
Dream Types

A Domain Specific Type System for
Component-Based Message-Oriented Middleware

Philippe Bidinger, Matthieu Leclercq, Vivien Quéma, Alan Schmitt, Jean-Bernard Stefani
Projet Sardes, INRIA Rhône-Alpes

ABSTRACT
We present a type system for the Dream component-based
message-oriented middleware. This type system aims at pre-
venting the erroneous use of messages, such as the access of
missing content. To this end, we adapt to our setting a type
system developed for extensible records.

1. INTRODUCTION
Component-based frameworks have emerged in the past

two decades. They are commonly used to build vari-
ous software systems, including Web applications (EJB [1],
CCM [14]), middleware (dynamicTAO [11], OpenORB [4]),
or even operating systems (OSKit [10], THINK [9]).

A typical example of such frameworks is Dream [12].
Dream allows the construction of message-oriented middle-
ware and builds upon the Fractal component model [5] and
its Java implementation. It provides a library of components
that that can be assembled using the Fractal architecture
description language (ADL) and that can be used to imple-
ment various communication paradigms, such as message
queues, event/reaction, publish/subscribe, etc.

A system built out of Dream components typically com-
prises several components which may exchange messages,
which may modify them (e.g., setting a time stamp), and
which may behave differently according to their contents
(e.g., routing a message). In the current Java implemen-
tation of the Dream framework, every message has type
Message, independently of its contents. As a consequence,
certain assemblages of Dream components type-check and
compile correctly in Java but lead to run-time failures, typ-
ically when a component processes a message that does not
have the proper expected structure.

Catching such configurations errors early on, when writing
the architecture description of a Dream assemblage, would
be of tremendous benefits to programmers using the Dream
framework. In other words, what would be required would
be a type-safe ADL that would allow the typing of com-
ponent structures and reject ill-typed component configura-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tions.
As a first step towards this goal, we propose in this pa-

per a type system for Dream components, concentrating on
message types that accurately describe the internal struc-
ture of a message. To this end, we adapt existing work on
type systems for extensible records [16, 17] and describe how
components and component assemblages may be typed. The
resulting type system captures a number of errors that can
be made when writing ADL descriptions of Dream configu-
rations.

The paper is structured as follows: Section 2 describes the
Dream framework, and typical configuration errors the type
system is intended to capture. Section 3 introduces types
for messages and for components manipulating messages.
Section 4 describes related work, and Section 5 concludes
the paper.

2. THE DREAM FRAMEWORK

2.1 The Fractal component model
Dream is based on the Fractal component model [5], a

component model for Java. Fractal distinguishes between
two kinds of components: primitive components and com-
posite components. The latter provide a means to deal with
a group of components as a whole.

A component has one or more ports that correspond to ac-
cess points supporting a finite set of methods. Ports can be
of two kinds: server ports, which correspond to access points
accepting incoming method calls, and client ports, which
correspond to access points supporting outgoing method
calls. The signatures of both kinds of ports is described
by a standard Java interface declaration, with an additional
role indication (server or client).

A component is made of two parts: the content part is ei-
ther a standard Java class (in the case of a primitive compo-
nent), or a set of sub-components (in the case of a composite
component); the controller part comprises interceptors and
controllers. Examples of controllers are the binding con-
troller that allows binding and unbinding the component’s
client ports to server ports of other components, and the life-
cycle controller that allows starting/stopping components.

Figure 1 illustrates the different constructs in a typical
Fractal component architecture. Thick gray boxes denote
the controller part of a component, while the interior of
these boxes correspond to the content part of a component.
Arrows correspond to bindings, and tee-like structures pro-
truding from gray boxes are ports.

sub component

content

port

controller

binding

Figure 1: Architecture of a Fractal component

2.2 The Dream framework
Dream components are standard Fractal components with

one characteristic feature: the presence of input/output in-
terfaces that allow Dream components to exchange mes-
sages. Messages are Java objects that encapsulate named
chunks. Each chunk implements an interface that defines
its type. As an example, messages that need to be causally
ordered have a chunk that implements the Causal interface.
This interface defines methods to set and get a matrix clock.

