
HABILITATION À DIRIGER LES RECHERCHES

présentée par

Alan SCHMITT
pour obtenir le diplôme d’Habilitation à Diriger les Recherches

de l’Université de Grenoble

(Spécialité: Informatique)

Analyses Statiques pour Manipulations
de Données Structurées Hiérarchiquement.

Date de soutenance : 23 mai 2011

Composition du jury : Président Joseph Sifakis
Rapporteurs Sandrine Blazy

Giuseppe Castagna
Matthew Hennessy

Examinateurs Florence Maraninchi
Davide Sangiorgi

Travaux de recherche effectués au sein de l’équipe de Benjamin Pierce (Université
de Pennsylvanie, Philadelphie, USA), l’équipe-projet Sardes (INRIA Grenoble – Rhône-
Alpes) et l’équipe de Davide Sangiorgi (Université de Bologne, Italie).





Contents

1 Introduction 1

I Manipulating Unordered Trees 3

2 Messages as Records 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dream Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Simple Message Manipulation . . . . . . . . . . . . . . . . . . . . 9
2.4 Structural Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Semantic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Bidirectional Transformations On Trees 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 A Small Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Semantic Foundations . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Generic Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Lenses for Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Derived Lenses for Lists . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Manipulating Ordered Data 59

4 Lenses for Text 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Basic String Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Dictionary Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Quasi-Obliviousness . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Boomerang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Xtatic 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 A Taste of Xtatic . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



5.5 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Efficient Static Analysis of XML Paths and Types 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Trees with Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 The Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 XPath and Regular Tree Languages . . . . . . . . . . . . . . . . . 105
6.5 Satisfiability-Testing Algorithm . . . . . . . . . . . . . . . . . . . 107
6.6 Implementation Techniques . . . . . . . . . . . . . . . . . . . . . 111
6.7 Typing Applications and Experimental Results . . . . . . . . . . 111
6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

III Manipulating Programs 117

7 HO Core 121
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 The Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 HO Core is Turing Complete . . . . . . . . . . . . . . . . . . . . 124
7.4 Bisimilarity in HO Core . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Barbed Congruence and Asynchronous Equivalences . . . . . . . 130
7.6 Axiomatization and Complexity . . . . . . . . . . . . . . . . . . . 131
7.7 Undecidability and Static Restrictions . . . . . . . . . . . . . . . 133
7.8 Other Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Localities and equivalences 139
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 HOπ and HOπP . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Normal bisimulation for LHOπP . . . . . . . . . . . . . . . . . . 147
8.4 Normal bisimulations and HOπP . . . . . . . . . . . . . . . . . . 150
8.5 Contextual Semantics and Howe’s Method . . . . . . . . . . . . . 152
8.6 Complementary Semantics for HOπ . . . . . . . . . . . . . . . . . 154
8.7 Characterizing Barbed Congruence for HOπP . . . . . . . . . . . 158
8.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9 Conclusion: Toward Certified Analyses 165

Bibliography 167



Remerciements

Je remercie très chaleureusement Sandrine Blazy, Giuseppe Castagna et Matthew Hen-
nessy qui ont non seulement accepté de relire ce document, mais ont tout fait pour
rendre leur rapport à temps lorsque l’échéance a été avancée pour raison administrative.
Grâce à eux, la soutenance a pu avoir lieu au moment prévu. Je suis aussi reconnaissant
envers Joseph Sifakis, qui a accepté de présider le jury, et Florence Maraninchi et Davide
Sangiorgi pour leur participation en tant qu’examinateurs.
J’ai eu la chance de rencontrer lors de mon postdoc à l’université de Pennsylvanie

une équipe enthousiaste et sympathique: Benjamin Pierce, Vladimir Gapeyev, Michael
Levin, Stephanie Weirich, Steve Zdancewik, Geoff Washburn, Dimitrios Vytiniotis, Nate
Foster. J’ai particulièrement apprécié les déjeuners PLClub, très instructifs, et les soirées
Sig*, tout autant passionnantes.
Je remercie les membres de l’équipe Sardes, où je suis arrivé en janvier 2004. Pou-

voir échanger sur de nombreux sujets, plus ou moins proches de ma thématique, a
été très bénéfique. Je suis très reconnaissant envers Jean-Bernard Stefani, notre chef
bienveillant, qui après m’avoir accueilli quelques mois durant ma thèse a su aider à
mon intégration dans l’équipe. Je garderai un excellent souvenir de nos discussions
académiques, mais aussi sur des thèmes plus légers tels les jeux vidéos ou la science-
fiction. J’ai également beaucoup apprécié nos activités non professionnelles, comme le
tournoi de Can’t Stop avec Vivien, Alessio et Valerio, les parties endiablées de Race for
the Galaxy avec Jean, les soirées jeux de société avec Florent, Stéphane, Benoit et Jean
(encore), les matchs de Starcraft (I et II) avec Sergueï, Thomas et Jean (toujours). Je
suis aussi reconnaissant envers Ludovic pour avoir su si bien jouer le rôle de gardien de
l’heure, et nous prévenir sans faute pour le café, le déjeuner et la pause.
Au-delà de l’équipe Sardes, j’ai eu la chance d’échanger ou de collaborer avec de

nombreux chercheurs de l’INRIA Rhône-Alpes. Je pense en particulier à Nabil Layaïda
et Pierre Genevès, dont nos recherches communes constituent une partie de ce document,
et à Alain Girault et Gwenaël Delaval pour de stimulantes discussions.
Ce tour d’horizon des collaborations en Rhône-Alpes ne serait être complet sans la

mention des poids lourds de l’équipe Plume du LIP à l’ENS Lyon: Tom Hirschowitz,
Daniel Hirschkoff, Damien Pous (devenu depuis mon co-bureau) et Romain Demangeon.
Que nos échanges et collaborations à venir soient à la hauteur de ces dernières années !
J’ai eu grand plaisir à travailler avec Michaël Lienhardt, Sergueï Lenglet et Claudio

Mezzina, trois étudiants en thèse que j’ai encadrés ou co-encadrés. Une partie de ce
document est basée sur leur dur labeur, et je leur en suis très reconnaissant.
Je tiens également à remercier les personnes avec qui j’ai travaillé pendant mon congé

sabbatique d’un an à l’université de Bologne: Davide Sangiorgi, Ivan Lanese, Jorge
Pérez et Cinzia di Giusto. Leur accueil et tolérance quant à mon italien hésitant m’a
beaucoup touché.
L’INRIA est un excellent environnement pour chercher sereinement et efficacement.

Je voudrais ainsi remercier tous les services qui nous permettent de nous concentrer sur
notre recherche, et en particulier les services généraux, les moyens informatiques, la doc
et le bureau des cours et colloques.



Je ne saurais bien sûr oublier les assistantes que j’ai eu la chance de côtoyer durant
ces sept années, elles sont fondamentales à la réussite d’un projet. Merci donc à Valérie,
Elodie, Maud et Diane.
Enfin, je suis très reconnaissant envers mon épouse Christelle, et mes enfants Au-

gustin, Hermine et Albertine, qui ont supporté mes absences, parfois pour plusieurs
semaines d’affilé, ou mes moments “dans la lune”. Qu’ils en soient infiniment remerciés.



Résumé & Introduction en français

Ce document présente une partie de mes activités de recherche réalisée depuis ma thèse,
soutenue en septembre 2002. Je me concentre ainsi sur les travaux portant sur des anal-
yses statiques de programmes manipulant des données hiérarchiquement structurées.
La notion de donnée est centrale en informatique. En effet, on peut considérer que

l’expressivité d’un programme découle de la variété des données qu’il peut manipuler,
soit en entrée, soit créées lors de son exécution. Le programme en lui-même n’est qu’un
contrôle fini, guidé par des données.
Ces données sont naturellement structurées. Primitivement, elles prennent la forme

de cellules sur un ruban d’une machine de Turing, ou de mots dans une mémoire. Un
programmeur assemble ces structures primitives afin d’en construire de plus complexes:
nombres codés sur plusieurs mots, chaînes de caractères, enregistrements . . . Ces struc-
tures sont souvent hiérarchiques : prenez par exemple les property lists que l’on trouve
dans les systèmes d’exploitation descendant de NextSTEP. Leurs données prennent la
forme (récursive) de chaînes de caractères, de tableaux (contenant des données) ou de
dictionnaires associants des clés à des données. Cette structure peut paraître simple,
elle suffit pourtant pour représenter de manière pratique la plupart des fichiers de con-
figuration sous Mac OS X, ainsi que des ensembles de données plus grosses comme le
contenu d’une bibliothèque iTunes.
Dès que l’on impose une structure à des données, on se donne des contraintes sur

les manipulations que l’on s’autorise. Par exemple, une fonction retournant le premier
élément d’une liste ne peut pas être appliquée à la liste vide. De manière similaire, on
ne peut pas accéder à une case d’un tableau au delà de sa dernière case, ou au contenu
d’un dictionnaire pour une clé qu’il ne contient pas. Une certaine adéquation entre un
programme et la structure des données qu’il manipule doit donc être présente.
Ces contraintes peuvent devenir encore plus cruciales quand les données manipulées

ne sont plus statiques mais deviennent elle-mêmes des programmes. C’est ce qui se
passe dans le λ-calcul : les données passées en argument aux fonction sont elles-mêmes
des termes du λ-calcul, et peuvent donc s’exécuter. L’encodage de Church des entiers
en est un parfait exemple : l’entier n est une fonction qui prend en argument une
transformation qu’il appliquera n fois à un cas de base, lui aussi passé en argument.
Cet entier n’est donc clairement pas une donnée passive. Préserver l’adéquation entre
programmes et données peut ainsi être bien plus complexe dans ce cas.
Je m’intéresse dans ce document aux garanties statiques que l’on peut donner à des

programmes manipulant des données. Le terme statique signifie que les garanties se
font en considérant simplement le programme, avant son exécution. On peut ainsi
exprimer que, quelles que soient les données en entrées, une certaine famille d’erreurs
ne se produira pas, ou un programme se comportera comme un autre.
Le document comporte trois parties portant chacune sur une familles de structures

de données différentes. La première partie s’intéresse aux données sous forme d’arbres
non ordonnés, la deuxième porte sur les structures ordonnées, tandis que la dernière
considère des programmes se manipulant eux-mêmes. Chaque partie porte sur deux ou
trois familles d’analyses statiques, maintenant présentées.



Les arbres non-ordonnées peuvent être vus comme des dictionnaires ou comme des
enregistrements. Dans ce cadre, lire ou supprimer un champ qui n’est pas présent est
considéré comme une erreur. De plus, ajouter un champ dont le nom est déjà utilisé
est aussi une erreur. Des analyses permettant de garantir que ces erreurs n’ont pas lieu
existent depuis longtemps pour des langages séquentiels tel ML (Rémy, 1994a,b). Elles
sont adaptés dans le chapitre 2 à un système à composants de manipulation de messages.
La principale complexité de cette adaptation est la prise en compte du routage des
messages, qui permet à plusieurs flots de messages d’être joints, manipulés ensembles,
puis séparés. Les systèmes présentés proposent plusieurs formes de routage, donnant
des garanties plus ou moins faciles à utiliser.
Tout en restant dans le cadre des arbres non-ordonnés, je me tourne ensuite vers un

domaine assez différent: celui des transformations bidirectionnelles. Ces transformations
peuvent être lues de deux manières complémentaire. Dans un sens, c’est un programme
classique qui transforment des données d’un format C dans un format A. Dans l’autre
sens, c’est un programme qui propage les modifications apportées aux données dans le
format A et les incorpore aux données initiales dans le format C. Ces deux transforma-
tions ne sont bien sûr pas arbitraires : elles doivent satisfaire certaines propriétés qui
montrent qu’elles sont bien inverses l’une de l’autre, et doivent aussi être en adéqua-
tion avec les données manipulées. Le chapitre 3 décrit un langage de programmation
dédié permettant de construire de telles transformations, correctes par construction,
manipulant des arbres non-ordonnés.
Même si ces arbres permettent d’encoder des structures ordonnées, ces encodages

rendent les analyses bien plus complexes et moins précises. C’est pourquoi la deux-
ième partie se concentre sur des structures ordonnées. Un premier exemple porte sur
le texte structuré. Cette structure de données est très commune: textes en format
LATEX ou Markdown, fichiers décrivant des calendrier au format iCalendar, fichiers de
configuration, code source . . . Le chapitre 4 applique l’approche par transformations
directionnelles à ces données, toujours sous la forme d’un langage dédié permettant de
bâtir des transformations correctes par construction.
Je me tourne ensuite vers une structure textuelle ordonnée très répandue: XML. Je

présente dans les chapitres 5 et 6 deux approches pour garantir la bonne manipulation
de telles données. La première est basé sur l’extension d’un langage existant, C], avec
des primitives permettant la manipulation bien typée de XML. La deuxième consiste
en un algorithme garantissant la satisfiabilité de requêtes XPath. Cet algorithme peut
par exemple être utilisé pour s’assurer qu’une requête est équivalente à une autre, ou
qu’une requête retournera toujours au moins un résultat.
La dernière partie, enfin, porte sur les programmes se manipulant eux-mêmes. Plus

précisément, je m’intéresse aux calculs de processus d’ordre supérieur, et pour de tels cal-
culs à la notion d’équivalence : deux programmes font-ils la même chose ? L’équivalence
est une analyse bien plus précise que celles vues précédemment, puisqu’elle porte sur
tous les comportements possibles d’un programme. On pourrait donc s’attendre que
qu’elle soit extrêmement complexe, voire impossible, à mettre en œuvre. Je montre
dans le chapitre 7 que pour un calcul minimal on peut décider l’équivalence de pro-
gramme efficacement. Ce calcul n’est pour autant pas trivial : il est Turing complet.
J’étudie ensuite dans le chapitre 8 l’influence qu’ont les ajouts de certaines construc-

tions sur la facilité de montrer l’équivalence. Plus précisément, je considère les notions
de restriction de nom, permettant de cacher un nom à l’extérieur d’un processus, et
de passivation, permettant de capturer un processus en cours d’exécution. Ajouter ces
deux constructions conduit à un calcul de processus pour lequel prouver l’équivalence
de programmes est très compliqué.
Bien que j’utilise le pronom “je” dans les paragraphes précédents, chacun des travaux

décrits a été réalisé en collaboration avec de nombreuses personnes.
Durant mon postdoc à l’université de Pennsylvanie dans l’équipe de Benjamin Pierce,



j’ai tout d’abord travaillé sur Xtatic, décrit dans le chapitre 5, avec Vladimir Gapeyev,
Michael Levin et Benjamin Pierce (2005b; 2005a; 2005c). J’ai ensuite contribué à Har-
mony (chapitre 3) avec Nate Foster, Michael Greenwald, Jonathan Moore et Benjamin
Pierce (2007b). Notre collaboration a continué après mon retour en France sur le projet
Boomerang (chapitre 4), réalisé avec Aaron Bohannon, Nate Foster, Benjamin Pierce et
Alexandre Pilkiewicz (2008).
J’ai intégré le projet Sardes à l’INRIA Grenoble – Rhône-Alpes en janvier 2004. J’ai

travaillé sur le chapitre 2 avec Michaël Lienhardt et Claudio Mezzina (deux étudiants en
thèse que j’ai co-encadrés), ainsi que Jean-Bernard Stefani (2008; 2009). Le chapitre 8
représente une grande partie de la thèse de Sergueï Lenglet, que j’ai co-encadré. Jean-
Bernard Stefani a également participé à ces travaux (Lenglet et al., 2009b,a).
En parallèle, je débutais une collaboration avec Nabil Layaïda et Pierre Genevès

du projet WAM, toujours à l’INRIA Grenoble – Rhône-Alpes. Nos premiers résultats
(Genevès et al., 2007) sont décrits dans le chapitre 6.
Enfin, j’ai effectué un séjour sabbatique à l’université de Bologne, dans l’équipe de

Davide Sangiorgi. C’est à cette occasion que nous avons réalisé le travail décrit dans le
chapitre 7, avec Ivan Lanese, Jorge A. Pérez et Davide Sangiorgi (2010b).
Ce document ne décrit pas mes recherches sur des domaines ne portant pas directe-

ment sur les analyses statiques pour des manipulations de données structurées. Man-
quent en particulier les travaux sur la conception de calculs modélisant des systèmes à
composants (Bidinger et al., 2005b; Hirschkoff et al., 2005; Lienhardt et al., 2007), sur
la résolution de conflits pour des données répliquées de manière optimiste (Greenwald
et al., 2006), sur l’utilisation de schémas pour guider la synchronization de données (Fos-
ter et al., 2007a) et sur l’expressivité du π-calcul d’ordre supérieur polyadique (Lanese
et al., 2010a).
Enfin, ce document ne décrit pas non plus mes activités d’enseignement. En 2008,

j’ai donné des cours ainsi que des travaux dirigés sur les thèmes “Systèmes de Types”
et “Systèmes d’Exploitation” à l’Université de Bologne. En 2010 en 2011 j’ai donnée
des cours et travaux dirigés sur le thème du λ-calcul à l’Université Joseph Fourier à
Grenoble. En 2010 j’ai donné un cours sur “Bisimulations et Calculus de Processus” à
l’école doctorale de l’Université Joseph Fourier. Enfin, en 2011 j’ai donné un cours sur
“Assistants de Preuves : de la théorie à la pratique” de nouveau à cette école doctorale.





Chapter 1

Introduction

“Computer: a programmable usually electronic device that can store, retrieve,
and process data.”

—Merriam-Webster dictionary

“I will, in fact, claim that the difference between a bad programmer and a good
one is whether he considers his code or his data structures more important.
Bad programmers worry about the code. Good programmers worry about data
structures and their relationships.”

—Linus Torvalds

Programs manipulate data. We often think that the program is the clever part of the
computer, but a program is just some finite control. As in Turing machines, it is the
tape, and its infinite potential, that gives its full expressivity to a program. The data
empowers the program.
Data has structure. In a computer memory, it consists of cells each containing a small

number. The first job of a programmer is typically to build more complex structures
that encompass several memory cells, such as records, arrays, or lists. There needs to
be consistency between the representation of the data and the way it is manipulated:
one cannot look up the head of an empty list, or access an array beyond its last cell.
Complex data structures are usually built upon simpler ones, in a recursive fashion.

Lists may contain records, records may contain arrays of lists . . . Consider for instance
a pervasive data structure in the Mac OS X1 operating system: the property list. Data
in a property list may be a string, an array of data, or a record (called a dictionary)
mapping keys as strings to data. Such simple data model is sufficient to conveniently
store preferences for most applications. It is also use for much bigger data sets, such as
the description of the contents of an iTunes library.
Data is not necessarily passive, as in the λ-calculus. One point of view is to say that

the “program” is β-reduction, and that the data is the λ-term under consideration. An
alternative, richer, point of view consists of taking functions in the λ-term as programs,
and their arguments as data. Such a program manipulates itself and changes as it
executes. Preserving the consistency between the program representation and the data
it manipulates is even trickier in this setting.
The study of the adequacy between structured data and the programs that manipulate

it is the core topic of this document. It is organized in three parts, from simple to
1and iOS, NeXTSTEP, GNUStep



2 CHAPTER 1. INTRODUCTION

complex data structures. Part I is about unordered trees, part II is about ordered data,
and part III is about programs that manipulate themselves. Each part will consist
of two or three case studies, focusing on a particular programming language and data
model. These case studies will show how static analyses help maintaining the consistency
between programs and data.
I use the “we” pronoun through the main body of this document as all of this research

has been done in collaboration with many people. The work described in chapters 3,
4, and 5 was done during my postdoc at University of Pennsylvania with Benjamin
Pierce, or during the collaboration we kept alive after my stay. Chapter 6 is the result
of a collaboration with Pierre Genevès and Nabil Layaïda of the WAM team at INRIA
Grenoble. The work of chapter 7 was done when I spent a year at University of Bologna
working with Davide Sangiorgi. Finally, the two remaining chapters were done with
students I supervised during their PhD in the Sardes team: Michaël Lienhardt for
Chapter 2 and Sergueï Lenglet for Chapter 8.
This document does not describe some of the research done on subjects that are not

directly about static analyses for the manipulation of structured data. More precisely, I
do not address some work about the design of calculi for component-based programming
(Bidinger et al., 2005b; Hirschkoff et al., 2005; Lienhardt et al., 2007), about conflict
resolution for optimistically replicated data (Greenwald et al., 2006), about the use of
schemas to drive data synchronization (Foster et al., 2007a), and about the expressive-
ness of polyadic higher-order π-calculus (Lanese et al., 2010a).



Part I

Manipulating Unordered Trees





“But at the moment the hobbits noted little but the eyes. These deep eyes
were now surveying them, slow and solemn, but very penetrating.”

—J.R.R. Tolkien, “Treebeard”

We start our journey by considering manipulations of trees. More precisely, we work
with an extremely simple form of trees: unordered, edge-labeled trees with no repeated
labels among the children of a given node. This model is a natural fit for applications
where the data is unordered, such as a dictionary or an address book. A record can also
be seen as an edge-labeled tree, where the leaves contain some special primitive values.
For these unordered trees, we first consider component-based programs that manip-

ulate messages structured as records. We develop in Chapter 2 a type system that
guarantees that record manipulation primitives never fail. In fact, we consider two type
systems for two programming languages, that differ in how messages may be routed.
This work was done in collaboration with Michaël Lienhardt, Claudio Mezzina, and
Jean-Bernard Stefani (Lienhardt et al., 2008, 2009), and was the topic of Michaël Lien-
hardt’s PhD dissertation.
We then turn to a different form of tree manipulation in Chapter 3: bidirectional tree

transformations. Such transformations may be run forward and backward, changing the
shape of the tree. We develop analyses that guarantee that these transformation are
well-behaved, in the sense that a round trip returns to its starting point. This work
was done in collaboration with Nate Foster, Michael Greenwald, Jonathan Moore, and
Benjamin Pierce (Foster et al., 2007b).





Chapter 2

Messages as Records

2.1 Introduction

Our first example of static analyses for the manipulation of unordered trees is set up
in the world of components, and more precisely component-based communication frame-
works. Building software systems from components has many benefits compared to less
modular approaches (Szyperski, 2002): easier design and development, easier adapta-
tion, maintenance, and evolution. However, constructing a system from components can
give rise to non trivial assemblage errors. Some of these errors cannot be detected by
the type systems of the programming languages used for implementation, such as C++,
Java, or ML. In particular, as noted by Liu et al. (1999), this is the case with com-
munication systems built with dedicated component-based frameworks such as Appia
(Miranda et al., 2001), Click (Kohler et al., 2000), Coyote (Bhatti et al., 1998), Dream
(Leclercq et al., 2005), or Ensemble (van Renesse et al., 1998). These frameworks com-
prise many components (sometimes called micro-protocols), that encapsulate low-level
system code. Assembling micro-protocols can give rise to subtle errors, in particular
errors arising because of incompatible manipulation of protocol data units in different
components. These errors are hard to catch because they may be purely the result of a
faulty assemblage, and may arise even if individual components are correct.
Dealing with assemblage errors in communication systems has been approached in

five main ways. First, one may use theorem proving to check the expected properties of
an assemblage on a formal specification of the behavior of individual components and
of the assemblage, as in Ensemble (van Renesse et al., 1998). The second approach
uses an architecture description language (ADL) to specify component behaviors and
assemblage constraints, typically component dependencies, and to automatically verify
the assemblage consistency, as in Aster (Issarny et al., 1998), Knit (Reid et al., 2000),
or Plastik (Joolia et al., 2005). The third approach relies on type systems for interac-
tion contracts, as in the Singularity system (Fähndrich et al., 2006) or in web service
workflows (Honda et al., 2008). The fourth approach uses model checking to verify the
expected properties of a formally specified assemblage, as in the Vercors system (Barros
et al., 2007). Finally, one may rely on property-preserving compositions, as described
in Bensalem et al. (2008), where it is applied to deadlock-free assemblages.
The theorem-proving approach is comprehensive and can address arbitrary properties,

but it requires theorem-proving expertise, which is not readily available for systems
programmers. The ADL approach is more automatic, but it typically supports a limited
set of architectural constraints, and a limited set of behavioral checks that fail to address
subtler run-time errors such as data manipulation errors. The type-system approach
can be made entirely automatic if type inference is decidable, but the type systems
devised so far fail to deal with the data handling errors we consider in this chapter.



8 CHAPTER 2. MESSAGES AS RECORDS

The model-checking approach is automatic, but may require considerable expertise in
the property language used, again not necessarily available for systems programmers.
The property-preserving composition approach also can be made entirely automatic, for
instance using model checking techniques, but to this date does not readily apply to the
data handling errors we consider.
We thus propose an extension of the ADL approach with a type analysis devised to

deal with a class of data manipulation errors that occur in ill-formed communication
systems assemblages. A first attempt, described in Section 2.4, results in a type system
whose type inference is undecidable. We thus slightly reduce the expressive power of
routing in a second attempt in Section 2.5. In both cases, we first define a simple
process calculus to specify an operational model of the target component assemblage
(and where program execution is abstracted by a reduction relation). We then define
a domain-specific type system, that operates on programs abstracted as terms of the
process calculus, and that ensures that typable assemblages do not exhibit the targeted
class of errors. These type systems are based on row polymorphism (Rémy, 1994a) and
process types (Yoshida and Hennessy, 2002; Maffeis, 2005).
We illustrate our approach with the handling of data manipulation errors that can

occur when building incorrect assemblages using the Dream framework (Leclercq et al.,
2005). Dream is interesting because it provides one of the more fine-grained frameworks
for building communication systems, with constructs that generalize or subsume those
in other communication frameworks such as Appia, Click, or Coyote. However, our
approach is not limited to Dream only: the same calculus and type system can be
applied to Appia (Miranda et al., 2001), Click (Kohler et al., 2000) and Coyote (Bhatti
et al., 1998). In fact, in the setting of our second attempt (where type inference is
decidable), we describe our implementation which we have used to check Dream and
Click assemblages.
This chapter is organized as follows. After a brief overview of the Dream framework,

we illustrate in Section 2.3 our approach with a very simple calculus without routing.
We then consider structural routing in Section 2.4 and semantic routing in Section 2.5.
We discuss related work in Section 2.6 and conclude the chapter in Section 2.7.

2.2 Dream Overview

To explain the assemblage verifications we target in this chapter, we use the example
of the Dream framework, which we now briefly present. Dream is a component-based
framework, written in Java, designed for the construction of communication systems
(protocol stacks, communication subsystems of middleware for distributed execution).
It is built on top of the Java implementation of the Fractal component model (Bruneton
et al., 2006).
The primary data structure in Dream is called a message. Messages are used to

implement protocol data units (in other words, the data that communication protocols
exchange during their execution). Messages are exchanged between Dream compo-
nents through input and output channels. A message is a list of labeled chunks, which
can be any Java objects including messages. Within a component, messages can be
freely manipulated. Basic operations, like removing, adding, or accessing chunks are
provided. The Dream framework comprises a library of components that encapsulate
functions and behaviors commonly found in communication subsystems. These include:
message queues that are used to store messages, transformers that transform a mes-
sage received on their single input channel and deliver the result to their single output
channel, routers that forward messages received on their single input channel to one
or several output channels, multiplexers that forward messages received on their input
channels to their single output channel, aggregators that aggregate messages received on



2.3. SIMPLE MESSAGE MANIPULATION 9

Gen1 Gen2

M

Handler
1

R

Handler
2

Conduit

Figure 2.1: A Dream Assemblage

one or several input channels and deliver the aggregated message on their single output
channel, deaggregators that are dual to aggregators, and conduits that allow messages
to be exchanged between different address spaces.
Figure 2.11 shows a simple assemblage of Dream components that corresponds to

two communicating sites, Site A sending different kinds of messages to Site B. The
assemblage is constituted by two generator components, Gen1 and Gen2, that emit dif-
ferent messages. These messages are then sent to a multiplexer and transferred to Site
B. On Site B, router R forwards messages to the Handler 1 or Handler 2 component
Verifying the correctness of the assemblage implies verifying structural constraints

to guarantee that input and output channels are properly matched, and ensuring that
a component does not receive a message it is not able to handle (typically, a message
with missing or unexpected chunks). In our simple example above, this could be the
case if the conduit between the sites could not handle messages generated by the two
components Gen1 and Gen2 (for instance because of a missing chunk), or if one handler
could not process the messages forwarded to it. In the presence of complex assemblages,
such an analysis can quickly become difficult.

2.3 Simple Message Manipulation

To whet our appetite, we will first consider a very simple family of component assem-
blages to manipulate messages, and the associated type system.

Message Manipulation Calculus

In this setting, the contents of messages are records associating fields (or names) to
terms. We write {a1 = M1; . . . ; an = Mn} for the record with fields a1 to an and
associated terms M1 to Mn. As in Dream, we call a chunk the pair of a field and
associated term. Note that a given field occurs at most once in a record. For convenience,
we write in the following (M1, . . . ,Mn) for the tuple represented as a record indexed by
integers {1 = M1; . . . ;n = Mn}.
Record manipulation consists of adding chunks, removing chunks, or accessing chunks

(i.e., looking up the term associated to a given field). We write (. a M) for the selection
of field a in record M , (+a (M ′,M)) for the addition of a chunk named a with contents
M ′ in record M , and (\a M) for the removal of the chunk named a in record M . As
we may consider other manipulations, for instance arithmetic operations on integers,
we assume we have a set of constants c that include the record manipulations described
above. To simplify notations, we write the chunk removal and access constants as postfix

1The figure is simplified: we do not detail the conduit between site A and site B.



10 CHAPTER 2. MESSAGES AS RECORDS

(as in {a = ′′foo′′, b = 1}\a), and the chunk addition constant as infix. We also assume,
for our examples, a constant print that takes a string as argument and prints it.
This approach, based on a simple specification language, is very simple but not very

powerful, as seen below. We describe in Section 2.5 a more expressive approach based
on primitive components that may have arbitrary behaviors.2
A message on channel e with contentsM is written e〈M〉. A message receiver e(x).B

is identical to a receiver of value-passing CCS: behavior B is associated to the channel
e, and upon reception of a message e〈M〉, the formal variable x is substituted by the
actual message contentsM in B. Behaviors B include parallel composition of behaviors
B ‖ B, sending of messages e〈M〉, the inactive behavior 0, additional receivers e(x).B,
and replicated behaviors !B.
Finally, a program D is organized as a hierarchy of component. A component bIO [D]

consists of a name b, a set of channel names I it claims to define, a set of channel names
O it requires from the environment, and its contents. To lighten the syntax, When
either the set I or O is empty, we simply leave it blank. A program may also be a
simple behavior B or the parallel composition of components D ‖ D.
Formally, the syntax of our first calculus is as follows.

D ::= bIO [D] | B | D ‖ D Components
B ::= 0 | e〈M〉 | B ‖ B | e(x).B | !B Behaviors
M ::= x | {a1 = M1; . . . ; an = Mn} | c | (M1 M2) Message contents
c ::= . a | +a | \a | print | . . . Constants

In the following, we consider as values a special subset of messages that may not
further reduce:

v ::= {a1 = v1; . . . ; an = vn} | x | c

Examples

We start by describing some simple behaviors. Our first behavior generates some mes-
sages indefinitely: !g〈{a = 1; c = ′′foo′′}〉.
Our second behavior receives such a message on channel h and prints the contents of

the c field. As the print constant may only be used in the contents of a message, the
resulting empty record is sent on another message: !h(x). s〈print(x. c)〉. This message
may in turn be thrown away by the following behavior: !s(x).0.
One may combine these last two behaviors in a componentH to hide the extra message

that has to be thrown away, exposing only the receiver on h.

Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]

Note that we omit the parallel operator when behaviors are stacked vertically as in
the example above.
To illustrate record manipulations, the following behavior decreases the ttl field of a

message: !e(x). (x \ ttl) +ttl (x. ttl− 1).
It should be noted that this calculus is not able to express some behaviors, such as

throwing away a message whose ttl has reached 0. This is the case even in the presence
of a constant that is a conditional. Indeed, constants can only be applied to the contents

2We could also use an arbitrary language, like the λ calculus, but we prefer to focus on record
manipulations for this domain-specific language.



2.3. SIMPLE MESSAGE MANIPULATION 11

Context-D
D B D′

ED[D] B ED[D′]

Context-M
M B M ′

EM [M ] B EM [M ′]

App
eval(c, v) = M

(c v) B M

Com
e〈v〉 ‖ e(x).B B {v/x}B

In
e ∈ I

e〈v〉 ‖ bIO [D] B bIO [e〈v〉 ‖ D]

Out
s ∈ O

bIO [s〈v〉 ‖ D] B bIO [D] ‖ s〈v〉

Figure 2.2: Reduction rules

of a message, thus they cannot condition the sending of a message. We could add a
conditional at the level of behaviors, but as the more complex calculi we introduce later
are able to deal with this, we prefer to lighten the presentation at the cost of expressivity.
A binding or connector between components may be defined as !g(x).h〈x〉. We may

thus combine the examples above using such a connector to forward the message on g
to the receiver on h of the second component.

Gg [!g〈{a = 1; c = ′′foo′′}〉] ‖ !g(x).h〈x〉 ‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]

The Semantics of Message Manipulation

The operational semantics of our calculus is defined by a reduction relation, denoted
B , defined on closed terms (terms with no free variable), modulo a structural equiva-
lence relation on process terms and modulo evaluation contexts. Structural equivalence
makes the parallel operator commutative, associative, with neutral element 0, allows
the unfolding of replications, and makes irrelevant the order of fields in a record.
The reduction relation is defined as the smallest relation that verifies the rules of

Figure 2.2. We assume given a partial function eval that gives the result of applying a
constant to a value. This function is partial as record operations are not always defined.
We formally define eval in Figure 2.3.
The two context rules mean that reduction, i.e.execution, can happen anywhere in

the program. Evaluation contexts are terms with a hole []. We distinguish contexts
which may be filled by components or behaviors, written ED, from contexts which may
be filled by message contents, written EM .

EM ::= [] | {a1 = EM ; a2 = M2; . . . ; an = Mn} | (M EM ) | (EM M)

ED ::= [] | s〈EM 〉 | ED ‖ D | bIO [ED]

Rule App deals with application in message contents, and relies on the definition of
eval. Three communication rules are defined: Com allows communication between
two programs in a same component; In allows a message in a component that accepts
it as input; Out allows a message out of a component that declares its channel name
as output. These communication rules may only be applied when the message is fully
reduced to a value.



12 CHAPTER 2. MESSAGES AS RECORDS

Select
eval(. a, {a = M1; a2 = M2; . . . ; an = Mn}) = M1

Add
∀0 < i ≤ n, ai 6= a

eval(+a, (M, {a1 = M1; . . . ; an = Mn})) = {a = M ; a1 = M1; . . . ; an = Mn}

Remove
eval(−a, {a = M1; a2 = M2; . . . ; an = Mn}) = {a2 = M2; . . . ; an = Mn}

Print
eval(print, s) = {}

Figure 2.3: Constant application

Message Errors

The errors we consider are the ones resulting from incorrect record manipulation. More
precisely, an error occurs when there is an application (v v′) such that eval(v, v′) is
undefined. This may be because v is not a constant, or because v′ is not in the domain
of this constant. Such errors thus includes accessing or removing a chunk that is not
present, as well as adding a chunk whose name is already in the record.3
Consider the following component assemblage, identical to the previous example with

a small modification: the message generator puts the string on field b instead of field a.

Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖ !g(x).h〈x〉 ‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]

We compute as depicted in Figure 2.4. In componentH, we end up with an application
of the accessor . c to the record {a = 1; b = ′′foo′′}. As eval(. c, {a = 1; b = ′′foo′′}) is
undefined, this is an error, and the computation is stuck for this particular message.
Formally, a configuration D has an error iff D ≡ ED[EM [(v v′)]] where eval(v, v′)

is undefined. This definition is motivated, from a practical point of view, by assem-
blage errors that occur most when using the Dream framework. Dream components
manipulate messages by adding a chunk to it, or by removing or accessing one of its
chunks. Such operations may fail when applied to messages with the wrong structure,
e.g., not having the field the component has to access. A Dream assemblage can type-
check correctly as a Java program (as every message has an atomic Message type that
does not reveal its structure), but still exhibit run-time errors because of this message
manipulation operations.

Typing Components

We now give the intuition for a type system that will ensure that a well-typed configu-
ration never evolves to one that has an error. This type system is a simple extension of
the type system for extensible records of Rémy (Rémy, 1994a,b). We present this type
system by examples, highlighting a few typing rules. We will not formally define the full

3In sequential languages, an error can be detected by a computation that is not a value being stuck.
As usual for concurrent languages, we need to be more precise in the definition of where the error is,
since other computations may reduce in parallel of an error.



2.3. SIMPLE MESSAGE MANIPULATION 13

Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖ !g(x).h〈x〉 ‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]
≡

Gg

[
!g〈{a = 1; b = ′′foo′′}〉
g〈{a = 1; b = ′′foo′′}〉

]
‖ !g(x).h〈x〉 ‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]
B

Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖
g〈{a = 1; b = ′′foo′′}〉

!g(x).h〈x〉
‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]
B

Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖
h〈{a = 1; b = ′′foo′′}〉

!g(x).h〈x〉
‖ Hh

[
!h(x). s〈print(x. c)〉

!s(x).0

]
B

Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖ !g(x).h〈x〉 ‖ Hh

h〈{a = 1; b = ′′foo′′}〉
!h(x). s〈print(x. c)〉

!s(x).0

 B
Gg [!g〈{a = 1; b = ′′foo′′}〉] ‖ !g(x).h〈x〉 ‖ Hh

 s〈print({a = 1; b = ′′foo′′}. c)〉
!h(x). s〈print(x. c)〉

!s(x).0



Figure 2.4: Computation ending in an error

T:Var
Γ ` x : Γ(x)

T:Message
∀0 < i ≤ n, Γ `Mi : τi

Γ ` {a1 = M1; . . ; an = Mn} : {a1 : Pre(τ1); . . ; an : Pre(τn);Abs}

T:App
Γ `M1 : τ → τ ′ Γ `M2 : τ

Γ ` (M1 M2) : τ ′

T:Inst
Γ `M : ∀κ. τ dom(Σ) = κ

Γ `M : Σ(τ)

Figure 2.5: Typing rules for messages

type system nor its properties, further details may be found in Bidinger et al. (2005a);
Lienhardt (2009).

