skip,Kloop2 s1 s2 k)

Indeed, if we consider s1 and s2 to be both skip statements,
then we can derive the following inequality which is absurd:
m(loop skip skip,k) < m(loop skip skip,k). Our solu-
tion was thus to introduce the extra cases during CFG flattening,
in order to be able to define a measure. It is called measure and
detailed in Figure 6.

Fixpoint num_stmt (s: statement): nat :=
match s with
| s1;s2 => num_stmt s1 + num_stmt s2 + 2
| _ => 0

end.

Fixpoint num_cont (k: cont): nat :=
match k with
| Kseq s k => num_cont k + num_stmt s + 1
| Kstop | Kcall _ _ _ _ _ | Kswitch _ => 0
| Kloop1 _ s2 k => num_cont k + num_stmt s2 + 2
| Kloop2 _ _ k => num_cont k + 1

end.

Definition measure (st: state): nat :=
match st with
| State _ s k _ _ _ => num_stmt s + num_cont k
| _ => 0

end.

Figure 6: Measure defined to avoid infinite stuttering steps in the
simulation proofs.

5.2 Matching relations used in the simulation theorem
The gist of the proof is to define the matching relation ∼ (called
match_states in Coq) matching a state s in P1 with a state s′
in P2 such that s′ is similar to s except that the value of the
program counter corresponds to the correct statement to execute.
The difficulty is to properly state what it means for the program
counter to correspond to the correct statement to execute.

Informally, one can think of the pc=n;break statements in the
switch cases as arrows in a CFG linking basic blocks to others,
as this is roughly what the switch statement wrapped inside the
while statement allows us to do. Figure 8 illustrates an example of
this matching, where each node in the initial CFG must match to
the corresponding switch case in the obfuscated program.

Indeed, the first switch case is linked to the second one, which
tests whether the condition (i<100) holds and goes to the third
switch case if it is true, or modifies the program counter to zero
otherwise (which corresponds to the exit condition of the loop). It
is exactly the same information that is exhibited by the CFG. This
way, the proof can be seen as explaining how to rebuild the CFG
from the switch cases that were generated by the transformation. It
remains relatively simple on a small example, but our simulation
proof must actually relates the abstract syntax tree of the program
with its flattened version and not the CFG with its flattened version.

The σ ∼ σ ′ relation between two states σ and σ ′ is defined
in Figure 8 by three cases corresponding to the matching between
either call states or return states or regular states. Two call states
can be matched when they share the same list of arguments (as
our obfuscation does not change the arguments in functions) and
the same memory. Indeed, the program counter that we add in the
obfuscated program does not reside in the memory as its address
is never taken, so the code added by the obfuscation does not
change the memory. To match a call state C(f,a,k,m) with a call
state C(f’,a,k’,m), we need to check that f’ is the transformed
version of function f and that the call continuations inside of k and
k’ can be matched (i.e. k ' k’). This corresponds to rule (1) in
Figure 8.

This matching ' between call continuations is not detailed in
this paper. Informally, a call continuation is either Kstop or a
Kcall. A Kstop must be matched with a Kstop, while a (Kcall
oid f e le k) must be matched with a (Kcall oid f’ e le’
k’) such that f’ is the transformed version of f and the temporary

case 1:
i = 0;
pc = 2;
break;

case 2:
if (i < 100) {

pc = 3;
break;

} else {
pc = 0;
break;

}
case 3:
i = i + 1;
pc = 2;
break;

1: i = 0;

2: (i < 100)

3: i = i + 1;

Figure 7: Matching between switch cases and initial CFG.

environment le’ is le except that the program counter is defined
in f’ and has a value. Furthermore, as the continuation k contains
the next statements to execute, k’ is the corresponding transformed
continuation. Return states are similarly matched (see rule (2) in
Figure 8).