Messages are always sent from outputs to inputs (Fig-
ure 2 (a)). There are two kinds of output and input inter-
faces, corresponding to the two kinds of connections: push
and pull. The push connection corresponds to message ex-
changes initiated by the output port (Figure 2 (b)). The
pull interaction corresponds to message exchanges initiated
by the input port (Figure 2 (c)).

push(message) ;

void push (Message m){
// Processing of message m

}

(b)
Push connection

Message m = pull();
// Processing of
// message m

Message pull (){
// Returns a message

}

(c)
Pull connection

(a)
Principle

Component B

Component A

Figure 2: Input/output interfaces connection

Dream provides a library of components encapsulating
functions and behaviors commonly found in message-oriented
middlewares. These components can be assembled to imple-
ment various asynchronous communication paradigms: mes-
sage passing, publish/subscribe, event/reaction, etc. Here
are a few examples of Dream components:

• message queues are used to store messages. Several
kinds exist, differing by the way messages are sorted:
FIFO, LIFO, causal order, etc.

• transformers have one input to receive messages and
one output to deliver transformed messages. Typical
transformers include stampers.

• routers have one input and several outputs (also called
“routes”), and route messages received on their input
to one or several routes.

• multiplexers have several inputs and one output; for
every message received on an input a multiplexer adds

a chunk that identifies the input on which the message
arrived; the multiplexer then forwards the message to
the output.

• duplicators have one input and several outputs, and
copy messages they receive on their input to all their
outputs.

• channels allow message exchanges between different
address spaces. Channels are distributed composite
components that encapsulate, at least, two compo-
nents: a ChannelOut—whose role is to send messages
to another address space—, and a ChannelIn—which
can receive messages sent by the ChannelOut.

2.3 Configuration errors
The main data structures manipulated by Dream com-

ponents are messages. A message is a finite set of named
chunk. A chunk can be any Java object. Basic operations
over messages allow to read, remove, add, or update a chunk
of a given name. They can potentially lead to three kinds
of run-time errors.

• A chunk is absent when it should be present (e.g., for
a read, remove, or update).

• A chunk is present when it should be absent (e.g., for
an add).

• A chunk does not have the expected type (e.g., for a
read).

Experience with the dream framework has shown that
many such errors are consequences of an erroneous archi-
tecture definition of the system. For instance, in figure 3,
the architecture definition is obviously incorrect: component
readTS expects messages with a TS chunk, whereas compo-
nent addTS expects messages without TS chunk. Since both
components receive exactly the same messages (duplicated
by the duplicate component), one of them will fail.

Message Message

i o

readTS

Message Message
i o

addTS

Message

Message
i

o1

duplicator

o2
Message

Figure 3: Example

One can tell that the architecture definition of 3 is incor-
rect because the behavior of the components is clear from
their name. However, the typing annotations are clearly
insufficient to allow the previous analysis.

In the current component model of Dream, connections
between components are constrained by the host language
(e.g. Java) type system. Ports are associated to Java in-
terface types, and two ports can be connected if and only if
their corresponding Java types coincide. This scheme suffers
from limitations of the Java type system, in particular, the
absence of polymorphism and rich record types.

We propose to define a polymorphic type system for the
composition of components in order to overcome those lim-
itations. It allows the specification of the more common be-
haviors of Dream components, seen as messages transform-
ers. It provides the guarantees that, if components conform
individually to their type, the composed system will not fail
with any of the run-time errors identified above.

3. DREAM TYPES

3.1 Presentation
A record is a finite set of associations, called fields, be-

tween labels and values. Many languages, such as Ocaml,
use records as primitive values. In [16, 17] Rémy describes
an extension of ML where all common operations on records
are supported. In particular, the addition or removal of
fields and the concatenation of records. He then defines a
static type system that guarantee that the resulting pro-
grams will not produce run-time errors, such accessing a
missing field.

Dream messages can be seen as records, where each chunk
correspond to a field of the record, and Dream components
can be seen as polymorphic functions. Polymorphism is im-
portant for at least two reasons. First, the same component
can be used in different contexts with different types. Sec-
ond, polymorphism allows to relate the types of the client
and server interfaces, and thus allows to specify more pre-
cisely the behavior of a component. We can almost directly
use the results of [16, 17] in order to type Dream compo-
nents. Note however that we work on a different level of
abstraction: we give types to components and check that
the way we connect them is coherent. In particular, we do
not type-check the code of the components.