Message Contents The typing of message contents, more precisely of record manipu-
lation, is based on row polymorphism. A record type has the shape {a1 : Pre(τ1); . . . , an :
Pre(τn);Abs} meaning the fields a1 to an are present and have types τ1 to τn, respec-
tively. The final Abs indicates no other field is present. For instance, the message
{a = 1; c = "foo"} has type {a : Pre(int); c : Pre(string);Abs}: chunks named a and c
are present and respectively contain an integer and a string.
The syntax of types for message contents is as follows.

σ ::= ∀κ. τ Type Schema
τ ::= τ → τ ′ | ψ | α | int | string Value Type
ψ ::= a : Pre(τ);ψ | Abs | ρ Row Type

Type variables, written κ, include value type variables α and row type variables ρ.



14 CHAPTER 2. MESSAGES AS RECORDS

T:Channel
Γ `M : S(s)

Γ ` s〈M〉 : S

T:Receiver
e ∈ dc(S) ∀1 ≤ i ≤ n, (Γ ] {x : S(e)} ` Bi : S)

Γ ` e(x). (B1 ‖ · · · ‖ Bn) : S

T:Parallel
Γ ` D1 : S Γ ` D2 : S

Γ ` D1 ‖ D2 : S

T:Zero
Γ ` 0 : S

T:Bang
Γ ` B : S

Γ ` !B : S

T:Box
Γ ` D : S ∀e ∈ I ∪O,S(e) = S′(e)

Γ ` bIO [D] : S′

Figure 2.6: Typing rules for processes

Free type variables of a type fv(∀κ. τ) are the type variables of τ which do not occur in
κ. We extend this notion to typing environments Γ. In record types, we assume that
each field name occurs at most once4. We also assume that the order of fields is not
important, i.e., we work up to reordering of fields.
Typing rules for message contents, including the application of constants, may be

found in Figure 2.5. In rule T:Inst, Σ is a substitution mapping the type variables κ
to types. We assume that this substitution is well-sorted, in the sense that row type
variables ρ are substituted by rows types ψ and value type variables α by value types τ .

Constants We assume the typing of constants is present in the initial typing envi-
ronment, written Γ in the typing rules of Figure 2.5. We now give the types of a few
constants, to illustrate the use of row polymorphism. As these constants are functions,
they will all have a functional type. Note that the type of these constants is chosen to
be compatible with their reductions, i.e., such that subject reduction holds.
The type of the “access a” constant . a is as follows.

∀α, ρ. {a : Pre(α), ρ} → α

This type may be read as “given an arbitrary value type α and arbitrary row type
ρ, the constant . a maps a record with a field a present and of type α (the rest of the
record type being arbitrary and captured by ρ) to a value of type α.”
Similarly, the type of the “delete a” constant \a is as follows.

∀α, ρ. {a : Pre(α), ρ} → {ρ}

In this case, field a still has to be present, but it’s the rest of the record ρ that is
returned.
Finally, adding a value of type α to a field a requires that the field be absent before.

∀α, ρ.α× {a : Abs, ρ} → {a : Pre(α), ρ}

Upon typing the application of a constant to a record, one needs to instantiate the
type variables α and ρ so that the types match the record’s type.

4One typically uses a kind system to enforce this, annotating row types with the set of names that
cannot occur in the row. We prefer to use this less formal approach for readability.



2.4. STRUCTURAL ROUTING 15

T:Inst

T:Var
Γ `. a : ∀α, ρ. {a : Pre(α); ρ} → α

Γ `. a : {a : Pre(α); ρ} → α Γ ` x : {a : Pre(α); ρ} T:Var

Γ ` x. a : α
T:App

Γ ` s〈x. a〉 : S
T:Channel

∅ ` e(x). s〈x. a〉 : S
T:Receive

Figure 2.7: Typing a Behavior

Behaviors, Messages, and Components Typing of these constructions is done
globally. It is inspired in part by process types in the the λπv-calculus (Yoshida and
Hennessy, 2002) and sequence types for the π-calculus (Maffeis, 2005). More precisely,
we check that the use of messages and behaviors is consistent with a given global type
S mapping channel names to the types of the values they carry. We write dc(S) for the
domain of this mapping, and S(e) for the type associated with channel e.
In the case of messages (T:Channel), the message contents are checked to correspond

to the channel’s expected arguments. The typing of behaviors (T:Receiver) is slightly
more complex: the continuation of a reception is checked in an extended environment
where the reception variable has the type corresponding to the channel. Finally, the
typing of components (T:Box) is straightforward. The global types are requested to
coincide on the channels that are exported or imported, whereas there is no constraint
on the other channels.
Note that our types do not check whether a channel is actually present. A channel

may be required either because it is imported or exported by a component, or because a
message is sent on it. Adding such verification could be done by adapting our previous
work on the dynamic Join calculus (Schmitt, 2002).

Discussion

This first type system is very limited: as only constants are allowed to have polymorphic
types, this implies that a given channel name may only carry one type of message, whose
structure is fixed. This limitation is overcome in the extension of this calculus described
in Section 2.4.
Nevertheless, one may type the behavior e(x). s〈x. a〉 with the process type S = e({a :

Pre(α); ρ}), s(α) where α and ρ are unspecified, as depicted in Figure 2.7 (in this figure
we have Γ = x : {a : Pre(α); ρ}, and we assume a global environment containing typing
definitions for constants). This process type says that s may carry values of some type
α, and that e carries record with a field a present with the same type α.
This type system has a second limitation due to the absence of routing, which will be

the main motivation for the extension of Section 2.4. This limitation is twofold. At the
level of the calculus, if several flows of messages end up on the same channel, then there is
no way to separate these flows. As a consequence one cannot share components between
flows of messages. Moreover, even if such a primitive was added, the type systems require
that the types of the messages be identical, which is too strong a restriction.

2.4 Structural Routing

We now enrich our calculus and our type system to allow some modularity in the use
of components. More precisely, we allow flows of messages with different types to be
joined, the messages to be manipulated, then the flows to be separated again.



16 CHAPTER 2. MESSAGES AS RECORDS

Ao



Gen1g1
[!g1〈{a = 1; b = 1}〉] ‖ !g1(x).m1〈x〉

Gen2g2
[!g2〈{a = 1; c = "foo"}〉] ‖ !g2(x).m2〈x〉

Mm1m2
mo [!m1(x).mo〈x〉 ‖ !m2(x).mo〈x〉] ‖ !mo(x). ti〈x〉

TCPIPtito

[
!ti(x). to〈

{
ip = 192. 168. 1. 42;

val = x

}
〉
]
‖ !to(x). o〈x〉


Figure 2.8: Site A

The changes to the calculus are fairly small: we simply add a new routing primitive
that is able to separate messages according to their contents. The changes to the type
system, however, are much more significant.

Calculus

As hinted above, we extend the syntax with a special feature to directly encode a router-
like behavior: IfPre(a,M, s1, s2). This construct tests if a field named ‘a’ is present in
the message ‘M ’. If it is, the message is sent on the ‘s1’ output channel, otherwise it is
sent on ‘s2.

Abstract syntax Most of the syntax of our calculus remains as before. We only add
one behavior corresponding to the routing operator.

B ::= . . . | IfPre(a,M, s1, s2)

Examples A multiplexer can be defined as

Mult , be1e2s [!e1(x). s〈x〉 ‖ !e2(x). s〈x〉]

The two receivers in Mult, listening on e1 and e2, send messages they receive on output
s, thus multiplexing them on one output channel.
A router on name a can be defined as

Router = bes1s2 [!e(x). IfPre(a, x, s1, s2)]

It has three ports: one input (e) and two outputs (s1 and s2). The routing behavior in
this case is simply implemented using the IfPre operator. If the message received on
the input contains a field labeled a, then it is sent on s1, otherwise, it is sent on s2.

Figure 2.8 presents an encoding of a refinement of the assemblage for site A of
Figure 2.1, where we added a component to create a TCP/IP packet. Generators send
messages on their output channel, ‘g1’ for Gen1 and ‘g2’ for Gen2. Gen1 sends messages
with two chunk named ‘a’ and ‘b’, while Gen2 sends messages having ‘a’ and ‘c’ chunks,
and whose ’c’ chunk carries a string. Bindings are encoded as in Section 2.3, using a
simple forwarding behavior. For instance, !g1(x).m1〈x〉 connects the output channel of
Gen1 to the first input channel of the multiplexer.5 Finally, the TCPIP component sends
messages containing two chunks: ‘ip’ contains an IP address, and ‘val’ contains the
message to transmit to site B. The output channel of this component is then forwarded
on channel ‘o’, which is the output channel of site A.
Figure 2.9 presents an encoding of site B. As in Figure 2.1, this component must be

read from bottom to top: the input channel of site B is ‘i’, which is forwarded to the
5A less verbose encoding would directly use the destination name directly, but it may not be known

when implementing components independently.



2.4. STRUCTURAL ROUTING 17

Bi


Handler1h1

[
!h1(x). s〈print(x. c)〉

!s(x).0

]
‖ Handler2h2 [!h2(x).0]

Rrs1s2 [!r(x). IfPre(a, x. val, s1, s2)] ‖ !s1(x).h1〈x〉 ‖ !s2(x).h2〈x〉
!i(x). r〈x〉


Figure 2.9: Site B

input of the router component ‘R’. The router extracts the ‘val ’ chunk from its input
messages, and send the result depending on the presence of the ‘a’ chunk on the output
channel ‘s1’ or ‘s2’. Channel ‘s1’ is bound to the input interface of Handler1, which
prints the contents of the ‘c’ chunk of the message. Channel s2 si bound to the input
interface of Handler2, which throws the message away.

Operational Semantics

The operational semantics needs to be extended in two ways: first by giving rules to the
routing operator, then by taking it into accounts for evaluation contexts. As concerns
the reduction, we add the following two rules.

ifPre
M = {a = M1; a2 = M2; . . . ; an = Mn}

IfPre(a,M, s1, s2) B s1〈M〉
ifAbs
M = {a1 = M1; . . . ; an = Mn} ∀0 < i ≤ n, ai 6= a

IfPre(a,M, s1, s2) B s2〈M〉
We extend the evaluation contexts as follows.

ED ::= . . . | IfPre(a,EM , s1, s2)

Message Errors

We extend as well the notion of a message error, by requiring that the routing operator
be defined only on records. We thus now have the following formal definition.

Definition 2.4.1. A program D has a Message Error iff either:

• There exist ED, EM , v, and v′ such that D ≡ ED[EM [(v v′)]] where eval(v, v′) is
undefined.

• There exist ED, v, a, s1, and s2 such that D ≡ ED[IfPre(a, v, s1, s2)] and v is not
a record.

Example Site B of Figure 2.9 alone has no error, but the assemblage of site A and
site B will: the message {a = 1; b = 1} will be routed to Handler1, which cannot access
to the undefined ‘c’ chunk.

Type system

We now turn to the modification required for our type system to detect these message
errors. It is based on the same principles as in Section 2.3, namely row polymorphism
for record operations and global process types. We extend this system with two specific



18 CHAPTER 2. MESSAGES AS RECORDS

T:Channel
Γ `M : τ τ ∈ S(s)

Γ ` s〈M〉 : S

T:IfPre1
Γ `M : τ τ = {a : Pre(. . . ); . . . } τ ∈ S(s1)

Γ ` IfPre(a,M, s1, s2) : S

T:IfPre2
Γ `M : τ τ = {a : Abs; . . . } τ ∈ S(s2)

Γ ` IfPre(a,M, s1, s2) : S

T:Receiver
e ∈ dc(S) ∀τ ∈ S(e), ∀1 ≤ i ≤ n, (Γ ] {x : τ} ` Bi : S)

Γ ` e(x). (B1 ‖ · · · ‖ Bn) : S

T:Parallel
Γ ` D1 : S Γ ` D2 : S

Γ ` D1 ‖ D2 : S

T:Zero
Γ ` 0 : S

T:Bang
Γ ` B : S

Γ ` !B : S

T:Box
Γ ` D : S ∀e ∈ I ∪O,S(e) = S′(e)

Γ ` bIO [D] : S′

Figure 2.10: Typing rules for processes

typing rules inspired by intensional type analysis (Crary et al., 1998) to handle the
routing procedure.
The syntax of types is identical to the previous section, with one exception. Instead

of mapping channel names to message types, our process types S now map channels to
finite sets of message types. For instance, the process type s : (τ1) ∪ s : (τ2) specifies
that channel s may carry messages of types τ1 and τ2. We write S(e) the set of types
associated with channel e, and dc(S) the set of all channels e such that S(e) 6= ∅.
The typing rules for the contents of messages of Figure 2.5 are unchanged. The main

changes to the typing rules of processes, depicted in Figure 2.10, are the addition of two
rules for the routing operator (T:IfPre1 and T:IfPre2), and the modifications of the
T:Channel and T:receiver rules. As regards the first modification, the T:Channel
rules now checks that the type carried belongs to the set of types for the channel.
Conversely, the T:Receiver rule now must check the typing of the body of the receiver
for each type that may be received.

Typing examples. Our multiplexer Mult can admit several types, depending on the
messages it has in input, as in: e1 : (τ)∪e2 : (τ1)∪e2 : (τ2)∪s : (τ)∪s : (τ1)∪s : (τ2). To
check it, one uses the rules T:Parallel and T:Receiver on the processes e1(x). s〈x〉
with x typed τ , and e2(x). s〈x〉 with x first typed τ1 and then typed τ2. Note that
these union types allow us to recover a form of (ad-hoc) polymorphism: channels are
no longer limited to a single type.
Router. It may seem that the typing rules are too restrictive to capture the ex-

pressiveness of the ‘IfPre’ construct. However, consider what happens when typing a
router program such as e(x). IfPre(a, x, s1, s2). Because of rule T:Receiver, we have
to consider all the message types mapped on channel e. Combining the rules T:IfPre1,
T:IfPre2 and T:Receiver, we can thus recover expected types for the routing pro-
cess. For instance, one can verify that the following process type validates the router



2.4. STRUCTURAL ROUTING 19

g1 : ({a : Pre(int); b : Pre(int);Abs})
∪ g2 : ({a : Pre(int); c : Pre(string);Abs})
∪ m1 : ({a : Pre(int); b : Pre(int);Abs})
∪ m2 : ({a : Pre(int); c : Pre(string);Abs})
∪ mo : ({a : Pre(int); b : Pre(int);Abs})
∪ mo : ({a : Pre(int); c : Pre(string);Abs})
∪ ti : ({a : Pre(int); b : Pre(int);Abs})
∪ ti : ({a : Pre(int); c : Pre(string);Abs})
∪ to : ({ip : Pre(IP); val : Pre({a : Pre(int); b : Pre(int);Abs});Abs})
∪ to : ({ip : Pre(IP); val : Pre({a : Pre(int); c : Pre(string);Abs});Abs})
∪ o : ({ip : Pre(IP); val : Pre({a : Pre(int); b : Pre(int);Abs});Abs})
∪ o : ({ip : Pre(IP); val : Pre({a : Pre(int); c : Pre(string);Abs});Abs})

Figure 2.11: Type of site A

program above, using the rules T:IfPre1, T:IfPre2 and T:Receiver.

S , e : ({a : Pre(int);Abs})
∪ e : ({b : Pre(int);Abs}) ∪ e : ({Abs})
∪ s1 : ({a : Pre(int);Abs})
∪ s2 : ({b : Pre(int);Abs}) ∪ s2 : ({Abs})

Simple assemblage. As previously stated, site A and site B from Figure 2.1 are typable,
and indeed, we can find a type for each of these components, as presented in Figures
2.11 and 2.12. The T:Box rules allows us to hide the type of some channels, but we
do not leverage this possibility and give a (quite large) global type. Consider the type
of site A (Figure 2.11). The 1st line states that Gen1 generates messages having a ‘a’
and a ‘b’ chunk, each containing an integer. The 3rd line states that these messages are
transmitted to the input channels of the multiplexer, which will send them on its output
interface (line 5). The 7th and 8th lines state that the messages are transmitted to the
input channel of the TCP/IP component. The output of the TCP/IP component is then
described line 9 and 10, and transmitted to the output of site A (line 11 and 12).
The type for site B can be read likewise, from its input channel to the handler compo-

nents. Some types are left unspecified (as type variables); they may be instantiated with
any type. More interestingly, types may also be duplicated, replacing type variables by
fresh ones. This way, the type of a simple wire e : (α) ∪ s : (α) can be duplicated
into e : (α) ∪ s : (α) ∪ e : (β) ∪ s : (β), then each α and β can have an independent
instance. This mechanism, called “generalized substitutions” is formally described in
Lienhardt (2009), where it is shown that if an assemblage has a type, then it also has
types resulting from this duplication.
Nevertheless, even using duplication, site B cannot be given a type compatible with

site A. Indeed, site B routes all messages with the a chunk through channel s1, which
expects messages with both the a and c chunks, the latter containing a string. There is
no provision for messages containing a chunk named a yet no chunk named c. Because
of this, connecting site A and site B would result in an ill-typed assemblage, and is thus
forbidden by our type system.

Type System Properties

This type system is sound with respect to message errors and obeys the classic correction
and subject reduction theorems, which are detailed in Lienhardt (2009).
This system still has some limitations, however, in the sense that it does not have

principal types. Consider for instance the assemblage depicted in Figure 2.13. In this



20 CHAPTER 2. MESSAGES AS RECORDS

i : ({ip : Pre(IP); val : Pre({a : Pre(η1); c : Pre(string); ρ}); ρ′})
∪i : ({ip : Pre(IP); val : Pre({a : Abs; ρ}); ρ′})
∪r : ({ip : Pre(IP); val : Pre({a : Pre(η1); c : Pre(string); ρ}); ρ′})
∪r : ({ip : Pre(IP); val : Pre({a : Abs; ρ}); ρ′})
∪s1 : ({a : Pre(η1); c : Pre(string); ρ})
∪s2 : ({a : Abs; ρ})
∪h1 : ({a : Pre(η1); c : Pre(string); ρ})
∪s : ({Abs})
∪h2 : ({a : Abs; ρ})

Figure 2.12: Type of site B

M Ra

e(x).s�x.a�

Figure 2.13: Routing with a Loop

figure, router Ra output messages with field a on its top interface and other messages
on its bottom interface. Thus messages remain in the loop as long as they have a field
named a, and the top component accesses the contents of the field. For instance, calling
e and s the input and output of the component, if one sends {a = {}} on channel i,
the component returns {} on channel s; if we send {a = {a = {b = 2}}; c = 3}, the
returned message is {b = 2}. We can thus give this component the types ∅, i : ({a :
Pre(α); ρ}) ∪ s : (α), i : ({a : Pre({a : Pre(α); ρ2}); ρ1}) ∪ s : (α), . . .We can even take
the union of these types. However, the most general type would be an infinite union
generating every chain of embedded a fields.

We have in fact shown, through an encoding of the Post Correspondance Problem
(Post, 1946), that type inference is undecidable. We may go around this issue in two
ways: either accept that the inference algorithm may not terminate (which would be the
case with the example above), or have a semi-inference algorithm that asks the user for
some input when dealing with loops. These approaches are detailed in Lienhardt (2009).
Instead, we now turn to a different approach to routing that allows type inference, at
the cost of some expressiveness.

2.5 Semantic Routing

The core idea behind semantic routing is the following one: marry multiplexers with
routers, and route messages according to the interface from which they entered the
multiplexer. This small paradigm shift has two main consequences. First, multiplexers
are no longer simply two wires pointing to the same output interface, as they must
somehow change the messages to indicate the interface they came from. Second, routers
are now only routers: they cannot be used to inspect the contents of messages.
This small loss in expressiveness is compensated by the fact that type inference is now

decidable. Moreover, we have found that this form of routing was sufficient for every
practical example we have studied.



2.5. SEMANTIC ROUTING 21

Calculus

Syntax The syntax of the calculus is given below. The first difference with the pre-
vious calculus is the replacement of explicit behaviors with a more generic notion of
primitive component, written p below. Such primitive components include message ma-
nipulation components, as well as multiplexers and routers.
The second difference lies in the use of routed values, written vδ, where δ records

where the value comes from.

D ::= p | bIO [D] | e〈vδ〉 | D1 ‖ D2 | 0 Components
v ::= c | {a1 = v1; . . . ; an = vn} Value
δ ::= ∅ | ↓r; δ | ↑r; δ Tag list

An assemblage of components D is a parallel composition of components and messages.
Components can be primitive or composite. A composite takes the form bIO [D] as
before. Messages take the form e〈vδ〉, where e is a channel name, and vδ is a routed
value. In the following we write M for a routed value when the actual value and tags
do not matter, and J for a parallel composition of messages. A routed value is a record
or a base value decorated with a list of routing tags. We always assume that each tag
occur at most once in a list. Intuitively, a list of routing tags δ encodes a particular
message flow in a component assemblage. Primitive components can act on these flows,
as illustrated by the router and multiplexer primitive components described below.
Although each tag is unique in a tag list, component assemblages can contain loops
(e.g., through a combination of routers and multiplexers), and (as before) record fields
can contain records. These two features allow the modeling of complex communication
stacks, including ones featuring protocol tunneling, such as IP over IP.
The set of primitive components is a parameter of the calculus, and can be extended

as required. It is assumed to contain at least the following: components Add, Sub, and
Select provide classical basic operations on extensible records; components Router

and Mult provide elementary routing and multiplexing capabilities; component Conn

corresponds to a simple unidirectional connector.

Operational semantics The operational semantics of the calculus is defined modulo
structural equivalence: the parallel operator is associative, commutative, and has 0 has
neutral element, and the order of fields in a record does not matter. The reduction
relation, written D1 B D2, is defined as a binary relation on assemblages that satisfies
the following rules.

R:Ctx
D B D′

E[D] B E[D′]

R:In
e ∈ I

e〈M〉 ‖ cIO [D] B cIO [e〈M〉 ‖ D]

R:Out
s ∈ O

cIO [s〈M〉 ‖ D] B cIO [D] ‖ s〈M〉

R:Prim
eval(p, J) = D

J ‖ p B p ‖ D

As our syntax is much simpler, thanks to the use of primitive components, evaluation
contexts are also simpler.

E ::= [] | E ‖ D | bIO [E]



22 CHAPTER 2. MESSAGES AS RECORDS

Most rules are similar to our previous system. Rule R:Prim is a generalization of
the previous reduction for constant applications. The partial evaluation function eval
now takes a primitive p and a parallel composition of messages J as arguments. This
function is defined as follows for Add, Sub, Select, Mult, and Router. In the following,
we assume that a is distinct from every ai.

eval(Add[e1 e2/s](a), e1〈{a1 = v1; . . . ; an = vn}δ1〉 ‖ e2〈vδ2〉) =

s〈{a = v; a1 = v1; . . . ; an = vn}δ1〉

eval(Sub[e, s](a), e〈{a = v; a1 = v1; . . . ; an = vn}δ1〉) =

s〈{a1 = v1; . . . ; an = vn}δ1〉

eval(Select[e/s](a), e〈{a = v; a1 = v1; . . . ; an = vn}δ1〉) = s〈vδ1〉

eval(Mult[e1 e2/s](r), e1〈vδ〉) = s〈v↑r;δ〉 if r /∈ δ
eval(Mult[e1 e2/s](r), e2〈vδ〉) = s〈v↓r;δ〉 if r /∈ δ

eval(Router[e/s1 s2](r), vδ1;↑r;δ2) = s1〈vδ1;δ2〉
eval(Router[e/s1 s2](r), vδ1;↓r;δ2) = s2〈vδ1;δ2〉

Add, Sub, and Select provide usual record manipulation. Note that Add uses a join
pattern to capture two messages at the same time. Mult adds a tag to a routed value to
signal the input channel on which it received it. Router checks the tags of the received
routed values to send them on the appropriate channel.

Errors In our concurrent setting, where primitive components may consume several
messages at the same time, the definition of error as a stuck evaluation is less immediate
than before. We choose to say there is an error if a primitive component accepts messages
on a given name e, yet a message is present on e that cannot be accepted by the
component. Formally, a message e〈M〉 cannot be processed by a primitive component
p if there are some N and J such that eval(p, e〈N〉 ‖ J) is defined, but for every J ′,
eval(p, e〈M〉 ‖ J ′) is undefined. An assemblage D has an error if D ≡ E[e〈M〉 ‖ p] and
e〈M〉 cannot be processed by p.

Type System

Syntax Our type system is based on two main ideas: (i) the type of values exchanged
on channels are routed types: rows (extensible record) or base types, decorated with
routing information; (ii) the type of an assemblage is an assemblage type, presented as a
function from its input channel types to its output channels types. The syntax of types
is defined as follows.

τ ::= Value type
α variable

| {W} row
| int, string, . . . base type

ψ ::= Row
ρ variable

| a : Pre(τ);ψ present field
| a : Abs;ψ absent field
| Abs empty row

Ξ ::= Routed type
ξ[τ ] variable value flow

| r(Ξ1,Ξ2) tagged pair

∆ ::= Interface type
∅ empty declaration

| e : (Ξ) channel declaration
| ∆ ∪∆ interface union



2.5. SEMANTIC ROUTING 23

The type of an assemblage, written σ in the following, takes the form of a type scheme
∀κ1 . . . κn. ∆I → ∆O where κi are (value, row, or flow) type variables, ∆I collects the
types of input channels in the assemblage, and ∆O collects the types of output channels
in the assemblage. We write dc(σ) for the channel names that appear in σ. A channel
type takes the form e : (Ξ), where e is a channel name, and Ξ is a routed type. A
routed type is either a value flow ξ[τ ], where the value type τ is carried by the data
flow variable ξ, or a tagged pair of the form r(Ξ1,Ξ2), where r is a tag, and Ξ1,Ξ2 are
routed types. Rows are defined as before.
Informally, a routed type is a binary tree where each leaf corresponds to a value

type carried by a data flow, and the branch leading to it defines the routing annotation
carried by the value (a given routing tag appears at most once on each branch). For
instance, the type r1(ξ1[int], r2(ξ2[string], ξ3[α])) consists of three branches correspond-
ing to three different values. The second branch r1(_, r2(ξ2[string],_)) corresponds to
a flow accepting only strings tagged with at least the tags ↓ r1 and ↑ r2. This tree
structure uses explicit references to data flows as they enable type duplication, which is
a requirement to properly deal with routing and multiplexing. Type duplication allows
two multiplexers in a row to type check correctly and is the main innovation of this type
system (see the discussion below).

Typing Types for primitive components are given by a function Υ that maps primitive
components to assemblage types. Just as the set of primitive components is a parameter
of our calculus, function Υ is a parameter of our type system and needs to be defined
for every primitive component to be typed. To ensure that these assemblage types
correspond to the operational semantics of the primitive components, the function Υ
must obey two constraints: (i) for each primitive component p, the input channel type
of Υ(p) should only allow valid patterns; (ii) the output type of the parallel composition
of a primitive component p with one of its valid input pattern J must contain the
type of eval(p, J). Formally, for every primitive component p and parallel composition
of messages J such eval(p, J) is defined, there exists an assemblage type ∆1 → ∆2

such that p ‖ J : ∆1 → ∆2 holds, and there exists ∆′2 with ∆′2 ⊆ ∆2 such that
p ‖ eval(p, J) : ∆1 → ∆′2 holds. These constraints ensure that the type of a primitive
component is consistent with its behavior (defined by eval). For instance, the types
associated with the primitive components introduced before, and of a simple connector
Conn[e/s] (that forward any value received on its input channel e to its output channel
s), can be defined as follows:

Υ(Add[e1e2/s](a)) =

∀α, ρ, ξ1, ξ2. e1 : (ξ1[{a : Abs; ρ}]) ∪ e2 : (ξ2[α])→ s : (ξ1[{a : Pre(α); ρ}])
Υ(Select[e/s](a)) = ∀α, ρ, ξ. e : (ξ[{a : Pre(α); ρ}])→ s : (ξ[α])

Υ(Router[e/s1 s2](r)) = ∀α, β, ξ, ξ′. e : (r(ξ[α], ξ′[β]))→ s1 : (ξ[α]) ∪ s2 : (ξ′[β])

Υ(Mult[e1 e2/s](r)) = ∀α, β, ξ, ξ′. e1 : (ξ[α]) ∪ e2 : (ξ′[β])→ s : (r(ξ[α], ξ′[β]))

Υ(Conn[e/s]) = ∀α, ξ. e : (ξ[α])→ s : (ξ[α])

The type system is equipped with a (classical) subtyping relation ≤, which we do not
detail fully here. For instance, the subtyping rules for assemblage types T:Func and
T:Gen, and tagged pairs T:TagPair, are given below.

T:Func
∆1 ≤ ∆′1 ∆2 ≤ ∆′2
∆′1 → ∆2 ≤ ∆1 → ∆′2

T:Gen
σ ≤ σ′

∀κ.σ ≤ ∀κ.σ′

T:TagPair
Ξ1 ≤ Ξ′1 Ξ2 ≤ Ξ′2
r(Ξ1,Ξ2) ≤ r(Ξ′1,Ξ′2)



24 CHAPTER 2. MESSAGES AS RECORDS

T:Prim
Υ(p) = σ

p : σ

T:Subst
D : σ

D : Σ(σ)

T:Inst
D : ∀κ.σ

D : σ

T:Gen
D : σ

D : ∀κ.σ

T:Channel
∅ `M : Ξ

e〈M〉 : ∅ → e : (Ξ)

T:Sub
D : σ σ ≤ σ′

D : σ′

T:Par
D : ∆1 → ∆2 D′ : ∆′1 → ∆′2

∆2 - ∆′1 ∆′2 - ∆1 dc(∆1) ∩ dc(∆′1) = ∅
D ‖ D′ : (∆1 ∪∆′1)→ (∆2 ∪∆′2)

T:Box
D : ∆1 → ∆2 ∆′1 - ∆1 ∆2 - ∆′2 ∆′2 - ∆′1 dc(∆′1) = I ∧ dc(∆′2) = O

cIO [D] : ∆′1 → ∆′2

Figure 2.14: Typing rules for assemblages

The typing rules in our type system comprise rules for assemblages and rules for
routed values. Typing judgements take the form D : σ for assemblages, v : τ for simple
values, and R ` R : Ξ for routed values. The environment R is a set of routing tags.
The typing rules make use of the - binary relation between channel types, which is
defined as follows: given two channel types ∆ ,

⋃
i∈I ei : (Ξi) and ∆′ ,

⋃
j∈J e

′
j : (Ξ′j),

we note ∆ - ∆′ iff for all i ∈ I, j ∈ J , ei = e′j implies Ξi ≤ Ξ′j .
Typing rules for assemblages are given below in figure 2.14. Rule T:Prim states that

the type of a primitive component is given by function Υ. Rules T:Subst, T:Inst, and
T:Gen are classical rules for substitution, instantiation, and generalization, respectively.
Since type duplication is integrated into substitutions, because of the different forms of
type variables and their associated constraints (e.g., unique occurrence of tags in routing
annotations), our notion of substitution Σ in rule T:Subst is slightly more complex than
usual. It mostly behaves as expected, replacing variables with terms (see the discussion
below; formal details can be found in Lienhardt (2009)).
The parallel composition D1 of two assemblages D and D′ yields a function having

the capacity of both assemblages, i.e., that accepts as input any message either D or D′
accepts, and that can generate any message either D or D′ can generate. Rule T:Par
has three side conditions: the first two (∆2 - ∆′1 and ∆′2 - ∆1) ensure that all values
(∆2 and ∆′2) sent on input channels for D ‖ D′ are indeed valid inputs for this program;
the third one (dc(∆1) ∩ dc(∆′1) = ∅) states that D and D′ must have distinct input
channels to avoid the possibility of implicit routing, i.e., of distinct components listening
on the same channel, thus doing a routing operation without an explicit router to support
it. Rule T:Box specifies the constraints that apply to obtain the type ∆′1 → ∆′2 of a
composite. The sets ∆′1 and ∆′2 must give a type to every channel mentioned in I and
O. If a channel is mentioned in both, then the output type must be a subtype of the
input type (∆′2 - ∆′1) as this corresponds to a loop. We also impose that the valid
inputs of the component must be valid ones for the component’s inner process (stated
by the constraint ∆′1 - ∆1), and that all outputs of this process must be valid output
of the component (stated by the constraint ∆2 - ∆′2).
Typing rules for routed values are given in Figure 2.15 (we have left out rules and

conditions that apply to base values and base types). Rule T:Record is the standard
typing rule for extensible record, using rows. The three typing rules T:Empty, T:Up,
and T:Down, construct a routed type by induction on the cardinality of the routing
annotation. Rule T:Empty is used when the routing annotation is empty: the routing
type is in such case just a leaf representing the value’s type. Rules T:Up and T:Down



2.5. SEMANTIC ROUTING 25

T:Record
∀1 ≤ i ≤ n, vi : τi ∀1 ≤ i 6= j ≤ n, ai 6= aj

{a1 = v1; . . . ; an = vn} : {a1 : Pre(τ1); . . . ; an : Pre(τn);Abs}

T:Empty
v : τ

R ` v∅ : ξ[τ ]

T:Up
R] {r} ` vδ : Ξ R] {r} ` Ξk

R ` v↑r;δ : r(Ξ,Ξk)

T:Down
R] {r} ` vδ : Ξ R] {r} ` Ξk

R ` v↓r;δ : r(Ξk,Ξ)

Figure 2.15: Typing rules for routed values

define how we construct the routing type tree when one or more elements are present
in the routing annotation. We write R ] {r} for the disjoint union of the two sets.
The use of routing tags environments R in these three rules ensures the validity of the
constructed routed type. Finally, kind judgements of the form R ` Ξ make sure that Ξ
does not use tags from R.

Example assemblage Assume that the generators, handlers, multiplexer, router,
and conduit components in Figure 2.1 are primitive components, and their types are as
given in the following table. We can type the assemblages SiteA and SiteB as indicated
in the last two lines of the same table.

Component Types
Gen1 ∀ξ. ∅ → s1 : (ξ[τ1])
Gen2 ∀ξ. ∅ → s2 : (ξ[τ2])
Handler1 ∀ξ. e1 : (ξ[τ3])→ ∅
Handler2 ∀ξ. e2 : (ξ[τ4])→ ∅
M same type as Mult[s1 s2/tA](r)
R same type as Router[tB/e1 e2](r)
Conduit same type as Conn[tA/tB ]
SiteA ∀ξ, ξ′. ∅ → tA : (r(ξ[τ1], ξ′[τ2]))
SiteB ∀ξ, ξ′. tB : (r(ξ[τ3], ξ′[τ4]))→ ∅

If we assume further that τ3 can be transformed using subtyping and substitution
into τ1, and similarly for τ4 into τ2, then we can type the (closed) assemblage

c∅∅ [SiteA ‖ Conduit ‖ SiteB]

with the type: ∅ → ∅.

Properties of the type system We show in Lienhardt (2009) the usual subject
reduction and correction theorems: typing is preserved by reduction (up to subtyping
and substitution), and that a typed assemblage has no error. More importantly, type
inference is now decidable and has been implemented, as detailed below.

Discussion

Type duplication. In our presentation of the type system, we have glossed over
several details. In particular, our notion of substitution is more complex than the usual
one because of type duplication. Let us explain it by way of an example. One of the
objectives of this type system is to allow flexible data flows in programs, using a routing



26 CHAPTER 2. MESSAGES AS RECORDS

tree structure to type channels. Let us consider a program where a component Rem that
remove a field a follows a multiplexer. The output type of the multiplexer is of the
form r(ξ1[α1], ξ2[α2]), whereas the input type of Rem is of the form ξ3[{a : Pre(α3); ρ}].
The difficulty here is that we need to be able to unify these two types. With our
definition of substitution, this unification is made in two steps. We first duplicate the
type ξ3[{a : Pre(α3); ρ}] into

Ξ , r(ξ4[{a : Pre(α3); ρ}], ξ5[{a : Pre(α3); ρ}])

One can remark that the two branches of the resulting routing tree have the same row
and type variables. But because they are declared in different flows (ξ4 and ξ5), they
can be instantiated with different terms. We then have two tree structures with the
same form that we can simply unify into Ξ.
Duplication allows to instantiate a leaf in a routing tree into a whole sub-tree, while

keeping the constraint of the leaf (here, the constraint being that the message must have
the field ‘a’ defined) and allowing the variables on the fresh leaves to be instantiated
independently. One can see duplication as a way to enable polymorphism without using
type schemas.

Limitations. Our type system has a few limitations. We already pointed out that
there can only be a single type for channel and a set of tags (union types are not
supported). Also, since a routing type is a binary tree, one has to encode router and
multiplexer types with more than two output or input channels by a combination of
binary routers and multiplexers. Another consequence is the complexity of encoding
routers that route on fields into our calculus, as is sometimes the case in the Dream
framework. Typically, we encode the presence of a field a in a message with a pair of
tags ↑ a (when the field a is present) and ↓ a (when a is absent from the message).
This simple encoding is difficult to apply in complex assemblages involving loops with
multiple routers and multiplexers. An encoding can be found in most cases, but can be
tricky to define and manipulate. However, based on our experience with the Dream
and Click frameworks (see below), these limitations are not show-stoppers, and we have
not been hindered by them.

Type Inference and its Implementation

A key property of this type system (in contrast to the one of Section 2.4) is that type
inference is decidable. We have devised and proved correct a constraint-based algorithm,
along the lines of Palsberg et al. (1997) and Pottier (2003). The type inference algorithm
and its proof can be found in Lienhardt (2009). The algorithm comprises a constraint
generator that computes from a given program a set of constraints a type must satisfy
to be valid for the input program, and a constraint solver that decides whether the
generated constraint set has a solution (the program is typable) or not (the program
is not typable). Technically, our type inference is based on the one defined in Pottier
(2003), extended to deal with routing types, channel types, and type duplication.
We have implemented the type inference algorithm in OCaml, and used it to extend

the assemblage tool chains used by the Dream and Click frameworks. In the case of
Dream, we have extended the Fractal ADL toolchain described in Leclercq et al. (2007).
Figure 2.16 provides an overview of this toolchain. It is organized as a component-based
framework, that consists of a front-end, realized by the Loader component, and a back-
end, with the ASTProcessingOrganizer and the Scheduler components. The back-end
is responsible for the generation and execution of tasks such as code generation, code
installation, code deployment, etc. The Loader component reads a set of input files and
produces an Abstract Syntax Tree (AST). This tree provides a unified representation



2.6. RELATED WORK 27

Loader
Correct 

AST

   Scheduler

Execution

Execution

Task
1

Task
3Task

2

Task
4

ADL
Parser

.fractal
ADL
.fractal
ADL
.adl ASTADL Description

Parsers

AST 
Processing 
Organizer

Task
Graph

Dependancy
Resolver

Task
Graph

Scheduled
Task List

Execution
EngineExecution

Code 
Generation

AST

.fractalA
DL

.fractalA
DLDSLs, .fractal

ADL
.fractal
ADL
Impl.