The last case matches a regular state S(f,s,k,e,le,m) of the
initial program with a regular state S(f’,s’,k’,e,le’,m) of the
obfuscated program. Again, f’ is the transformed version of f, the
continuations k and k’ must match (i.e. k ' k’) (see rule (3)).
Once again, the memory and the local environment do not need to
be modified. Let us note that the continuation k’ must be either
Kstop or a Kcall. Indeed, the whole point of the CFG flattening
transformation is to make the control flow of the program harder
to understand, thus in the transformed program, the continuations
strictly become a call stack. As a consequence, the only possible
continuations in a regular state of the transformed program are
Kstop and Kcall (i.e. they can not be Kseq or Kloop).

Moreover, the local environment le’ is le except that the pro-
gram counter pc f has a value and it is n, the number of the correct
switch case (i.e. le′ = le † {pc f 7→ bnc}). The correct switch case
is the one that corresponds to s in s’, the while loop wrapping the
obfuscated sequence of statements corresponding to s, that always
has the following shape.

while (pc != 0) {
switch (pc) {
case 1: ...
case 2: ...
...
case m: ...

}
}

In this while loop, the sequence ls of switch cases is the body
of f broken into small blocks. The difficulty of the proof lies in how
to relate the control flow in the original program with the syntactic
elements of the transformed program.

To that purpose, we define another matching relation written
pc,k ` s' ls[n] between a statement s of the original program and
its corresponding sequence of statements ls[n] in the transformed
program (i.e. it is the sequence of the case numbered n in the added
switch statement), given a continuation k and the program counter
pc that the transformation adds in the obfuscated program. This
relation is defined by the rules (4) to (9) of Figure 9.

The first rule (numbered (4)) defines the matching between an
assignment and its obfuscated switch case. Besides the definition

obf(f) = b f ′c k,k′ ∈ {Kstop,Kcall} k ' k′

C(f ,a,k,m)∼C(f ′,a,k′,m)
(1)

obf(f) = b f ′c k,k′ ∈ {Kstop,Kcall} k ' k′

R(v,k,m)∼ R(v,k′,m)
(2)

obf(f) = b f ′c k′ ∈ {Kstop,Kcall}
k ' k′ le′ = le †{pc f 7→ bnc} flatten(pcf,body(f),1,0) = blsc s′ = while(pc f ! = 0)(switchpc f ls)

∀s1,s2,k′′,context(k) ∈ {Kloop1s1s2k′′,Kloop2s1s2k′′} =⇒ ∃n0 such thatpc f ,k
′′ ` (loops1s2)∼ ls[n0]∧n0,pc f ,k ` s≈ ls[n]

context(k) ∈ {Kstop,Kcall} =⇒ pc f ,k ` s∼ ls[n]

S(f ,s,k,e, le,m)∼ S(f ′,s′,k′,e, le′,m)
(3)

Figure 8: Matching between states (σ ∼ σ ′ relation).

ls[n] = (e1 = e2; pc = next stmt;break)
pc,k ` skip∼ ls[next stmt]

pc,k ` e1 = e2 ∼ ls[n]
(4)

ls[n] = (skip; pc = next stmt;break)
pc,k ` s∼ ls[next stmt]

pc,Kseqsk ` skip∼ ls[n]
(5)

pc,k ` s∼ ls[n]
pc,Kseqsk ` skip∼ ls[n]

(6)

pc,Kseqs2 k ` s1 ∼ ls[n]
pc,k ` s1;s2 ∼ ls[n]

(7)

ls[n] = (if b then pc = n+1 else pc = n+1+ |s1|;break)
pc,k ` s1 ∼ ls[n+1] pc,k ` s2 ∼ ls[n+1+ |s1|]

pc,k ` if b then s1 else s2 ∼ ls[n]
(8)

ls[n] = (pc = n+1;break)
n, pc,Kloop1s1 s2 k ` s1 ≈ ls[n+1]

pc,k ` loops1 s2 ∼ ls[n]
(9)

Figure 9: Matching between statements (pc,k ` s∼ ls[n] relation).

of this switch case, the rule requires the following hypothesis:
pc,k ` skip ∼ ls[next stmt]. It stems from the transition step
called step_set in the semantics (see Figure 3) that reduces an
assignment into a skip statement, whatever the continuation. Thus,
the continuation is only checked in a next step, when skip will
be executed. For example, the step_skip_seq rule in Figure 3
indicates that after a skip, if the continuation is a Kseq s k, the
next instruction to execute is s.