In the following, we first give the main ideas behind mes-
sages types and component types, and present the main for-
mal results in the next subsection.

We type messages as extensible records [16]. Informally,
The type of a message consists of a list of pairwise distinct
labels together with the type of the corresponding value, or
a special tag if the message does not contain a given label.
Moreover, a final information specifies the content of the
(infinitely many) remaining labels. In addition, we use a
convenient type constructor ser: if τ is an arbitrary type,
ser(τ) is the type of values of type τ in a serialized form.

Figure 4 defines several examples of message types.

µ1 = {a : pre(A); b : pre(B); abs}
µ2 = {a : pre(A); b : pre(B); c : abs; abs}
µ3 = {a : pre(X); abs}
µ4 = {a : Y ; abs}
µ5 = {a : pre(A); Z}
µ6 = {a : pre(A); b : Z′; Z′′}
µ7 = {a : pre(A); a : pre(B); abs}
µ8 = {a : X; b : abs; X}

Figure 4: Examples of message types

A message m of type µ1 contains exactly two labels a and
b, associated to values of type A and B respectively (the im-
portance of the pre constructor will be made clear later). It
does not contain any other label, as specified by the abs tag.

We can note that m can equivalently be seen as a value of
type µ2. Indeed, µ1 and µ2 represent the same sets of values,
which we write µ1 = µ2. Richer types can be constructed
using type variables. In type µ3, X represents an arbitrary
type. Informally, a message of type µ3 must contain a label
a, but the type of the associated value is not specified: the
pre constructor allows us to impose the presence of a given
field, even if its type is unspecified. Similarly, in µ4, Y is a
field variable. It can be either abs, pre(A) for any type A,
or pre(X) for any type variable X. Finally, in µ5, Z is a row
variable that represent either abs or any list of fields. Note
that we have µ5 = µ6. Remark also that some syntactically
correct types, such as µ7 and µ8, can be meaningless: in
particular labels must not occur twice, and a variable can-
not have two different sorts (here X is used both as a field
variable with label a, and as a row variable).

A component has a set of server ports and client ports.
Each port is characterized by its name, and the type of the
values it can carry. The type of a component is essentially
a polymorphic function type. Figure 5 gives examples of
components and component types. id has a polymorphic
type. Its client and server ports can be used with any type
X. dup duplicates its arguments. adda adds a new field with
label a to the messages it receives on client port i. Note that
these messages must not contain label a. removea removes
the field named a, that may or may not be present. reset
reset the value associated to label a to some initial value.
serialize gets an arbitrary message {X} and returns a new
message with one field which is the serialized form of {X}.
deserialize is the converse operation.

id : ∀X.{i : {X}} → {o : {X}}
dup : ∀X.{i : {X}} → {o1 : {X}; o2 : {X}}

adda : ∀X.{i : {a : abs; X}} → {o : {a : pre(A); X}}
removea : ∀X, Y.{i : {a : Y ; X}} → {o : {a : abs; X}}

reset : ∀X.{i : {a : pre(A); X}} → {o : {a : pre(A); X}}
serialize :∀X.{i : {X}} → {o : {s : ser({X}); abs}}

deserialize :∀X.{i : {s : ser({X}); abs}} → {o : {X}}

Figure 5: Examples of component types

As for message types, some component types are mean-
ingless. Consider the following type:

∀X.{i : {a : pre(X); abs}} → {o : {a : X}}

The two occurrences of X are used with a different meaning.
The first one is a type variable whereas the second one is a
field variable. In a more subtle way, the following type is
incorrect:

∀X.{i : {X}} → {o : {a : pre(A); X}}

Both occurrences of X are row variable. However, the first
one includes rows that may contain a field with label a,
whereas the second does not.