.c, cpp, 
.java

Analysis

Deployment

Semantic
CheckersAST

AST

.fractalA
DL

.fractalA
DLIDLs

AST

Figure 2.16: Fractal ADL toolchain

of the system architecture that can be described through a combination of description
languages, such as ADL, IDL, or DSL. The Loader is organized essentially as a pipeline
comprising parsers for the various possible input languages, and semantic analyzers.
We have integrated our type analyzer as a specific semantic analyzer component in this
pipeline. We have also devised an extension to the XML-based Fractal ADL to take
into account our type annotations for primitive components, and added its associated
parser component in the Loader pipeline.

In the case of Click, a C++ software framework dedicated to the component-based
construction of configurable routers (Kohler et al., 2000), assemblages are specified by
configuration files written in a simple scripting language (Kohler et al., 2002). We
found it simpler to just document type annotations for Click in a separate, additional
configuration file. This way, our type analyzer remains an entirely separate and external
analysis tool for Click, and its use does not require any change to the Click toolset.
We have conducted several experiments to check the correctness of non-trivial assem-

blages built using both frameworks. They demonstrate that our approach is practical,
requiring minimal extensions to existing assemblage toolsets, and that it can indeed be
applied to different component-based frameworks, implemented in different program-
ming languages. The following table provides an indication of the time taken to check
(correct) Dream and Click assemblages. The Dream assemblage originates from the
Cosmos project, which develops protocols for roaming mobile devices. The Click assem-
blages are examples taken from the Click website. The performance of our type analyzer
appears quite reasonable, bearing in mind that the complexity of type inference in our
system is non-polynomial.

Assemblage Components Primitive Channels Time (sec)
COSMOS (Dream) 439 340 662 180.428

dnsproxy (Click) 9 8 7 0.025
fromhost-tunnet (Click) 24 22 24 0.166

mazu-nat (Click) 60 56 54 4.489

2.6 Related Work

We have mentioned in the introduction previous work dealing with assemblage issues
in component-based communication frameworks. Type systems checking architectural
constraints or component assemblages have been the subject of various works in the past
decade. For instance, the work done on the Wright language (Allen and Garlan, 1997)
supports the verification of behavioral compatibility constraints in a software architec-



28 CHAPTER 2. MESSAGES AS RECORDS

ture. Work on Plastik (Joolia et al., 2005) deals mostly with structural constraints,
although in a dynamical setting. Work on ArchJava (Aldrich et al., 2002) uses own-
ership types to enforce communication integrity between components. Another work
develops behavioral types for component assembly (Carrez et al., 2003), which is close
to the notion of session types as developed in Yoshida and Vasconcelos (2007). None of
these type systems allow to capture the errors due to incorrect message manipulation.
We know of no type system that is capable of dealing with our notion of message errors,

with the complex data flows that are allowed in our calculus. Indeed, type systems such
as Cardelli and Gordon (1999); Hindley (1997); Pierce and Turner (2000); Simonet
and Pottier (2007) are too restrictive concerning data flow manipulation, and cannot
adequately deal with routers and multiplexers. On the other hand, type systems which
satisfactorily handle data flows by way of session types and process types (Maffeis, 2005;
Yoshida and Hennessy, 2002; Yoshida and Vasconcelos, 2007) do not take in account
structured mutable messages.
Type inference for distributed calculi has been studied for the Join-calculus (Con-

chon and Pottier, 2001), Mobile Ambients-like calculi (Makholm and Wells, 2005), Dπ
(Lhoussaine, 2004), which have an inference algorithm, and Pict, which does not. While
the reasons for type inference undecidability in Pict spawn from higher-order polymor-
phism and subtyping, we believe that our own undecidable inference is related with
polymorphic recursion (Henglein, 1993). Indeed, undecidability in our case is caused by
channels being mapped to a finite set whose cardinality is not constrained, thus allowing
a form of polymorphic recursion in loops. The use of tags in semantic routing lets us
avoid this problem. Finally, one can consider the routing process present in the calculus
as a weak form of type analysis (Weirich, 2002) on rows.

2.7 Conclusion

As first examples of static analyses for the manipulation of unordered trees, we have
presented type systems that guarantee the absence of record manipulation errors in
component-based communication frameworks, such as Dream. These type systems
are all based on the union of row polymorphism and process types, and differ in the
way routing is handled. In the case of semantic routing, we have also presented an
implementation of the analysis and its integration in the Fractal toolchain.
There are opportunities for future research in this line of work, in particular to take

into account the dynamic evolution of component assemblages. This could be done in a
setting where components are represented by localities in a higher-order calculus, similar
to the one developed in Chapter 8



Chapter 3

Bidirectional Transformations On Trees

3.1 Introduction

While the data model we consider remains unordered trees, the setting of our second
example is quite different: we leave the world of concurrent message-passing applications
to move to (statically correct) bidirectional transformations.
Most of the time, we use programs in just one direction, from input to output. But

sometimes, having computed an output, we need to be able to update this output and
then “calculate backwards” to find a correspondingly updated input. The problem of
writing such bidirectional transformations arises in a multitude of domains, including
data converters and synchronizers, parsers and pretty printers, picklers and unpick-
lers, structured editors, constraint maintainers for user interfaces, and, of course, in
databases, where it is known as the view update problem.

The naive way to write a bidirectional transformation is simply to write two separate
functions in any language you like and check (by hand) that they fit together in some
appropriate sense—e.g., that composing them yields the identity function. However,
this approach is unsatisfying for all but the simplest examples. For one thing, verifying
that the two functions fit together in this way requires intricate reasoning about their
behaviors. Moreover, it creates a maintenance nightmare: both functions will embody
the structure that the input and output schemas have in common, so changes to the
schemas will require coordinated changes to both.
A better alternative is to design a notation in which both transformations can be de-

scribed at the same time—i.e., a bidirectional programming language. In a bidirectional
language, every expression, when read from left to right, denotes a function mapping
inputs to outputs; when read from right to left, the same expression denotes a func-
tion mapping an updated output together with an original input to an appropriately
updated version of the input. Not only does this eliminate code duplication; it also
eliminates paper-and-pencil proofs that the two transformations fit together properly:
we can design the language to guarantee it.
We address a specific instance of the view update problem that arises in a larger

project called Harmony (Foster et al., 2006). Harmony is a generic framework for
synchronizing tree-structured data—a tool for propagating updates between different
copies of tree-shaped data structures, possibly stored in different formats. For example,
Harmony can be used to synchronize the bookmark files of several different web browsers,
allowing bookmarks and bookmark folders to be added, deleted, edited, and reorganized
in any browser and propagated to the others. The ultimate aim of the project is to
provide a platform on which a Harmony programmer can quickly assemble a high-quality
synchronizer for a new type of tree-structured data stored in a standard low-level format
such as XML.



30 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

Views play a key role in Harmony: to synchronize structures that may be stored in
disparate concrete formats, we define a single common abstract format and a collection
of lenses that transform each concrete format into this abstract one. For example, we
can synchronize a Mozilla bookmark file with an Internet Explorer bookmark file by
transforming each into an abstract bookmark structure and propagating changed infor-
mation between these. Afterwards, we need to take the updated abstract structures
and reflect the corresponding updates back into the original concrete structures. Thus,
each lens must include not one but two functions—one for extracting an abstract view
from a concrete one and another for putting an updated abstract view back into the
original concrete view to yield an updated concrete view. We call these the get and put
components, respectively. The intuition is that the mapping from concrete to abstract
is commonly some sort of projection, so the get direction involves getting the abstract
part out of a larger concrete structure, while the put direction amounts to putting a
new abstract part into an old concrete structure. We show a concrete example of this
process in Section 3.2.
The difficulty of the view update problem springs from a fundamental tension between

expressiveness and robustness. The richer we make the set of possible transformations
in the get direction, the more difficult it becomes to define corresponding functions in
the put direction in such as way that each lens is both well behaved—its get and put
behaviors fit together in a sensible way—and total—its get and put functions are defined
on all the inputs to which they may be applied.
To reconcile this tension, a successful approach to the view update problem must

be carefully designed with a particular application domain in mind. The approach
described here is tuned to the kinds of projection-and-rearrangement transformations
on trees and lists that we have found useful for implementing Harmony instances. It
does not directly address some well-known difficulties with view update in the classical
setting of relational databases—such as the difficulty of “inverting” queries involving
joins. (We do hope that our work will suggest new attacks on these problems, however;
a first step in this direction is described in Bohannon et al. (2006).)
A second difficulty concerns ease of use. In general, there are many ways to equip a

given get function with a put function to form a well-behaved and total lens; we need
some means of specifying which put is intended that is natural for the application domain
and that does not involve onerous proof obligations or checking of side conditions. We
adopt a linguistic approach to this issue, proposing a set of lens combinators—a small
domain-specific language—in which every expression simultaneously specifies both a get
function and the corresponding put . Moreover, each combinator is accompanied by a
type declaration, designed so that the well-behavedness and (for non-recursive lenses)
totality of composite lens expressions can be verified by straightforward, compositional
checks. Proving totality of recursive lenses, like ordinary recursive programs, requires
global reasoning that goes beyond types.
The first step in our formal development (Section 3.3) is identifying a natural math-

ematical space of well-behaved lenses over arbitrary data structures. There is a good
deal of territory to be explored at this semantic level. First, we must phrase our basic
definitions to allow the underlying functions in lenses to be partial, since there will in
general be structures to which a given lens cannot sensibly be applied. The sets of
structures to which we do intend to apply a given lens are specified by associating it
with a type of the form C 
 A, where C is a set of concrete “source structures” and A
is a set of abstract “target structures.” Second, we define a notion of well-behavedness
that captures our intuitions about how the get and put parts of a lens should behave
in concert. For example, if we use the get part of a lens to extract an abstract view a
from a concrete view c and then use the put part to push the very same a back into c,
we should get c back. Third, we deploy standard tools from domain theory to define
monotonicity and continuity for lens combinators parameterized on other lenses, estab-



3.2. A SMALL EXAMPLE 31

lishing a foundation for defining lenses by recursion. (Recursion is needed because the
trees that our lenses manipulate may in general have arbitrarily deep nested structure—
e.g., when they represent directory hierarchies, bookmark folders, etc.) Finally, to allow
lenses to be used to create new concrete structures rather than just updating existing
ones (needed, for example, when new records are added to a database in the abstract
view), we adjoin a special “missing” element to the structures manipulated by lenses
and establish suitable conventions for how it is treated.
With these semantic foundations in hand, we proceed to syntax. In Section 3.4, we

present a group of generic lens combinators (identities, composition, and constants),
which can work with any kind of data. In Section 3.5, we focus attention on tree-
structured data and present several more combinators that perform various manipula-
tions on trees (hoisting, splitting, mapping, etc.); we also show how to assemble these
primitives, along with the generic combinators from before, to yield some useful derived
forms. Section 3.6 introduces another set of generic combinators implementing various
sorts of bidirectional conditionals. Section 3.7 gives a more ambitious illustration of
the expressiveness of these combinators by implementing a number of bidirectional list-
processing transformations as derived forms, including lenses for projecting the head
and tail of a list, mapping over a list, and—our most complex example—implementing
a bidirectional filter lens whose put function performs a rather intricate “weaving” op-
eration to recombine an updated abstract list with the concrete list elements that were
filtered away by the get .
An extensive example derived from the Harmony bookmark synchronizer may be

found in Foster et al. (2007b), along with the description of additional lenses for lists or
relational data encoded as trees.
Section 3.8 surveys related work and we conclude in Section 3.9.

3.2 A Small Example

Suppose our concrete tree c is a simple address book:

c =


∣∣∣∣∣∣∣∣
Pat 7→

{∣∣∣∣Phone 7→ 333-4444
URL 7→ http://pat.com

∣∣∣∣}
Chris 7→

{∣∣∣∣Phone 7→ 888-9999
URL 7→ http://chris.org

∣∣∣∣}
∣∣∣∣∣∣∣∣


We draw trees sideways to save space. Each set of hollow curly braces corresponds to a
tree node, and each “X 7→. . .” denotes a child labeled with the string X. The children of a
node are unordered. To avoid clutter, when an edge leads to an empty tree, we usually
omit the braces, the 7→ symbol, and the final childless node—e.g., “333-4444” above
actually stands for “

{∣∣333-4444 7→ {||}∣∣}.” When trees are linearized in running text, we
separate children with commas for easier reading.
Now, suppose that we want to edit the data from this concrete tree in a yet simpler

format where each name is associated directly with a phone number.

a =

{∣∣∣∣Pat 7→ 333-4444
Chris 7→ 888-9999

∣∣∣∣}
Why would we want this? Perhaps because the edits are going to be generated by
synchronizing this abstract tree with another replica of the same address book in which
no URL information is recorded. Or perhaps there is no synchronizer involved and the
edits are going to be performed by a human who is only interested in phone information
and doesn’t want to see URLs. Whatever the reason, we are going to make our changes
to the abstract tree a, yielding a new abstract tree a′ of the same form but with modified



32 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

content.1 For example, let us change Pat’s phone number, drop Chris, and add a new
friend, Jo.

a′ =

{∣∣∣∣Pat 7→ 333-4321
Jo 7→ 555-6666

∣∣∣∣}
Lastly, we want to compute a new concrete tree c′ reflecting the new abstract tree a′.
That is, we want the parts of c′ that were kept when calculating a (e.g., Pat’s phone
number) to be overwritten with the corresponding information from a′, while the parts
of c that were filtered out (e.g., Pat’s URL) have their values carried over from c.

c′ =


∣∣∣∣∣∣∣∣
Pat 7→

{∣∣∣∣Phone 7→ 333-4321
URL 7→ http://pat.com

∣∣∣∣}
Jo 7→

{∣∣∣∣Phone 7→ 555-6666
URL 7→ http://google.com

∣∣∣∣}
∣∣∣∣∣∣∣∣


We also need to “fill in” appropriate values for the parts of c′ (in particular, Jo’s URL)
that were created in a′ and for which c therefore contains no information. Here, we
simply set the URL to a constant default, though in general we might want to compute
it from other information.
Together, the transformations from c to a and from a′ plus c to c′ form a lens. Our

goal is to find a set of combinators that can be assembled to describe a wide variety
of lenses in a concise, natural, and mathematically coherent manner. To whet the
reader’s appetite, the lens expression that implements the transformations above is
map (focus Phone

{∣∣URL 7→ http://google.com
∣∣}).

3.3 Semantic Foundations

Although many of our combinators work on trees, their semantic underpinnings can be
presented in an abstract setting parameterized by the data structures (which we call
“views”) manipulated by lenses.2 In this section—and in Section 3.4, where we discuss
generic combinators—we simply assume some fixed set V of views; from Section 3.5 on,
we will choose V to be the set of trees.

Basic Structures

When f is a partial function, we write f(a) ↓ if f is defined on argument a and f(a) =
⊥ otherwise. We write f(a) v b for f(a) = ⊥ ∨ f(a) = b. We write dom(f) for
{s | f(s) ↓}, the set of arguments on which f is defined. When S ⊆ V, we write f(S)
for {r | s ∈ S ∧ f(s) ↓ ∧ f(s) = r} and ran(f) for f(V). We take function application
to be strict: f(g(x)) ↓ implies g(x) ↓.

Definition 3.3.1 (Lenses). A lens l comprises a partial function l↗ from V to V, called
the get function of l, and a partial function l↘ from V×V to V, called the put function.

1Note that we are interested here in the final tree a′, not the particular sequence of edit operations
that was used to transform a into a′. This is important in the context of Harmony, which is designed
to support synchronization of off-the-shelf applications, where in general we only have access to the
current states of the replicas, rather than a trace of modifications; the tradeoffs between state-based
and trace-based synchronizers are discussed in detail elsewhere (Pierce and Vouillon, 2001; Foster et al.,
2007a).

2We use the word “view” here in a slightly different sense than some of the database papers that we
cite, where a view is a query that maps concrete to abstract states—i.e., it is a function that, for each
concrete database state, picks out a view in our sense. Also, note that we use “view” to refer uniformly
to both concrete and abstract structures—when we come to programming with lenses, the distinction
will be merely a matter of perspective anyway, since the output of one lens is often the input to another.



3.3. SEMANTIC FOUNDATIONS 33

The intuition behind the notations l↗ and l↘ is that the get part of a lens “lifts” an
abstract view out of a concrete one, while the put part “pushes down” a new abstract
view into an existing concrete view. We often say “put a into c (using l)” instead of
“apply the put function (of l) to (a, c).”

Definition 3.3.2 (Well-behaved lenses). Let l be a lens and let C and A be subsets of
V. We say that l is a well behaved lens from C to A, written l ∈ C 
 A, if it maps
arguments in C to results in A and vice versa

l↗(C) ⊆ A (Get)
l↘(A× C) ⊆ C (Put)

and its get and put functions obey the following laws:

l↘ (l↗ c, c) v c for all c ∈ C (GetPut)
l↗ (l↘ (a, c)) v a for all (a, c) ∈ A× C (PutGet)

We call C the source and A the target in C 
 A. Note that a given l may be a well-
behaved lens from C to A for many different Cs and As; in particular, every l is trivially
a well-behaved lens from ∅ to ∅, while the everywhere-undefined lens belongs to C 
 A
for every C and A.

Intuitively, the GetPut law states that, if we get some abstract view a from a
concrete view c and immediately put a (with no modifications) into c, we must get back
exactly c if both operations are defined. PutGet, on the other hand, demands that
the put function must capture all of the information contained in the abstract view: if
putting a view a into a concrete view c yields a view c′, then the abstract view obtained
from c′ is exactly a.
An example of a lens satisfying PutGet but not GetPut is the following. Suppose

C = string× int and A = string, and define l by:

l↗ (s, n) = s l↘ (s′, (s, n)) = (s′, 0)

Then l↘ (l↗ (s, 1), (s, 1)) = (s, 0) 6v (s, 1). Intuitively, the law fails because the put
function has “side effects”: it modifies information in the concrete view that is not
reflected in the abstract view.
An example of a lens satisfying GetPut but not PutGet is the following. Let

C = string and A = string× int, and define l by

l↗ s = (s, 0) l↘ ((s′, n), s) = s′

PutGet fails here because some information contained in the abstract view does not
get propagated to the new concrete view. For example, l↗ (l↘ ((s′, 1), s)) = l↗ s′ =
(s′, 0) 6v (s′, 1).
The GetPut and PutGet laws reflect fundamental expectations about the behavior

of lenses; removing either law significantly weakens the semantic foundation. We may
also consider an optional third law, called PutPut:

l↘ (a′, l↘ (a, c)) v l↘ (a′, c) for all a, a′ ∈ A and c ∈ C.

This law states that the effect of a sequence of two puts is (modulo definedness) just
the effect of the second: the first gets completely overwritten. Alternatively, a series of
changes to an abstract view may be applied either incrementally or all at once, result-
ing in the same final concrete view. We say that a well-behaved lens that also satisfies
PutPut is very well behaved. Both well-behaved and very well behaved lenses corre-
spond to familiar classes of “update translators” from the classical database literature;



34 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

see Section 3.8. The foundational development in this section is valid for both well-
behaved and very well behaved lenses. However, when we come to defining our lens
combinators for tree transformations, we will not require PutPut because some of our
lens combinators—in particular, map, flatten, merge, and conditionals—fail to satisfy
it for reasons that seem pragmatically unavoidable (see Section 3.5).
For now, a simple example of a lens that is well behaved but not very well behaved is

as follows. Consider the following lens, where C = string× int and A = string. The
second component of each concrete view intuitively represents a version number.

l↗ (s, n) = s l↘ (s, (s′, n)) =

{
(s, n) if s = s′

(s, n+1) if s 6= s′

The get function of l projects away the version number and yields just the “data part.”
The put function overwrites the data part, checks whether the new data part is the
same as the old one, and, if not, increments the version number. This lens satisfies
both GetPut and PutGet but not PutPut, as we have l↘ (s, l↘ (s′, (c, n))) =
(s, n+ 2) 6v (s, n+ 1) = l↘ (s, (c, n)).

Another critical property of lenses is totality with respect to a given source and target.

Definition 3.3.3 (Totality). A lens l ∈ C 
 A is said to be total, written l ∈ C ⇐⇒ A,
if C ⊆ dom(l↗) and A× C ⊆ dom(l↘).

The reasons for considering both partial and total lenses instead of building totality
into the definition of well-behavedness are much the same as the reasons for considering
partial functions in conventional functional languages. In practice, we want lenses to be
total:3 to guarantee that Harmony synchronizers will work predictably, lenses must be
defined on the whole of the domains where they are used; the get direction should be
defined for any structure in the concrete set, and the put direction should be capable of
putting back any possible updated version from the abstract set.4 All of our primitive
lenses are designed to be total, and all of our lens combinators map total lenses to
total lenses—with the sole, but important, exception of lenses defined by recursion;
as usual, recursive lenses must be constructed in the semantics as limits of chains of
increasingly defined partial lenses. The soundness of the type annotations we give
for our syntactic lens combinators guarantees that every well-typed lens expression is
well-behaved, but only recursion-free expressions can be shown total by completely
compositional reasoning with types; for recursive lenses, more global arguments are
required.

Recursion

Since we will be interested in lenses over trees, and since trees in many application
domains may have unbounded depth (e.g., a bookmark can be either a link or a folder
containing a list of bookmarks), we will often want to define lenses by recursion. Our
next task is to set up the necessary structure for interpreting such definitions.

3Indeed, well-behavedness is rather trivial in the absence of totality: for any function l↗ from C
to A, we can obtain a well-behaved lens by taking l↘ to be undefined on all inputs—or, slightly less
trivially, to be defined only on inputs of the form (l↗ c, c).

4Since we intend to use lenses to build synchronizers, the updated structures here will be results
of synchronization. A fundamental property of the core synchronization algorithm in Harmony is that,
if all of the updates between synchronizations occur in just one of the replicas, then the effect of
synchronization will be to propagate all these changes to the other replica. This implies that the put
function in the lens associated with the other replica must be prepared to accept any value from the
abstract domain. In other settings, different notions of totality may be appropriate. For example, Hu,
Mu, and Takeichi (2004) have argued that, in the context of interactive editors, a reasonable definition
of totality is that l↘ (a, c) should be defined whenever a differs by at most one edit operation from
l↗c.



3.3. SEMANTIC FOUNDATIONS 35

The development follows familiar lines. We introduce an information ordering on
lenses and show that the set of lenses equipped with this ordering is a complete partial
order (CPO). We then apply standard tools from domain theory to interpret a variety
of common syntactic forms from programming languages—in particular, functional ab-
straction and application (“higher-order lenses”) and lenses defined by single or mutual
recursion.
We say that a lens l′ is more informative than a lens l, written l ≺ l′, if both the get

and put functions of l′ have domains that are at least as large as those of l and their
results agree on their common domains.
A cpo is a partially ordered set in which every increasing chain of elements has a least

upper bound in the set. If l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain, we write⊔
n∈ω ln (often shortened to

⊔
n ln) for its least upper bound. A cpo with bottom is a

cpo with an element ⊥ that is smaller than every other element. In our setting, the
bottom element ⊥l is the lens whose get and put functions are everywhere undefined.
It is obviously the smallest lens according to ≺ and is well-behaved at any lens type (it
trivially satisfies all equations).

Lemma 3.3.4. Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The lens
l defined by

l↘ (a, c) = li↘ (a, c) if li↘ (a, c) ↓ for some i
l↗ c = li↗ c if li↗ c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

Lemma 3.3.5. Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and let
C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V. Then:

1. Well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci 
 Ai) implies

⊔
n ln ∈ (

⋃
i Ci)
 (

⋃
iAi).

2. Totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies

⊔
n ln ∈ (

⋃
i Ci)⇐⇒ (

⋃
iAi).

Theorem 3.3.6. Let L be the set of well-behaved lenses from C to A. Then (L, ≺) is
a cpo with bottom.

We can now apply standard domain theory to interpret a variety of constructs for
defining continuous lens combinators. We say that an expression e is continuous in the
variable x if the function λx. e is continuous. An expression is said to be continuous in
its variables, or simply continuous, if it is continuous in every variable separately. Ex-
amples of continuous expressions are variables, constants, tuples (of continuous expres-
sions), projections (from continuous expressions), applications of continuous functions
to continuous arguments, lambda abstractions (whose bodies are continuous), let bind-
ings (of continuous expressions in continuous bodies), case constructions (of continuous
expressions), and the fixed point operator itself. Tupling and projection let us define
mutually recursive functions: if we want to define f as F (f, g) and g as G(f, g), where
both F and G are continuous, we define (f, g) = fix (λ(x, y). (F (x, y), G(x, y))).

Dealing with Creation

In practice, there will be cases where we need to apply a put function, but where no old
concrete view is available, as we saw with Jo’s URL in Section 3.2. We deal with these
cases by enriching the universe V of views with a special placeholder Ω, pronounced
“missing,” which we assume is not already in V. (There are other, formally equivalent,



36 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

ways of handling missing concrete views. The advantages of this one are discussed in
Section 3.5.) When S ⊆ V, we write SΩ for S ∪ {Ω}.

Intuitively, l↘ (a, Ω) means “create a new concrete view from the information in the
abstract view a.” By convention, Ω is only used in an interesting way when it is the
second argument to the put function: in all of the lenses defined below, we maintain the
invariants that (1) l↗Ω = Ω, (2) l↘ (Ω, c) = Ω for any c, (3) l↗ c 6= Ω for any c 6= Ω,
and (4) l↘ (a, c) 6= Ω for any a 6= Ω and any c (including Ω). We write C 
Ω A for
the set of well-behaved lenses from CΩ to AΩ obeying these conventions and C ⇐⇒Ω A
for the set of total lenses obeying these conventions. For brevity in the lens definitions
below, we always assume that c 6= Ω when defining l↗ c and that a 6= Ω when defining
l↘ (a, c), since the results in these cases are uniquely determined by these conventions.
A useful consequence of these conventions is that a lens l ∈ C 
Ω A also has type C 
 A.

3.4 Generic Lenses

With these semantic foundations in hand, we are ready to move on to syntax. We begin
in this section with several generic lens combinators (we will usually say just lenses
from now on), whose definitions are independent of the particular choice of universe
V. Each definition is accompanied by a type declaration asserting its well-behavedness
under certain conditions—e.g., “the identity lens belongs to C 
Ω C for any C”.
Many of the lens definitions are parameterized on one or more arguments. These may

be of various types: views (e.g., const), other lenses (e.g., composition), predicates on
views (e.g., the conditional lenses in Section 3.6), or—in some of the lenses for trees in
Section 3.5—edge labels, predicates on labels, etc.
One may find in Foster et al. (2007b) the proofs that the lenses we define are well

behaved (i.e., that the type declaration accompanying its definition is a theorem) and
total, and that lenses that take other lenses as parameters are continuous in these
parameters and map total lenses to total lenses.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction and
the abstract view in the put direction.

id↗ c = c
id↘ (a, c) = a

∀C⊆V. id ∈ C 
Ω C

Composition

The lens composition combinator l; k places l and k in sequence.

l; k↗ c = k↗ (l↗ c)
l; k↘ (a, c) = l↘ (k↘ (a, l↗ c), c)

∀A,B,C⊆V. ∀l ∈ C 
Ω B. ∀k ∈ B 
Ω A. l; k ∈ C 
Ω A

The get direction applies the get function of l to yield a first abstract view, on which the
get function of k is applied. In the other direction, the two put functions are applied in
turn: first, the put function of k is used to put a into the concrete view that the get of
k was applied to, i.e., l↗ c; the result is then put into c using the put function of l. (If
the concrete view c is Ω, then, l↗ c will also be Ω by our conventions on the treatment



3.5. LENSES FOR TREES 37

of Ω, so the effect of l; k↘ (a, Ω) is to use k to put a into Ω and then l to put the result
into Ω.)

Constant

Another simple combinator is const v d, which transforms any view into the constant
view v in the get direction. In the put direction, const simply restores the old concrete
view if one is available; if the concrete view is Ω, it returns a default view d.

const v d↗ c = v
const v d↘ (a, c) = c if c 6= Ω

d if c = Ω

∀C⊆V. ∀v∈V. ∀d∈C. const v d ∈ C 
Ω {v}

Note that the type declaration demands that the put direction only be applied to the
abstract argument v.

We will define a few more generic lenses in Section 3.6; for now, though, let us turn
to some lens combinators that work on tree-structured data, so that we can ground our
definitions in specific examples.

3.5 Lenses for Trees

To keep the definitions of our lens primitives as straightforward as possible, we work
with an extremely simple form of trees: unordered, edge-labeled trees with no repeated
labels among the children of a given node. This model is a natural fit for applications
where the data is unordered, such as the keyed address books described in Section 3.2.
Unfortunately, unordered trees do not have all the structure we need for other applica-
tions; in particular, we need to deal with ordered data such as lists and XML documents
via an encoding (see Foster et al. (2007b)). A more direct treatment of ordered struc-
tures will be addressed in Chapter 4, but, in the context of the Harmony system, where
we are interested in both ordered and unordered data, the choice of a simpler foundation
seems to have been a good one: the increase in complexity of lens programs that must
manipulate ordered data in encoded form is more than made up by the reduction in the
complexity of the definitions of lens primitives due to the simpler data model.

Notation

From this point on, we choose the universe V to be the set T of finite, unordered,
edge-labeled trees with labels drawn from some infinite set N of names—e.g., character
strings—and with the children of a given node all labeled with distinct names. Trees
of this form (often extended with labels on internal nodes as well as on children) are
sometimes called deterministic trees or feature trees (e.g., Niehren and Podelski (1993)).
The variables a, c, d, and t range over T ; by convention, we use a for trees that are
thought of as abstract and c or d for concrete trees.
A tree is essentially a finite partial function from names to trees. It is more convenient,

though, to adopt a slightly different perspective: we consider a tree t ∈ T to be a total
function from N to TΩ that yields Ω on all but a finite number of names. We write
dom(t) for the domain of t—i.e., the set of the names for which it returns something
other than Ω—and t(n) for the subtree associated to name n in t, or Ω if n 6∈ dom(t).
Tree values are written using hollow curly braces. The empty tree is written {||}.

(Note that {||}, a node with no children, is different from Ω.) We often describe trees by
comprehension, writing

{∣∣n 7→ F (n) | n ∈ N
∣∣}, where F is some function from N to TΩ

and N ⊆ N is some set of names. When t and t′ have disjoint domains, we write t · t′



38 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

or
{∣∣t t′∣∣} (the latter especially in multi-line displays) for the tree mapping n to t(n) for

n ∈ dom(t), to t′(n) for n ∈ dom(t′), and to Ω otherwise.
When p ⊆ N is a set of names, we write p for N\p, the complement of p. We

write t|p for the restriction of t to children with names taken from p—i.e., the tree{∣∣n 7→ t(n) | n ∈ p ∩ dom(t)
∣∣}—and t\p for

{∣∣n 7→ t(n) | n ∈ dom(t)\p
∣∣}. When p is just

a singleton set {n}, we drop the set braces and write just t|n and t\n instead of t|{n} and
t\{n}. To shorten some of the lens definitions, we adopt the conventions that dom(Ω) = ∅
and that Ω|p = Ω\p = Ω for any p.
For writing down types,5 we extend these tree notations to sets of trees. If T ⊆ T

and n ∈ N , then
{∣∣n 7→ T

∣∣} denotes the set of singleton trees {
{∣∣n 7→ t

∣∣} | t ∈ T}. If
T ⊆ T and N ⊆ N , then

{∣∣N 7→ T
∣∣} denotes the set of trees {t | dom(t) = N and ∀n ∈

N . t(n) ∈ T} and
{∣∣∣N ?7→ T

∣∣∣} denotes the set of trees {t | dom(t) ⊆ N and ∀n ∈
N . t(n) ∈ TΩ}. We write T1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} and T (n) for
{t(n) | t ∈ T} \ {Ω}. If T ⊆ T , then doms(T ) = {dom(t) | t ∈ T}. Note that doms(T )
is a set of sets of names, while dom(t) is a set of names.
A value is a tree of the special form

{∣∣k 7→ {||}∣∣}, often written just k. For instance,
the phone number

{∣∣333-4444 7→ {||}∣∣} in the example of Section 3.2 is a value. We write
Val for the type whose denotation is the set of all values.

Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transformations
on trees. The lens hoist n is used to shorten a tree by removing an edge at the top.
In the get direction, it expects a tree that has exactly one child, named n. It returns
this child, removing the edge n. In the put direction, the value of the old concrete tree
is ignored and a new one is created, with a single edge n pointing to the given abstract
tree. (Later we will meet a derived form, hoist_nonunique, that works on bushier
trees.)

hoist n↗ c = c(n)
hoist n↘ (a, c) =

{∣∣n 7→ a
∣∣}

∀C⊆T . ∀n∈N . hoist n ∈
{∣∣n 7→ C

∣∣}
Ω C

Conversely, the plunge lens is used to deepen a tree by adding an edge at the top.
In the get direction, a new tree is created, with a single edge n pointing to the given
concrete tree. In the put direction, the value of the old concrete tree is ignored and
the abstract tree is required to have exactly one subtree, labeled n, which becomes the
result of the plunge.

plunge n↗ c =
{∣∣n 7→ c

∣∣}
plunge n↘ (a, c) = a(n)

∀C⊆T . ∀n∈N . plunge n ∈ C 
Ω
{∣∣n 7→ C

∣∣}
Forking

The lens combinator xfork applies different lenses to different parts of a tree. More
precisely, it splits the tree into two parts according to the names of its immediate

5Note that, although we are defining a syntax for lens expressions, the types used to classify these
expressions are semantic—they are just sets of lenses or views. We are not proposing an algebra of
types or an algorithm for mechanically checking membership of lens expressions in type expressions.



3.5. LENSES FOR TREES 39

������� ??
??

??
?

pa pa

������� pa

;;

??
??

??
?

pa

cc

������� pc

(l1↗)
OO

??
??

??
?

pc

(l2↗)
OO

������� ??
??

??
?

pc pc

dd ::

Figure 3.1: The get direction of xfork

children, applies a different lens to each, and concatenates the results. Formally, xfork
takes as arguments two sets of names and two lenses. The get direction of xfork pc
pa l1 l2 can be visualized as in Figure 3.1 (the concrete tree is at the bottom). The
triangles labeled pc denote trees whose immediate children have labels in pc; dotted
arrows represent splitting or concatenating trees. The result of applying l1↗ to c|pc
(the tree formed by dropping the immediate children of c whose names are not in pc)
must be a tree whose top-level labels are in the set pa; similarly, the result of applying
l2↗ to c\pc must be in pa. That is, the lens l1 may change the names of immediate
children of the tree it is given, but it must map the part of the tree with immediate
children belonging to pc to a tree with children belonging to pa. Likewise, l2 must map
the part of the tree with immediate children belonging to pc to a tree with children in
pa. Conversely, in the put direction, l1 must map from pa to pc and l2 from pa to pc.
Here is the full definition:

xfork pc pa l1 l2 ↗ c = (l1↗ c|pc) · (l2↗ c\pc)
xfork pc pa l1 l2 ↘ (a, c) = (l1↘ (a|pa, c|pc)) · (l2↘ (a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 


Ω A1. ∀l2 ∈ C2 

Ω A2.

xfork pc pa l1 l2 ∈ (C1 · C2)
Ω (A1 · A2)

We rely here on our convention that Ω|p = Ω\p = Ω to avoid explicitly splitting out the
Ω case in the put direction.
We have now defined enough basic lenses to implement several useful derived forms

for manipulating trees.
In many uses of xfork, the sets of names specifying where to split the concrete tree

and where to split the abstract tree are identical. We can define a simpler fork as:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p. ∀l1 ∈ C1 

Ω A1. ∀l2 ∈ C2 


Ω A2.
fork p l1 l2 ∈ (C1 · C2)
Ω (A1 · A2)

We can use fork to define a lens that discards all of the children of a tree whose names
do not belong to some set p:

filter p d = fork p id (const {||} d)

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.
filter p d ∈ (C|p · C\p)
Ω C|p



40 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

In the get direction, this lens takes a concrete tree, keeps the children with names in p
(using id), and throws away the rest (using const {||} d). The tree d is used when putting
an abstract tree back into a missing concrete tree, providing a default for information
that does not appear in the abstract tree but is required in the concrete tree. The type
of filter follows directly from the types of the three primitive lenses used to define it:
const {||} d, with type C\p 
Ω {{||}}, the lens id, with type C|p 
Ω C|p, and fork (with
the observation that C|p = C|p · {||}).

Let us see how filter behaves in an example. Let c be the following concrete tree{∣∣name 7→ Pat, phone 7→ 333-4444
∣∣}, and lens l = filter {name} {||}. We calculate l↗ c,

underlining the next term to be simplifed at each step.

l↗ c = (fork {name} id (const{||} d))↗
{∣∣name 7→ Pat, phone 7→ 333-444

∣∣}
by the definition of l

= id↗
{∣∣name 7→ Pat

∣∣} · (const {||} d)↗
{∣∣phone 7→ 333-4444

∣∣}
by the definition of fork and splitting c using {name}

=
{∣∣name 7→ Pat

∣∣} · {||} =
{∣∣name 7→ Pat

∣∣} = a

by the definitions of id and const

Now suppose that we update this tree, a, to
{∣∣name 7→ Patty

∣∣}. Let us calculate the
result of putting back a into c. To save space, we write k for (const {||} {||}).

l↘ (a, c)

= (fork {name} id k)↘
({∣∣name 7→ Pat

∣∣} , {∣∣name 7→ Pat, phone 7→ 333-4444
∣∣})

by the definition of l
= id↘

({∣∣name 7→ Patty
∣∣} , {∣∣name 7→ Pat

∣∣}) · k↘ ({||}, {∣∣phone 7→ 333-4444
∣∣})

by the definition of fork and splitting a and c using {name}
=

{∣∣name 7→ Patty, phone 7→ 333-4444
∣∣}

by the definition of id and const

Note that the put function restores the filtered part of the concrete tree and propagates
the change made to the abstract tree. In the case of creation—i.e., if we put back
an abstract tree using Ω— then the default argument to const is concatenated to the
abstract tree to form the result, since there is no filtered part of the concrete tree to
restore.
Another way to thin a tree is to explicitly specify a child that should be removed if

it exists:

prune n d = fork {n}
(
const {||}

{∣∣n 7→ d
∣∣}) id

∀C⊆T . ∀n∈N . ∀d∈C(n).
prune n d ∈ (C|n · C\n)
Ω C\n

This lens is similar to filter, except that (1) the name given is the child to be removed
rather than a set of children to keep, and (2) the default tree is the one to go under n
if the concrete tree is Ω.