However, this is problematic for our proof. As previously stated,
one cannot distinguish a skip that is syntactically present in the
code from one that is purely semantic. Thus, we must be able to
handle both situations, which corresponds respectively to the rules
(5) and (6). If the skip is present in the original program, then we
know that there must be a corresponding case in the transformed
program which corresponds to rule (5). On the other hand, if the
skip is semantic and does not appear in the program, then rule (6)
applies and we must prove that the program counter already points
to the next statement to execute.

The matching relation for sequences of statements is defined
in rule (7). Similarly to rule (6), there is no corresponding switch
case to the transition step_seq, thus we have to also prove that
the program counter already points to the correct switch case cor-
responding to s1.

ls[n] = (e1 = e2; pc = next stmt;break)
n0,pc,k ` skip≈ ls[next stmt]

n0, pc,k ` e1 = e2 ≈ ls[n]
(4’)

. . . (9’)

ls[n] = (skip; pc = next stmt;break)
n0, pc,Kloop2s1 s2 k ` s2 ≈ ls[next stmt]

n0, pc,Kloop1s1 s2 k ` skip≈ ls[n]
(10)

n0, pc,Kloop2s1 s2 k ` s2 ≈ ls[n]
n0, pc,Kloop1s1 s2 k ` skip≈ ls[n]

(11)

ls[n] = (skip; pc = n0;break)
n0, pc,Kloop2s1 s2 k ` skip≈ ls[n]

(12)

n0, pc,Kloop2s1 s2 k ` skip≈ ls[n0]
(13)

ls[n] = (pc = next stmt;break)
pc,k ` skip∼ ls[next stmt]

n0, pc,Kloop2s1 s2 k ` break≈ ls[n]
(14)

Figure 10: Matching between statements (n0,pc,k ` s≈ ls[n] rela-
tion).

ls[n] = (pc = n+1;break)
pc,Kloop1s1 s2 k ` s1 ∼ ls[n+1]

pc,k ` loops1 s2 ∼ ls[n]
(W1)

ls[n] = (skip; pc = next stmt;break)
pc,k ` loops1 s2 ∼ ls[next stmt]

pc,Kloop2s1 s2 k ` skip∼ ls[n]
(W2)

pc,k ` loops1 s2 ∼ ls[n]
pc,Kloop2s1 s2 k ` skip∼ ls[n]

(W3)

Figure 11: Wrong matching relations.

Loops modify the control flow of the program and are more
difficult to handle. Executing a loop (loop s1 s2) consists in
first executing s1 (rule step_loop in Figure 3), then executing
s2 (rule step_s_or_c_loop1 in Figure 3). Afterwards, the loop
is executed again (rule step_skip_loop2 in Figure 3). It is how-
ever possible to exit a loop by using a break statement (rules

step_break_loop1 and step_break_loop2 in Figure 3). Thus,
similarly to the previous rules defined for sequences, one would
probably want to define the matchings numbered (w1), (w2), and
(w3) in Figure 11.

But, this does not work because of circular reasoning. In-
deed, the matching pc,k ` loops1 s2 ∼ ls[n] requires the match-
ing pc,(Kloop1s1 s2 k) ` s1 ∼ ls[n+1], which in turn requires the
matching pc,(Kloop2s1 s2 k)` s2 ∼ ls[n+1+ |s1|], which requires
again the initial matching pc,k ` loops1 s2 ∼ ls[n]. Our solution is
to modify rule (w1) into rule (9), (w2) into rule (12) and (w3) into
rule (13).