Figure 6 depicts the same architecture definition as in
figure 3, using these more precise types. The definition will
be well-typed if and only if we can solve the equations:

{X} = {ts : pre(A); Y }
{X} = {ts : abs; Z}

{ts : pre(A) ; Y}

{ts : pre(A) ; Y}

i

o

readTS

{ts : abs ; Z} {ts : pre(A) ; Z}
i o

addTS

{X}

{X}
i

o1

duplicator

o2
{X}

Figure 6: Example 1 revisited

Remark that we have chosen different type variables for
each component. The equations do not have any solution,
and thus the system is not well typed.

3.2 Formally

3.2.1 Syntax
We first introduce the syntax of messages types, which are

very similar to record types.

τ ::= µ | ser(τ) | σB | α types

µ ::= {ρ∅} message types

ρL ::= ξL | absL | a : φ; ρL#{a} row

φ ::= θ | abs | pre(τ) fields

σB ::= A | B | . . . base types

A type τ may either be a message type µ, a serialized type
ser(τ), a base type σB, or a type variable α. A message type
µ is a record type, described by a row ρ∅. We suppose that
a, b, c, . . . range over a denumerable set of message labels Lm

and L over finite subsets of Lm. Intuitively, a row ρL must
not contain any field whose label is in Lm. In the case of a
message type, there is no restriction as to which labels may
occurs, hence the ∅ superscript.

A row ρ may either be a row variable ξ, the empty row
abs, or the concatenation of a field a : φ with a row where
label a does not occur. This restriction is enforced by the
use of the L superscript. For instance {a : θ; (a : θ′; ξL)} is
not syntactically correct. The $ operator denotes disjoint
union, it is only defined for disjoint sets.

The presence information φ is either a field variable θ, the
indication that the field is absent abs, or that it is present
and carries a value of type τ , denoted pre(τ).

Finally, σB range over base types, corresponding to Java
types in Dream. We often write {a : φ; b : φ′; ξL} for {a :
φ; (b : φ′; ξL)}.

We next give the syntax of component types.

C ::= ∀eαeθfξL.{I∅} → {I∅} Component

I ::= i : µ; I | ∅ Interface Set

We define Lp as a denumerable set of ports, or interface
names, ranged over by i,o and their decorated variants. A
component type is composed of a set of input interfaces and
a set of output interfaces. An interface consists of a port and
the type of values exchanged on this port. We suppose ports
to be distinct in a given interface set (input or output). We
write ex for a finite set of variables, and require that every

(type, field, or row) variable be bound in the ∀ prefix of the
component type.

In the previous subsection, we used the same syntactic
category for type, row, and field variables and we omit-
ted the superscripts on rows. The reason is that the sorts
of variables and the superscripts can be automatically in-
ferred. For instance, the type ∀X.{i : {X}} → {o : {a :
pre(A); X}} is incorrect because it cannot be rewritten as
∀ξL.{i : {ξL}} → {o : {a : pre(int); ξL}}: L should be ∅ in
the first occurrence of ξ and {a} in the second one.

An architecture definition D is given by a list of compo-
nent names and their type, and a list of connections be-
tween ports. For both syntactic categories, we let ε denote
an empty list (of components or connections). We let c and
its decorated variants range over Lc, a denumerable set of
component names.

D ::= (Cp, Co) Architecture Definition

Cp ::= ε | c : C, Cp Components

Co ::= ε | c.o = c′.i, Co Connections

An architecture definition (Cp, Co) is well-formed if

• Component names in Cp are pairwise distinct.

• For every connection c.o = c′.i in Co, c : C and c′ : C′

are in Cp for some C, C′. Moreover, o is a client port
(i.e., it is a port of the output set of interfaces) of C
and i a server port of C′.

• Any port is connected at most once.

3.2.2 Typing
We write T the set of rows ρL for all L. We define an

equational theory E on T with the following axioms and
rule.

a : φ; (a′ : φ′; ρL) = a′ : φ′; (a : φ; ρL)

a : φ; absL = a : φ; (b : abs; absL#{b})

a : φ; ξL = a : φ; (b : θ; ξ′
L#{b}

)

ρL = ρ′
L

=⇒ a : φ; ρL#{a} = a : φ; ρ′
L#{a}

The first axiom states that the order in the definition of
the fields does not matter. The second states that the abs
row denotes rows containing only absent fields. The third
axiom states that a row variable denotes rows with fields
whose presence information is not specified.