Conversely, we can grow a tree in the get direction by explicitly adding a child. The
type annotation disallows changes in the newly added tree, so it can be dropped in the
put .

add n t = xfork {} {n} (const t {||}; plunge n) id

∀n∈N . ∀C⊆T \n. ∀t ∈ T .
add n t ∈ C 
Ω

{∣∣n 7→ {t}∣∣} · C



3.5. LENSES FOR TREES 41

Let us explore the behavior of add through an example. Let c =
{∣∣a 7→ {||}∣∣} and l =

add b
{∣∣x 7→ {||}∣∣}. To save space, write k for const

{∣∣x 7→ {||}∣∣} {||} and p for plunge b.
We calculate l↗ c directly, underlining the term to be simplifed at each step.

l↗ c = (xfork {} {b} (k; p) id)↗ c

by the definition of l
= (k; p)↗{||} · id↗

{∣∣a 7→ {||}∣∣}
by the definition of xfork and splitting c using {}

= p↗ (k↗{||}) ·
{∣∣a 7→ {||}∣∣}

by the definitions of the composition and id

=
(
p↗

{∣∣x 7→ {||}∣∣}) · {∣∣a 7→ {||}∣∣}
by the definition of k

=
{∣∣∣a 7→ {||}, b 7→ {∣∣x 7→ {||}∣∣}∣∣∣}
by the definition of p

Now suppose we modify this tree by renaming the child a to c, obtaining the tree
a =

{∣∣c 7→ {||}, b 7→ {∣∣x 7→ {||}∣∣}∣∣}. The result of the put function, l↘ (a, c), is calculated
as follows:

l↘ (a, c) = (xfork {} {b} (k; p) id)↘ (a, c)

by the definition of l
=

(
(k; p)↘

({∣∣∣b 7→ {∣∣x 7→ {||}∣∣}∣∣∣} , {||})) · (id↘ ({∣∣c 7→ {||}∣∣} , {∣∣a 7→ {||}∣∣}))
by the definition of xfork, splitting a using {b} and c using {}

=

(
(k; p)↘

({∣∣∣b 7→ {∣∣x 7→ {||}∣∣}∣∣∣} , {||})) · {∣∣c 7→ {||}∣∣}
by the definition of id

=

(
k↘

(
p↘

({∣∣∣b 7→ {∣∣x 7→ {||}∣∣}∣∣∣} , k↗{||}), {||})) · {∣∣c 7→ {||}∣∣}
by the definition of composition

=
(
k↘

({∣∣x 7→ {||}∣∣} , {||})) · {∣∣c 7→ {||}∣∣}
by the definition of p

= {||} ·
{∣∣c 7→ {||}∣∣} =

{∣∣c 7→ {||}∣∣}
by the definition of k

Another derived lens focuses attention on a single child n:

focus n d = (filter {n} d); (hoist n)

∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T .
focus n d ∈ (C ·

{∣∣n 7→ D
∣∣})
Ω D

In the get direction, focus filters away all other children, then removes the edge n and
yields n’s subtree. As usual, the default tree is only used in the case of creation, where
it is the default for children that have been filtered away. The type of focus follows
from the types of the lenses from which it is defined, observing that filter {n} d ∈
(C · {| n 7→ D |})
Ω {| n 7→ D |} and that hoist n ∈ {| n 7→ D |}
Ω D.
The hoist primitive defined earlier requires that the name being hoisted be the unique

child of the concrete tree. It is often useful to relax this requirement, hoisting one child
out of many. This generalized version of hoist is annotated with the set p of possible
names of the grandchildren that will become children after the hoist, which must be
disjoint from the names of the existing children.



42 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

hoist_nonunique n p = xfork {n} p (hoist n) id

∀n∈N . ∀p⊆N . ∀D⊆T \{n}∪p. ∀C⊆T |p.
hoist_nonunique n p ∈ (

{∣∣n 7→ C
∣∣} · D)
Ω (C · D)

A last derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plunge n) id

∀m,n∈N . ∀C⊆T . ∀D⊆T \{m,n}.
rename m n ∈ (

{∣∣m 7→ C
∣∣} · D)
Ω (

{∣∣n 7→ C
∣∣} · D)

In the get direction, rename splits the concrete tree in two. The first tree has a single
childm (which is guaranteed to exist by the type annotation) and is hoisted up, removing
the edge named m, and then plunged under n. The rest of the original tree is passed
through the id lens. Similarly, the put direction splits the abstract view into a tree
with a single child n, and the rest of the tree. The tree under n is put back using the
lens (hoist m; plunge n), which first removes the edge named n and then plunges the
resulting tree under m. Note that the type annotation on rename demands that the
concrete view have a child named m and that the abstract view have a child named n.
In Section 3.6 we will see how to wrap this lens in a conditional to obtain a lens with a
more flexible type.

Mapping

So far, all of our lens combinators do things near the root of the trees they are given.
Of course, we also want to be able to perform transformations in the interior of trees.
The map combinator is our fundamental means of doing this. When combined with
recursion, it also allows us to iterate over structures of arbitrary depth.
The map combinator is parameterized on a single lens l. In the get direction, map

applies l↗ to each subtree of the root and combines the results together into a new
tree. (Later in this section, we will define a more general combinator, called wmap, that
can apply a different lens to each subtree. Defining map first lightens the notational
burden in the explanations of several fine points about the behavior and typing of both
combinators.) For example, the lens map l has the following behavior in the get direction
when applied to a tree with three children:

∣∣∣∣∣∣
n1 7→ t1
n2 7→ t2
n3 7→ t3

∣∣∣∣∣∣
 becomes


∣∣∣∣∣∣
n1 7→ l↗ t1
n2 7→ l↗ t2
n3 7→ l↗ t3

∣∣∣∣∣∣


The put direction of map is more interesting. In the simple case where a and c have
equal domains, its behavior is straightforward: it uses l↘ to combine concrete and
abstract subtrees with identical names and assembles the results into a new concrete
tree, c′:

(map l)↘


∣∣∣∣∣∣
n1 7→ t1
n2 7→ t2
n3 7→ t3

∣∣∣∣∣∣
,

∣∣∣∣∣∣
n1 7→ t′1
n2 7→ t′2
n3 7→ t′3

∣∣∣∣∣∣

 =


∣∣∣∣∣∣
n1 7→ l↘ (t1, t

′
1)

n2 7→ l↘ (t2, t
′
2)

n3 7→ l↘ (t3, t
′
3)

∣∣∣∣∣∣


In general, however, the abstract tree a in the put direction need not have the same do-
main as c (i.e., the edits that produced the new abstract view may have involved adding
and deleting children); the behavior of map in this case is a little more involved. Observe,
first, that the domain of c′ is determined by the domain of the abstract argument to put .
Since we aim at building total lenses, we may suppose that (map l)↗ ((map l)↘ (a, c))



3.5. LENSES FOR TREES 43

is defined, in which case dom((map l)↗ ((map l)↘ (a, c))) = dom(a) by rule PutGet,
and dom((map l)↘ (a, c)) = dom(a) as (map l)↗ does not change the domain of the
tree. This means we can simply drop children that occur in dom(c) but not in dom(a).
Children bearing names that occur both in dom(a) and dom(c) are dealt with as de-
scribed above. This leaves the children that only appear in dom(a), which need to be
passed through l so that they can be included in c′; to do this, we need some concrete
argument to pass to l↘. There is no corresponding child in c, so instead these abstract
trees are put into the missing tree Ω—indeed, this case is precisely why we introduced Ω.
Formally, the behavior of map is defined as follows. (It relies on the convention that
c(n) = Ω if n 6∈ dom(c); the type declaration also involves some new notation, explained
below.)

map l↗ c =
{∣∣n 7→ l↗ c(n) | n ∈ dom(c)

∣∣}
map l↘ (a, c) =

{∣∣n 7→ l↘ (a(n), c(n)) | n ∈ dom(a)
∣∣}

∀C,A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀l ∈ (

⋂
n∈N . C(n)
Ω A(n)).

map l ∈ C 
Ω A

Because of the way that it takes the tree apart, transforms the pieces, and reassembles
them, the typing of map is a little subtle. For example, in the get direction, map does
not modify the names of the immediate children of the concrete tree, and in the put
direction, the names of the abstract tree are left unchanged; we might therefore expect a
simple typing rule stating that, if l ∈ (

⋂
n∈N C(n)
Ω A(n))—i.e., if l is a well-behaved

lens from the concrete subtree type C(n) to the abstract subtree type A(n) for each
child n—then map l ∈ C 
Ω A. Unfortunately, for arbitrary C and A, the map lens is
not guaranteed to be well-behaved at this type. In particular, if doms(C), the set of
domains of trees in C, is not equal to doms(A), then the put function can produce a
tree that is not in C, as the following example shows. Consider the sets of trees

C =
{{∣∣x 7→ m

∣∣} , {∣∣y 7→ n
∣∣}} A = C ∪

{{∣∣x 7→ m, y 7→ n
∣∣}}

and observe that with trees

a =
{∣∣x 7→ m, y 7→ n

∣∣} c =
{∣∣x 7→ m

∣∣}
we have map id↘ (a, c) = a, a tree that is not in C. This shows that the type of
map must include the requirement that doms(C) = doms(A). (Recall that, for any type
T , the set doms(T ) is a set of sets of names.)
A related problem arises when the sets of trees A and C have dependencies between

the names of children and the trees that may appear under those names. Again, one
might naively expect that, if l has type C(m) 
Ω A(m) for each name m, then map l
would have type C 
Ω A. Consider, however, the set

A = {{| x 7→ m, y 7→ p |}, {| x 7→ n, y 7→ q |}} ,

in which the value m only appears under x when p appears under y, and the set

C = {{| x 7→ m, y 7→ p |}, {| x 7→ m, y 7→ q |}, {| x 7→ n, y 7→ p |}, {| x 7→ n, y 7→ q |}} ,

where both m and n appear with both p and q. When we consider just the projections
of C and A at specific names, we obtain the same sets of subtrees: C(x) = A(x) = {{|
m |}, {| n |}} and C(y) = A(y) = {{| p |}, {| q |}}. The lens id has type C(x) 
Ω A(x) and



44 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

C(y) 
Ω A(y) (and C(z) = ∅ 
Ω ∅ = A(z) for all other names z). But it is clearly not
the case that map id ∈ C 
Ω A.

To avoid this error, but still give a type for map that is precise enough to derive
interesting types for lenses defined in terms of map, we require that the source and
target sets in the type of map be closed under the “shuffling” of their children. Formally,
if T is a set of trees, then the set of shufflings of T , denoted T	, is

T	 =
⋃

D∈doms(T )

{| n 7→ T (n) | n ∈ D |}

where {| n 7→ T (n) | n ∈ D |} is the set of trees with domain D whose children under n
are taken from the set T (n). We say that T is shuffle closed iff T = T	. In the example
above, A	 = C	 = C—i.e., C is shuffle closed, but A is not.

Alternatively, every shuffle-closed set T can be identified with a set of set of names D
and a function f from names to types, such that t ∈ T iff dom(t) ∈ D and t(n) ∈ f(n)
for every name n ∈ dom(t). Formally, the shuffle closed set T is defined as follows:

T =
⋃
d∈D

{| n 7→ f(n) | n ∈ d |}

In the situations where map is used, shuffle closure is typically easy to check. For
example, the restriction on tree grammars embodied by W3C Schema implies shuffle
closure (informally, the restriction on W3C Schema is analogous to imposing shuffle
closure on the schemas along every path, not just at the root). Additionally, any set of
trees whose elements each have singleton domains is shuffle closed. Also, for every set of
trees T , the encoding introduced in 3.7 of lists with elements in T is shuffle closed, which
justifies using map (with recursion) to implement operations on lists. Furthermore, types
of the form {| n 7→ T | n ∈ N |} with infinite domain but with the same structure under
each edge, which are heavily used in database examples (where the top-level names are
keys and the structures under them are records) are shuffle closed.
Another point to note about map is that it does not obey the PutPut law. Consider

a lens l and (a, c) ∈ dom(l↘) such that l↘ (a, c) 6= l↘ (a, Ω). We have

(map l)↘
({∣∣n 7→ a

∣∣} , ((map l)↘
(
{||},

{∣∣n 7→ c
∣∣})))

= (map l)↘
({∣∣n 7→ a

∣∣} , {||})
=

{∣∣n 7→ l↘ (a, Ω)
∣∣}

whereas {∣∣n 7→ l↘ (a, c)
∣∣} = (map l)↘

({∣∣n 7→ a
∣∣} , {∣∣n 7→ c

∣∣}).
Intuitively, there is a difference between, on the one hand, modifying a child n and, on
the other, removing it and then adding it back: in the first case, any information in
the concrete view that is “projected away” in the abstract view will be carried along to
the new concrete view; in the second, such information will be replaced with default
values. This difference seems pragmatically reasonable, so we prefer to keep map and
lose PutPut.6
A final point of interest is the relation between map and the missing tree Ω. The

put function of most lens combinators only results in a put into the missing tree if the

6Alternatively, we could use a refinement of the type system to track when PutPut does hold,
annotating some of the lens combinators with extra type information recording the fact that they are
oblivious (i.e., ignore their concrete argument), and then give map two types: the one we gave here plus
another saying “when map is applied to an oblivious lens, the result is very well behaved.”



3.5. LENSES FOR TREES 45

combinator itself is called on Ω. In the case of map l, calling its put function on some
a and c where c is not the missing tree may result in the application of the put of l to
Ω if a has some children that are not in c. In an earlier variant of map, we dealt with
missing children by providing a default concrete child tree, which would be used when
no actual concrete tree was available. However, we discovered that, in practice, it is
often difficult to find a single default concrete tree that fits all possible abstract trees,
particularly because of xfork (where different lenses are applied to different parts of the
tree) and recursion (where the depth of a tree is unknown). We tried parameterizing this
default concrete tree by the abstract tree and the lens, but noticed that most primitive
lenses ignore the concrete tree when defining the put function, as enough information
is available in the abstract tree. The natural choice for a concrete tree parameterized
by a and l was thus l↘ (a, Ω), for some special tree Ω. The only lens for which the
put function needs to be defined on Ω is const, as it is the only lens that discards
information. This led us to the present design, where only the const lens (along with
other lenses defined from it, such as focus) expects a default tree d. This approach is
much more convenient to program with than the others we tried, since one only provides
defaults at the exact points where information is discarded.
We now define a more general form of map that is parameterized on a total function

from names to lenses rather than on a single lens.

wmap m↗ c =
{∣∣n 7→ m(n)↗ c(n) | n ∈ dom(c)

∣∣}
wmap m↘ (a, c) =

{∣∣n 7→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣∣}

∀C,A⊆T with C = C	, A = A	, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n)
Ω A(n)).

wmap m ∈ C 
Ω A

In the type annotation, we use the dependent type notation m ∈ Πn. C(n)
Ω A(n) to
mean that m is a total function mapping each name n to a well-behaved lens from C(n)
to A(n). Although m is a total function, we will often describe it by giving its behavior
on a finite set of names and adopting the convention that it maps every other name to
id. For example, the lens wmap {x 7→ plunge a} maps plunge a over trees under x and
id over the subtrees of every other child. We can also easily define map as a derived
form: map l = wmap (λn ∈ N . l).

Merging

It sometimes happens that a concrete representation requires equality between two dis-
tinct subtrees. The following merge lens is one way to preserve this invariant when
the abstract view is updated. In the get direction, merge takes a tree with two equal
branches and deletes one of them. In the put direction, merge copies the updated value
of the remaining branch to both branches in the concrete view.

merge m n↗ c = c\n

merge m n↘ (a, c) =

{
a ·
{∣∣n 7→ a(m)

∣∣} if c(m) = c(n)
a ·
{∣∣n 7→ c(n)

∣∣} if c(m) 6= c(n)

∀m,n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
merge m n ∈ (C ·

{∣∣m 7→ DΩ, n 7→ DΩ

∣∣})
Ω (C ·
{∣∣m 7→ DΩ

∣∣})

There is some freedom in the type of merge. On one hand, we can give it a precise
type that expresses the intended equality constraint in the concrete view; the lens is



46 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

well-behaved and total at that type. Alternatively, we can give it a more permissive
type (as we do) by ignoring the equality constraint—even if the two original branches
are unequal, merge is still defined and well-behavedness is preserved. This is possible
because the old concrete view is an argument to the put function, and can be tested to
see whether the two branches were equal or not in c. If not, then the value in a does
not overwrite the value in the deleted branch, allowing merge to obey PutGet.
The merge lens turns out to be quite useful in our synchronization framework. For

example, our bookmark synchronizer must deal with the fact that the XML represen-
tation of Apple Safari bookmark files includes the URL data for every link twice. By
merging the appropriate children, we record this dependency and ensure that updates
to the URL fields are consistently propagated to both locations.

3.6 Conditionals

Conditional lens combinators, which can be used to selectively apply one lens or another
to a view, are necessary for writing many interesting derived lenses. Whereas xfork and
its variants split their input trees into two parts, send each part through a separate lens,
and recombine the results, a conditional lens performs some test and sends the whole
tree(s) through one or the other of its sub-lenses.
The requirement that makes conditionals tricky is totality: we want to be able to

take a concrete view, put it through a conditional lens to obtain some abstract view,
and then take any other abstract view of suitable type and push it back down. But this
will only work if either (1) we somehow ensure that the abstract view is guaranteed to
be sent to the same sub-lens on the way down as we took on the way up, or else (2)
the two sub-lenses are constrained to behave coherently. Since we want reasoning about
well-behavedness and totality to be compositional in the absence of recursion (i.e., we
want the well-behavedness and totality of composite lenses to follow just from the well-
behavedness and totality of their sub-lenses, not from special facts about the behavior
of the sub-lenses), the second is unacceptable.
Interestingly, once we adopt the first approach, we can give a complete characterization

of all possible conditional lenses: we argue in Foster et al. (2007b) that every binary
conditional operator that yields well-behaved and total lenses is an instance of the
general cond combinator presented below. Since this general cond is a little complex,
however, we start by discussing two particularly useful special cases.

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate C1 on views and two lenses,
l1 and l2. In the get direction, it tests the concrete view c and applies the get of l1 if
c satisfies the predicate and l2 otherwise. In the put direction, ccond again examines
the concrete view, and applies the put of l1 if it satisfies the predicate and the put of
l2 otherwise. This is arguably the simplest possible way to define a conditional: it fixes
all of its decisions in the get direction, so the only constraint on l1 and l2 is that they
have the same target. (Since we are interested in using ccond to define total lenses, this
condition can actually be rather hard to achieve in practice.)

ccond C1 l1 l2↗ c =

{
l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

ccond C1 l1 l2↘ (a, c) =

{
l1↘ (a, c) if c ∈ C1

l2↘ (a, c) if c 6∈ C1

∀C,C1, A⊆V. ∀l1 ∈ C∩C1 

Ω A. ∀l2 ∈ C\C1 


Ω A.
ccond C1 l1 l2 ∈ C 
Ω A



3.6. CONDITIONALS 47

Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its concrete
argument in the put direction, basing its decision whether to use l1↘ or l2↘ entirely
on its abstract argument.

acond C1 A1 l1 l2↗ c =

{
l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

acond C1 A1 l1 l2↘ (a, c) =


l1↘ (a, c) if a ∈ A1 ∧ c ∈ C1

l1↘ (a, Ω) if a ∈ A1 ∧ c 6∈ C1

l2↘ (a, c) if a 6∈ A1 ∧ c 6∈ C1

l2↘ (a, Ω) if a 6∈ A1 ∧ c ∈ C1

∀C,A,C1, A1⊆V. ∀l1 ∈ C∩C1 

Ω A∩A1. ∀l2 ∈ (C\C1)
Ω (A\A1).

acond C1 A1 l1 l2 ∈ C 
Ω A

In Section 3.5, we defined the lens rename m n, whose type demands that each
concrete tree have a child named m and that every abstract tree have a child named n.
Using this conditional, we can write a more permissive lens that renames a child if it is
present and otherwise behaves like the identity.

rename_if_present m n = acond
({| m 7→ T |} · T \{m,n}) ({| n 7→ T |} · T \{m,n})
(rename m n)
id

∀n,m ∈ N . ∀C⊆T . ∀D,E⊆(T \{m,n}).
rename_if_present m n ∈ (

{∣∣m 7→ C
∣∣} · D) ∪ E 
Ω (

{∣∣n 7→ C
∣∣} · D) ∪ E

General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors of
ccond and acond. The concrete conditional requires that the targets of the two lenses
be identical, while the abstract conditional requires that they be disjoint. Here, we let
them overlap arbitrarily, behaving like ccond in the region where they do overlap (i.e.,
for arguments (a, c) to put where a is in the intersection of the targets) and like acond
in the regions where the abstract argument to put belongs to just one of the targets.
To this we can add one additional observation: that the use of Ω in the definition of
acond is actually arbitrary. All that is required is that, when we use the put of l1, the
concrete argument should come from (C1)Ω, so that l1 is guaranteed to do something
reasonable with it. These considerations lead us to the following definition.

cond C1 A1 A2 f21 f12 l1 l2↗ c =

{
l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

cond C1 A1 A2 f21 f12 l1 l2↘ (a, c) =

l1↘ (a, c) if a ∈ A1∩A2 ∧ c ∈ C1

l2↘ (a, c) if a ∈ A1∩A2 ∧ c 6∈ C1

l1↘ (a, c) if a ∈ A1\A2 ∧ c ∈ (C1)Ω

l1↘(a, f21(c)) if a ∈ A1\A2 ∧ c 6∈ (C1)Ω

l2↘ (a, c) if a ∈ A2\A1 ∧ c 6∈ C1

l2↘(a, f12(c)) if a ∈ A2\A1 ∧ c ∈ C1

∀C,C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1)
Ω A1. ∀l2 ∈ (C\C1)
Ω A2.
∀f21 ∈ (C\C1)→ (C∩C1)Ω. ∀f12 ∈ (C∩C1)→ (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C 
Ω (A1∪A2)



48 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

When a is in the targets of both l1 and l2, cond↘ chooses between them based solely
on c (as does ccond, whose targets always overlap). If a lies in the range of only l1 or
l2, then cond’s choice of lens for put is predetermined (as with acond, whose targets
are disjoint). Once l↘ is chosen to be either l1↘ or l2↘, if the old value of c is not in
ran(l↘)Ω, then we apply a “fixup function,” f21 or f12, to c to choose a new value from
ran(l↘)Ω. Ω is one possible result of the fixup functions, but in general we can compute
a more interesting value, as we will see in the list_filter lens, defined in Section 3.7.

3.7 Derived Lenses for Lists

XML and many other concrete data formats make heavy use of ordered lists. We describe
in this section how we can represent lists as trees, using a standard cons-cell encoding,
and introduce some derived lenses to manipulate them. We begin with very simple lenses
for projecting the head and tail of a list. We then define recursive lenses implementing
some more complex operations on lists: mapping and filtering. In Foster et al. (2007b),
we also show how to derive a list-reversing lens that takes a list encoded as a tree and
yields the same list in reverse order (in both directions, ignoring its concrete argument
in the put direction) and a “grouping” lens that, in the get direction, takes a list whose
elements alternate between elements of D and elements of E and returns a list of pairs
of Ds and Es—e.g., it maps [d1 e1 d2 e2 d3 e3] to [[d1 e1] [d2 e2] [d3 e3]].

Encoding

Definition 3.7.1. A tree t is said to be a list iff either it is empty or it has exactly
two children, one named *h and another named *t, and t(*t) is also a list. We use the
lighter notation [t1 . . . tn] for the tree

∣∣∣∣∣∣∣∣
*h 7→ t1

*t 7→


∣∣∣∣∣∣
*h 7→ t2

*t 7→
{∣∣∣∣. . . 7→ {∣∣∣∣*h 7→ tn

*t 7→ {||}

∣∣∣∣}∣∣∣∣}
∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
 .

In types, we write [] for the set {{||}} containing only the empty list, C ::D for the set{∣∣*h 7→ C, *t 7→ D
∣∣} of “cons-cell trees” whose head belongs to C and whose tail belongs

to D, and [C] for the set of lists with elements in C—i.e., the smallest set of trees
satisfying [C] = []∪ (C ::[C]). Given two list values, l1 and l2, the set of lists denoted
by the interleaving l1&l2 consists of all the lists formed by interleaving the elements of
l1 with the elements of l2 in an arbitrary fashion. For example, [a, b]&[c] is the set
{[a, b, c], [a, c, b], [c, a, b]}. We lift the interleaving operator to list types in the
obvious way: the interleaving of two list types, [B] and [C], is the union of all the
interleavings of lists belonging to [B] with lists belonging to [C].

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

hd d = focus *h
{∣∣*t 7→ d

∣∣}
∀C,D⊆T . ∀d∈D. hd d ∈ (C ::D)
Ω C

tl d = focus *t
{∣∣*h 7→ d

∣∣}
∀C,D⊆T . ∀d∈C. tl d ∈ (C ::D)
Ω D



3.7. DERIVED LENSES FOR LISTS 49

The lens hd expects a default tree, which it uses in the put direction as the tail of the
created tree when the concrete tree is missing; in the get direction, it returns the tree
under *h. The lens tl works analogously. Note that the types of these lenses apply to
both homogeneous lists (the type of hd implies ∀C⊆T . ∀d∈[C]. hd d ∈ [C]⇐⇒Ω C)
as well as cons cells whose head and tail have unrelated types. The types of hd and tl
follow from the type of focus.

List Map

The list_map lens applies a lens l to each element of a list:

list_map l = wmap {*h 7→ l, *t 7→ list_map l}

∀C,A⊆T . ∀l ∈ C 
Ω A. list_map l ∈ [C]
Ω [A]

The get direction applies l to the subtree under *h and recurses on the subtree under
*t. The put direction uses l↘ on corresponding pairs of elements from the abstract and
concrete lists. The result has the same length as the abstract list; if the concrete list is
longer, the extra tail is thrown away. If it is shorter, each extra element of the abstract
list is put into Ω.

Since list_map is our first recursive lens, it is worth noting how recursive calls are
made in each direction. The get function of the wmap lens simply applies l to the head
and list_map l to the tail until it reaches a tree with no children. Similarly, in the
put direction, wmap applies l to the head of the abstract tree and either the head of
the concrete tree (if it is present) or Ω, and it applies list_map l to the tail of the
abstract tree and the tail of the concrete tree (if it is present) or Ω. In both directions,
the recursive calls continue until the entire tree—concrete (for the get) or abstract (for
the put)—has been traversed. (The recursion is controlled by the abstract argument in
the put direction because the map combinator uses the children of the abstract tree to
determine how many times to call its argument lens.)

Filter

Our most interesting derived list processing lens, list_filter, is parameterized on two
sets of views, D and E, which we assume to be disjoint and non-empty. In the get
direction, it takes a list whose elements belong to either D or E and projects away
those that belong to E, leaving an abstract list containing only Ds; in the put direction,
it restores the projected-away Es from the concrete list. Its definition utilizes our most
complex lens combinators—wmap and two forms of conditionals—and recursion, yielding
a lens that is well-behaved and total on lists of arbitrary length.
In the get direction, the desired behavior of list_filter D E (for brevity, let us

call it l) is clear. In the put direction, things are more interesting because there are
many ways that we could restore projected elements from the concrete list. The lens
laws impose some constraints on the behavior of l↘. The GetPut law forces the put
function to restore each of the filtered elements when the abstract list is put into the
original concrete list. For example (letting d and e be elements of D and E) we must
have l↘ ([d], [e d]) = [e d]. The PutGet law forces the put function to include
every element of the abstract list in the resulting concrete list in the same order, and
these elements must be the only Ds in the result; there is, however, no restriction on
the Es when the abstract tree is not the filtered concrete tree.
In the general case, where the abstract list a is different from the filtered concrete list

l↗ c, there is some freedom in how l↘ behaves. First, it may selectively restore only
some of the elements of E from the concrete list (or indeed, even less intuitively, it might



50 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

add some new elements of E that it somehow makes up). Second, it may interleave the
restored Es with the Ds from the abstract list in any order, as long as the order of the
Ds is preserved from a. From these possibilities, the behavior that seems most natural
to us is to overwrite elements of D in c with elements of D from a, element-wise, until
either c or a runs out of elements of D. If c runs out first, then l↘ appends the rest of
the elements of a at the end of c. If a runs out first, then l↘ restores the remaining Es
from the end of c and discards any remaining Ds in c (as it must to satisfy PutGet).
These choices lead us to the following specification for a single step of the put part

of a recursively defined lens implementing l. If the abstract list a is empty, then we
restore all the Es from c. If c is empty and a is not empty, then we return a. If a and c
are both cons cells whose heads are in D, then we return a cons cell whose head is the
head of a and whose tail is the result obtained by recursing on the tails of both a and
c. Otherwise (i.e., c has type E :: ([D]&[E])) we restore the head of c and recurse on
a and the tail of c. Translating this into lens combinators leads to the definition below
of a recursive lens inner_filter, which filters lists containing at least one D, and a
top-level lens list_filter that handles arbitrary lists of Ds and Es.

inner_filter D E =
ccond (E :: ((D ::[D])&[E]))

(tl anyE ; inner_filter D E)
(wmap {*h 7→ id,

*t 7→ (cond [E] [] (D ::[D]) fltrE (λc. c++[anyD])
(const [] [])
(inner_filter D E))})

list_filter D E =
cond [E] [] (D ::[D]) fltrE (λc. c++[anyD])

(const [] [])
(inner_filter D E)}

∀D,E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.
inner_filter D E ∈ (D ::[D])&[E]
Ω (D ::[D])
list_filter D E ∈ [D]&[E]
Ω [D]

The “choice operator” anyD denotes an arbitrary element of the (non-empty) set D.7
The function fltrE is the usual list-filtering function, which for present purposes we
simply assume has been defined as a primitive. (In our actual implementation, we use
list_filter↗; but for expository purposes, and to simplify the totality proofs, we
avoid this extra bit of recursiveness.) Finally, the function λc. c++[anyD] appends
some arbitrary element of D to the right-hand end of a list c. These “fixup functions”
are applied in the put direction by the cond lens.
The behavior of the get function of list_filter can be described as follows. If

c ∈ [E], then the outermost cond selects the const [] [] lens, which produces [].
Otherwise the cond selects inner_filter, which uses a ccond instance to test if the
head of the list is in E. If this test succeeds, it strips away the head using tl and
recurses; if not, it retains the head and filters the tail using wmap.
In the put direction, if a = [] then the outermost cond lens selects the const[] []

lens, with c as the concrete argument if c ∈ [E] and (fltrE c) otherwise. This has the
effect of restoring all of the Es from c. Otherwise, if a 6= [] then the cond instance
selects the put of the inner_filter lens, using c as the concrete argument if c contains

7We are dealing with countable sets of finite trees here, so this construct poses no metaphysical
conundrums; alternatively, but less readably, we could just as well pass list_filter an extra argument
d ∈ D.



3.7. DERIVED LENSES FOR LISTS 51

at least one D, and (λc. c++[anyD]) c, which appends a dummy value of type D to the
tail of c, if not. The dummy value, anyD, is required because inner_filter expects a
concrete argument that contains at least one D. Intuitively, the dummy value marks
the point where the head of a should be placed.
To illustrate how all this works, let us step through some examples in detail. In each

example, the concrete type is [D]&[E] and the abstract type is [D]. We will write di
and ej to stand for elements of D and E respectively. To shorten the presentation, we
will write l for list_filter D E (i.e., for the cond lens that it is defined as) and i for
inner_filter D E. In the first example, the abstract tree a is [d1], and the concrete
tree c is [e1 d2 e2]. At each step, we underline the term that is simplified in the next
step.

l↘ (a, c) = i↘ (a, c)

by the definition of cond, as a ∈ (D ::[D]) and c ∈ ([D]&[E]) \ [E]
= (tl anyE ; i)↘ (a, c)

by the definition of ccond, as c ∈ E :: ((D ::[D])&[E])

= (tl anyE)↘
(
i↘

(
a, (tl anyE)↗ c

)
, c
)

by the definition of composition
= (tl anyE)↘

(
i↘ (a, [d2 e2]), c

)
reducing (tl anyE)↗ c

= (tl anyE)↘
(
wmap {*h 7→ id, *t 7→ l}↘ (a, [d2 e2]), c

)
by the definition of ccond, as [d2 e2] 6∈ E :: ((D ::[D])&[E])

= (tl anyE)↘
(
d1 :: (l↘ ([], [e2])), c

)
by the definition of wmap with id↘ (d1, d2) = d1

= (tl anyE)↘
(
d1 :: ((const [] [])↘ ([], [e2])), c

)
by the definition of cond, as [] ∈ [] and [e2] ∈ [E]

= (tl anyE)↘ (d1 ::[e2], c)
by the definition of const

= [e1 d1 e2] by the definition of tl.

Our next two examples illustrate how the “fixup functions” supplied to the cond lens are
used. The first function, fltrE , is used when the abstract list is empty and the concrete
list is not in [E]. Let a = [] and c = [d1 e1].

l↘ (a, c) = (const [] [])↘
(
[], fltrE[d1 e1]

)
by the definition of cond, as a = [] but c 6∈ [E]

= (const [] [])↘ ([], [e1])

by the definition of fltrE
= [e1] by definition of const.

The other fixup function, (λc. c++[anyD]), inserts a dummyD element when list_filter
is called with a non-empty abstract list and a concrete list whose elements are all in E.
Let a = [d1] and c = [e1] and assume that anyD = d0.

l↘ (a, c) = i↘
(
a, (λc. c++[anyD]) c

)
by the definition of cond, as a ∈ (D ::[D]) and c ∈ [E]

= i↘ (a, [e1 d0])

by the definition of (λc. c++[anyD])

= (tl anyE ; i)↘ (a, [e1 d0])

by the definition of ccond, as [e1 d0] ∈ E :: ((D ::[D])D&[E])



52 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

= (tl anyE)↘
(
i↘

(
a, (tl anyE)↗ [e1 d0]

)
, [e1 d0]

)
by the definition of composition

= (tl anyE)↘
(
i↘ (a, [d0]), [e1 d0]

)
reducing (tl anyE)↗ [e1 d0]

= (tl anyE)

↘
(
wmap {*h 7→ id, *t 7→ l}↘ (a, [d0]), [e1 d0]

)
by the definition of ccond, as [d0] 6∈ E :: ((D ::[D])&[E])

= (tl anyE)↘
(
d1 :: (l↘ ([], [])), [e1 d0]

)
by the definition of wmap with id↘ (d1, d0) = d1

= (tl anyE)↘
(
d1 :: ((const [] [])↘ ([], [])), [e1 d0]

)
by the definition of cond, as [] ∈ [] and [] ∈ [E]

= (tl anyE)↘ (d1 ::[], [e1 d0])

by the definition of const
= [e1 d1] by the definition of tl.

3.8 Related Work

Our lens combinators evolved in the setting of the Harmony data synchronizer. The
overall architecture of Harmony and the role of lenses in building synchronizers for
various forms of data are described elsewhere (Foster et al., 2007a; Pierce et al., 2003),
along with a detailed discussion of related work on synchronization.
Our foundational structures—lenses and their laws—are not new: closely related

structures have been studied for decades in the database community. However, our
treatment of these structures is arguably simpler (transforming states rather than “up-
date functions”) and more refined (treating well-behavedness as a form of type assertion).
Our formulation is also novel in addressing the issues of totality, offering programmers
a static guarantee that lenses cannot fail at run time, and of continuity, supporting a
rich variety of surface language structures including definition by recursion.
The idea of defining programming languages for constructing bidirectional transfor-

mations of various sorts has also been explored previously in diverse communities. We
appear to be the first to take totality as a primary goal (while connecting the language
with a formal semantic foundation, choosing primitives that can be combined into com-
posite lenses whose totality is guaranteed by construction), and the first to emphasize
types—i.e., compositional reasoning about well-behavedness and totality—as an orga-
nizing design principle.

Foundations of View Update The foundations of view update translation were
studied intensively by database researchers in the late ’70s and ’80s. This thread of
work is closely related to our semantics of lenses in Section 3.3.
Dayal and Bernstein (1982) gave a seminal formal account of “correct update trans-

lation.” Their notion of “exactly performing an update” corresponds, intuitively, to our
PutGet law. Their “absence of side effects” corresponds to our GetPut and Put-
Put laws. Their requirement of preservation of semantic consistency corresponds to the
partiality of our put functions.
Bancilhon and Spyratos (1981) developed an elegant semantic characterization of

update translation, introducing the notion of complement of a view, which must include
at least all information missing from the view. When a complement is fixed, there



3.8. RELATED WORK 53

exists at most one update of the database that reflects a given update on the view while
leaving the complement unmodified—i.e., that “translates updates under a constant
complement.” The constant complement approach has influenced numerous later works
in the area, including more recent papers by Lechtenbörger (2003) and Hegner (2004).
Gottlob, Paolini, and Zicari (1988) offered a more refined theory based on a syntactic

translation of view updates. They present a general framework and identify two spe-
cial cases, one being formally equivalent to Bancilhon and Spyratos’s constant comple-
ment translators and another—more permissive and which they advocate on pragmatic
grounds—called “dynamic views”.
Our notion of lenses adopts the same, more permissive, attitude towards reasonable

behavior of update translation. Indeed, modulo some technical refinements, we have
sketched that the correspondence is tight: the set of all well-behaved lenses is isomorphic
to the set of dynamic views in the sense of Gottlob, Paolini, and Zicari. Moreover, the
set of very well-behaved lenses is isomorphic to the set of translators under constant
complement in the sense of Bancilhon and Spyratos.8
In the literature on programming languages, laws similar to our lens laws (but some-

what simpler, dealing only with total get and put functions) appear in Oles’ category
of “state shapes” (Oles, 1985) and in Hofmann and Pierce’s work on “positive subtyp-
ing” (Hofmann and Pierce, 1995).