However, it is not enough as we are now lacking informa-
tion to match S(f,(loop s1 s2),k,e,le,m) after the tran-
sition step from S(skip,(Kloop2 s1 s2 k),e,le,m) to the
state S(f,(loop s1 s2),k,e,le,m), as (loop s1 s2) is not
matched with anything anymore. The solution is that when trying
to match a regular state S(f,s,k,e,le,m), if the continuation k
is either a (Kloop1 s1 s2 k’) or a (Kloop2 s1 s2 k’), we
need to remember that the corresponding (loop s1 s2) can be
matched.

So, we define in rules (10) to (13) a new matching relation
n0,pc,k ` s ≈ ls[n] for loops, where we add the number n0 of the
case corresponding to the loop entry. The whole matching relation
≈ consists of rules (10) to (13) plus rules (4’) to (9’) that are
similar to rules (4) to (9), but with an added n0. Such an n0 is
exhibited in a precondition of rule (3). Indeed, in this rule, the
continuation k contains the context in which the current statement
is executed, i.e. whether it is within a loop or not. This precondition
thus states that if the context is a loop, then we must know a n0
such that pc,k′′ ` loops1 s2 ∼ ls[n0]. In other words, we must
remember which number was assigned to the start of the loop,
which replaces the preconditions that were present in (w2) and
(w3), hence removing the circular reasoning problem.

Rule (14) gives the matching relation for a break statement
present in the second part of a loop. The switch case corresponding
to such a break only modifies the program counter, and the value it
is modified to must point to the next statement after the loop which
is indicated by the pc,k ` skip∼ ls[next stmt] requirement. Note
that the relation used is ∼ as we are now out of the loop. But this
is only the case if there are no nested loops which we assumed in
this paper for the sake of simplicity. In the general case, instead of
using an integer n0, we use a stack of such integers. Each time a
loop is entered, a new number is pushed on the stack. Each time a
break is encountered, the corresponding value is popped from the
stack.

6. Auxiliary Lemmata
CFG flattening is a peculiar program transformation in that it also
creates a new variable which serves as a program counter that is
used to dispatch the control flow. Most program transformations
that were already present in CompCert – which is primarily a
compiler – do not need to introduce new variables. Thus, it was
necessary to define how to create fresh variables and prove that they
are actually fresh. Variables in CompCert are internally represented
by identifiers which are actually positives, the Coq type for
strictly positive integers.

Hence, to define a new variable for a function, one must find out
the greatest positive that appears in the body of the function. This
can be accomplished by scanning through the abstract syntax tree
of the function. The successor of this identifier is thus guaranteed to
never appear in the body of the function as it is strictly greater than
every positive that may appear. We thus have the two following
lemmata.

Lemma max_ident_not_in_stmt: forall s id,
(max_ident_in_stmt s 1) > id ->
not_in_stmt id s.

Lemma new_ident_not_in_body: forall f,
not_in_stmt (new_ident_for_function f)(fn_body f).

The expression (max_ident_in_stmt s 1) returns the great-
est identifier it can find in the statement s and defaults to 1 if there
is none (typically if s is skip). Thus, the first lemma states that any
identifier greater than (max_ident_in_stmt s 1) is guaranteed
to not appear in s.

The second lemma states that (new_ident_for_function
f) does not appear in the body of the function f and is a direct con-
sequence of the first lemma. This proof is fairly easy, but is crucial
to the CFG flattening transformation, as each time that the program
counter variable is modified, it is necessary to show that it does not
affect the original variables that were present in the program and
vice-versa. Indeed, the proof is crucial in order to prove for exam-
ple that the expressions that were present in the initial program still
evaluate to the exact same value.

The control flow of a program that was modified through the
CFG flattening transformation is ensured by a switch statement
operating over the program counter variable. Thus, it was also nec-
essary to define multiple lemmata pertaining to switch statements.
In particular, a call to (flatten pc s n k) will produce a list of
cases numbered from n to n+|s|-1. Thus, one can prove that if the
value of the program counter pc is either lower than n or greater
than n+|s|-1, then the switch statement will not be able to select
a case within the list produced by (flatten pc s n k) and it is
actually an equivalence.