We know from [16] that the problem of unification in T
modulo E is decidable and syntactic: every solvable unifica-
tion problem has a most general unifier.

From an architecture definition D = (Cp,Co), we can
generate a set of equations E(D). First we get a list Cp′ by
suppressing all quantifiers in Cp, assuming variables are first
renamed such that no variable appear in two distinct types.
We write Cp′(c) for the type of component c in Cp′. For a
component type C, we note TC(C.o) for the type associated
with client interface o. We define similarly TS(C.i).Using
these definitions, we can define E as follows:

E(Cp, Co) = {TC(Cp′(c).o) = TS(Cp′(c).i) | c.o = c.i ∈ Co}

An architecture definition D is typable if and only if E
admits an unifier.

3.3 Example
Figure 7 (a) depicts a stack of dream components. The

component producer at the top of the left stack generates
messages consisting of a unique chunk of type TestChunk
and name tc.

producer : {} → {o : {tc : pre(TestChunk); abs}}

The component serializer returns messages with a unique
chunk sc that is the serialized form of the messages received
on input port i.

serializer : ∀X.{i : {X}} → {o : {sc : ser({X}); abs}}

Component addIP adds a chunk of type IPChunk and name
ipc to a message that does not contain an ipc chunk.

addIP : ∀X.{i : {ipc : abs; X}} →
{o : {ipc : pre(IPChunk); X}}

channelOut dispatches messages on the network, and re-
quires them to define at least an ipc chunk of type IPChunk.

channelOut : ∀X.{i : {ipc : pre(IPChunk); X}} →
{o : {ipc : pre(IPChunk); X}}

The right stack performs the symmetric actions. Fig-
ures 7 (b) and (c) show two incorrect architectures. In (b),
the deserializer component is missing and in (c) the dese-
rializer and addIP components are inverted. Architecture
(a) is well-typed but (b) and (c) are not. Consider architec-
ture (b), we deduce the following equations from the linking
(note that bound variables have been renamed).

{tc : pre(TestChunk); abs} = {U} (1)

{sc : pre(ser(U)); abs} = {ipc : abs; Z} (2)

{ipc : pre(IPChunk); T} = {ipc : pre(IPChunk); Z} (3)

{ipc : pre(IPChunk); Z} = {Y } (4)

{Y } = {ipc : pre(IPChunk); X} (5)

{ipc : abs; X} = {tc : pre(TestChunk); abs}
(6)

From 6, we deduce that

X = {tc : pre(TestChunk); abs}

Then from 5, we have

Y = {ipc : pre(IPChunk); tc : pre(TestChunk); abs}

It follows from 4 and 3 that

T = Z = {tc : pre(TestChunk); abs}

Besides, we deduce from 2 that

Z = {sc : pre(ser(U)); abs}

The terms tc : pre(TestChunk); abs and sc : pre(ser(U)); abs
are obviously not unifiable and thus the system is not ty-
pable.

We implemented this type system in Ocaml. It takes as
input an architecture definition, checks that it is well-sorted,
generates a system of equations and try to solve it. We used
this tool to check the validity of several assemblages. Figure
8 corresponds to the input file for architecture (c).

Our prototype fails to solve the equations corresponding
to this architecture. The output corresponds to a set of

producer:
{}->{o:{tc:pre(TestChunk);abs}}

consumer:
{i:{tc:pre(TestChunk);abs}}->{}

serializer:
{i:{’x}}->{o:{s:pre(ser({’x}));abs}}

deserializer:
{i:{s:pre(ser({’x}));abs}}->{o:{’x}}

addIP:
{i:{ipc:abs;’x}}->{o:{ipc:pre(IPChunk);’x}}

removeIP:
{i:{ipc:pre(IPChunk);’x}}->{o:{ipc:abs;’x}}

channelOut:
{i:{ipc:pre(IPChunk);’x}}->{o:{ipc:pre(IPChunk);’x}}

channelIn:
{i:{’x}}->{o:{’x}}

composite c is
{}->{}

with
producer.o = serializer.i
serializer.o = addIP.i
addIP.o = channelOut.i
channelOut.o = channelIn.i
channelIn.o = deserializer.i
deserializer.o = removeIP.i
removeIP.o = consumer.i

end

Figure 8: file archC.d

equations equivalent to the initial system, when the unifica-
tion algorithm encounters a contradictory equation (e.g.abs =
IPChunk).