Languages for Bidirectional Transformations At the level of syntax, different
forms of bidirectional programming have been explored across a surprisingly diverse
range of communities, including programming languages, databases, program transfor-
mation, constraint-based user interfaces, and quantum computing. One useful way of
classifying these languages is by the “shape” of the semantic space in which their trans-
formations live. We identify three major classes. Bidirectional languages, including
ours, form lenses by pairing a get function of type C → A with a put function of type
A × C → C. In general, the get function can project away some information from the
concrete view, which must then be restored by the put function. In bijective languages,
the put function has the simpler type A → C, being given no concrete argument to
refer to. To avoid loss of information, the get and put functions must form a (perhaps
partial) bijection between C and A. Reversible languages go a step further, demanding
only that the work performed by any function to produce a given output can be undone
by applying the function “in reverse” working backwards from this output to produce the
original input. Here, there is no separate put function at all: instead, the get function
itself is constructed so that each step can be run in reverse.
In the first class, the work that is fundamentally most similar to ours is Meertens’s for-

mal treatment of constraint maintainers for constraint-based user interfaces (Meertens,
1998). Meertens’s semantic setting is actually even more general: he takes get and put

8To be precise, we need an additional condition regarding partiality. The frameworks of Bacilhon
and Spyratos and of Gottlob, Paolini, and Zicari are both formulated in terms of translating update
functions on A into update functions on C, i.e., their put functions have type (A −→ A) −→ (C −→ C),
while our lenses translate abstract states into update functions on C, i.e., our put functions have type
(isomorphic to) A −→ (C −→ C). Moreover, in both of these frameworks, “update translators” (the
analog of our put functions) are defined only over some particular chosen set U of abstract update
functions, not over all functions from A to A, and these update functions may be composed. Update
translators return total functions from C to C. Our put functions, on the other hand, are slightly more
general as they are defined over all abstract states and return partial functions from C to C. Finally,
the get functions of lenses are allowed to be partial, whereas the corresponding functions (called views)
in the other two frameworks are assumed to be total. In order to make the correspondences tight, our
sets of well-behaved and very well behaved lenses need to be restricted to subsets that are also total in
a suitable sense and the set of dynamic views should already include every abstract update functions
that are needed and not rely on composition. A related observation is that, if we restrict both get and
put to be total functions (i.e., put must be total with respect to all abstract update functions), then
our lens laws (including PutPut) characterize the set C as isomorphic to A×B for some B.



54 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

to be relations, not just functions, and his constraint maintainers are symmetric: get
relates pairs from C ×A to elements of A and put relates pairs in A×C to elements of
C; the idea is that a constraint maintainer forms a connection between two graphical
objects on the screen so that, whenever one of the objects is changed by the user, the
change can be propagated by the maintainer to the other object such that some desired
relationship between the objects is always maintained. Taking the special case where
the get relation is actually a function (which is important for Meertens because this is
the case where composition [in the sense of our ; combinator] is guaranteed to preserve
well-behavedness), yields essentially our very well behaved lenses. Meertens proposes a
variety of combinators for building constraint maintainers, most of which have analogs
among our lenses, but does not directly deal with definition by recursion; also, some
of his combinators do not support compositional reasoning about well-behavedness. He
considers constraint maintainers for structured data such as lists, as we do for trees,
but here adopts a rather different point of view from ours, focusing on constraint main-
tainers that work with structures not directly but in terms of the “edit scripts” that
might have produced them. In the terminology of synchronization, he switches from a
state-based to an operation-based treatment at this point.
More recent work of Mu, Hu, and Takeichi on “injective languages” for view-update-

based structure editors (2004) adopts a similar perspective. Although their transforma-
tions obey our GetPut law, their notion of well-behaved transformations is informed
by different goals than ours, leading to a weaker form of the PutGet law. A primary
concern is using the view-to-view transformations to simultaneously restore invariants
within the source view as well as update the concrete view. For example, an abstract
view may maintain two lists where the name field of each element in one list must match
the name field in the corresponding element in the other list. If an element is added to
the first list, then not only must the change be propagated to the concrete view, it must
also add a new element to the second list in the abstract view. It is easy to see that
PutGet cannot hold if the abstract view, itself, is—in this sense—modified by the put .
Similarly, they assume that edits to the abstract view mark all modified fields as “up-
dated.” These marks are removed when the put lens computes the modifications to the
concrete view—another change to the abstract view that must violate PutGet. Con-
sequently, to support invariant preservation within the abstract view, and to support
edit lists, their transformations only obey a much weaker variant of PutGet.
Another paper by Hu, Mu, and Takeichi (2004) applies a bidirectional programming

language closely related to ours to the design of “programmable editors” for structured
documents. As in Mu et al. (2004), they support preservation of local invariants in the
put direction. Here, instead of annotating the abstract view with modification marks,
they assume that a put or a get occurs after every modification to either view. They use
this “only one update” assumption to choose the correct inverse for the lens that copied
data in the get direction—because only one branch can have been modified at any given
time. Consequently, they can put the data from the modified branch and overwrite the
unmodified branch. Here, too, the notion of well-behavedness needs to be weakened.
The TRIP2 system (e.g., Matsuoka et al. (1992)) uses bidirectional transformations

specified as collections of Prolog rules as a means of implementing direct-manipulation
interfaces for application data structures. The get and put components of these map-
pings are written separately by the user.

Languages for Bijective Transformations An active thread of work in the pro-
gram transformation community concerns program inversion and inverse computation—
see, for example, Abramov and Glück (2000; 2002) and many other papers cited there.
Program inversion (Dijkstra, 1979) derives the inverse program from the forward pro-
gram. Inverse computation (McCarthy, 1956) computes a possible input of a program



3.8. RELATED WORK 55

from a particular output. One approach to inverse computation is to design languages
that produce easily invertible expressions—for example, languages that can only express
injective functions, where every program is trivially invertible.
In the database community, Abiteboul, Cluet, and Milo (1997) defined a declarative

language of correspondences between parts of trees in a data forest. In turn, these
correspondence rules can be used to translate one tree format into another through non-
deterministic Prolog-like computation. This process assumes an isomorphism between
the two data formats. The same authors (Abiteboul et al., 1998) later defined a system
for bidirectional transformations based around the concept of structuring schemas (parse
grammars annotated with semantic information). Thus their get functions involved
parsing, whereas their puts consisted of unparsing. Again, to avoid ambiguous abstract
updates, they restricted themselves to lossless grammars that define an isomorphism
between concrete and abstract views.
Ohori and Tajima (1994) developed a statically-typed polymorphic record calculus

for defining views on object-oriented databases. They specifically restricted which fields
of a view are updatable, allowing only those with a ground (simple) type to be updated,
whereas our lenses can accommodate structural updates as well.
A related idea from the functional programming community, called views (Wadler,

1987), extends algebraic pattern matching to abstract data types using programmer-
supplied in and out operators.

Update Translation for Tree Views There have been many proposals for query
languages for trees (e.g., XQuery and its forerunners, UnQL, StruQL, and Lorel), but
these either do not consider the view update problem at all or else handle update only
in situations where the abstract and concrete views are isomorphic.
For example, Braganholo, Heuser, and Vittori (2001), and Braganholo, Davidson, and

Heuser (2003) studied the problem of updating relational databases “presented as XML.”
Their solution requires a 1:1 mapping between XML view elements and objects in the
database, to make updates unambiguous. Tatarinov, Ives, Halevy, and Weld (2001)
described a mechanism for translating updates on XML structures that are stored in an
underlying relational database. In this setting there is again an isomorphism between the
concrete relational database and the abstract XML view, so updates are unambiguous—
rather, the problem is choosing the most efficient way of translating a given XML update
into a sequence of relational operations.
The view update problem has also been studied in the context of object-oriented

databases. School, Laasch, and Tresch (1991) restrict the notion of views to queries
that preserve object identity. The view update problem is greatly simplified in this
setting, as the objects contained in the view are the objects of the database, and an
update on the view is directly an update on objects of the database.

Update Translation for Relational Views Research on view update translation in
the database literature has tended to focus on taking an existing language for defining
get functions (e.g., relational algebra) and then considering how to infer corresponding
put functions, either automatically or with some user assistance. By contrast, we have
designed a new language in which the definitions of get and put go hand-in-hand. Our
approach also goes beyond classical work in the relational setting by directly transform-
ing and updating tree-structured data, rather than flat relations. (Of course, trees can
be encoded as relations, but it is not clear how our tree-manipulation primitives could
be expressed using the recursion-free relational languages considered in previous work
in this area.)
Recent work by Bohannon, Pierce, and Vaughan (2006) extends the framework pre-

sented here to obtain lenses that operate natively on relational data. Their lenses are



56 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

based on the primitives of classical relational algebra, with additional annotations that
specify the desired “update policy” in the put direction. They develop a type system, us-
ing record predicates and functional dependencies, to aid compositional reasoning about
well-behavedness. The chapter on view update in Date’s textbook (2003) articulates a
similar perspective on translating relational updates.
Masunaga (1984) described an automated algorithm for translating updates on views

defined by relational algebra. The core idea was to annotate where the “semantic am-
biguities” arise, indicating they must be resolved either with knowledge of underlying
database semantic constraints or by interactions with the user.
Keller (1985) catalogued all possible strategies for handling updates to a select-

project-join view and showed that these are exactly the set of translations that sat-
isfy a small set of intuitive criteria. Building on this foundation, Barsalou, Siambela,
Keller, and Wiederhold (1991) described a scheme for interactively constructing update
translators for object-based views of relational databases.
Medeiros and Tompa (1985) presented a design tool for exploring the effects of choos-

ing a view update policy. This tool shows the update translation for update requests
supplied by the user; by considering all possible valid concrete states, the tool predicts
whether the desired update would in fact be reflected back into the view after applying
the translated update to the concrete database.
Atzeni and Torlone (1997; 1996) described a tool for translating views and observed

that if one can translate any concrete view to and from a meta-model (shared abstract
view), one then gets bidirectional transformations between any pair of concrete views.
They limited themselves to mappings where the concrete and abstract views are iso-
morphic.
Complexity bounds have also been studied for various versions of the view update

inference problem. In one of the earliest, Cosmadakis (1983) and Cosmadakis and
Papadimitriou (1984) considered the view update problem for a single relation, where
the view is a projection of the underlying relation, and showed that there are polynomial
time algorithms for determining whether insertions, deletions, and tuple replacements
to a projection view are translatable into concrete updates. More recently, Buneman,
Khanna, and Tan (2002) established a variety of intractability results for the problem
of inferring “minimal” view updates in the relational setting for query languages that
include both join and either project or union.

3.9 Conclusions

We have worked to design a collection of combinators that fit together in a sensible
way and that are easy to program with and reason about. Starting with lens laws that
define “reasonable behavior,” adding type annotations, and proving that each of our
lenses is total, has imposed strong constraints on our design of new lenses—constraints
that, paradoxically, make the design process easier. In the early stages of the Harmony
project, working in an under-constrained design space, we found it extremely difficult to
converge on a useful set of primitive lenses. Later, when we understood how to impose
the framework of type declarations and the demand for compositional reasoning, we
experienced a huge increase in manageability. The types helped not just in finding
programming errors in derived lenses, but in exposing design mistakes in the primitives
at an early stage.
Our interest in bidirectional tree transformations arose in the context of the Harmony

data synchronization framework. Besides the bookmark synchronizer described in Foster
et al. (2007b), we have developed prototype synchronizers for calendars, address books,
and structured text. Building implementations continues to provide valuable stress-
testing for both our combinators and their formal foundations. It also gives us confidence



3.9. CONCLUSIONS 57

Figure 3.2: Web demo of Safari Bookmark lens

that our lenses are practically useful.
The source code for each of these prototypes, along with our lens compiler and syn-

chronization engine, can be found on the Harmony web page.9 We have also made the
system available as an online web demo (a screenshot from the Safari component of our
bookmarks portion of this demo is shown in Figure 3.2).
Naturally, the progress we have made on lens combinators raises a host of further

challenges. The most urgent of these is automated typechecking. At present, it is
the lens programmers’ responsibility to check the well-behavedness of the lenses that
they write. Our compiler has the ability to perform simple run-time checking and
some debugging using probe points and to track stack frames. These simple dynamic
techniques have proven helpful in developing and debugging small-to-medium sized lens
programs, but we would like to be able to reason statically that a given program is
type correct. Fortunately, the types of the primitive combinators have been designed so
that these checks are both local and essentially mechanical. The obvious next step is to
reformulate the type declarations as a type algebra and find a mechanical procedure for
statically checking (or, more ambitiously, inferring) types.
In the semantic framework of lens types we have developed, the key properties tracked

by the types are well-behavedness and totality. However, there are other properties of
lenses that one might want to track in a type system including very well behavedness,
obliviousness, adherence to the conventions about Ω, etc. Moreover, there is a natural
subsumption relation between these different lens types: e.g., every oblivious lens is very
well behaved. Once basic mechanized type checking for lenses is in place, the natural

9https://alliance.seas.upenn.edu/~harmony/old/index.html

https://alliance.seas.upenn.edu/~harmony/old/index.html


58 CHAPTER 3. BIDIRECTIONAL TRANSFORMATIONS ON TREES

next step is to stratify the type system to facilitate reasoning about these more refined
properties of lenses.
A number of other interesting questions are related to static analysis of lenses. For

instance, can we characterize the complexity of programs built from these combinators?
Is there an algebraic theory of lens combinators that would underpin optimization of
lens expressions in the same way that the relational algebra and its algebraic theory are
used to optimize relational database queries? (For example, the combinators we have
described here have the property that map l1; map l2 = map (l1; l2) for all l1 and l2, but
the latter should run substantially faster.)
This algebraic theory will play a crucial role in any serious effort to compile lens pro-

grams efficiently. Our current prototype performs a straightforward translation from a
concrete syntax similar to the one used in this chapter to a combinator library writ-
ten in OCaml. This is fast enough for experimenting with lens programming and for
small demos (our calendar lenses can process a few thousands of appointments in un-
der a minute), but we would like to apply the Harmony system to applications such as
synchronization of biological databases that will require much higher throughput.
Another area for further investigation is the design of additional combinators. While

we have found the ones we have described here to be expressive enough to code a large
number of examples—both intricate structural manipulations such as the list transfor-
mations in Section 3.7 and more prosaic application transformations such as the ones
needed by the bookmark synchronizer—there are some areas where we would like more
general forms of the lenses we have (e.g., a more flexible form of xfork, where the
splitting and recombining of trees is not based on top-level names, but involves deeper
structure), lenses expressing more global transformations on trees (including analogs
of database operations such as join), or lenses addressing completely different sorts of
transformations (e.g., none of our combinators do any significant processing on edge
labels, which might include string processing, arithmetic, etc.). Higher-level combina-
tors embodying more global transformations on trees—perhaps modeled on a familiar
tree transformation notation such as XSLT—are another interesting possibility. There
is also the question of bidirectional transformations for ordered data, which we address
in Chapter 4
Finally, we would also like to investigate recursion combinators that are less powerful

than fix , but that come equipped with simpler principles for reasoning about totality.
We already have one such combinator: map iterates over the width of the tree. However,
we think it should be possible to go further; e.g., one could define lenses by structural
recursion on trees.
More generally, what are the limits of bidirectional programming? How expressive are

the combinators we have defined here? Do they cover any known or succinctly charac-
terizable classes of computations (in the sense that the set of get parts of the total lenses
built from these combinators coincide with this class)? We have put considerable energy
into these questions, but at the moment we can only report that they are challenging!
One reason for this is that questions about expressiveness tend to have trivial answers
when phrased semantically. For example, it is not hard to show that any surjective get
function can be equipped with a put function—indeed, typically many—to form a total
lens. Indeed, if the concrete domain C is recursively enumerable, then this put function
is even computable. The real problems are thus syntactic—how to conveniently pick
out a put function that does what is wanted for a given situation.
In restricted cases, it may be possible to build lenses in simpler ways than by explicit

programming—e.g., by generating them automatically from schemas for concrete and
abstract views, or by inference from a set of pairs of inputs and desired outputs (“pro-
gramming by example”). Such a facility might be used to do part of the work for a
programmer wanting to add synchronization support for a new application (where the
abstract schema is already known, for example), leaving just a few spots to fill in.



Part II

Manipulating Ordered Data





“The art of progress is to preserve order amid change and to preserve change
amid order.”

—A N Whitehead

We now turn to the manipulation of ordered data structures. We first continue our
study of bidirectional transformations in Chapter 4, considering structured text as our
data model. This work was done with Aaron Bohannon, Nate Foster, Benjamin Pierce,
and Alexandre Pilkiewicz (Bohannon et al., 2008).
In the next two chapters, we enrich the object of study by addressing the manipulation

of XML, a very common form of ordered data. Such manipulations are usually done in
one of two ways: using a map or giving directions. One may specify the context (the
map) in which the data of interest occurs, and capture this data, in a way similar to
the pattern matching paradigm of ML. Alternatively, one may ignore the context and
simply give directions, or path, to reach the data.

We describe in Chapter 5 an extension of the C# programming languages with prim-
itives that provide statically checked pattern matching against XML data. In this
chapter, we concentrate mostly on the design of the language and the major pitfalls we
encountered. This work was done with Vladimir Gapeyev, Michael Levin, and Benjamin
Pierce (Gapeyev et al., 2005b,c).
Finally, we develop in Chapter 6 an algorithm to check the satisfiability of an XPath

request when run against some XML schema. We prove that this algorithm is correct,
complete, and has a good theoretical and practical complexity. This last chapter is joint
work with Pierre Genevès and Nabil Layaïda (Genevès et al., 2007).





Chapter 4

Lenses for Text

4.1 Introduction

In this chapter we address the special challenges that arise when ordered data is ma-
nipulated in bidirectional languages. Our goals are both foundational and pragmatic.
Foundationally, we explore the correct treatment of ordered data, embodied abstractly
as a new semantic law stipulating that the put function must align pieces of the concrete
and abstract structures in a reasonable way, even when the update involves a reorder-
ing. Pragmatically, we investigate lenses on ordered data by developing a new language
based around notions of chunks, keys, and dictionaries. To ground our investigation,
we work within the tractable arena of string transformations. Strings already expose
many fundamental issues concerning ordering, allowing us to grapple with these issues
without the complications of a richer data model.
While primary focus is on exposing fundamental issues, we have also tried to de-

sign our experimental language, Boomerang, to be useful in practice. There is a lot of
string data in the world—textual database formats (iCalendar, vCard, BibTeX, CSV),
structured documents (LaTeX, Wiki, Markdown, Textile), scientific data (SwissProt,
Genebank, FASTA), and simple XML formats (RSS, AJAX data) and microformats
(JSON, YAML) whose schemas are non-recursive—and it is often convenient to manip-
ulate this data directly, without first mapping it to more structured representations.
Since most programmers are already familiar with regular languages, we hope that a
bidirectional language for strings built around regular operations (i.e., finite state trans-
ducers) will have broad appeal.
Our contributions can be summarized as follows.

1. We develop a set of string lens combinators with intuitive semantics and typing
rules that ensure the lens laws, all based on familiar regular operators (union,
concatenation, and Kleene-star).

2. We address a serious issue in bidirectional manipulation of ordered data—the need
for lenses to be able to match up chunks of data in the concrete and abstract struc-
tures by key rather than by position, which we call resourcefulness—by adding two
more combinators and interpreting all the combinators in an enriched semantic
space of dictionary lenses.

3. We formalize a condition called quasi-obliviousness and use it to study properties
of dictionary lenses. Some previously studied properties of basic lenses also have
neat characterizations using this condition.

4. We sketch the design and implementation of Boomerang, a full-blown bidirectional
programming language based on dictionary lenses, and describe some programs we



64 CHAPTER 4. LENSES FOR TEXT

have built for transforming real-world data structures such as SwissProt.

Lenses

The language described in this chapter is an extension of the one in Chapter 3—called
basic lenses here.1
Formally, a basic lens l mapping between a set of inputs C (“concrete structures”) and

a set of outputs A (“abstract structures”) comprises three functions

l. get ∈ C → A
l. put ∈ A→ C → C

l. create ∈ A→ C

obeying the following laws for every c ∈ C and a ∈ A:

l. put (l. get c) c = c (GetPut)

l. get (l. put a c) = a (PutGet)

l. get (l. create a) = a (CreateGet)

The set of basic lenses from C to A is written C ⇐⇒ A.

String Lenses

To give a first taste of the use of lenses with strings, let us consider a simple example
where the concrete structures are newline-separated records, each with three comma-
separated fields representing the name, dates, and nationality of a classical composer

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

and the abstract structures include just names and nationalities:

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English"

Here is a string lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA

let comps = copy "" | comp . (copy "\n" . comp)*

1The minor differences are as follow. First we handle situations where an element of C must be
created from an element of A using a create function instead of enriching C with the special element Ω
and using put . Second, as we are not considering lenses defined by recursion, we take the components
of lenses to be total functions rather than defining lenses with partial components and establishing
totality later. Finally, we take the behavioral laws as part of the fundamental definition of basic lenses,
rather than first defining bare structures of appropriate type and then adding the laws—i.e., basic lenses
correspond to well-behaved, total lenses.



4.1. INTRODUCTION 65

The first two lines define ordinary regular expressions for alphabetical data and year
ranges. We use standard POSIX notation for character sets ([A-Za-z ] and [0-9])
and repetition (+ and {4}).
The lens that processes a single composer is comp; lists of composers are processed

by comps. In the get direction, these lenses can be read as ordinary string transduc-
ers, written in regular expression style: copy ALPHA matches ALPHA in the concrete
structure and copies it to the abstract structure, and copy ", " matches and copies
a literal comma-space, while del YEARS matches YEARS in the concrete structure but
adds nothing to the abstract structure. The union (|), concatenation (.), and iteration
(*) operators work as expected. Thus, the get component of comp matches an entry
for a single composer, consisting of a substring matching the regular expression ALPHA,
followed by a comma and a space (all of which are copied to the output), followed by a
string matching YEARS and another comma and space (which are not copied) and a final
ALPHA. The get of comps matches either a completely empty concrete structure (which
it copies to the output) or a newline-separated concatenation of entries, each of which
is processed by comp.

The put component of comps restores the dates positionally: the name and nationality
from the nth line in the abstract structure are combined with the years from the nth line
in the concrete structure, using a default year range to handle cases where the abstract
structure has more lines than the concrete one. We will see precisely how all this works
in Section 4.2; for now, the important point is that the put component of comps operates
by splitting both of its arguments into lines and invoking the put component of comp on
the first line from the abstract structure together with the first line from the concrete
structure, then the second line from the abstract structure together with the second
line from the concrete structure, etc. For some updates—e.g., when entries have been
edited and perhaps added at the end of the abstract structure but the order of lines has
not changed—this policy does a good job. For example, if the update to the abstract
structure replaces Britten’s nationality with “British” and adds an entry for Tansman,
the put function combines the new abstract structure

"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

with the original concrete structure and yields

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(the default year range 0000-0000 is generated by the del lens in comp from the regular
expression YEARS).

Problems with Order

On other examples, however, the behavior of this put function is highly unsatisfactory.
If the update to the abstract string breaks the positional association between lines in
the concrete and abstract strings, the output will be mangled—e.g., when the update
to the abstract string is a reordering, combining

"Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American"



66 CHAPTER 4. LENSES FOR TEXT

with the original concrete structure yields an output

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Copland and inserted into into
the entry for Britten, and vice versa.
This is a serious problem, and a pervasive one: it is triggered whenever a lens whose

get function discards information is iterated over an ordered list and the update to the
abstract list breaks the association between elements in the concrete and abstract lists.
It is a show-stopper for many of the applications we want to write.
What we want is for the put to align the entries in the concrete and abstract strings

by matching up lines with identical name components. On the inputs above, this put
function would produce

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

but neither basic lenses nor any other existing bidirectional language provides the means
to achieve this effect.

Dictionary Lenses

Our solution is to enrich lenses with a simple mechanism for tracking provenance (Cui
and Widom, 2003; Buneman et al., 2001). The idea is that the programmer should
identify chunks of the concrete string and a key for each chunk. These induce an
association between chunks and pieces of the abstract string, and this association can
be used by put during the translation of updates to find the chunk corresponding to each
piece of the abstract, even if the abstract pieces have been reordered. Operationally, we
retool all our put functions to use this association by parsing the whole concrete string
into a dictionary, where each concrete chunk is stored under its key, and then making
this dictionary, rather than the string itself, available to the put function. We call these
enriched structures dictionary lenses.
Here is a dictionary lens that gives us the desired behavior for the composers example:

let comp = key ALPHA . copy ", "
. del (YEARS . ", ")
. copy ALPHA

let comps = "" | <comp> . ("\n" . <comp>)*

The first change from the earlier version of this program is that the two occurrences
of comp in comps are marked with angle brackets, indicating that these subexpressions
are the reorderable chunks of information. The corresponding substring of the concrete
structure at each occurrence (which is passed to the put of comp) is obtained not posi-
tionally but by matching keys. The second change is that the first copy at the beginning
of comp has been replaced by the special primitive key. The lens key ALPHA has the
same copying behavior as copy ALPHA, but it additionally specifies that the matched
substring is to be used as the key of the chunk in which it appears—i.e., in this case,
that the key of each composer’s entry is their name. This choice means that we can
both reorder the entries in the abstract structure and edit their nationalities, since the
correspondence between chunks in the concrete and abstract structures is based just on
names. We do not actually demand that the key of each chunk be unique—i.e., these
“keys” are not required to be keys in the strict database sense. If several pieces of the
abstract structure have the same key, they are matched by position.



4.1. INTRODUCTION 67

Quasi-Obliviousness

For the composers example, the behavior of the new dictionary lens is clearly preferable
to that of the original basic lens: its put function has the effect of translating a reordering
on the abstract string into a corresponding reordering on the concrete string, whereas
the put function of the original lens works by position and produces a mangled result.
We would like a characterization of this difference—i.e., a way of expressing the intuition
that the second lens does something good, while the first does not.
To this end, we define a semantic space of lenses called quasi-oblivious lenses. Let

l be a lens in C ⇐⇒ A and let ∼ be an equivalence relation on C. We say that l is
a quasi-oblivious lens with respect to ∼ if its put function ignores differences between
equivalent concrete arguments.
We are primarily interested in lenses that are quasi-oblivious with respect to an equiv-

alence relating concrete strings up to reorderings of chunks. It should be clear that a
dictionary lens that operates on dictionaries in which the relative order of concrete lines
is forgotten will be quasi-oblivious with respect to such an equivalence, while the anal-
ogous basic lens, which operates on lines positionally, is not. Using the above condition
on put , we can derive intuitive properties for many such quasi-oblivious lenses—e.g., for
the dictionary lens for composers above, we can show that updates to the abstract list
consisting of reorderings are translated by the put as corresponding reorderings on the
concrete list.
Lenses that are quasi-oblivious with respect to equivalences other than reordering are

also interesting. Indeed, we can characterize some important special cases of basic lenses
(oblivious and very well behaved lenses) in terms of quasi-obliviousness.

Boomerang

Our theoretical development focuses on a small set of basic combinators. Of course,
writing large programs entirely in terms of such low-level primitives would be tedious;
we don’t do this. Instead, we have implemented a full-blown programming language,
called Boomerang, in which the combinators are embedded in a functional language, à
la Algol-60. That is, a Boomerang program is a functional program over the base type
“lens”; to apply it to string data, we first evaluate the functional program to produce a
lens, and then apply this lens to the strings. This functional infrastructure can be used
to abstract out common patterns as generic bidirectional libraries (e.g., for processing
XML structures) that make higher-level programming quite convenient.
Boomerang also comes equipped with a type checker that infers lens types and checks

the conditions needed to ensure that a dictionary lens satisfies the lens laws. The
domain and codomain types for dictionary lenses are regular languages, so the analysis
performed by this checker is very precise—a huge aid in writing correct lens programs.
Using Boomerang, we have developed several large lenses for processing a variety of

data including vCard, CSV, and XML address books, BibTeX and RIS bibliographic
databases, LaTeX documents, iTunes libraries, and databases of protein sequences rep-
resented in the ASCII SwissProt format and XML.

Outline

Section 4.2 introduces notation and formally defines the basic string lenses used in the
first example above. Syntax, semantics, and typing rules for dictionary lenses are given
in Section 4.3. Section 4.4 defines the refined semantic space of quasi-oblivious lenses.
Sections 4.5 and 4.6 describe Boomerang and our experiences building lenses for real-
world data formats. Section 4.7 discusses related work. Proofs may be found in an
accompanying technical report (Bohannon et al., 2007).



68 CHAPTER 4. LENSES FOR TEXT

4.2 Basic String Lenses

Before presenting dictionary lenses, let us warm up by formalizing the language for
basic lenses from the first example in the introduction. Let Σ be a fixed alphabet
(e.g., ASCII). A language is a subset of Σ∗. Metavariables u, v, w range over strings
in Σ∗, and ε denotes the empty string. The concatenation of two strings u and v
is written u·v; concatenation is lifted to languages L1 and L2 in the obvious way:
L1·L2 = {u·v | u ∈ L1 and v ∈ L2}. We write L∗ to denote the iteration of L: i.e.,
L∗ =

⋃∞
n=0 L

n where Ln denotes the n-fold concatenation of L with itself

L0 = {ε} and L1 = L,L2 = L·L, . . .

The typing rules for some lenses require that for every string belonging to the con-
catenation of two languages, there be a unique way of splitting that string into two
substrings belonging to the concatenated languages. Two languages L1 and L2 are un-
ambiguously concatenable, written L1·!L2, if for every u1, v1 in L1 and u2, v2 in L2

if u1·u2 = v1·v2 then u1 = v1 and u2 = v2. Similarly, a language L is unambiguously
iterable, written L!∗, if for every u1, . . . , um, v1, . . . , vn,∈ L, if u1· · · · ·um = v1· · · · ·vn
then m = n and ui = vi for every i from 1 to n.
Regular expressions are generated by the grammar

R ::= u | R·R | R|R | R∗

where u ranges over arbitrary strings (including ε). The notation [[E]] denotes the
(non-empty) language described by E ∈ R. The function choose(E) picks an arbitrary
element from [[E]].
With that notation in hand, we now define five combinators for building basic string

lenses over regular languages. Recall that we write l ∈ C ⇐⇒ A when l is a basic lens
mapping between strings in C and A. Each basic lens expects to be applied to arguments
in its domain/codomain—it is nonsensical to do otherwise. In our implementation, we
perform a membership test on every string before supplying it to a lens. (We do this
check just once, at the top level: internally, the typing rules guarantee that every sublens
is provided with well-typed inputs.)
The simplest primitive, copy E, copies every string belonging to (the language denoted

by) E from the concrete structure to the abstract structure, and conversely in the put
direction. The components of copy are precisely defined in the box below. The second
primitive lens, const E u v maps every string belonging to E to a constant string u. Its
put function restores its concrete argument. It also takes as an argument a default v
belonging to E, which is used by create when no concrete argument is available. Note
that const satisfies PutGet because its codomain is a singleton set.
The inference rules should be read as the statements of lemmas that each combinator

is a basic lens at the given type.

E ∈ R
copy E ∈ [[E]]⇐⇒ [[E]]

get c = c
put a c = a
create a = a

E ∈ R u ∈ Σ∗ v ∈ [[E]]

const E u v ∈ [[E]]⇐⇒ {u}

get c = u
put a c = c
create a = v

Several lenses can be expressed as syntactic sugar using const :

E ↔ u ∈ [[E]]⇐⇒ {u}
E ↔ u = const E u (choose(E))



4.2. BASIC STRING LENSES 69

del E ∈ [[E]]⇐⇒ {ε}
del E = E ↔ ε

ins u ∈ {ε} ⇐⇒ {u}
ins u = ε↔ u

They behave as follows: E ↔ u is like const , but uses an arbitrary element of E for
create; the get function of del E deletes a concrete string belonging to E and restores
the deleted string in the put direction; ins u inserts a fixed string u in the get direction
and deletes u in the opposite direction.
The next three combinators build bigger lenses from smaller ones using regular oper-

ators. Concatenation is simplest:

C1·!C2 A1·!A2

l1∈C1 ⇐⇒ A1 l2∈C2 ⇐⇒ A2

l1·l2∈C1·C2 ⇐⇒ A1·A2

get (c1·c2) = (l1. get c1)·(l2. get c2)
put (a1·a2) (c1·c2) = (l1. put a1 c1)·(l2. put a2 c2)
create (a1·a2) = (l1. create a1)·(l2. create a2)

The notation c1·c2 used in the definition of concatenation assumes that c1 and c2 are
members of C1 and C2 respectively; we use this convention silently from now on.

The typing rule for concatenation requires that the concrete domains and the abstract
codomains each be unambiguously concatenable. This condition is essential for ensuring
that the components of the lens are well-defined functions and that the whole lens is
well behaved. As an example of what would go wrong without these conditions, consider
the (ill-typed) lens lambig , defined as (a ↔ a | aa ↔ aa)·(a ↔ b | aa ↔ b) (we assume
“↔” binds tighter than “|”, which is defined formally below). The get component is
not well defined since, according to the above specification, lambig . get aaa = ab if we
split aaa into a·aa and lambig . get aaa = aab if we split it into aa·a. This issue could
be side-stepped using a fixed policy for choosing among multiple parses (e.g., with a
shortest match policy, lambig . get aaa = ab). However, doing so would not always
give us a lens that satisfies the lens laws; intuitively, just because one direction uses a
given match policy does not mean that the string it produces will split the same way
using the same policy in the other direction. Consider lbogus defined as k·k where k
is (a ↔ bb | aa ↔ a | b ↔ b | ba ↔ ba). Then using the shortest match policy we
have lbogus . get aaa equals (k. get a)·(k. get aa), which is bba, but lbogus . put bba aaa

equals (k. put b a)·(k. put ba aa), which is bba. That is, the GetPut law fails. For
these reasons, we require that each pair of C1 and C2 and A1 and A2 be unambiguously
concatenable.
The Kleene-star combinator is similar:

l∈C ⇐⇒ A C !∗ A!∗
l∗∈C∗ ⇐⇒ A∗

get (c1 · · · cn) = (l. get c1) · · · (l. get cn)
put (a1 · · · an) (c1 · · · cm) = c′1 · · · c′n

where c′i =

{
l. put ai ci i ∈ {1, . . . ,min(m,n)}
l. create ai i ∈ {m+ 1, . . . , n}

create (a1 · · · an) = (l. create a1) · · · (l. create an)

Note that the put component of l∗ calls the put of l on elements of A and C having the
same index in their respective lists. This is the root of the undesirable behavior in the



70 CHAPTER 4. LENSES FOR TEXT

example in the introduction.2 Also note that it must handle cases where the number of
As is not equal to the number of Cs. Since the number of As produced by the get of l∗
equals the number of Cs in its argument, the result of the put function must have exactly
as many Cs as there are As in its abstract string—otherwise, PutGet would not hold.
When there are more Cs than As, the lens simply ignores the extra Cs. When there
are more As, it must put them back into the concrete domain, but it has no concrete
argument to use. It uses l. create to process these extra pieces.
The final combinator forms the union of two lenses:

C1 ∩ C2 = ∅
l1∈C1 ⇐⇒ A1 l2∈C2 ⇐⇒ A2

l1 | l2∈C1 ∪ C2 ⇐⇒ A1 ∪A2

get c =

{
l1. get c if c ∈ C1

l2. get c if c ∈ C2

put a c =


l1. put a c if c ∈ C1 ∧ a ∈ A1

l2. put a c if c ∈ C2 ∧ a ∈ A2

l1. create a if c ∈ C2 ∧ a ∈ A1 \A2

l2. create a if c ∈ C1 ∧ a ∈ A2 \A1

create a =

{
l1. create a if a ∈ A1

l2. create a if a ∈ A2 \A1

The typing rule forces C1 and C2 to be disjoint. Like the ambiguity condition in the
rule for concatenation, this condition is essential to ensure that the lens is well defined.
The abstract codomains, however, may overlap. In the put direction, when the abstract
argument belongs to A1 ∩ A2, the union lens uses the concrete argument to select a
branch. In the create function, since no concrete argument is available, it just uses l1.
(This choice is arbitrary, but is not a limitation: to use l2 by default, the programmer
writes l2 | l1. It does mean, though, that union is not commutative.)
In some situations, the put function is invoked with an original concrete view c be-

longing to the concrete domain of the lens on one side of the union (say l1) and an
updated abstract view a belonging to the abstract codomain of the opposite lens (l2).
Although c is not an element of C2, it may still have information that can be represented
in C2. If such information was thrown away when computing the abstract view, then we
would like for the put function to reintegrate it, in some manner, with a. In Chapter 3,
we used a notion of “fixup” functions—from C2 to C1 and vice versa—for extracting
the common information and mapping it into a concrete argument of appropriate type.
Semantically fixup functions are exactly what is needed—one can show that the con-
ditional lens formulated using them is most general. But syntactically they are very
unattractive, because the programmer has to write down two additional functions on
the concrete domains! We believe that dictionary lenses may offer a better alternative
because, in their basic form, they have the ability to transfer information from one
side of a union to another via the dictionary without requiring explicit fixup functions
(see Section 4.3). Thus, we refrain from introducing fixup functions here and make the
simple, but arguably sub-optimal, choice of discarding the concrete argument in these
cases.

2We cannot, however, repair the problem just by fixing Kleene-star; the same issues come up with
concatenation.