Lemma select_switch_flatten: forall s pc n k ls id,
0 <= n -> n+|s| <= Int.max_unsigned ->
0 <= pc <= Int.max_unsigned ->
flatten id s n k = ls ->
(ls[pc] = [] <-> pc<n \/ n+|s| <= pc).

Furthermore, flatten appends the list produced by its recur-
sive calls. Thus, a useful lemma that we use in conjunction with
the previous one is the following: if one can prove that no corre-
sponding case can be found in the first part ls1 of an appended
list ls1+ls2, then finding a case in the appended list amounts to
finding it in the second part of the appended list.

Lemma select_switch_app_right: forall ls1 ls2 pc,
ls1[pc]=[] -> (ls1++ls2)[pc]=ls2[pc].

7. Implementation and Experiments
Our formal development consists of about 1200 lines of specifica-
tions and 4250 lines of proofs. It is integrated into the latest version
(i.e. version 2.5) of the CompCert compiler [17]. Our proof relies
on the Clight semantics of CompCert and reuses many auxiliary
lemmata already present in CompCert and not mentionned in this
paper.

Our CFG flattening transformation does not exactly produce
the same result as in Figure 1. Indeed, as explained previously
(see Section 5.1), some extra switch cases that only increase the
program counter were introduced in order to facilitate the proof.
Another advantage of this approach is that it differentiates our
obfuscation from similar ones, and thus makes it more difficult to
detect during reverse engineering (i.e. we generate a more complex
CFG). A drawback is that it increases the size of the generated code.

Moreover, instead of numbering the cases of the switch state-
ment from 1 to n as demonstrated by the examples, our transforma-
tion is actually parametrized by a numbering function ϕ over 32-

COMPCERT NO SKIPS + OBF. OBF. ONLY Obfuscator-LLVM Ratio
LLVM /

Program LoC Original Obfuscated Ratio Obfuscated Ratio Obfuscated Ratio NO SKIPS + OBF.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

perlin.c 75 8.344s 48.045s 5.76 32.733s 3.92 54.469s 6.53 1.66
lists.c 81 0.398s 5.009s 12.59 5.050s 12.69 1.558s 3.91 0.31

fannkuch.c 154 0.267s 3.985s 14.93 3.211s 12.03 8.745s 32.75 2.72
binarytrees.c 164 4.834s 6.112s 1.26 5.384s 1.11 5.221s 1.08 0.97

nbody.c 174 5.146s 22.999s 4.47 17.033s 3.31 16.570s 3.21 0.97
fft.c 191 0.066s 0.229s 3.47 0.138s 2.09 0.228s 3.45 1.65

sha3.c 223 5.246s 92.334s 17.60 33.210s 6.33 8.272s 1.58 0.25
chomp.c 368 1.258s 8.300s 6.60 4.148s 3.30 4.614s 3.67 1.11

knucleotide.c 369 0.06s 0.155s 2.58 0.143s 2.38 0.125s 2.08 0.87
bisect.c 377 4.724s 19.913s 4.22 10.087s 2.14 27.884s 5.90 2.76

aes.c 1,453 0.995s 7.059s 7.09 3.156s 3.17 1.798s 1.81 0.57

Table 1: Benchmark results: execution times of original and obfuscated C programs (using our obfuscator and Obfuscator-LLVM). The last
column shows the slowdown ratio between Obfuscator-LLVM and our obfuscator (the higher the better).

bits machine integers (0 to 232−1) and a proof that ϕ is injective.
So the cases are numbered by ϕ(1), . . . ,ϕ(n), thus improving the
obfuscation of the generated code. Simple examples of such func-
tions are the identity function, shift functions (n 7→ n+k mod 232)
and the reflection function (n 7→ 232−1−n).

To evaluate our CFG flattening transformation, we chose in
the CompCert test suite a set of representative programs ranging
from 75 to 1453 lines of C code. Table 1 records the computation
times necessary to execute them before and after the CFG flattening
transformation. We ran our experiments on a MacBook Pro with a
2,5GHz i5 processor and 8GB RAM. As always with non-trivial
obfuscations, our CFG flattening increases the size of the program
and thus slows down its execution. Table 1 shows also the slow-
down ratio between both programs.