% dtype archC.d
No solution

abs = IPChunk
abs = abs
{tc:TestChunk;abs} = {ipc:IPChunk;’removeIP_x}
{ipc:abs;’removeIP_x} = {tc:TestChunk;abs}

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{X}

{tc:pre(TestChunk); abs}

consumer

{sc:pre(ser(X)); abs}

deserializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

o

i

o

i

(a)

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{ipc:abs; X}

{tc:pre(TestChunk); abs}

consumer

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

i

o

{ipc:pre(IPChunk); X}

(b)

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{ipc:abs; X}

{tc:pre(TestChunk); abs}

consumer

removeIP

{X}

deserializer

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

o

i

o

i

{ipc:pre(IPChunk); X}

{sc:pre(ser(X)); abs}

(c)

Figure 7: Example: a stack of components

3.4 Discussion and limitations
The main limitation is that this typing discipline is too re-

strictive to type certain Dream components. Typically, they
can exhibit different behavior depending on the presence of
a given label in a message (e.g., routers). Consider for in-
stance a component route that routes messages it gets on
its client port on different server port depending on the pres-
ence of a given label. We would like its type to be something
like:

route : ∀X. {i : {a : pre(A); X}} → {o1 : {X}; o2 : {abs}}
∧ {i : {a : abs; X}} → {o1 : {abs}; o2 : {X}}

Similarly, some components may output messages of dif-
ferent types.

produce : {} → {o : {a : abs; b : B; abs}}
∧ {} → {o : {a : A; b : abs; abs}}

In both cases, we can find approximating types that al-
low us to type a definition involving these components. For
instance:

route : ∀XY Z. {i : {X}} → {o1 : {Y }; o2 : {Z}}
produce : ∀XY. {} → {o : {a : X; b : Y ; abs}}

In doing so, we lose any guarantee about the correctness
of the architecture definition, since obviously, the code of
the components does not conform to these types.

4. RELATED WORK
The type system presented in this paper constitutes an ex-

ample of a domain specific type system, tailored to checking
architectural constraints in the component-based Dream en-
vironment. Type systems that capture various properties of
programs have of course been intensively studied for various
languages, including ML, Java, as well as in more abstract
settings such as process algebras and the π-calculus [18]. Ex-
ploiting type systems for checking architectural constraints
has received less attention, but has nevertheless been the
subject of various works in the past decade. We can mention
for instance work on the Wright language [3], which supports

the verification of behavioral compatibility constraints in a
software architecture, matching a component with a role;
recent work on ArchJava [2], which uses ownership types to
enforce communication integrity in a Java-based component
model; and more recent work on behavioral contracts for
component assembly [6]. The type systems (or compatibil-
ity relations) used in these works, however, do not capture
the architectural constraints that are dealt with in this pa-
per. Both the Wright system and the behavioral contract
system would need to be extended to deal with the record
types that characterize Dream messages, and the ArchJava
type system is tailored to enforce communication integrity,
i.e. , to prevent aliasing that may destroy a component in-
tegrity. The work which is closest to ours is probably the
recent work on the type system for the Ptolemy II system
[13], which combines a rich set of data types, including struc-
tured types such as (immutable) arrays and records, and a
behavioral type system which extends the work on interface
automata [7, 8] for capturing temporal aspects of compo-
nent interfaces. The Ptolemy II type system would not be
directly applicable to our Dream constraints, though, for it
features only immutable record types. However, a combina-
tion of extensive record types as in this paper and behavioral
types of the Ptolemy II system is definitely worth investi-
gating.

5. CONCLUSION AND FUTURE WORK
We have presented a domain specific type system for mes-

sages and components that manage messages in the Dream
framework. This type system is based on existing work on
extensible records, and is rich enough to address component
assemblages such as protocol stacks, as illustrated in Sec-
tion 3.3.