4.3. DICTIONARY LENSES 71

4.3 Dictionary Lenses

Now that we’ve seen basic string lenses, let us define lenses that deal more flexibly with
ordering. We will accomplish this by adding two new primitives, match (written with
angle brackets in the concrete syntax of Boomerang) and key , and interpreting these
new primitives and the primitives defined in the previous section in a refined space called
dictionary lenses.
The main difference between basic and dictionary lenses is that their put components

operate on different types of structures—strings and dictionaries respectively. Dictio-
nary lenses also include two new components: parse, which is used to build a dictionary
out of a concrete string, and key , which is used to compute the key of data that goes
into a dictionary.
In a dictionary lens, the work of the basic lens put function is divided into two

phases. In the first, the concrete string is given to parse, which splits it into two parts:
a collection of concrete chunks organized as a dictionary and a skeleton representing
the parts of the string outside of the chunks. In the second, the put function uses the
abstract string, the skeleton, and the dictionary to build an updated concrete string
(and a new dictionary). These phases occur in strict sequence: given a dictionary lens
l, an abstract string a, and a concrete string c, we first parse c, which yields a skeleton
s and dictionary d; these are then passed, together with a, to l’s put function, which
walks recursively over the structure of s and a, threading d through l’s sublenses and
pulling chunks out as needed.
To streamline the exposition, we start with the definition of dictionary lenses, which

relies on several notions we have not seen yet—skeleton sets S, the set of keys K,
dictionary type specifications L, dictionary types D(L), and an infix operation ++ that
appends dictionary values. These are defined below.
A dictionary lens from C to A with skeleton type S and dictionary type specification

L has components

l. get ∈ C → A
l. parse ∈ C → S ×D(L)
l. key ∈ A→ K

l. create ∈ A→ D(L)→ C ×D(L)
l. put ∈ A→ S ×D(L)→ C ×D(L)

obeying the following behavioral laws:3

s, d′ = l. parse c d ∈ D(L)

l. put (l. get c) (s, (d′ ++ d)) = c, d
(GetPut)

c, d′ = l. put a (s, d)

l. get c = a
(PutGet)

c, d′ = l. create a d
l. get c = a

(CreateGet)

We write C S,L⇐⇒ A for the set of dictionary lenses with this type.
Both create and put consume dictionaries. We thread dictionaries through calls to

these functions in a functional style that simulates a global, mutable dictionary, and
remove entries as they are used, so that the next lookup of the same key finds the
(positionally) next chunk from the concrete string. The put function takes a skele-
ton argument, whereas the create function does not. The skeleton, when available,

3In law GetPut, the extra dictionary d shows that all and only the chunks originating from c are
used by the put function.



72 CHAPTER 4. LENSES FOR TEXT

represents the original concrete string with the chunks removed and provides enough
information to reconstruct the original concrete string in cases where GetPut requires
it.
To see how the components of a dictionary lens fit together, let us see how to build a

basic lens l from a dictionary lens l:

l. get c = l. get c
l. put a c = π1(l. put a (l. parse c))
l. create a = π1(l. create a {})

This definition embodies the strict phase separation between parse and put discussed
above. It is easy to show that the dictionary lens laws guarantee the original laws for
basic lenses built this way.

Theorem 4.3.1. If l ∈ C S,L⇐⇒ A then l ∈ C ⇐⇒ A.

We now give the definitions deferred previously. We write h :: t for the list with head
h and tail t, List(X) for the set of lists of X and, and l1 @ l2 for the concatenation of
lists l1 and l2. We write X × Y for the set of pairs {(x, y) | x ∈ X and y ∈ Y }.
We take the set of skeletons S to be the smallest set closed under these operations
that includes plain strings and a distinguished atom �, which is used to mark the
locations of chunks in skeletons. Formally, S =

⋃∞
n=0 Sn, where S0 = Σ∗ ∪ {�} and

Si+1 = Si ∪ (Si × Si) ∪ List(Si). We define K, the set of keys, to be just Σ∗.
As chunks may be nested within chunks (by nesting the match combinator), the type

of dictionaries is recursive. A dictionary is a total function from keys to lists of pairs,
each consisting of a skeleton and another dictionary. Formally, the set of dictionaries is
defined recursively on the structure of a list of sets of skeletons L ∈ List(P(S)) specifying
the skeletons that may appear at each level, as follows:

D([]) = K → {[]}
D(S :: L) = K → List(S ×D(L))

We write {} for the dictionary that maps every k to the empty list. Let d be a dictionary,
k a key, and v a skeleton-dictionary pair list of appropriate type. The update of a
dictionary, written d[k ← v], is defined as

d[k ← v](k′) =

{
d(k′) if k′ 6= k
v if k′ = k

We write {k1 7→ v1, . . . , kn 7→ vn} for {}[k1 ← v1] · · · [kn ← vn]. The concatenation
of two dictionaries d1 and d2, written d1 ++ d2, is defined using list concatenation as
follows: (d1 ++ d2)(k) = d1(k) @ d2(k). Dictionaries are accessed using a partial function
lookup that takes a key k and a dictionary d as arguments. When it finds a matching
value, lookup returns the value found and the dictionary that remains after deleting that
value.

lookup(k, d) =

{
e, d[k ← l] if d(k) = e :: l
undefined otherwise

We now reinterpret each combinator from the previous section as a dictionary lens
and give the definitions of the new combinators key and match. The key combinator is
nearly identical to copy , except that the key component of copy is a constant function
(returning ε), while the key component of key returns the abstract string.



4.3. DICTIONARY LENSES 73

E ∈ R L ∈ List(P(S))

copy E∈[[E]]
[[E]],L⇐⇒ [[E]]

get c = c
parse c = c, {}
key a = ε
create a d = a, d
put a (s, d) = a, d

E ∈ R L ∈ List(P(S))

key E∈[[E]]
[[E]],L⇐⇒ [[E]]

get c = c
parse c = c, {}
key a = a
create a d = a, d
put a (s, d) = a, d

The refined definition of const is also straightforward.

E ∈ R u ∈ Σ∗ v ∈ [[E]] L ∈ List(P(S))

const E u v∈[[E]]
[[E]],L⇐⇒ {u}

get c = u
parse c = c, {}
key a = ε
create u d = v, d
put u (s, d) = s, d

Concatenation is similar to string lenses, but create and put thread the dictionary
through the corresponding sublens functions.

l1∈C1
S1,L⇐⇒ A1 C1·!C2

l2∈C2
S2,L⇐⇒ A2 A1·!A2

l1·l2∈C1·C2
S1×S2,L⇐⇒ A1·A2

get c1·c2 = (l1. get c1)·(l2. get c2)
parse c1·c2 = (s1, s2), d1 ++ d2

where si, di = li. parse ci
key a1·a2 = l1. key a1 · l2. key a2

create a1·a2 d1 = c1·c2, d3

where ci, di+1 = li. create ai di
put a1·a2 ((s1, s2), d1) = c1·c2, d3

where ci, di+1 = li. put ai (si, di)

Lens concatenation is associative, modulo coercion to basic lenses: even though the
skeleton structure of a lens differentiates (l1·l2)·l3 from l1·(l2·l3), we have (l1·l2)·l3 =
l1·(l2·l3). We implicitly associate lens concatenation (and the corresponding set-theoretic
operations) to the left.
To illustrate the definitions we have seen so far, consider the following dictionary lens:

l$ = key x∗ · del y∗ · copy (z∗·$)

with l$ ∈ x∗·y∗·z∗·$ S,[]⇐⇒ x∗·z∗·$
and S = x∗ × y∗ × z∗·$.

The parse function of l$ breaks apart a string according to the structure of the concrete
domain:

l$. parse xxyz$ = (xx, y, z$), {} ++ {} ++ {}



74 CHAPTER 4. LENSES FOR TEXT

(The dictionary is empty because none of the sublenses use the match operator.) The
key function returns the xx...x prefix of an abstract string. The other components of
this lens induce the same functions as in the basic lens semantics.
The iteration combinator is analogous to the concatenation operator. Its parse func-

tion builds a concatenated dictionary and its put and create functions thread their
dictionary argument (from left to right) through the corresponding sublens functions.

l∈C S,L⇐⇒ A C !∗ A!∗

l∗∈C∗ List(S),L⇐⇒ A∗

get c1 · · · cn = (l1. get c1) · · · (l. get cn)
parse c1 · · · cn = [s1, . . . , sn], d1 ++ · · · ++ dn

where si, di = l. parse ci
key a1 · · · an = l. key a1 · · · l. key an
create a1 · · · an d1 = (c1 · · · cn), dn+1

where ci, di+1 = l. create ai di
put a1 · · · an ([s1, . . . , sm], d1) = (c1 · · · cn), dn+1

where ci, di+1 =


l. put ai (si, di)
i ∈ {1, . . . ,min(m,n)}

l. create ai di
i ∈ {m+ 1, . . . , n}

The most interesting new combinator is match. Its get component passes off con-
trol to the sublens l. The put component matches up its abstract argument with a
corresponding item in the dictionary and supplies both to the put function of l.

l∈C S,L⇐⇒ A

〈l〉∈C {�},S::L⇐⇒ A

get c = l. get c
parse c = �, {l. key (l. get c) 7→ [l. parse c]}
key a = l. key a

create a d =


π1(l. put a(sa, da)), d′

if (sa, da), d′ = lookup(l. key a, d)
π1(l. create a {}), d
if lookup(l. key a, d) undefined

put a (�, d) =


π1(l. put a (sa, da)), d′

if (sa, da), d′ = lookup(l. key a, d)
π1(l. create a {}), d
if lookup(l. key a, d) undefined

To illustrate the operation of match, consider the lens 〈l$〉∗. It has the same get
behavior as l$∗, but its put function restores the ys to each chunk using the association
induced by keys rather than by position. Let us calculate the result produced by the
following application of the derived put function:

〈l$〉∗. put xxzzz$x$ xyz$xxyyzz$

Here, the update to the abstract string has swapped the order of the chunks and changed
the number of zs in each chunk. The parse function produces a dictionary structure



4.3. DICTIONARY LENSES 75

that associates (the parse of) each chunk to its key:

〈l$〉∗. parse xyz$xxyyzz$

= [�,�],

{
x 7→ [((x, y, z$), {})],
xx 7→ [((xx, yy, zz$), {})]

}
Each step invokes the put of the match lens, which locates a concrete chunk from the
dictionary and invokes the put of l$. The final result illustrates the “resourcefulness” of
this lens:

〈l$〉∗. put xxzzz$x$ xyz$xxyyzz$ = xxyyzzz$xy$

By contrast, the put component of the basic lens l$∗ is not resourceful—it restores the
ys to each chunk by position:

l$∗. put xxzzz$x$ xyz$xxyyzz$ = xxyzzz$xyy$

The final operator forms the union of two dictionary lenses:

l1∈C1
S1,L⇐⇒ A1

l2∈C2
S2,L⇐⇒ A2

C1 ∩ C2 = ∅ S1 ∩ S2 = ∅
l1 | l2∈C1 ∪ C2

S1∪S2,L⇐⇒ A1 ∪A2

get c =

{
l1. get c if c ∈ C1

l2. get c if c ∈ C2

parse c =

{
l1. parse c if c ∈ C1

l2. parse c if c ∈ C2

key a =

{
l1. key a if a ∈ A1

l2. key a if a ∈ A2\A1

create a d =

{
l1. create a d if a ∈ A1

l2. create a d if a ∈ A2\A2

put a (s, d) =


l1. put a (s, d) if a, s ∈ A1×S1

l2. put a (s, d) if a, s ∈ A2×S2

l1. create a d if a, s ∈ (A1\A2)×S2

l2. create a d if a, s ∈ (A2\A1)×S1

This definition is analogous to the union operator for basic string lenses. Because
the put function takes a skeleton and dictionary rather than a concrete string (as the
basic lens put does), the last two cases select a branch using the skeleton value. The
typing rule ensures that skeleton domains are disjoint so that this choice is well-defined.
The union combinator is associative, but not commutative (for the same reason that
the basic lens is not).
One interesting difference from the basic lens is that the create function takes a

dictionary argument, which can be used to transfer information from one branch to the
other. The following example illustrates why this is useful. Define l$$ = 〈l$〉 | 〈l$〉·〈l$〉.
The typing rules give us the following facts:

l$$ ∈ EC | EC ·EC
{�,(�,�)},[S]⇐⇒ EA | EA·EA,

where EC = x∗·y∗·z∗·$ EA = x∗·z∗·$
S = x∗ × y∗ × z∗·$.

Now consider c1, c2 ∈ EC and a1, a2 ∈ EA, where ai = l$. get ci. We have l$$. get c1·c2 =
a1·a2. A natural way for the put function to reflect an update of a1·a2 to a2 on the



76 CHAPTER 4. LENSES FOR TEXT

concrete string would be to produce c2 as the result. However, since the update involves
crossing from one branch of the union to the other, the basic lens version cannot achieve
this behavior—crossing branches always triggers a create with defaults. For example,
with c1 = xyz$, c2 = xxyyzz$, a1 = xz$, and a2 = xxzz$, we have

(l$ | l$·l$). put xxzz$ xyz$xxyyzz$ = xxzz$.

The dictionary lens version, however, is capable of carrying information from the con-
crete string via its dictionary, even when the update changes which branch is selected.
On the same example, we have

l$$. put xxzz$ xyz$xxyyzz$ = xxyyzz$,

as we might have hoped.

4.4 Quasi-Obliviousness

As the examples above demonstrate, dictionary lenses can be written to work well in
situations where the updates to abstract strings involve reordering. In particular, the
dictionary lens version of the composers lens in the introduction behaves well with
respect to reordering, while the original basic lens version does not. In this section, we
develop a refinement of the semantic space of basic lenses that makes such comparisons
precise. We first define a space of quasi-oblivious lenses and show how it can be used
to derive intuitive properties of lenses operating on ordered data. We then show how
it can be used more generally to succinctly characterize two important special cases of
basic lenses—oblivious and very well behaved lenses.
Quasi-obliviousness is an extensional property of lenses—i.e., a property of the way

they transform entire abstract and concrete structures. When discussing it, there is
no need to mention internal structures like skeletons and dictionaries. We therefore
return in this section to the simpler vocabulary of basic lenses, keeping in mind that a
dictionary lens l can be converted into a basic lens l as described in Section 4.3.
Let l be a basic lens from C to A and let ∼ be an equivalence relation on C. Then l

is quasi-oblivious with respect to ∼ if it obeys the following law for every c, c′ ∈ C and
a ∈ A:

c ∼ c′
l. put a c = l. put a c′

(EquivPut)

Note that the law has equality rather than ∼ in the conclusion; this is because the put
must propagate all of the information contained in a to satisfy PutGet. In particular,
the order of chunks in the result of the put is forced by their order in a.
Like the basic lens laws, EquivPut is a simple condition that guides the design

of lenses by specifying what effect they must have in specific cases where the correct
behavior is clear. One way to understand its effect is to notice how it extends the range
of situations to which the GetPut law applies—GetPut only constrains the behavior
of the put on the unique abstract string generated from a concrete string by get ; with
EquivPut, it must have the same behavior on the entire equivalence class.
Here is an example demonstrating how EquivPut and GetPut can be used together

to derive an useful property of the put component of a lens, without any additional
knowledge of how put operates. Let C and A be regular languages and suppose that we
can identify the chunks of every string in C and the key of each chunk. For example, in
the composers lens, the chunks are the lines and the keys are the names of the composers.
These chunks and keys induce an equivalence relation on C where two strings c and c′
are equivalent if they can be obtained from each other by a key-respecting reordering of



4.4. QUASI-OBLIVIOUSNESS 77

chunks—i.e., by repeatedly swapping chunks such that the relative ordering of chunks
with the same key is preserved. Write ∼ for this equivalence relation. Now let l be a
quasi-oblivious lens with respect to∼ and suppose that the notions of chunks and keys on
C are carried by the get function to A in a natural way, and that every key-respecting
reordering on A can be generated by applying the get function to a correspondingly
reordered string in C. (This is the case with our dictionary lens in the composer example:
chunks in the abstract codomain are lines, the composer names are preserved by the
get function, and the order of the abstract lines after a get is the same as the order of
the lines in the concrete structure.) Consider an arbitrary concrete string c, an abstract
string a = get c, and an updated abstract string a′ that is obtained by reordering chunks
in a. Let us calculate the result of applying put to a′ and c. By the above hypothesis,
since a′ was obtained by reordering the chunks in a, it is equal to the get of c′ for some
c′ obtained from c by the corresponding reordering of chunks. By the GetPut law,
applying the put function to a′ and c′ is c′; by EquivPut, applying the put function
to a′ and c also yields c′. Thus, quasi-obliviousness lets us derive an intuitive result:
the put function translates reorderings of chunks in the abstract string as corresponding
reorderings on the concrete string.
The EquivPut law is useful both as a constraint on the design of lens primitives

(in particular, dictionary lenses are designed with this principle in mind, for an equiv-
alence based on reordering chunks) and as a guide for developing intuitions. Quasi-
obliviousness does not, however, provide a complete specification of the correct handling
of ordering in bidirectional languages. For example, it does not say what happens when
the update to the abstract string deletes chunks or edits the value of a key. To capture
such cases, one could formulate a condition stipulating that the put function must align
chunks by key. Specifying this condition, however, requires talking about the sublens
that operates on the chunks, which implies a syntactic representation of lenses analogous
to dictionary lenses. We thus prefer to only consider the extensional law, even though
it provides guarantees in fewer situations.
By design, each dictionary lens is quasi-oblivious with respect to an equivalence re-

lation that can be read off from its syntax. The equivalence identifies strings up to
key-respecting reorderings of chunks, where chunks are denoted by the occurrences of
angle brackets, and keys by the sections each chunk marked using the key combinator.
To see that every dictionary lens is quasi-oblivious with respect to this equivalence,
observe that parse maps strings that are equivalent in this sense to identical skeletons
and dictionaries, and recall that the put function for a dictionary lens (when viewed as
a basic lens) wraps an invocation of parse, and of put , which operates on this skeleton
and dictionary directly. It follows that put behaves the same on equivalent concrete
strings.
Returning to the composers example, we can see that why the basic lens is bad and the

dictionary lens is good: the equivalence the programmer had in mind for both versions
was the one that can be read off from the second one—every line is a chunk, and the
relative order of lines with different names should not affect how dates are restored
by the put function. The first version of the lens, which operates positionally, is not
quasi-oblivious with respect to this equivalence.
So far, we have focused on equivalence relations which are key-respecting reorderings

of chunks. More generally, we can consider arbitrary equivalences on C. In the rest of
this section, we investigate some properties of this more general view of quasi-oblivious
lenses.
For a given basic lens l, there are, in general, many equivalence relations ∼ such that

l is an quasi-oblivious lens with respect to ∼. We write Cl(∼) for the set of equiva-
lence classes (i.e., subsets of the concrete domain) of ∼. Every lens l is trivially quasi-
oblivious with respect to equality, the finest equivalence relation on C, and the relation
∼max, defined as the coarsest equivalence for which l satisfies EquivPut (c∼maxc

′ iff



78 CHAPTER 4. LENSES FOR TEXT

∀a. put a c = put a c′). Between equality and the coarsest equivalence, there is a lattice
of equivalence relations.
Given an equivalence relation, every concrete element c may be characterized by the

data preserved in the abstract codomain and the rest of the data shared by every other
view of the equivalence class containing c. That is, given Ci ∈ Cl(∼) and an abstract
view a, there is at most one view c such that c ∈ Ci and l. get c = a. Conversely,
if two different concrete views map to the same a, then they must belong to different
equivalence classes.
In Chapter 3, two special classes of lenses are discussed. A lens l ∈ C ⇐⇒ A is called

oblivious if its put function ignores its concrete argument completely. A lens l is very
well behaved if the effect of two puts in sequence just has the effect of the second—
i.e., if l. put a (l. put a′ c) = l. put a c for every a, a′, and c. (Very well behavedness
is a strong condition and imposing it on all lenses would prevent writing many useful
transformations. For example, note that neither variant of the composers lens is very
well behaved: if we remove a composer and add the same composer back immediately
after, the birth and death dates will be the default ones instead of the original ones.
This may be seen as unfortunate, but the alternative is disallowing deletions!)
Interestingly, both of these conditions can be formulated in terms of ∼max. A lens

l is oblivious iff the coarsest relation ∼max satisfying EquivPut is the total relation
on C. Moreover, l is very well behaved iff ∀Ci ∈ Cl(∼max). l. get Ci = A. This
condition puts the abstract codomain in a bijection with each equivalence class of ∼
and forces the operation of the put function to use the information in the abstract and
concrete structures as follows: the concrete structure identifies an equivalence class Ci;
the information contained in the abstract structure determines an element of Ci. This
turns out also to be equivalent to the classical notion of view update translation under
“constant complement” (Bancilhon and Spyratos, 1981).

4.5 Boomerang

Programming with combinators alone is low-level and tedious. To make lens program-
ing more convenient, we have implemented a high-level programming language called
Boomerang on top of our core primitives.
Boomerang’s architecture is simple: dictionary lens combinators are embedded in a

simply typed functional language (we use the syntactic conventions of OCaml) built over
the base types string, regexp, and lens. The language has all of the usual constructs:
functions and let-definitions,4 as well as constants for using dictionary lenses with the
interface of a basic lens (as described in Section 4.3):

get : lens -> string -> string
put : lens -> string -> string -> string
create : lens -> string -> string

Evaluation in Boomerang is logically divided into two levels, in the style of Algol
60. At the first level, expressions are evaluated using the standard strategy of a call-
by-value λ-calculus. This, in turn, may trigger the assembly (and type checking!) of
a new dictionary lens value. The run-time representation of a dictionary lens value is
a record of functions (representing the get , parse, key , create, and put components)
and several finite-state automata (representing the concrete, abstract, skeleton, and
dictionary components of the type); when a lens is built, the type checker checks the
conditions mentioned in the typing rules using operations on these automata.

4Although it is semantically straightforward to define lenses by recursion (see chapter 3), Boomerang
does not support recursive definitions as it would then be possible to define lenses with context-free
types.



4.5. BOOMERANG 79

Using libraries and user-defined functions, it is possible to assemble large combinator
programs quite rapidly. For example, the following user-defined function encapsulates
the low-level details of escaping characters in XML. It takes a regular expression excl
of excluded characters, and yields a lens mapping between raw and escaped PCDATA
characters:

let xml_esc (excl:regexp) =
copy ([^&<>\n] - excl)
| ">" <-> "&gt;"
| "<" <-> "&lt;"
| "&" <-> "&amp;"

(When xml_esc is applied, the value passed for excl typically contains the “separators”
of fields in the format; these are used by the type checker, e.g., to verify unambiguous
iteration.)
Similarly, the next two functions handle the details of processing atomic values and

entire fields in BibTeX and RIS-formatted bibliographic databases. They are defined in
a context where ws, quot_str, brac_str, and bare_str are bound to the lenses used
to process whitespace, quoted strings, strings enclosed in curly braces, and bare strings
respectively.

let val (ld:string) (r:regexp) (rd:string) =
del (ws . "=" . ws . ld) .
copy r .
del (rd . ws . "," . ws . "\n")

let field (bibtex:string) (ris:string) =
let quot_val = val "\"" quot_str "\"" in
let brac_val = val "{" brac_str "}" in
let bare_val = val "" bare_str "" in
let any_val = quot_val | brac_val | bare_val in
ws . bibtex <-> ris . any_val . ins "\n"

The val function is used to tidy BibTeX values; when it is applied to a left delimiter
string ld, a regular expression describing the value r, and a right delimiter string rd, it
produces a dictionary lens that strips out the “=” character, whitespace, and delimiters.
The field function takes as arguments strings representing the name of a BibTeX field
(e.g. title) and the corresponding RIS field (T1) and produces a dictionary lens that
maps between entire key-value pairs in each format.
The most significant challenges in implementing Boomerang come from the heavy use

of regular expressions in its type system. Since the types of dictionary lenses involve
regular languages, Boomerang’s type checker needs to be able to decide equivalence, in-
clusion, and emptiness of regular languages, which are all standard. However, standard
automata libraries do not provide operations for deciding unambiguous concatenation
and iteration, so we implemented a custom automata library for Boomerang. Our library
uses well-known techniques to optimize the representation of transition relations, and
to recognize several fast paths in automata constructions. Even with these optimiza-
tions, as several operations use product constructions, the memory requirements can be
significant. In our experience, performance is good enough for examples of realistic size,
but we plan to investigate further optimizations in the future.
Because the type analysis performed by the dictionary lens type checker is so precise,

many subtle errors—overlapping unions, ambiguous concatenations, etc.—are detected
early. Boomerang supports explicit programmer annotations of dictionary lens types,
written in the usual way as let e : (C <-> A). It also has mechanisms for printing
out inferred types and generating counterexamples when type checking fails. We have



80 CHAPTER 4. LENSES FOR TEXT

found all these features incredibly helpful for writing, testing, and debugging large lens
programs.5

4.6 Experience

We have built Boomerang lenses for a variety of real-world formats, including an address
book lens that maps between vCard, CSV, and XML; a lens that maps BibTeX and
RIS bibliographic databases; and lenses for calculating simple ASCII views of LaTeX
documents and iTunes libraries represented in XML as Apple property lists. Our largest
Boomerang program converts between protein sequence databases represented in ASCII
using the SwissProt format and XML documents conforming to the UniProtKB schema.
For example, the following snippet of a SwissProt entry

OS Solanum melongena (Eggplant) (Aubergine).
OC Eukaryota; Viridiplantae.
OX NCBI_TaxID=4111;

is mapped to a corresponding UniProtKB XML value:

<name type="scientific">Solanum melongena</name>
<name type="common">Eggplant</name>
<name type="synonym">Aubergine</name>
<dbReference type="NCBI Taxonomy" key="1" id="4111"/>
<lineage>

<taxon>Eukaryota</taxon>
<taxon>Viridiplantae</taxon>

</lineage>

Like many textual database formats, SwissProt databases are lists of entries consist-
ing of tagged lines; our lens follows this structure. Entries are processed by the match
combinator as distinct chunks, so that the information discarded by the get (e.g., meta-
data about each entry’s creation date) can be restored correctly when updates involve
reorderings. The identifier line provides a natural key. Other lines are processed using
lenses specifically written for their data (of course, we factor out common code when
possible). Most of these consist of simple filtering and reformatting, and are therefore
straightforward to write as dictionary lens combinators.
Interestingly, as we were developing this lens, the Boomerang type checker uncovered

a subtle ambiguity in one of the lines that stems from the use of both “,” and “;”
as separators. Some implicit conventions not mentioned in the specification avoid this
ambiguity in practice (and we were able to revise our code to reflect these conventions).
The precision of Boomerang’s type system makes it a very effective tool for debugging
specifications!

4.7 Related Work

Basic lenses were the starting point for this work. Chapter 3 includes an extensive survey
of the connections between basic lenses and the view update problem in the database
literature.
Meertens’s formal treatment of constraint maintainers for user interfaces (1998, Sec-

tion 5.3) recognizes the problem we are dealing with in this chapter when operating
on lists, and proposes a solution for the special case of “small updates” specified by
edit operations, using a network of constraints between list entries. The idea of using

5And small ones! All the lenses and examples typeset in a typewriter font in this chapter were
checked and run within the Boomerang system.



4.7. RELATED WORK 81

constraints between concrete and abstract structures is related to our use of keys in
dictionary lenses, but handling updates by translating edit operations represents a sig-
nificant departure from the approach used in lenses, where “updates” are not given as
operations, but by the updated value itself. The treatment of ordering for lists and trees
in the bidirectional languages X and Inv (Hu et al., 2004; Mu et al., 2004), comes clos-
est to handling the sorts of “resourceful updating” situations that motivate this work.
Their approach is based on Meertens’s ideas. As in his proposal, updates to lists in
X are performed using edit operations. But rather than maintaining a correspondence
between elements of concrete and abstract lists, the semantics of the edit operation is
a function yielding a tagged value indicating which modification was performed by the
edit. The structure editor described in Hu et al. (2004) based on X does handle single
insert and delete operations correctly by propagating these modification tags locally in
lists. However, the move operation is implemented as a delete followed by an insert.
This means that the association between the location of the moved element in the con-
crete and abstract lists is not maintained, and so moved data is populated with default
values at the point of insertion; e.g., our composers example is not handled correctly.
There is a large body of work on bidirectional languages for situations in which round-

trips are intended to be bijective modulo “ignorable information” (such as whitespace).
XSugar (Brabrand et al., 2007) is a bidirectional language that targets the special case
when one structure is an XML document and the other is a string. Transformations
are specified using pairs of intertwined grammars. A similar bidirectional language,
biXid (Kawanaka and Hosoya, 2006), operates just on XML data. The PADS sys-
tem (Fisher and Gruber, 2005) makes it possible to generate a data type, parser,
and pretty printer for an ad-hoc data formats from a single, declarative description.
PADS comes with a rich collection of primitives for handling a wide variety of data
including characters, strings, fixed-with integers, floating point values, separated lists,
etc. Kennedy’s combinators (2004) describe pickler and unpicklers. Benton (2005) and
Ramsey (2003) both describe systems for mapping between run-time values in a host
language and values manipulated by an embedded interpreter. In all of these systems,
as round-trips are intended to be essentially bijective, the problems with reordering that
our dictionary lenses are designed to solve do not come up.
JT (Ennals and Gay, 2007) synchronizes programs written in different high level

languages, such as C and Jekyll, an extension of C with features from ML. JT relies on
a notion of distance to decide how to propagate modifications, allowing the detection
of non local edits such as the swap of two functions. The synchronization seems to
work well in many cases but there is no claim that the semantics of the synchronized
programs are the same.
Our lens combinators are based on finite-state transducers, which were first formulated

as multitape automata by Scott and Rabin (1959). Languages based on finite-state
automata have been developed, largely in the area of natural language processing; the
collection edited by Roche and Schabes gives a survey (1996). Mechanized checking for
string processing languages that, like Boomerang, have type systems based on regular
automata have also been studied (Tabuchi et al., 2002).





Chapter 5

Xtatic

5.1 Introduction

Xtatic aims at adding native support for statically typed XML processing to a main-
stream object-oriented language. Its guiding design principles are simplicity—the ex-
tension should be lightweight and easy for programmers to understand; integration—it
should fit cleanly and inter-operate smoothly with the host language at all levels (data
model, type system, control structures, run-time system, VM, libraries); and flexibility—
its mechanisms for manipulating and typing XML should support a full spectrum of pro-
cessing styles, from dynamic investigation of documents of unknown or partially known
types to fully checked processing of documents for which complete type information is
known, and should be robust in the face of program and schema evolution.

Xtatic adds to C] two critical mechanisms, both adapted from XDuce (Hosoya and
Pierce, 2000, 2003): regular types for XML (Hosoya et al., 2005b) and regular patterns
for accessing XML data in the style of “grep for trees” (Hosoya and Pierce, 2001). We
have used these features to build a number of small and medium-sized demos.
The goal of this chapter is to draw together our experience with the language design

as a whole, identifying the issues that seem, in the light of hindsight, most crucial and
evaluating the choices we have made in addressing them. In particular, we evaluate
the tradeoffs between simplicity and power in the choice of underlying tree grammar
formalisms, between structural and nominal treatments of subtyping, between various
approaches to static typing for attributes, and between regular patterns and XPath-
style paths.
After a small example in Section 5.2, showing the key features of the language—regular

types and regular pattern matching—we discuss in detail the most important issues in
the design of the type system (Section 5.3), the run-time values used to represent XML
data (Section 5.4), and the mechanisms for pattern matching (Section 5.5). Section 5.6
surveys related language designs.

5.2 A Taste of Xtatic

Consider a document fragment containing a sequence of two entries from an address
book, given side-by side in XML and Xtatic concrete syntax in Figure 5.1

Xtatic’s notation for this document is close to XML, the only differences being the
outer double brackets used to segregate the world of XML values and types from the
regular syntax of C], and the backquotes, which distinguish PCDATA (XML textual
data) from arbitrary Xtatic expressions yielding XML elements. These concrete syntax
choices are discussed further at the end of Section 5.6.
A possible type for the above value is a list of persons, each containing a name, an



84 CHAPTER 5. XTATIC

<person>
<name>Haruo Hosoya</name>
<email>hahasoya</email>

</person>
<person>

<name>Jerome Vouillon</name>
<tel>123</tel>

</person>

[[ <person>
<name>‘Haruo Hosoya‘</name>
<email>‘hahasoya‘</email>

</person>
<person>

<name>‘Jerome Vouillon‘</name>
<tel>‘123‘</tel>

</person> ]]

Figure 5.1: XML and Xtatic concrete syntax for an address book

optional phone number, and a list of emails:

<person> <name>pcdata</> <tel>pcdata</>? <email>pcdata</>* </person>*

The type constructor “?” marks optional components, and “*” repeated sub-sequences.
Xtatic also includes the type constructor “|” for non-disjoint unions of types. The
shorthand </> is a closing bracket matching an arbitrarily named opening bracket.
Every regular type in Xtatic denotes a set of sequences. Concatenation of sequences
(and sequence types) is written either as simple juxtaposition or (for readability) with
a comma. The constructors “*” and “?” bind more strongly than “,”, which is stronger
than “|”. The type pcdata describes sequences of characters.

Types can be given names that may be referred to in other types. For example, in
the presence of these definitions

regtype Name [[ <name>pcdata</> ]]
regtype Tel [[ <tel>pcdata</> ]]
regtype Email [[ <email>pcdata</> ]]
regtype TPers [[ <person> Name Tel </> ]]
regtype APers [[ <person> Name Tel? Email* </> ]]

our simple address book can be given the type APers*.
Between XML types, subtyping is exactly regular tree language inclusion. For ex-

ample, every value of type TPers can also be described by the type APers, so we have
TPers <: APers. Between object types, subtyping follows the standard rules of C]. (We
will have more to say about subtyping in the following section.)
Types and subtyping are also the foundation of regular pattern matching, which gener-

alizes both the switch statement of C] and the algebraic pattern matching popularized
by functional languages such as ML. For instance, the following method extracts a se-
quence of type TPers from a sequence of type APers, removing persons that do not have
a phone number, and eliding emails.

static [[ TPers* ]] addrbook ([[ APers* ]] ps) {
[[ TPers* ]] res = [[ ]];
bool cont = true;
while (cont) {

match (ps) {
case [[ <person> Name n, Tel t, any </>, APers* rest ]]:

res = [[ res, <person> n, t </> ]];
ps = rest;

case [[ APers, APers* rest ]]:
ps = rest;

case [[ ]]:
cont = false; } }

return res; }



5.3. TYPES 85

5.3 Types

Many proposals for XML processing extensions in mainstream languages adopt a data
binding approach, in which XML types are approximated—usually somewhat awkwardly—
in terms of the type structures already available in the host language. Others, notably
Cω (Meijer and Schulte, 2003; Meijer et al., 2003; Bierman et al., 2005), generalize the
host language’s object and sequence types so that types for XML become a special
case. Xtatic steers a middle path, embodying a “mostly orthogonal” integration of
XML types and object types that offers maximum flexibility and expressiveness for the
former with minimal impact on the latter.

Regular Tree Types

The tree data model of XML gives rise to a natural notion of regular tree grammars
generalizing familiar regular expressions on strings. Murata, Lee, and Mani (2001)
identify four increasingly expressive classes of regular tree grammars:

• Local tree grammars adopt the restriction that, wherever a given tag occurs in a
tree grammar, its content model (the sequence of types of its subtrees) must always
be the same. This class corresponds roughly to DTDs. It is sufficiently expressive
for many of the simpler uses of XML and has been used for static analysis in the
programming language Xact (Kirkegaard et al., 2003).

• Single-type tree grammars enforce a weaker restriction, requiring that multiple
occurrences of a tag as children of the same parent nodemust have identical content
models. The W3C’s XML Schema (Fallside and Walmsley, 2004) and the type
systems of XQuery and XJ (Harren et al., 2005) are based on this class.

• Restrained-competition tree grammars relax the restriction yet further, allowing
two trees with equal tags under the same parent to have different content models,
as long as the earlier part of the content unambiguously determines which is ex-
pected at each point. (For example, <a> <b>S</> <b>T</> </> belongs to this
class, but <a> (<b>S</> | <b>T</>) </> does not.) We are not aware of any
programming languages based on this variety of grammars.

• General regular tree grammars allow arbitrary combinations of elements with dif-
ferent content models. This class forms the basis of the RelaxNG schema stan-
dard (Clark and Murata, 2001) and of the type systems of a number of program-
ming languages, including XDuce (Hosoya and Pierce, 2001), CDuce (Benzaken
et al., 2003), and Xtatic.

The advantage of staying low in this hierarchy is simplicity and efficiency of imple-
mentation: as expressiveness increases, so do the complexity of language membership
(validation) and subtyping algorithms. The first two classes can be served by sim-
ple adaptations of ordinary word automata, while the latter two classes require more
complicated tree automata. Fortunately, experience with RelaxNG, XDuce, CDuce,
and Xtatic shows that the algorithms available for unrestricted regular tree grammars,
though more complex, remain implementable and practical in usage. Moreover, the more
powerful grammar classes have some significant advantages of their own—in particular,
better closure properties. While all of the classes are closed under intersection (which is
useful for inferring types of pattern variables; see Section 5.5), only unrestricted regular
tree grammars are closed under union (useful for conditionals and match expressions),
difference (which improves the precision of type inference, as explained in 5.5), and
concatenation.



86 CHAPTER 5. XTATIC

A ::= Xtatic type
| C class type
| [[T]] regular type

d ::= declaration
| regtype X [[T]]

T ::= regular type
| () empty sequence
| <(A)>T</> tree
| T,T concatenation
| T|T alternative
| T* repetition
| X type name

Figure 5.2: Syntax of regular object types

On balance, we feel that both single-type tree grammars and general regular tree
grammars offer reasonable foundations for new programming language designs. Lo-
cal tree grammars are too limited, and restrained competition grammars are harder
to understand without being much more tractable than full regular tree grammars.
In designing Xtatic, we have chosen unrestricted tree grammars for their power and
simplicity, accepting the additional implementation burden that they impose.

Regular Object Types

As we saw in Section 5.2, Xtatic’s regular tree types and sequence values are integrated
seamlessly into the ordinary C] world: wherever a C] type or value is expected, a regular
type or a sequence value can appear, enclosed in [[ . . . ]] brackets. We could stop there
and disallow integration in the opposite direction, requiring that the contents of the [[
. . . ]] brackets be pure XML not containing general C] values. It turns out, however,
that it is easy to allow C] values inside XML sequences (in fact, permitting this is easier
than preventing it). A side benefit of this generality is that we can use regular patterns
over trees of objects to emulate the elegant and concise “datatypes and algebraic pattern
matching” programming idioms found in modern functional languages such as ML.
At the beginning of the Xtatic design, we set out to allow C] objects to appear di-

rectly as members of XML sequence values. However, attempts to formalize this scheme
encountered a number of problems. To see why, notice that it is essential for sequence
values to be of some C] object type so that they can be used with standard generic
C] libraries such as Stack and Hashtable. To satisfy this requirement, we designate
a special class Seq extending object to denote all sequence values. Semantically, Seq
is equivalent to the regular type [[any]]. Now, let o1 and o2 be two Seq objects and
consider the sequence value [[o1, o2]]. Does it denote a sequence of size two (o1
followed by o2) or does it denote the concatenation of the sequences denoted by o1 and
o2? Sorting these issues out consistently (with the aim of reducing the programmer’s
surprise) is not straightforward.
To avoid such puzzles, we have adopted a simpler integration strategy, allowing C]

values only as labels of sequence elements. Now, assuming that o1 and o2 are Seq objects,
[[<(o1)/> <(o2)/>]] is a sequence containing two childless elements labeled by o1 and
o2; whereas [[o1, o2]] is a sequence containing the concatenation of the elements of
o1 and o2. The latter expression is ill typed if either of the objects is not of class Seq.
Figure 5.2 shows the syntax of regular object types. Any object can appear as the

label of a sequence element, hence the type [[any]]—the type of arbitrary sequence
values—can be defined recursively as

regtype any [[<(object)>any</>*]].