Moreover, we compared our CFG flattening with the CFG flat-
tening implemented in Obfuscator-LLVM, an obfuscator integrated
into the LLVM compiler and freely available [11]. Obfuscator-
LLVM is not formally verified and operates over the LLVM inter-
mediate representation, that is a lower-level language than Clight.
There is a noticeable slowdown in the execution time after the ob-
fuscation with Obfuscator-LLVM as well.

When running our first experiments, we realized that the per-
formances of our obfuscator were not as good as expected, due
to a number of skip statements that are generated by CompCert
before our obfuscation pass. Indeed, the first pass of CompCert
translates CompCert C programs into Clight programs by mak-
ing them deterministic: it operates over non-deterministic programs
and pulls side-effects out of expressions and fixes an evaluation
order. The correctness proof of this pass is the most challenging
one among CompCert proofs. A trick used to facilitate this proof is
the use of skip statements to materialize evaluation steps of non-
deterministic C expressions.

As a consequence, this pass generates at least one skip state-
ment for each expression of the initial program. These skip state-
ments do not change the performances of the generated assembly
code, as they do not correspond to any assembly instruction. How-
ever, they are transformed by our obfuscator, which slowdowns
the performance of the assembly generated code. To overcome this
problem, we added a pass that removes these skip statements be-
fore our obfuscation pass. More precisely, it transforms all skip;s
sequences of statements into s.

In Table 1, the two columns numbered (6) and (7) correspond
to the execution of the skip-elimination pass followed by our ob-

fuscation, while columns (4) and (5) correspond to the execution of
the obfuscation without eliminating superfluous skip statements.

The last column in Table 1 shows the slowdown ratio between
Obfuscator-LLVM and our obfuscator. The results are very encour-
aging as Obfuscator-LLVM is not formally verified. Our obfuscator
is better when this ratio is greater than one. This is the case for 5 of
our 11 test programs. Among the 6 remaining programs, our obfus-
cator has similar execution times on 3 programs, and is slower on
3 programs. The slowest program is only about four times slower.
We think that these discrepancies are mainly due to the fact that
the obfuscations of Obfuscator-LLVM are performed over a lower
level language than Clight, and thus after the optimization passes
of the LLVM compiler.

8. Related Work
CFG flattening first appears in Chenxi Wang’s Ph.D. thesis [19].
It has since become a widely used obfuscation technique, that is
implemented in several advanced obfuscators, including commer-
cialized obfuscators operating over C programs (e.g. [7, 8, 11, 15]).
None of these tools is formally verified.

The idea of proving the correctness of obfuscation transforma-
tions was first mentioned by Drape et al. in [10], where the authors
present a framework to specify and prove the correctness of imper-
ative data obfuscations (mainly variable renaming, variable encod-
ing and array splitting). This work formalizes basic obfuscations
that do not change the control flow of programs, and operate over
a toy imperative language defined by a big-step semantics. More-
over, the correctness proof is a refinement proof, and it is only a
paper-and-pencil proof.

To the best of our knowledge, the only work that presents a
mechanized proof of code obfuscation transformations is [4]. The
authors define and prove correct a few basic obfuscations using the
Coq proof assistant. The obfuscations operate over a toy imperative
language defined by a big-step semantics. The proof of correctness
relies on non-standard semantics called distorted semantics. The
main idea of this work is to show that it is possible to devise from
the correctness proofs a qualitative measure the potency of these
obfuscations.

Our work is integrated into the CompCert formally verified
compiler [12] and operate over the Clight language of CompCert. It
is a realistic compiler that relies on different intermediate languages
and program transformations. The first formally verified transfor-
mation operating over Clight was the first the compiler pass (of the

very early CompCert compiler) generating Cminor programs [6].
This pass was redesigned since and split into 2 passes relying on a
new intermediate language between Clight and Cminor. Since the
publication of this work 9 years ago, the Clight language and its
semantics became more complex [14].