An obvious shortcoming of our approach is that we do not
formally state the guarantees provided by the type system,
namely that there will be no run-time error due to the ac-
cess of an absent message chunk, the addition of a chunk
whose name is already present in the message, or the use
of a chunk’s contents at a wrong type. We have taken the
more pragmatic approach of first implementing and testing
the expressivity of the type system. We plan on formalizing
the behavior of Dream components and state the guarantees

of our type system as continuation of this work.
Experimenting with our type system has shown that it

is not precise enough when the behavior of a component
depends on the structure of a message, as described in Sec-
tion 3.4. To address this issue, we plan on adapting existing
works on intersection types, such as [15], to our setting.

Finally, we are studying the integration of our type check-
ing phase in the Dream ADL processing workflow.

6. REFERENCES
[1] Enterprise JavaBeansTM Specification, Version 2.1,

August 2002. Sun Microsystems,
http://java.sun.com/products/ejb/.

[2] J. Aldrich, C. Chambers, and D. Notkin. Architectural
Reasoning in ArchJava. In Proceedings ECOOP 2002,
LNCS 2548. Springer, 2002.

[3] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. In ACM Transactions on
Software Engineering and Methodology, Vol. 6, No. 3,
pages 213–249, July 1997.

[4] G. Blair, G. Coulson, A. Andersen, L. Blair,
M. Clarke, F. Costa, H. Duran-Limon, T. Fitzpatrick,
L. Johnston, R. Moreira, N. Parlavantzas, , and
K. Saikoski. The Design and Implementation of Open
ORB v2. In IEEE Distributed Systems Online
Journal, vol. 2 no. 6, November 2001.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. An Open Component Model and its
Support in Java. In Proceedings of the International
Symposium on Component-based Software Engineering
(CBSE’2004), Edinburgh, Scotland, 2004.

[6] C. Carrez, A. Fantechi, and E. Najm. Behavioural
contracts for a sound assembly of components. In
FORTE, volume 2767 of Lecture Notes in Computer
Science. Springer, 2003.

[7] L. de Alfaro and T. Henzinger. Interface Automata. In
Proceedings of the joint 8th European software
engineering conference and 9th ACM SIGSOFT
international symposium on the foundations of
software engineering (ESEC/FSE 01), 2001.

[8] L. de Alfaro and T. Henzinger. Interface Thoeries for
Component-Based Design. In Proceedings of EMSOFT
’01, volume 2211 of Lecture Notes in Computer
Science. Springer, 2001.

[9] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller.
THINK: A Software Framework for Component-based
Operating System Kernels. In USENIX Annual
Technical Conference, 2002.

[10] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A Substrate for Kernel
and Language Research. In SOSP’97, 1997.

[11] F. Kon, T. Yamane, K. Hess, R. H. Campbell, and
M. D. Mickunas. Dynamic Resource Management and
Automatic Configuration of Distributed Component
Systems. In Proceedings of the 6th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS’01), San Antonio, USA, January
2001.

[12] M. Leclercq, V. Quéma, and J.-B. Stefani. DREAM: a
Component Framework for the Construction of
Resource-Aware, Reconfigurable MOMs. In
Proceedings of the 3rd Workshop on Reflective and

Adaptive Middleware (RM’2004), Toronto, Canada,
October 2004.

[13] E. Lee and Y. Xiong. A behavioral type system and
its application in Ptolemy II. Formal Aspects of
Computing, 16(3), 2004.

[14] P. Merle, editor. CORBA 3.0 New Components
Chapters. OMG TC Document ptc/2001-11-03,
November 2001.

[15] B. C. Pierce. Programming with Intersection Types
and Bounded Polymorphism. PhD thesis, Carnegie
Mellon University, December 1991. Available as School
of Computer Science technical report CMU-CS-91-205.

[16] D. Rémy. Type inference for records in a natural
extension of ML. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects Of Object-Oriented
Programming. Types, Semantics and Language Design.
MIT Press, 1993.

[17] D. Rémy. Typing record concatenation for free. In
C. A. Gunter and J. C. Mitchell, editors, Theoretical
Aspects Of Object-Oriented Programming. Types,
Semantics and Language Design. MIT Press, 1993.

[18] D. Sangiorgi and D. Walker. The π-calculus: A
Theory of Mobile Processes. Cambridge University
Press, 2001.