A consequence of allowing arbitrary objects to appear as labels is the existence of
sequence values that do not correspond to XML documents. For instance, the sequence



5.3. TYPES 87

value <(1)/> is not XML, since XML elements cannot be labeled by integers. To
characterize the set of XML sequences, we introduce a special C] class Tag that describes
precisely the set of XML element tags. Conceptually, every XML tag corresponds to
a distinct subclass of Tag. For example, the XML fragment <author/> corresponds to
the sequence value <(new Tagauthor())/> and is classified by the type <(Tagauthor)/>.
With this in mind, the type of all XML fragments and the type of purely textual

XML fragments can be defined by the regular types xml and pcdata:

regtype xml [[( pcdata | <(Tag)>xml</> )*]]
regtype pcdata [[<(char)/>*]]

As illustrated in Section 5.2, the concrete syntax of Xtatic provides lightweight
XML-like notation for proper XML sequences, including textual data, and for regular
types describing them. These pure XML values and types are treated specially in the
implementation. For instance, subclasses of Tag are not created physically at run time,
but rather a more compact and efficient representation is used; see Gapeyev et al. (2005c)
for details.

Structural vs. Nominal

The prominence of the W3C Schema notation shapes the design space for XML pro-
cessing languages in an important way, forcing a stark choice between structural and
nominal treatments of XML data.
The structural vs. nominal distinction is usually discussed in terms of the subtype

relation: in the nominal case, the typechecker deals principally with names of types and
subtyping is allowed only when a subsumption relation between two names has been
explicitly declared by the programmer, whereas, in the structural case, type names
are ignored and subsumption relations between types are determined automatically.
This difference at the level of types is not especially deep in itself: nominal typing
simplifies the typechecker implementation a little and prevents accidental confusions
between structurally similar types, but neither of these is a very big deal. Where
the rubber really meets the road is at the level of values. In a nominal language,
each run-time value is marked with a type name, which is then also used as the type
of this value during static type-checking. Typically, constructs are provided in the
programming language that define and/or rely on an ordering on the type names (e.g.,
subclass definitions in conventional object-oriented languages), and this ordering is lifted
to named types in the form of a subsumption relation.
For a language with Xtatic’s goals, treating XML data in a nominal style—i.e., mark-

ing each tree node with a type name—is an attractive option. For one thing, it makes
it easy to construct efficient type-checking algorithms, since there is never any need to
examine the “right hand sides” of defined types to determine whether one is a subtype
of another. Similarly, the type names can be put to good use for efficiently checking
that a value belongs to a type at run time. This can be used in the implementation of
many useful language features, including XDuce-style regular pattern matching, down-
casting, re-validation of XML trees for which type information has been lost (e.g., by
storing and later retrieving them from a generic collection), and—obviously—XPath
2.0’s primitive for matching a node if it is marked with a particular type name. Another
argument for nominal subtyping is that the industry standard “type system” for XML
data, W3C XML Schema, is (mostly) nominal, offering various mechanisms for declaring
subtypes explicitly. XQuery, whose type system (Siméon and Wadler, 2003) is closely
based on W3C XML Schema, has adopted the nominal approach for these reasons. A
final argument for using nominal subtyping in Xtatic is that this would yield a pleasing
similarity to C]’s nominal treatment of objects and their types.



88 CHAPTER 5. XTATIC

Nonetheless, we have chosen in Xtatic to treat XML trees and their types struc-
turally. Doing so makes the implementation of the typechecker, runtime system, and
pattern match compiler somewhat harder, but yields some significant benefits. Most
importantly, it avoids what has been known as the “the Schema Fallacy”—i.e., the pre-
sumption that a given XML document or document fragment will always be thought
of as belonging to one specific type. If types are thought of as being only descriptions
of data, rather than being embedded in the data itself, then it makes perfect sense to
think of the same data structure as satisfying multiple descriptions at different points
in a program, each specifying just what is needed for the task at hand. This ability to
adopt multiple views of the same data can play a critical role in software reusability.
For instance, instead of writing a method that extracts the <name> elements from all
the entries in an address book, one may write a generic method that extracts <name>
elements from any sequence of data items, each containing at least a <name> element.
This generic method can be given a type (namely <(Tag)/>any, Name, any</>*) that
precisely describes the requirement on its input, and the validity of passing it an ad-
dress book can be checked automatically, with no need for a “re-validation” step—i.e.,
no unsafe runtime typecast.
Inferring subtyping automatically can also help sidestep some well-known software

engineering traps. For example, if we have two existing data structures with similar
schemas, it may be useful to write a program that can work over both of them—i.e.,
that accepts a common supertype as input; but doing this in a nominal setting may in
general involve adding supertype declarations to both existing schemas; this is annoying
at best, and at worst may not even be possible—if, for example, they are controlled by
another organization. Similarly, avoiding the requirement of writing explicit subtype
declarations removes a potential source of friction as programs and schemas evolve.

Attributes

Static typing for XML attributes is an area where the design of Xtatic falls short:
despite several attempts, we have not yet been able to find a treatment that satisfies
all of our requirements. For the moment, we have therefore adopted a simple untyped
scheme for building values with attributes and for pattern matching against attributes.
We briefly describe the difficulties we have encountered and sketch our current stopgap
solution.
A type system for attributes should support a way of specifying both closed (exactly

these) and open (these and perhaps others) sets of attribute/value pairs, should support
optional and required attributes, and should provide boolean operations such as union
and intersection of attribute types—while maintaining the constraint that an element
cannot have more than one attribute with a given name.
Hosoya and Murata’s work on attribute-element constraints (2003) describes a pow-

erful attribute type system that offers all of these features and also allows the pro-
grammer to express dependencies between element and attribute children of a parent
element (e.g., it can be used to express constraints like “this element must have either
a date sub-element or else month and year attributes”). Alternatively, one may begin
from a conventional record type system and extend it with the features listed above.
We have experimented with this approach and found that it does not seem to lead to
anything much simpler than Hosoya and Murata’s solution: because of arbitrary unions,
the subtyping algorithms in both approaches turn out to be surprisingly similar.
Unfortunately, despite the descriptive power of these attribute type systems, there is

no obvious way to adapt them to support sufficiently flexible regular pattern matching
over attributes. For example, patterns based on attribute-element constraints (Hosoya
and Murata, 2003) could be used to select all the attributes of an element with names
belonging to a given set—but only provided it can be statically verified that the names



5.4. VALUES 89

of the remaining attributes do not belong to the set. In particular, it is not possible to
traverse the attribute set of an element one-by-one, using a wildcard name pattern to
select the next attribute. This ability is important for implementing generic traversal
tasks over documents of unknown types (e.g., uppercasing the values of all attributes).

Xtatic takes a simple dynamic approach: attributes are part of values and can be
written in patterns, but they are ignored in types; as far as the type system is concerned,
any element may have any collection of attributes. Xtatic attribute patterns provide a
way of extracting values of specified attributes as well as the remaining attribute/value
pairs. The latter are transformed into a sequence <attr1>val1</> <attr2>val2</> . . .
<attrn>valn</> that can be dynamically examined using conventional element pattern
matching. Sequence values of this form can also be used to supply attributes of a
newly created element. To ensure well-formedness, the run-time system must perform
a dynamic test verifying that the given sequence does not contain repeating element
names.

Overloading

Naturally Xtatic extends C] method overloading to support regular types in method
signatures. For example, if a class contains two methods void f([[Person*]] x) and
void f([[Person+]] x), then a call f(x) is resolved to one or the other depending on
the static type of x according to the standard overloading resolution rules modified to
use Xtatic subtyping instead of C] subclassing.
Such extension of overloading requires some additional work on the part of the com-

piler. Since Xtatic is compiled into C] homogeneously—every regular type is translated
into a single C] type Seq, and every sequence value is translated into an object of this
class—it is possible that Xtatic methods with different signatures will be compiled into
C] methods with the same signature, resulting in an illegal C] program. For instance,
both of the above signatures map to void f(Seq x).
We resolve this problem by generating new names for all methods that have arguments

of types more precise than [[any]]. The purpose of renaming is to encode the regular
types information from the original Xtatic method signature into the name of the
compiled C] method in such a way that C] overloading resolution on renamed methods
behaves the same as would Xtatic overloading resolution. In particular, we ensure that
a method that overrides or hides a method from a base class receives the same mangled
name as the base method. To make this arrangement work with independent type-
checking of separate assemblies, our compiler generates for each assembly an auxiliary
structure containing, along with the mangled names, the original method signatures
with regular types.This structure is used when typechecking an Xtatic program that
references the assembly.
A C] program compiled against an Xtatic library is expected to refer only to non-

mangled method names—that is, method names with regular type arguments at most
as precise as [[any]]. Consequently, if an Xtatic library wants to export a method
operating on values of a regular type that is more precise than [[any]] to pure C]

code, it can provide a wrapper method accepting values of type [[any]], explicitly
casting them to the appropriate regular type and then calling the original method. This
approach ensures safety by eliminating the possibility of unchecked invocation of Xtatic
methods with ill-typed parameters from arbitrary C] code.

5.4 Values

This section describes and motivates Xtatic’s design of sequence values. We justify
our decision to use immutable values and discuss how this choice interacts with various
XML inspection styles and C] programming idioms. We also cover two enhancements to



90 CHAPTER 5. XTATIC

the basic model of values that facilitate efficient downcasting and on-demand translation
from legacy XML representations such as DOM.

Immutability

A fundamental design goal of Xtatic is ensuring type-safe manipulation of XML data.
This implies that either XML structures be immutable, or that updatable parts of XML
structure be marked with “ref types” to prevent subtyping. For the sake of simplicity we
have chosen to pursue the first approach and make every XML value immutable. Other
languages, such as XJ (Harren et al., 2005), relax the static safety requirement and do
dynamic checks when mutation of XML data occurs.
Immutability, in turn, demands that we choose a representation that supports a great

deal of sharing in order to retain acceptable memory performance. This sharing pre-
vents the use of doubly-linked trees for a representation of XML values, in particular
back-pointers in the style of DOM, thus hindering such value inspection mechanisms as
XPath’s backward axes.1
There is some inherent tension between the design choice of immutability and the nat-

ural imperative programming style of C], which can lead to disappointing performance
if care is not taken in the implementation. We now discuss some examples illustrating
potential dangers and explain how they are avoided.
A common idiom of imperative XML programming is to use in-place modification

when making small changes to existing documents. For example, to modify the author
of a book from “John” to “Bob” one could do something like this:

[[book]] doc = LoadXml("file.xml");
XmlNode n = doc.FindFirstNode("book/chapter/author = ’John’");
n.text = "Bob";

In Xtatic, one needs to capture the context where the change occurs, and recreate it:

[[book]] doc = LoadXml("file.xml");
match (doc) {

case [[<book>any c,
<chapter>any a, <author>‘John‘</>, any b</chapter>,

any d</book>]]:
return [[<book>c,

<chapter>a, <author>‘Bob‘</>, b</chapter>,
d</book>]];

}

Programmers used to imperative languages need just to learn that this code is not as
expensive as it could appear: because of sharing, only the path from the root of the
value to the point where it is modified needs to be copied: XML values c, a, b, and d
are reused. On the other hand, it can be tedious to write this recreation code. In Xact,
essentially the same computation over their immutable data model is expressed by code
that is very similar to its imperative conterpart: the programmer creates a template,
which is a value with a hole in place of “John”, and then fills it with the new value “Bob”.
Another imperative programming idiom consists of creating a sequence of XML values

by repeatedly appending XML elements to an accumulator within a while loop. For
instance, one may create a list of persons the following way:

[[ Person* ]] p = [[ ]];

1The Xact design (Kirkegaard et al., 2004) shows that it is actually possible to implement
backward-axis traversals in some situations by maintaining a separate “context” data structure rep-
resenting the path from the root of the value to the current position.



5.4. VALUES 91

while (some_condition) {
p = [[ p, <person><Name>create_name ()</></> ]];

}

An efficient way of implementing such a construction when mutation is available is by
keeping a pointer to the last element of the output sequence and updating its contents
whenever a new element must be appended. In functional programming, an efficient
idiom for the same task first builds a reverse sequence by prepending elements, and
then reverses it.
In order to retain the intuitive concatenation order as shown in the code above while

avoiding turning linear algorithms into quadratic ones, Xtatic uses carefully designed
lazy data structures and algorithms that delay creation of concrete values until they are
inspected elsewhere, see Gapeyev et al. (2005c) for more details.

Fast Downcasting

Part of the appeal of Xtatic is that it allows programmers to use familiar C] libraries
to store and manipulate XML values; in particular, XML values can be stored in generic
collections such as Hashtable and Stack. However, values extracted from such contain-
ers have type object, and generally need to be cast down to the intended type. In pure
C] this operation incurs only a constant time overhead, but in Xtatic, downcasting
to a regular type may involve an expensive structural traversal of the entire value (cf.
Section 5.3). One way to avoid this overhead is to stamp a sequence value with a repre-
sentation of its type (upon putting the value into a collection) and perform a run-time
stamp comparison rather than full re-validation during downcasting (upon receiving the
value from the collection). Our design places this stamping under programmer’s control.
We extend the source language with a stamping construct, written <[[T]]>e (“stamp

e with regular type T”). An expression of this form is well typed if e has static type
T; in this case, the result type of the whole expression is object.2 Casting a stamped
value can then be done in constant time as long as the type used in the cast expression
is syntactically identical to the type used in the stamping expression. Casting to any
other type, however, must fall back to the general pattern-matching algorithm, which
dynamically re-validates the value.
In our design, the burden of type stamping is placed on the programmer. We have

experimented with alternative designs in which stamping is performed silently—either
by adding a stamp whenever a sequence value is upcast to type object or by including
a type stamp in every sequence object. However, we have not found a design in which
the performance costs of stamping and stamp checking are acceptably predictable.

Legacy Representations

Xtatic modules are expected to be used in applications built in other .NET languages
that may also use the extensive .NET libraries. The latter already contain support
for XML, collected in the System.Xml namespace. It is essential for Xtatic’s XML
manipulation facilities to interoperate smoothly with native .NET XML representations
and, conversely, Xtatic XML data to be accessible from Xtatic-agnostic C] code.
We have explored the former direction of this two-sided interoperability problem by
designing support for DOM, one popular XML representation available in .NET.
A straightforward solution for accessing DOM from Xtatic would be to first translate

any DOM data of interest into our representation in its entirety and then proceed to
working with Xtatic’s native representation. This is wasteful, however, if an Xtatic

2Giving stamped values type object ensures that, at run-time, such values will never appear as
part of other sequences. This makes implementation of sequence operations simpler and more efficient.



92 CHAPTER 5. XTATIC

program ends up accessing only a small portion of the document. A better idea is
to perform the translation from DOM lazily, namely at the time when fragments of
the DOM value are accessed by Xtatic code. Xtatic provides the method [[any]]
ImportDOM(XmlNode x) that takes a raw DOM node and wraps it into a datastruc-
ture that is visible to a program as an Xtatic sequence value. Matching a wrapped
value against a regular pattern results in copying its matched fragments into the native
(non-wrapped) Xtatic representation thus abandoning aliasing with its mutable DOM
predecessor. Consider the following example:

match (ImportDOM(...)) {
case [[ <book>any</book> b, any rest ]]: ...;
case [[ any ]]: ...;

}

In the right-hand side of the first clause, the type for b is <book>any</>. If b was
still represented by the original DOM fragment, this type assumption could be violated
by a program that modified the element’s tag (via DOM interface) from <book> to,
say, <journal> after the pattern match. Replicating the fragments of DOM that have
been pattern-matched by Xtatic is thus necessary for type safety. The fragments that
have not been inspected yet, however, can stay in their original DOM representation.
For example, modifying the DOM fragment corresponding to rest cannot violate any
static assumptions since the variable has type [[any]], which accurately describes the
corresponding DOM fragment regardless of whether any modification happens. The
same applies to the fragment matched by any in b. Even though the original DOM
structure may be destructively updated at any time, the only modifications that are
visible to Xtatic are those that happen before pattern matching inspects the fragments
in question.

5.5 Pattern Matching

Regular patterns are both powerful and pleasingly simple to formalize: they are just
regular types decorated with binders. Our experience using Xtatic has shown them
to be very convenient for a broad range of tasks. For some jobs, however, regular
patterns can be rather inconvenient and another style of value inspection—embodied
in the popular XML XPath standard (XPath 1.0)—works better. To accommodate
paths-based processing in Xtatic, we may use a desugaring technique that converts an
important fragment of XPath (“downward axis” paths) into equivalent regular patterns,
thus giving us the best of both worlds. We first sketch this approach.
We next describe type inference for Xtatic’s regular patterns, concentrating in par-

ticular on the issue of precision of the inference algorithm—an important point where
Xtatic differs from XDuce. We conclude the section by addressing the issue of schema
evolution, i.e., the question of how robust programs are when the type of the data they
manipulate changes.

Regular Patterns and Paths

The syntax of regular patterns (Figure 5.3) mimics the syntax of regular object types,
additionally providing constructs for binding sequence values and objects within ele-
ment labels. For example, the pattern [[<a/>*, <b/>* x, <c/>*]] matches sequences
composed of zero or more a-elements followed by zero or more b-elements followed by
zero or more c-elements. The middle sub-sequence containing all the b-elements is ex-
tracted and bound to x. For an example of binding within labels consider the pattern
[[<(B x)/>]]. It matches singleton sequences whose element is labeled by an object o
of class B and binds o to x.



5.5. PATTERN MATCHING 93

Q ::= Xtatic pattern
| C class pattern
| [[P]] regular pattern
| Q x C] var binding

d ::= pattern declaration
| regpat X [[P]]

P ::= regular pattern
| X type name
| <(Q)> P </> tree
| () empty sequence
| P,P concatenation
| P|P alternative
| T* type repetition
| P x regular var binding

Figure 5.3: Syntax of regular patterns

Regular patterns are especially convenient for “horizontal” inspection of XML se-
quences. Consider an HTML table that contains two sets of rows with a distinctive sepa-
rator row between them—i.e., the table’s contents are of type row*, separator, row*,
where row and separator are defined as follows:

regtype row [[ <tr> <td>pcdata</> <td>pcdata, <a>pcdata</></>,
any </> ]]

regtype separator [[ <tr> <td>pcdata</> <td>pcdata</>, any </> ]]

Observe that there is only a slight difference between a row and a separator—the former
has a hyperlink in its second cell while the latter does not. Let table contain an HTML
table whose contents satisfies the above type. Using regular patterns, we can extract
the two sets of rows in one line of Xtatic (this statement is desugared into a match
expression with one clause whose right hand side is the rest of the program):

[[<table> row* x, separator, row* y </>]] = table;

By contrast, XPath’s paths are inspired by a file-system-like style of hierarchical
navigation. We sketch here a fragment of XPath (the “downward axes” fragment)
that can be supported by Xtatic data model and includes the most frequently used
XPath features. Here is a typical XPath expression: table/tr/td. It finds all the
table elements at the top level of the current document, locates their tr subelements,
and extracts all of their td children. In addition to parent-to-child navigation, XPath
provides a simple way of reaching arbitrary descendants of the current element. For
instance, the query table//a finds all hyperlinks occurring somewhere inside top-level
tables.

XPath predicates allow the programmer to filter potential solutions against conditions
that can be expressed as paths. The XPath query table/tr[td//a] locates all the
rows of the top-level tables such that some of their cells have a hyperlink descendant.
The predicate, delimited by brackets, is an additional condition on the rows that are
returned by the query.
As these examples suggest, XPath-style paths are particularly suitable for “vertical”

inspection of XML, providing a natural mechanism for specifying parent/child and par-
ent/descendant constraints on input values. The two styles of value inspection—regular



94 CHAPTER 5. XTATIC

patterns and paths—are complementary: a natural pattern matching task is cumber-
some to accomplish by paths and vice versa. We now show how the subset of XPath
sketched here can be desugared into regular patterns.

Implementing Paths Using Regular Patterns

The main difference between the semantics of paths and regular patterns is that a path
query returns multiple answers while a regular pattern is used to match a value and
return at most one set of bindings associating variables with fragments of the input.
For further clarification, consider the pattern [[any x, <b/>, any]] that matches se-
quences containing a b element and extracts the preceding prefix into x. We say that
this pattern is ambiguous: given a sequence with multiple b elements, there are multiple
possible bindings for x. Nevertheless, when used in a match statement in Xtatic, the
above pattern will only compute at most one binding. (The particular binding that is
computed is left unspecified in the implementation of Xtatic.)
To get us closer to paths semantics, we propose an additional pattern matching con-

struct iterate that, rather than choosing one way of matching an ambiguous pattern,
explores all possible matchings and computes all possible variable bindings. Here is an
example of iterate with the ambiguous pattern mentioned above:

iterate ([[<a/><b/><a/><b/>]]) matching [[any x, <b/>, any]] {
System.Console.WriteLine(x);

}

An iterate statement consists of an expression that evaluates to the input value, a
pattern, and a body that is executed for every possible match of the value against the
pattern. The above fragment will print <a/> and <a/><b/><a/>.
A variant of iterate statement uses path queries instead of ambiguous regular pat-

terns. For instance, the following statement prints all the td elements that are children
of the tr elements that are children of the top-level table elements found in the docu-
ment fragment stored in table:

iterate (table) matching x at path [[table/tr/td]] {
System.Console.WriteLine(x);

}

Notice that since a path by itself does not define a results-bound variable that can be
referred to in the body of iterate, this variant of the statement uses special syntax to
introduce the variable separately (variable x in the example). Such a variable is bound
to the results of the path query (td elements in the example).
The downward-axes subset of XPath supported by Xtatic is described by the follow-

ing grammar where p, s, q, a, L, and l range over path queries, query steps, predicates,
axes, label tests, and label names respectively, and where * is a label wildcard:

p ::= s | s/p
s ::= a::L | s[q]
L ::= l | *
q ::= p | q and q | q or q
a ::= self | child | descendant | descendant-or-self

In the previous examples, we used an abbreviated notation for the axes child and
descendant-or-self: a/b stands for child::a/child::b and a//b stands for the ex-
pression child::a/descendant-or-self::*/child::b in the above syntax.
A semantics-preserving translation from this fragment of XPath into ambiguous reg-

ular patterns is defined in Gapeyev and Pierce (2004). Consider, for example, the path



5.5. PATTERN MATCHING 95

query table/tr//a. It is converted into <(Tag)> any, <table> X </>, any </> as-
suming the following pattern declarations (notice how x is bound to the a elements that
are addressed by the right-most step of the query):

regpat X [[ any, <tr> any, Y, any </>, any ]]
regpat Y [[ ((<a> any </>) x) | Z ]]
regpat Z [[ <(Tag)> any, Y, any </> ]]

This translation is correct in the sense that the nodes returned by the path query are
precisely the values bound to x in all possible matchings of the input value against
the regular pattern obtained as the result of translation. CQL (Benzaken et al., 2005)
proposes an alternative approach to simulating downward paths in a language with
regular patterns.
The full XPath standard is a complex language that contains many features beyond

the forward-only paths covered above. XPath supports backward axes that allow the
programmer to navigate from children to parents, and from right siblings to left sib-
lings. Xtatic’s lightweight immutable data model does not provide a natural basis
for supporting backward-axis navigation as explained in Section 5.4. In Chapter 6, we
introduce a satisfiability checking algorithm which can be used to typecheck an XPath
query (potentially containing backward axes) against a regular type.

Type Inference

The goal of type inference is to assign types to the variables appearing in regular pat-
terns. Consider the following example taken from a program that processes and converts
BibTeX files into HTML:

regtype entry [[ ... ]] // complex type
regtype doc [[<doc> entry* </>]]

void do_xml ([[doc]] doc) {
match (doc) {

case [[<doc>any items</doc>]]:
match (items) {

case [[anyone item, any rest]]: ...
... } } }

If the type checker only used the annotations provided by the programmer, it would
operate with the pretty limited knowledge that variables items and rest may contain
any arbitrary sequences and variable item may contain an arbitrary singleton sequence.
This would probably be insufficient to type-check the right hand side of the first match
clause. However, if the type checker takes into consideration the type of the input value,
it can then be much more exact and infer that items and rest are of type entry* and
item is of type entry.
So how exact can the type checker be? In fact, type inference can be be fully exact.

We say that a type inference algorithm is precise if given an input value of type T and
a variable x occurring in a pattern p, it infers type S for x iff for every value v′ of S,
there is a value v of T such that matching v against p results in binding x to v′. In other
words, the inferred type denotes precisely the values that may be bound to the variable.
Xtatic’s parent XDuce (Hosoya and Pierce, 2001) features precise type inference. So
does Xtatic’s sibling CDuce (Benzaken et al., 2003).
Because regular object types are not closed under boolean operations—union, inter-

section, and difference—type inference in Xtatic is not precise. The core of the problem
is in element labels which can be arbitrary C] types. Suppose we want to compute the
following difference: <(D)/> \ <(C)/>. This is equivalent to <(D\C)/>, but if C is a



96 CHAPTER 5. XTATIC

subclass of D, in general, there is no C] type that corresponds to D\C. Because difference
is not always defined on regular object types, Xtatic’s type inference does not compute
type difference at all and, therefore, does not take into account the order of clauses in
a match expression, losing some precision as a result. Consider this example:

[[<a/>+]] id([[<a/>+]] arg) {
match (arg) {

case [[<a/>]]: return([[<a/>]]);
case [[<a/>, any rest]]: return [[<a/>, id(rest)]];

} }

Intuitively, the recursive call to id cannot go wrong since rest can only be bound to
values of type <a/>+. The type checker, however, can only conclude this by taking the
difference between the input type <a/>+ and the first pattern <a/> and then analyzing
the second pattern with respect to the resulting type. If it considers the second clause
independently of the first, it can only infer that the type of rest is <a/>* which is
insufficient for type-checking the recursive call.
The fact that object types are not closed under union is also a problem when we

have binding inside labels. Consider the pattern <(C x)/> | <(D x)/> that binds x to
objects of classes C or D. Again, in general, there is no C] type that corresponds to C
∪ D. Xtatic uses the smallest common superclass of C and D as the inferred type of x,
hence straying even further from full precision.
Finally, intersection is problematic as well. Xtatic can correctly compute C ∩ D if

one is a superclass (superinterface) of the other or if C and D are unrelated classes. (In
the former case, the result is the smaller type; in the latter, the result is empty.) If C
and D are unrelated interfaces, however, there is no C] type that corresponds to their
intersection.
Nevertheless, as the opening example of this section illustrates, type inference in

Xtatic is still very useful. Examples such as this are common in practice—they are
characterized by variables annotated with “wildcard” types such as any and anyone.
The type inferred for these variables is usually precise. More generally, type inference
in Xtatic is precise as long as patterns of a match statement are mutually disjoint and
all of the occurrences of each variable inside labels have the same type annotation.
As this discussion shows, precise type inference can enable more convenient program-

ming idioms; moreover, it is more difficult to explain to programmers the behavior of
pattern matching mechanisms that do not enjoy precise type inference. Extending the
C] type system with boolean operations that allows taking the union, difference, and
intersection of classes and interfaces would be a most welcomed extension of Xtatic.

Patterns and Schema Evolution

We close the discussion of patterns with some remarks about schema evolution—in par-
ticular, the robustness of programs with regular patterns and programs with paths with
respect to changing data formats. How well does the type system help a programmer
in locating potential pitfalls?
For illustration, consider a simple instance of schema evolution in which a new optional

element is added to an existing schema. (This real-life example is taken from an Xtatic
program that generates the online Caml Weekly News.3)

Old = [[ <cwn><cwn_title>pcdata</> <cwn_content>Content</> </cwn> ]]
New = [[ <cwn><cwn_title>pcdata</> <cwn_url>Url</>?

<cwn_content>Content</> </cwn>]]

3http://alan.petitepomme.net/cwn/

http://alan.petitepomme.net/cwn/


5.6. RELATED WORK 97

Programs using path-like navigation are pretty robust with respect to such format
changes: most path queries that work for values of type Old would also work for val-
ues of type New. (One exception involves paths that use order-sensitive “sibling” axes.)
However, this flexibility has a significant down-side: since such schema evolutions are
transparent for most path-based programs, the path-based type system does not au-
tomatically indicate where the program should be modified to take newly introduced
elements into account.
Regular patterns, on the other hand, can be chosen by the programmer to be either

“loose”, like paths, or more detailed, hence stricter, resulting in errors flagged by the
type checker when a potentially sensitive format change occurs. The following program
is an example of the former:

match (input) {
case [[<cwn>any, <cwn_title>pcdata x</>, any</cwn>]]: ... }

The piece of data deemed important by this code is the contents of the cwn_title
element; hence this program should work when the above schema change occurs, since
the fragment is well-typed both for Old and New types of input.
Conversely, a pattern may be more precise in the specification of the context:

match (input) {
case [[<cwn><cwn_title>pcdata x</>, <cwn_content>any</></cwn>]]: ...}

Changing the type of input from Old to New now triggers typing errors, indicating that
some cases of the input type (namely the potential presence of a cwn_url element) are
not covered by the matching clauses. The type checker now guides the programmer
to the places in the program where changes must be made to reflect changes in the
schema. We have found this mode of “edit definition and type-check to find uses”
extremely helpful when programming in Xtatic. (Of course, the mode is familiar from
other richly typed languages, but is particularly effective here because of the precision
of Xtatic’s types.)

5.6 Related work

XDuce (Hosoya and Pierce, 2001, 2003; Hosoya et al., 2005b) was the first language
featuring XML trees as built-in values, a type system based on regular types for statically
type-checking computations involving XML, and a powerful form of pattern matching
based on regular patterns. Xtatic is a direct descendant of XDuce.
Another XDuce descendant that is close to Xtatic in several respects is the CDuce

language of Benzaken, Castagna, and Frisch (2003). Like Xtatic, CDuce is based on
XDuce-style regular types and emphasizes a declarative style of recursive tree trans-
formation based on algebraic pattern matching. In other respects, however, the design
of CDuce is quite different: its type system includes several features (such as inter-
section and function types) not present in Xtatic, it is not object-oriented, and it is
not integrated with an existing language. Xtatic, by contrast, has taken a more con-
servative approach in its type system, instead emphasizing smooth compatibility with
an existing mainstream object-oriented language. Two significant differences are the
object-oriented flavor of our representations and our approach to various interoperabil-
ity issues such as cross-language calls and compatibility with legacy XML represen-
tations. A recent experiment by Frisch shows how many of the features of CDuce
can be added to a functional host language in a style reminiscent of Xtatic [see
http://www.cduce.org/ocaml.html]. CQL (Benzaken et al., 2005) is an XML query
language built on top of CDuce. Compared to XQuery, it emphasizes use of regular
patterns over paths.

http://www.cduce.org/ocaml.html


98 CHAPTER 5. XTATIC

Another close cousin of Xtatic is Meijer, Schulte, and Bierman’s Cω language (pre-
viously called Xen) (Meijer et al., 2003; Meijer and Schulte, 2003; Bierman et al., 2005),
an extension of C] that integrates support for objects, relations, and XML. Some as-
pects of the Cω language design are much more ambitious than Xtatic: in particular,
the extensions to its type system (sequence and choice type constructors) are more
tightly intertwined with the core object model—indeed, XML itself is simply a syntax
for serialized object instances. In other respects, Cω is more conservative than Xtatic:
for example, its choice constructor is not a true least upper bound, and the subtype
relation is defined by a conventional, semantically incomplete, collection of inference
rules, while Xtatic’s is given by a more straightforward (and, for the implementation,
more demanding) "subtype = subset" construction.

Xact (Kirkegaard et al., 2004; Christensen et al., 2004) extends Java with XML
processing, proposing another somewhat different programming idiom: the creation of
XML values is done using XML templates, which are immutable first-class structures
representing XML with named gaps that may be filled to obtain ordinary XML trees.
Xact also features a static type system that guarantees that, at a given point in the
program, a template statically satisfies a given DTD. Xact’s implementation, developed
independently and in parallel with Xtatic but driven by similar needs (supporting
efficient sharing, etc.) and targeting a similar (object-oriented) run-time environment,
has strong similarities to ours; in particular, lazy data structures are used to support
efficient gap plugging.
XJ (Harren et al., 2005) is another extension of Java for native XML processing

that emphasizes fidelity to the XML Schema and XPath standards, for instance by
having nominal subtyping (as opposed to the structural subtyping of the languages
mentioned above). XJ is also one of the few XML processing languages that allow
imperative modification of XML data. This feature, however, significantly weakens
the safety guarantees offered by static typing: the updated tree must be re-validated
dynamically, raising an exception if its new type fails to match static expectations. In
keeping with its emphasis on standards and its imperative nature, XJ uses DOM for its
run-time representation of XML data.
XOBE (Kempa and Linnemann, 2003) is a source to source compiler for an extension

of Java. From a language design point of view, it is very similar to Xtatic, integrating
XML with Java, taking a declarative style of tree processing, and providing a rich
type system and subtyping relation based on regular expression types. The run-time
representation, like XJ, relies on DOM. In contrast to Xtatic, XOBE uses XPath
rather than patterns to inspect XML values, and it has no provision for placing Java
objects anywhere inside XML values.

Scala, a general-purpose experimental web services language that compiles into Java
bytecode, also has XML support (Emir et al., 2006).
Work also continues on XDuce itself, including fully typed treatment of attributes à

la RelaxNG (Hosoya and Murata, 2003) and parametric polymorphism (Hosoya et al.,
2005a).
A survey paper by Møller and Schwartzbach (2005) offers an excellent overview of re-

cent work on static typechecking for XML transformation languages, with detailed com-
parisons between a number of representative languages, including XDuce and Xact.
In this review of related work, we have concentrated on comparisons with integrated

language designs, in which XML processing features are combined with a general-
purpose host language. By contrast, XSLT (Clark, 1999) is a widely used stand-alone
XML processing language, which is also accessible via library APIs in most modern
general-purpose languages, including Java and C]. A similar invocation mechanism
can be used for XQuery. There are two well-known shortcomings of this API approach.
First, no static checks of XML processing code are possible, since a host application
generates it at run time and passes it to the API as a string. Second, the results of



5.6. RELATED WORK 99

processing are accessible to the host application only in a low-level form—usually as
DOM structures or as XML data bindings. Xtatic addresses both of these problems
by embedding an XML processing language into a host general-purpose language and by
extending the host’s data model to incorporate XML data. We will see in Chapter 6 an
alternative approach for static type checking of XML processing based the satisfiability
of XPath queries.
One final point of comparison with XQuery concerns concrete syntax for XML val-

ues. Readers familiar with XQuery may have noted that we take “computed content”
as the default and explicitly mark constant strings in XML values, while XQuery
takes constant pcdata as the default and indicates computed content by wrapping it in
curly braces—e.g., <a>3</a> vs. <a>{1 + 2}</a>. At first glance, XQuery’s design
is attractive, since it allows XML values to be cut and pasted into XQuery programs
verbatim. However, it turns out not to work well in Xtatic, where we need concrete
syntax not only for values but also for types. (XQuery does not: complex type ex-
pressions are supposed to be written down in separate files, in the completely different
syntax of W3C Schema.) Making the opposite choice allows us to write <a>B</>, rather
than <a>{B}</>, for the type of <a> elements whose content is described by the type
named B.





Chapter 6

Efficient Static Analysis of XML Paths
and Types

6.1 Introduction

The work described in this chapter is motivated by the need for efficient type checkers
for XML-based programming languages where XML types and XPath queries are used
as first class language constructs. In such settings, XPath decision problems in the
presence of XML types such as DTDs or XML Schemas arise naturally. Examples of
such decision problems include emptiness (whether an expression ever selects nodes),
containment (whether the results of an expression are always included in the results
of another one), overlap (whether two expressions select common nodes), and coverage
(whether nodes selected by an expression are always contained in the union of the results
selected by several other expressions).
XPath decision problems are not trivial in that they need to be checked on a possibly

infinite quantification over trees. Another difficulty arises from the combination of
upward and downward navigation on trees with recursion (Vardi, 1998).
The most basic decision problem for XPath is the test for emptiness of an expres-

sion (Benedikt et al., 2005). This test is important for optimization of host languages
implementations. For instance, if one can decide at compile time that a query result
is empty then subsequent bound computations can be ignored. Another basic decision
problem is the XPath equivalence problem: whether or not two queries always return
the same result. It is important for reformulation and optimization of an expression
(Genevès and Vion-Dury, 2004), which aim at enforcing operational properties while
preserving semantic equivalence (Levin and Pierce, 2005). The most essential problem
for type-checking is XPath containment. It is required for the control-flow analysis of
XSLT (Møller et al., 2005), for checking integrity constraints (Fallside and Walmsley,
2004), and for XML security (Fan et al., 2004).
The complexity of XPath decision problems heavily depends on the language features.

Previous works (Schwentick, 2004; Benedikt et al., 2005) showed that including general
comparisons of data values from an infinite domain may lead to undecidability. There-
fore, we focus on a fragment of XPath that covers all features except counting (Dal Zilio
et al., 2004) and data values.
In our approach to solve XPath decision problems, two issues need to be addressed.