9. Conclusion
We presented an obfuscation transformation formally verified in
Coq. It relies on a simulation proof involving non-trivial matching
relations between semantic states, and operating over a realistic
language that is very close to C. Our obfuscation performs CFG
flattening on C programs. The experimental results show that it can
be applied to realistic programs, while the formal proof ensures that
the obfuscation preserves the semantics of programs.

We are currently working on the possibility of restricting the
scope of CFG flattening (i.e. obfuscate only parts of the initial
program). This doubles the size of the proof (since any statement
may be either obfuscated or kept identical), without making it more
complex. As a further work, we would like to formally verify other
basic obfuscations such as those presented in [4] for a toy language.
The random combination of these different obfuscations together
with the possibility of restricting the scope of CFG flattening would
benefit to our CFG flattening and make it much more difficult to
detect during reverse engineering.

References
[1] Companion website. http://www.irisa.fr/celtique/ext/cfg-flatten.
[2] A. W. Appel and S. Blazy. Separation Logic for Small-step Cminor.

In Springer-Verlag, editor, 20th Int. Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2007), volume 4732 of Lecture
Notes in Computer Science, pages 5–21, Kaiserslautern, Germany,
Sept. 2007.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang. On the (im)possibility of obfuscating programs.
In CRYPTO ’01: Proceedings of the 21st Annual International Cryp-
tology Conference on Advances in Cryptology, pages 1–18. Springer-
Verlag, 2001. ISBN 3-540-42456-3.

[4] S. Blazy and R. Giacobazzi. Towards a formally verified obfuscating
compiler. In C. Collberg, editor, SSP 2012 - 2nd ACM SIGPLAN Soft-
ware Security and Protection Workshop, Beijing, China, June 2012.
ACM SIGPLAN, ACM SIGPLAN.

[5] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset
of the C language. Journal of Automated Reasoning, 43(3):263–288,
2009.

[6] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C
compiler front-end. In J. Misra, T. Nipkow, and E. Sekerinski, editors,
FM 2006: Formal Methods, 14th International Symposium on, volume
4085 of Lecture Notes in Computer Science, pages 460–475. Springer,
2006.

[7] C. Collberg. The tigress C diversifier/obfuscator, 2014-2015. URL
http://tigress.cs.arizona.edu/.

[8] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. Addison-
Wesley Software Security Series. Addison-Wesley, 2009.

[9] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and
obduscation-tools for software protection. IEEE Trans. Software Eng.,
pages 735–746, 2002.

[10] S. Drape, C. D. Thomborson, and A. Majumdar. Specifying imperative
data obfuscations. In Information Security, 10th International Confer-
ence, ISC 2007, Valparaı́so, Chile, October 9-12, 2007, Proceedings,
pages 299–314, 2007.

[11] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-LLVM –
software protection for the masses. In B. Wyseur, editor, Proceedings
of the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[12] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[13] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[14] X. Leroy. Mechanized semantics for compiler verification. In R. Jhala
and A. Igarashi, editors, Programming Languages and Systems, 10th
Asian Symposium, APLAS 2012, volume 7705 of Lecture Notes in
Computer Science, pages 386–388. Springer, 2012.

[15] C. Liem, Y. X. Gu, and H. Johnson. A compiler-based infrastruc-
ture for software-protection. In Proceedings of the Third ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Secu-
rity, PLAS ’08, pages 33–44, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-936-4.

[16] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, CCS ’03,
pages 290–299, New York, NY, USA, 2003. ACM.

[17] The CompCert development team. The CompCert formally verified
compiler, version 2.5. Inria, 2008-2015. http://compcert.inria.fr.

[18] The Coq development team. The Coq proof assistant reference man-
ual. Inria, 2012. URL http://coq.inria.fr. Version 8.4.

[19] C. Wang. A security architecture for survivability mechanisms. PhD
thesis, University of Virginia, 2001.