First, we identify the most appropriate logic with sufficient expressiveness to capture
both regular tree types and our XPath fragment. Second, we solve efficiently the satis-
fiability problem which allows to test if a given formula of the logic admits a satisfying
finite tree.
The essence of our results lives in a sub-logic of the alternation free modal µ-calculus



102 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

(AFMC) with converse, without greatest fixpoint, with some syntactic restrictions on
formulas, and whose models are finite trees. We prove that XPath expressions and
regular tree type formulas conform to these syntactic restrictions. Boolean closure is
the key property for solving the containment problem (a logical implication). In order
to obtain closure under negation, we prove that the least and greatest fixpoint operators
collapse in a single fixpoint operator. Surprisingly, the translations of XML regular tree
types and the large XPath fragment that we consider do not increase complexity since
they are linear in the size of the corresponding formulas in the logic. The combination
of these ingredients lead to our main result: a satisfiability algorithm for a logic for
finite trees whose time complexity is a simple exponential of the size of a formula.
The decision procedure has been implemented in a system for solving XML decision

problems such as XPath emptiness, containment, overlap, and coverage, both with or
without XML type constraints. The system can be used as a component of static
analyzers for programming languages manipulating XPath expressions and XML type
annotations for both input and output.
The chapter is organized as follows. We present our data model, trees with focus, in

Section 6.2. We then introduce our logic in Section 6.3. We present XPath and sketch
its translation in our logic in Section 6.4. Our satisfiability algorithm is introduced
and proven correct in Section 6.5, and details of the implementation are discussed in
Section 6.6. Applications for type checking and some experimental results are described
in Section 6.7. We study related work in Section 6.8 and conclude in Section 6.9.

6.2 Trees with Focus

In order to represent XML trees that are easy to navigate, we use focused trees, inspired
by Huet’s Zipper data structure (1997). Focused trees not only describe a tree but also
its context: its previous siblings and its parent, including its parent context recursively.
Exploring such a structure has the advantage to preserve all the information, which is
quite useful when considering languages such as XPath that allow forward and backward
axes of navigation.
Formally, we assume an alphabet Σ of labels, ranged over by σ. The syntax of our

data model is as follows.

t ::= σ[tl ] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl ,Top, tl) root of the tree

| (tl , c[σ], tl) context node
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context c. The context
(tl , c[σ], tl) comprises three components: a list of trees at the left of the current tree
in reverse order (the first element of the list is the tree immediately to the left of the
current tree), the context above the tree, and a list of trees at the right of the current
tree. The context above the tree may be Top if the current tree is at the root, otherwise
it is of the form c[σ] where σ is the label of the enclosing element and c is the context
in which the enclosing element occurs.
In order to deal with decision problems such as containment, we need to represent in

a focused tree the place where the evaluation of a request was started. To this end, we
use a start mark, often simply called “mark” in the following. We thus consider focused
trees where a single tree or a single context node is marked, as in σs[tl ] or (tl , c[σs], tl).



6.3. THE LOGIC 103

Lµ 3 φ, ψ ::= formula
> true

| σ | ¬σ atomic proposition (negated)
| s | ¬s start proposition (negated)
| X variable
| φ ∨ ψ disjunction
| φ ∧ ψ conjunction
| 〈a〉φ | ¬ 〈a〉> existential (negated)
| µXi = φi in ψ least n-ary fixpoint
| νXi = φi in ψ greatest n-ary fixpoint

Figure 6.1: Logic formulas

When the presence of the mark is unknown, we write it as σ◦[tl ]. We write F for the set
of finite focused trees containing a single mark. The name of a focused tree is defined
as nm(σ◦[tl ], c) = σ.
We now describe how to navigate focused trees, in binary style. There are four

directions, or modalities, that can be followed: for a focused tree f , f 〈�〉 changes the
focus to the first child of the current tree, f 〈�〉 changes the focus to the next sibling of
the current tree, f 〈�〉 changes the focus to the parent of the tree if the current tree is
a leftmost sibling, and f 〈�〉 changes the focus to the previous sibling.
Formally, we have:

(σ◦[t :: tl ], c) 〈�〉 = (t, (ε, c[σ◦], tl))

(t, (tl l, c[σ
◦], t′ :: tlr)) 〈�〉 = (t′, (t :: tl l, c[σ

◦], tlr))

(t, (ε, c[σ◦], tl)) 〈�〉 = (σ◦[t :: tl ], c)

(t′, (t :: tl l, c[σ
◦], tlr)) 〈�〉 = (t, (tl l, c[σ

◦], t′ :: tlr))

When the focused tree does not have the required shape, these operations are not
defined.

6.3 The Logic

We introduce in this section the logic to which we translate XPath expressions and
XML regular tree types. This logic is a sub-logic of the alternation free modal µ-
calculus with converse. We also introduce a restriction on the formulas we consider and
give an interpretation of formulas as sets of finite focused trees. We finally show that
this restriction and this interpretation make the greatest and smallest fixpoint collapse,
yielding a logic that is closed under negation.

Formulas

In the following, we use an overline bar to denote tuples. For instance, we write Xi = φi
for (X1 = φ1;X2 = φ2; . . . ;Xn = φn). Tuples of variables, such as Xi, are often
identified to sets.
In the following definitions, a ∈ {�,�, �,�} are programs. Atomic propositions σ

correspond to labels from Σ. We assume that a denotes the opposite direction from
a (� =�, etc). Formulas defined in Figure 6.1 include the truth predicate, atomic
propositions (denoting the name of the tree in focus), start propositions (denoting the
presence of the start mark), disjunction and conjunction of formulas, formulas under
an existential (denoting the existence of a subtree satisfying the sub-formula), and least



104 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

J>KV = F JσKV = {f | nm(f) = σ}
JXKV = V (X) J¬σKV = {f | nm(f) 6= σ}

Jφ ∨ ψKV = JφKV ∪ JψKV JsKV =
{
f | f = (σs[tl ], c)

}
Jφ ∧ ψKV = JφKV ∩ JψKV J¬sKV = {f | f = (σ[tl ], c)}

J〈a〉φKV = {f 〈a〉 | f ∈ JφKV ∧ f 〈a〉 is defined}
J¬ 〈a〉>KV = {f | f 〈a〉 is undefined}

JµXi = φi in ψKV = let Ti =
(⋂{

Ti ⊆ F | JφiKV [Ti/Xi]
⊆ Ti

})
i
in JψK

V [Ti/Xi]

JνXi = φi in ψKV = let Ti =
(⋃{

Ti ⊆ F | Ti ⊆ JφiKV [Ti/Xi]

})
i
in JψK

V [Ti/Xi]

Figure 6.2: Interpretation of formulas

and greatest n-ary fixpoints. We chose to include a n-ary version of fixpoints because
regular types are often defined as a set of mutually recursive definitions, making their
translation in our logic more direct and succinct. We write “µX.φ” for “µX = φ in φ”.

Model

We define in Figure 6.2 an interpretation of our formulas as subsets of F , the set of
finite focused trees with a single start mark. The interpretation of the n-ary fixpoints
first compute the smallest or largest interpretation for each φi, bind the resulting sets
Ti to the variables Xi, then returns the interpretation of ψ.
To illustrate the interpretation of fixpoints, take the formulas φ = µX. 〈�〉X ∨ 〈�〉X

and ψ = νX. 〈�〉X ∨ 〈�〉X, which expand to µX = 〈�〉X ∨ 〈�〉X in 〈�〉X ∨ 〈�〉X and
νX = 〈�〉X ∨ 〈�〉X in 〈�〉X ∨ 〈�〉X. One easily shows that JφK = ∅ (there is no base
case, thus the smallest fixpoint is the empty one), and that JψK is the set of every focused
tree with at least two nodes, one being the parent of the other.

Cycle-Free Formulas

As just shown, the smallest and greatest fixpoints do not coincide. To make them
collapse, we require formulas to be cycle-free. Intuitively, cycle-free formulas do not
have a sequence of a modality and its inverse under a fixpoint. To make this notion
precise, we first define the unfolding of a formula, which basically amount to building
the set of every finite formula resulting from the unfolding of fixpoints.

Definition 6.3.1 (Unfolding of a formula). The unfolding of a formula φ is the set
unf (φ) inductively defined as

unf (φ) = {φ} for φ = >, σ,¬σ,s,¬s, X,¬ 〈a〉>
unf (φ ∨ ψ) = {φ′ ∨ ψ′ | φ′ ∈ unf (φ), ψ′ ∈ unf (ψ)}
unf (φ ∧ ψ) = {φ′ ∧ ψ′ | φ′ ∈ unf (φ), ψ′ ∈ unf (ψ)}
unf (〈a〉φ) = {〈a〉φ′ | φ′ ∈ unf (φ)}

unf (µXi = φi in ψ) = unf (ψ{{µXi = φi in φi/Xi}}) ∪ {µXi = φi in ψ}
unf (νXi = φi in ψ) = unf (ψ{{νXi = φi in φi/Xi}}) ∪ {νXi = φi in ψ}



6.4. XPATH AND REGULAR TREE LANGUAGES 105

Given a formula φ, the set of its paths P(φ) is the set of sequential chains of modalities
contained in the formula. Writing ε for the empty path, we have the following.

P(〈a〉φ) = {〈a〉 p | p ∈ P(φ)}
P(φ ∨ ψ) = P(φ) ∪ P(ψ)

P(φ ∧ ψ) = P(φ) ∪ P(ψ)

P(φ) = ε otherwise

A modality cycle in a path is a sub-sequence of the form 〈a〉 〈a〉. We new define cycle-
free formulas as formulas for which there is a bound in the number of modality cycles
of their paths, independent on the unfolding.

Definition 6.3.2 (Cycle-free formula). A formula φ is cycle-free iff there exists an
integer n such that for any unfolding ψ ∈ unf (φ), for any path p ∈ P(ψ), the number
of modality cycles in p is strictly smaller than n.

For instance, the formula “µX = 〈1〉 (> ∨
〈
1
〉
X) in X” is not cycle free: for any in-

teger n, there is an unfolding of the formula such that a path with n modality cycles
exists. Similarly, the formulas φ and ψ above are also not cycle free. On the other hand,
the formula “µX = 〈1〉 (X ∨ Y ), Y =

〈
1
〉

(Y ∨ >) in X” is cycle free: there is at most
one modality cycle for each path, independently of the number of unfoldings.
Cycle-free formulas enjoy the following crucial property: given any tree in the model

of a formula φ, there is a finite unfolding (i.e., a formula ψ ∈ unf (φ) where we replace
the remaining fixpoints with a “false” formula, which we write unff (φ)) such that the
tree belongs to its model.

Lemma 6.3.3. Let φ a cycle-free formula, then we have the following.

JφKV =
⋃

ψ∈unff (φ)

JψKV

This lemma states that for every tree, a fixpoint will be used only a finite number
of times, thus the greatest and smallest fixpoints collapse. Additional details may be
found in Genevès et al. (2007).
In the rest of the chapter, we thus only consider least fixpoints. An important con-

sequence of the collapse of the fixpoints is that the logic restricted in this way is closed
under negation using De Morgan’s dualities, extended to eventualities and fixpoints as
follows:

¬ 〈a〉φ = ¬ 〈a〉> ∨ 〈a〉 ¬φ
¬µXi = φi in ψ = µXi = ¬φi{{Xi/¬Xi}} in ¬ψ{{Xi/¬Xi}}

6.4 XPath and Regular Tree Languages

XPath (XPath 1.0) is a powerful language for navigating in XML documents and se-
lecting sets of nodes matching a predicate. In their simplest form, XPath expressions
look like “directory navigation paths”. For example, the XPath expression

/child::book/child::chapter/child::section

navigates from the root of a document (designated by the leading “/”) through the top-
level “book” node to its “chapter” child nodes and on to its child nodes named “section”.
The result of the evaluation of the entire expression is the set of all the “section” nodes



106 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

Translated Query: child::a[child::b]

a ∧ (µX. 〈�〉 (χ ∧s) ∨ 〈�〉X)︸ ︷︷ ︸
φ

∧〈�〉µY . b ∨ 〈�〉Y︸ ︷︷ ︸
ψ

χ

a φ

c

a

d

b

φ∧ψ

Figure 6.3: XPath Translation Example.

that can be reached in this manner. The situation becomes more interesting when
combined with XPath’s capability of searching along “axes” other than “child”. For
instance, one may use the “preceding-sibling” axis for navigating backward through
nodes of the same parent, or the “ancestor” axis for navigating upward recursively.
Furthermore, at each step in the navigation the selected nodes can be filtered using
qualifiers: boolean expression between brackets that can test the existence or absence
of paths.
We consider a large XPath fragment covering all major features of the XPath 1.0

recommendation (XPath 1.0) except counting and comparisons between data values.
We give a detailed translation of this fragment into our logic in Genevès et al. (2007),
where we also show it is correct and linear in the size of the expression. We illustrate it
here through an example.
Figure 6.3 depicts the translation of the XPath expression “child::a[child::b]”. This

expression selects all “a” child nodes of a given context which have at least one “b” child.
The translated Lµ formula holds for “a” nodes which are selected by the expression. The
first part of the translated formula, φ, corresponds to the step “child::a” which selects
candidates “a” nodes. Since it corresponds to the selected node, the formula navigates
backward from it to ensure that the starting node was the parent. The second part, ψ,
navigates downward in the subtrees of these candidate nodes to verify that they have at
least one immediate “b” child. Every translation has this structure: navigate backward
to check that the “path” expression that selects the node has been followed, and navigate
forward to test the (optional) predicate from the selected node.
Note that without converse programs we would have been unable to differentiate

selected nodes from nodes whose existence is tested: we must state properties on both
the ancestors and the descendants of the selected node. Equipping the Lµ logic with
both forward and converse programs is therefore crucial for supporting XPath.1 Logics
without converse programs may only be used for solving XPath emptiness but cannot
be used for solving other decision problems such as containment efficiently.

Embedding Regular Tree Languages

Several formalisms exist for describing types of XML documents (e.g. DTD, XML
Schema, Relax NG). In this chapter we embed regular tree types into Lµ. Regular tree
types gather most of the schemas occuring in practice (Murata et al., 2005). We rely on
a straightforward isomorphism between unranked regular tree types and binary regular
tree types (Hosoya et al., 2005b). Assuming a countably infinite set of type variables

1It is possible to eliminate upward navigation at the XPath level but it is well known that such
XPath rewriting techniques cause exponential blow-ups of expression sizes (Olteanu et al., 2002).



6.5. SATISFIABILITY-TESTING ALGORITHM 107

ranged over by X, binary regular tree type expressions are defined as follows:

LBT 3 T ::= tree type expression
∅ empty set

| ε leaf
| T1 p T2 union
| σ(X1, X2) label
| let Xi.Ti in T binder

We refer the reader to (Hosoya et al., 2005b) for the denotational semantics of regular
tree languages, and directly introduce their translation into Lµ:

J·K : LBT → Lµ
JT K = σ ∧ ¬σ for T = ∅, ε

JT1 p T2K = JT1K ∨ JT2K
Jσ(X1, X2)K = σ ∧ succ�(X1) ∧ succ�(X2)

Jlet Xi.Ti in T K = µXi = JTiK in JT K

where we use the formula σ∧¬σ as “false”, and the function succ·(·) takes care of setting
the type frontier:

succα(X) =

 ¬ 〈α〉> if X is bound to ε
¬ 〈α〉> ∨ 〈α〉X if nullable(X)
〈α〉X if not nullable(X)

according to the predicate nullable(X) which indicates whether the type T 6= ε bound
to X contains the empty tree.
Note that the translation of a regular tree type uses only downward modalities since

it describes the allowed subtrees at a given context. No additional restriction is imposed
on the context from which the type definition starts. In particular, navigation is allowed
in the upward direction so that we can support type constraints for which we have only
partial knowledge in a given direction. However, when we know the position of the
root, conditions similar to those of absolute paths are added in the form of additional
formulas describing the position that need to be satisfied. This is particularly useful
when a regular type is used by an XPath expression that starts its navigation at the
root (/p) since the path will not go above the root of the type (by adding the restriction
µZ.¬ 〈�〉> ∨ 〈�〉Z).
On the other hand, if the type is compared with another type (typically to check

inclusion of the result of an XPath expression in this type), then there is no restriction
as to where the root of the type is (our translation does not impose the chosen node to
be at the root). This is particularly useful since an XPath expression usually returns a
set of nodes deep in the tree which we may compare to this partially defined type.

6.5 Satisfiability-Testing Algorithm

In this section we present our algorithm, show that it is sound and complete, and prove
a time complexity boundary. To check a formula φ, our algorithm builds satisfiable
formulas out of some subformulas (and their negation) of φ, then checks whether φ was
produced. We first describe how to extract the subformulas from φ.

Preliminary Definitions

We define the Fisher-Ladner closure cl(ψ) of a formula ψ as the set of all subformulas
of ψ where fixpoint formulas are additionally unwound once. Specifically, we define the
relation →e⊆ Lµ × Lµ as the least relation that satisfies the following:



108 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

• φ1 ∧ φ2 →e φ1, φ1 ∧ φ2 →e φ2

• φ1 ∨ φ2 →e φ1, φ1 ∨ φ2 →e φ2

• 〈a〉φ′ →e φ
′

• µXi = φi in ψ →e ψ{{µXi = φi in Xi/Xi}

The closure cl(ψ) is the smallest set S that contains ψ and is closed under the relation
→e, i.e. if φ1 ∈ S and φ1 →e φ2 then φ2 ∈ S.

We call Σ(ψ) the set of atomic propositions σ used in ψ along with another name,
σx, that does not occur in ψ to represent atomic propositions not occurring in ψ.
We define cl∗(ψ) = cl(ψ) ∪ {¬φ | φ ∈ cl(ψ)}. Every formula φ ∈ cl∗(ψ) can be seen

as a Boolean combination of formulas of a set called the Lean of ψ, inspired from Pan
et al. (2006). We note this set Lean(ψ) and define it as follows:

Lean(ψ) = {〈a〉> | a ∈ {�,�, �,�}} ∪ Σ(ψ) ∪ {s} ∪ {〈a〉φ | 〈a〉φ ∈ cl(ψ)}

A ψ-type (or simply a “type”) (Hintikka set in the temporal logic literature) is a set
t ⊆ Lean(ψ) such that:

• ∀ 〈a〉φ ∈ Lean(ψ), 〈a〉φ ∈ t⇒ 〈a〉> ∈ t (modal consistency);

• 〈�〉> /∈ t∨ 〈�〉> /∈ t (a tree node cannot be both a first child and a second child);

• exactly one atomic proposition σ ∈ t (XML labeling); we use the function σ(t) to
return the atomic proposition of a type t;

• s may belong to t.

We call Types(ψ) the set of ψ-types. For a ψ-type t, the complement of t is the set
Lean(ψ) \ t. A type determines a truth assignment of every formula in cl∗(ψ), which we
write

.∈. We define a compatibility relation between types to state that two types are
related according to a modality.

Definition 6.5.1 (Compatibility relation). Two types t and t′ are compatible under
a ∈ {�,�}, written ∆a(t, t′), iff

∀ 〈a〉φ ∈ Lean(ψ), 〈a〉φ ∈ t⇔ φ
.∈ t′

∀ 〈a〉φ ∈ Lean(ψ), 〈a〉φ ∈ t′ ⇔ φ
.∈ t

The Algorithm

The algorithm works on sets of triples of the form (t, w�, w�) where t is a type, and
w� and w� are sets of types which represent every witness for t according to relations
∆�(t, ·) and ∆�(t, ·).
The algorithm proceeds in a bottom-up approach, repeatedly adding new triples until

a satisfying model is found (i.e., a triple whose first component is a type implying
the formula), or until no more triple can be added. Each iteration of the algorithm
builds types representing deeper trees (in the � and � direction) with pending backward
modalities that will be fulfilled at later iterations. Types with no backward modalities
are satisfiable, and if such a type implies the formula being tested, then it is satisfiable.



6.5. SATISFIABILITY-TESTING ALGORITHM 109

Upd(X) = X ∪

 (t, w�(t,X×), w�(t,X×)) | s /∈ t ⊆ Types(ψ)
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅


∪

 (t, w�(t,X×), w�(t,X×))s | s ∈ t ⊆ Types(ψ)
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅


∪

 (t, w�(t,Xs), w�(t,X×))s | s /∈ t ⊆ Types(ψ)
∧ 〈�〉> ∈ t⇒ w�(t,Xs) 6= ∅
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅


∪

 (t, w�(t,X×), w�(t,Xs))s | s /∈ t ⊆ Types(ψ)
∧ 〈�〉> ∈ t⇒ w�(t,X×) 6= ∅
∧ 〈�〉> ∈ t⇒ w�(t,Xs) 6= ∅


wa(t,X) = {type(x) | x ∈ X ∧ 〈a〉> ∈ type(x) ∧∆a(t, type(x))}

type((t, w�, w�)) = t

FinalCheck(ψ,X) = ∃x ∈ X, dsat(x, ψ) ∧ ∀a ∈ {�,�}, 〈a〉> /∈ type(x)

dsat((t, w�, w�), ψ) = ψ
.∈ t ∨ ∃x′, dsat(x′, ψ) ∧ (x′ ∈ w� ∨ x′ ∈ w�)

Xs =
{
x ∈ X | x = (_,_,_)s

}
X× = {x ∈ X | x = (_,_,_)}

Figure 6.4: Operations used by the Algorithm.

The main iteration is as follows:

X ← ∅
repeat
X ′ ← X
X ← Upd(X ′)
if FinalCheck(ψ,X) then
return “ψ is satisfiable”

until X = X ′

return “ψ is unsatisfiable”

where X ⊆ Types(ψ) × ℘(Types(ψ)) × ℘(Types(ψ)) and the update operation Upd(·)
and success check operation FinalCheck(·, ·) are defined on Figure 6.4. The update
operation requires four almost identical cases to ensure that the optional mark remains
unique. The first case corresponds to the absence of the mark, the second case to the
presence of the mark at the top level, the third case to the presence of the mark deeper
in the first child, and the last case to the presence of the mark deeper in the second
child.
At each step of the algorithm, FinalCheck(·, ·) verifies whether the tested formula

is implied by newly added types without pending (unproved) backward modalities, so
that the algorithm may terminate as soon as a satisfying tree is found.
We note Xi the set of triples and T i the set of types after i iterations: T i ={
type(x) | x ∈ Xi

}
. Note that T i+1 is the set of types for which at least one wit-

ness belongs to T i.



110 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

T 3
{
|||

T 2
{
|||

T 1
{
|||

proved tree
structure

pending
backward
modalities

Figure 6.5: Algorithm’s principle: progressive bottom-up reasoning.

s

〈�〉 η a ∧ 〈�〉s

b c

T 3
{
|||

T 2
{
|||

T 1
{
|||

a

b

c

binary to n-ary
tree encoding

Lean(ψ) : 〈�〉> 〈�〉> 〈�〉> 〈�〉> s a b c σ 〈�〉 c 〈�〉s . . . 〈�〉 η︸ ︷︷ ︸
topological propositions

︸ ︷︷ ︸
atomic propositions in ψ

︸ ︷︷ ︸
existential formulas in cl(ψ)

ψ = φ1 ∧ ¬φ2

φ1 = E→Je1K> = a ∧ (µY . 〈�〉 (c ∧ θ) ∨ 〈�〉Y ) ∧ 〈�〉 η
φ2 = E→Je2K> = c ∧ µX. 〈�〉s ∨ 〈�〉X︸ ︷︷ ︸

θ

∧ 〈�〉µZ. b ∨ 〈�〉Z︸ ︷︷ ︸
η

e1 = child::c/preceding-sibling::a[child::b]
e2 = child::c[child::b]

Figure 6.6: Run of the algorithm for a sample XPath containment problem: e1

?
⊆ e2.

Example Run of the Algorithm

In a sense, the algorithm performs a kind of progressive bottom-up reasoning while
ensuring partial (forward) satisfiability of subformulas, as illustrated by Figure 6.5.
More specifically, Figure 6.6 illustrates a run of the algorithm for checking whether the

XPath query child::c/preceding-sibling::a[b] is contained in the XPath query child::c[b].
These expressions are first compiled into the logic. For the second translation, the final
focus of the tree is a node named c. As we reach it going through a “child” step, formula
θ ensures that the parent node is the starting node. Finally, from the final focus of the
tree, formula η tests that a child named b is present. As concerns the first formula, the
final focus of the tree is on a node named a. We get there by a “preceding-sibling” step
from a c node, hence we need to make sure that there is a following sibling named c
(this is the recursion on Y). Once this c node has been found, it must be made sure
that c was reached by a “child” step from the start of the query, using the same formula



6.6. IMPLEMENTATION TECHNIQUES 111

θ as before. Finally, going back to the final focus in the tree, we need to check there
is a child named b, using again the formula η. Note that the start mark is crucial in
this containment case: it ensures that when both formulas are combined, the XPath
expressions start from the same context.
From the formulas φ1 and φ2 corresponding to each XPath query, we build a contain-

ment formula ψ = φ1 ∧ ¬φ2 (the negated implication). If this formula is unsatisfiable,
then the first XPath expression is contained in the second one. Lean(ψ) is then com-
puted, and the fixpoint computation starts: the set of types T 1 contains all possible
leaves. Each type added in T i (i ≥ 2) requires at least one witness type found in T i−1

(else it would have been added at some previous step j < i). In this example, a satisfy-
ing binary tree of depth 3 is found, therefore the algorithm stops just after computing
T 3. The first XPath query is not contained in the second one: a counter-example tree
is provided to the user (see Figure 6.6).

Correctness and Complexity

In this section we state the correctness of the satisfiability testing algorithm, and show
that its time complexity is 2O(|Lean(ψ)|). More details may be found in Genevès et al.
(2007).

Theorem 6.5.2 (Correctness). The algorithm decides satisfiability of Lµ formulas over
finite focused trees.

This result depends on the following two lemmas.

Lemma 6.5.3 (Soundness). Let T be the result set of the algorithm. For any type t ∈ T
and any φ such that φ

.∈ t, then JφK∅ 6= ∅.
Lemma 6.5.4 (Completeness). For a cycle-free closed formula φ ∈ Lµ, if JφK∅ 6= ∅
then the algorithm terminates with a set of triples X such that FinalCheck(φ,X).

We now present one of the main contributions of this chapter: the complexity of our
algorithm is 2O(n) where n is the formula size. It is well-known that cl(ψ) is a finite
set and its size is linear with respect to the size of ψ (i.e., the number of operators
and propositional variables appearing in ψ) (Kozen, 1983). Therefore |Lean(ψ)| is also
trivially linear with respect to the size of ψ.2

Theorem 6.5.5 (Complexity). For ψ ∈ Lµ the satisfiability problem JψK∅ 6= ∅ is decid-
able in time 2O(n) where n = |Lean(ψ)|.

6.6 Implementation Techniques

Our implementation relies on a symbolic representation and manipulation of sets of ψ-
types using Binary Decision Diagrams (BDDs) (Bryant, 1986). BDDs provide a canon-
ical representation of Boolean functions. Experience has shown that this representation
is very compact for very large Boolean functions. Their effectiveness is notably well
known in the area of formal verification of systems (Edmund M. Clarke et al., 1999).
Details can be found in Genevès et al. (2007)

6.7 Typing Applications and Experimental Results

In this section we describe applications of our satisfiability algorithm, in the form of
static XPath decisions problems, and provide some experimental results.

2The acute reader may notice that for large formulas, |Lean(ψ)| is usually smaller than the size of
ψ since disjunctions, conjunctions, and negations are not members of Lean(ψ).



112 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

e1 /a[. //b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[. //b[c/*//d]/b[c/d]]

e3 a/b//c/foll-sibling::d/e
e4 a/b//d[prec-sibling::c]/e
e5 a/c/following::d/e
e6 a/b[//c]/following::d/e ∩ a/d[preceding::c]/e

e7 *//switch[ancestor::head]//seq//audio[prec-sibling::video]

e8 descendant::a[ancestor::a]
e9 /descendant::*
e10 html/(head p body)
e11 html/head/descendant::*
e12 html/body/descendant::*

Figure 6.7: XPath Expressions Used in Experiments.

DTD Symbols Binary Type Variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table 6.1: Types Used in Experiments.

Typing Applications

For XPath expressions e1, . . . , en, we can formulate several decision problems in the
presence of XML type expressions T1, . . . , Tn, where E→Je1KJT1K is the translation of
XPath expression e1 constrained to type T1.

• XPath containment: E→Je1KJT1K ∧ ¬E→Je2KJT2K (if the formula is unsatisfiable
then all nodes selected by e1 under type constraint T1 are selected by e2 under
type constraint T2)

• XPath emptiness: E→Je1KJT1K

• XPath overlap: E→Je1KJT1K ∧ E→Je2KJT2K

• XPath coverage: E→Je1KJT1K ∧
∧

2≤i≤n ¬E→JeiKJTiK
Two problems are of special interest for XML type checking:

• Static type checking of an annotated XPath query:
E→Je1KJT1K ∧ ¬JT2K (if the formula is unsatisfiable then all nodes selected by e1

under type constraint T1 are included in the type T2.)

• XPath equivalence under type constraints:
E→Je1KJT1K ∧¬E→Je2KJT2K and ¬E→Je1KJT1K ∧E→Je2KJT2K (This test can be used
to check that the nodes selected after a modification of a type T1 by T2 and an
XPath expression e1 by e2 are the same, typically when an input type changes
and the corresponding XPath query has to change as well.)

Experimental Results

As no third-party implementation we know of addresses reverse axes and recursion,
we simply provide evidence that our approach is efficient. We carried out extensive



6.8. RELATED WORK 113

XPath Decision Problem XML Type Time (ms)
e1 ⊆ e2 and e2 6⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 6⊆ e6 none 41
e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table 6.2: Some Decision Problems and Corresponding Results.

tests,3 and present here only a representative sample that includes the most complex
language features such as recursive forward and backward axes, intersection, large and
very recursive types with a reasonable alphabet size. The tests use XPath expressions
shown on Figure 6.7 (where “//” is used as a shorthand for “/desc-or-self::*/”) and XML
types shown on Table 6.1. Table 6.2 presents some decision problems and corresponding
performance results. Times reported in milliseconds correspond to the running time of
the satisfiability solver without the (negligible) time spent for parsing and translating
into Lµ.
The first XPath containment instance was first formulated in Miklau and Suciu (2004)

as an example for which the proposed tree pattern homomorphism technique is incom-
plete. The e8 example shows that the official XHTML DTD does not syntactically
prohibit the nesting of anchors. For the XHTML case, we observe that the time needed
is more important, but it remains practically relevant, especially for static analysis op-
erations performed only at compile-time.

Online Implementation

The system has been implemented as a Java/JSP web application and interaction with
the system is offered through a web user interface in a web browser. The tool, depicted
in Figure 6.8 is available online from http://wam.inrialpes.fr/xml.
The user can either enter a formula through area (1) or select from pre-loaded analysis

tasks offered in area (4). The level of details displayed by the solver can be adjusted in
area (2) and makes it possible to inspect logical translations and statistics on problem
size and the different operation costs. The results of the analysis are displayed in area
(3) together with XML counter-examples.

6.8 Related Work

We address related work beyond the one described in Section 5.6,
The XPath containment problem has attracted a lot of research attention in the

database community. The focus was given to the study of the impact of different XPath
features on the containment complexity (see Schwentick (2004) for an overview). Specif-
ically, Neven and Schwentick (2003) proves an EXPTIME upper-bound (in the presence
of DTDs) of queries containing the “child” and “descendant” axes, and union of paths.
The complexity of XPath satisfiability in the presence of DTDs also is extensively stud-
ied in Benedikt et al. (2005). From these results, we know that XPath containment with
or without type constraints ranges from EXPTIME to undecidable.
Most formalisms used in the context of XML are related to one of the two logics used

for unranked trees: First Order logic (FO), and Monadic Second Order logic (MSO). FO

3Experiments have been conducted with a JAVA implementation running on a Pentium 4, 3 Ghz,
with 512Mb of RAM with Windows XP.

http://wam.inrialpes.fr/xml


114 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

(1)

(2)

(3)

(4)

Figure 6.8: Screenshot of the Solver Interface.



6.8. RELATED WORK 115

and relatives are frequently used for query languages since they nicely capture their nav-
igational features (Barceló and Libkin, 2005). For query languages, Computational Tree
Logic (CTL) (Clarke and Emerson, 1981) (which is equivalent to FO over tree structures)
has been proposed (Miklau and Suciu, 2004; Marx, 2004a; Barceló and Libkin, 2005).
In a attempt to reach more expressive power, the work found in Afanasiev et al. (2005)
proposes a variant of Propositional Dynamic Logic (PDL) (Fischer and Ladner, 1979)
with an EXPTIME complexity. MSO, specifically the weak monadic second-order logic
of two successors (WS2S) (Thatcher and Wright, 1968; Doner, 1970), is one of the most
expressive decidable logic used when both regular types and queries (Barceló and Libkin,
2005) are under consideration. WS2S satisfiability is known to be non-elementary. A
drawback of the WS2S decision procedure is that it requires the full construction and
complementation of tree automata.
Some temporal and fixpoint logics closely related to MSO have been introduced and

allow to avoid explicit automata construction. The propositional modal µ-calculus in-
troduced in Kozen (1983) has been shown to be as expressive as nondeterministic tree
automata (Emerson and Jutla, 1991). Since it is trivially closed under negation, it
constitutes a good alternative for studying MSO-related problems. Moreover, it has
been extended with converse programs in Vardi (1998). The best known complexity
for the resulting logic is obtained through reduction to the emptiness problem of alter-
nating tree automaton which is in 2O(n4·log n), where n corresponds to the length of a
formula (Grädel et al., 2002). Unfortunately the logic lacks the finite model property.
From Kupferman and Vardi (1999), we know that WS2S is exactly as expressive as the
alternation-free fragment (AFMC) of the propositional modal µ-calculus. Furthermore,
the AFMC subsumes all early logics such as CTL (Clarke and Emerson, 1981) and PDL
(Fischer and Ladner, 1979) (see Barceló and Libkin (2005) for a complete survey on tree
logics). In Marx (2004b), the author considers XPath equivalence under DTDs (local
tree types) for which satisfiability is shown to be in EXPTIME.
The goal of the research presented so far is focused on establishing new theoretical

properties and complexity bounds. Our research differs in that we seek precise com-
plexity bounds, efficient implementation techniques, and concrete design that may be
directly applied to the type checking of XPath queries under regular tree types.
In this line of research, some experimental results based on WS2S, through the

Mona tool (Klarlund et al., 2001), have recently been reported for XPath containment
(Genevès and Layaïda, 2007) and even for query evaluation (Inaba and Hosoya, 2006).
However, for static analysis purposes, the explosiveness of the approach is very difficult
to control due to the non-elementary complexity. Closer to our contribution, the recent
work found in Tanabe et al. (2005) provides a decision procedure for the AFMC with
converse whose time complexity is 2O(n·log n). However, models of the logic are Kripke
structures (infinite graphs). Enforcing the finite tree model property can be done at
the syntactic level, as illustrated in the XML setting in Genevès and Layaïda (2006).
Nevertheless, the drawback of this approach is that the AFMC decision procedure re-
quires expensive cycle-detection for rejecting infinite derivation paths for least fixpoint
formulas. Furthermore, there is a fundamental difference between this approach and
the algorithm presented in this chapter. The algorithm used in Genevès and Layaïda
(2006) actually computes a greatest fixpoint: it starts from all possible (graph) nodes
and progressively removes all inconsistent nodes until a fixpoint is reached. Finally, if
the fixpoint contains a satisfying (tree) structure then the formula is satisfiable. As a
consequence, unlike the algorithm presented in this article, (1) the algorithm must al-
ways explore all nodes, and (2) it cannot terminate until full completion of the fixpoint
computation (otherwise inconsistencies may remain). The present work shows how this
can be avoided for finite trees. As a consequence, the resulting performance is much
more attractive. In an earlier work on XML type checking, a logic for finite trees was
presented (Tozawa, 2004), but the logic is not closed under negation.



116 CHAPTER 6. EFFICIENT STATIC ANALYSIS OF XML PATHS AND TYPES

In Colazzo et al. (2006), a technique is presented for statically ensuring correctness of
paths. The approach only deals with emptiness of XPath expressions without reverse
axes, whereas our approach solves the more general problem of containment, including
reverse axes.
Recently, alternative approaches based on tree automata have caught up on our com-

plexity (Calvanese et al., 2008; Libkin and Sirangelo, 2008; Calvanese et al., 2009), even
if, to the best of our knowledge, none of these approaches have been implemented so
far. More specifically, these alternative approaches propose new automata techniques for
trees that are simpler when compared to sophisticated infinite-tree automata-theoretic
techniques. The work of Calvanese et al. (2009) underlines the fact that implementa-
tions are difficult to obtain due to the use of Safra’s determinization construction and
parity games. They add that it is practically infeasible to apply the symbolic approach
in the the infinite-tree setting and that well-formed trees and path expressions together
with the closure of a node expression are behind such results. These arguments based
on automata techniques are very similar to our earlier work operating directly on finite
trees.
We remain convinced that our logical approach is superior, for the following reasons.

First, using the modal logic natively in the finite case throughout this chapter keeps more
uniformity between the proofs and the satisfiability algorithm. From there we obtain
not only an implementation but an efficient one. In addition, bottom-up construction
and cycle-freeness come naturally and show exactly why the whole approach is powerful.
Second, automata-based approaches require using 2ATA (mainly introduced on infinite
trees if we consider Vardi’s work) which are quite involved. First, they make implemen-
tations out of reach due to complex determinization and parity games (see Calvanese
et al. (2008) for the full details). Then a conversion to NTA (Non-deterministic tree
automata) is needed for testing non-emptiness (this is explosive for large sets). In this
case one still needs to enforce finiteness to test emptiness. Since it does not simplify the
implementation, the only utility we see here is to shorten some proofs. In fact, neither
of the papers Libkin and Sirangelo (2008); Calvanese et al. (2008) provide an implemen-
tation, and Calvanese et al. (2008) even remarks that a naive implementation of their
technique would result in a blow-up in complexity, requiring the use of techniques very
similar to what we have done.

6.9 Conclusion

The main result of this chapter is a sound and complete algorithm for the satisfiability
of decision problems involving regular tree types and XPath queries with a tighter 2O(n)

complexity in the length of a formula. Our approach is based on a sub-logic of the
alternation-free modal µ-calculus with converse for finite trees.
Our proof method reveals deep connections between this logic and XPath decision

problems. First, the translations of XML regular tree types and a large XPath fragment
are cycle-free and linear in the size of the corresponding formulas in the logic. Second, on
finite trees, since both operators are equivalent, the logic with a single fixpoint operator
is closed under negation. This allows to address key XPath decision problems such as
containment. The current solver can also support conditional XPath proposed in Marx
(2004b).
Finally, there are a number of interesting directions for further research that build

on ideas developed here: extending XPath to restricted data values comparisons that
preserves this complexity, for instance data values on a finite domain, and integrating
related work on counting (Dal Zilio et al., 2004) to our logic. We also plan on continuing
to improve the performance of our implementation.



Part III

Manipulating Programs





“There are objects so peculiar they were not to be believed.”

—Tim Burton’s Nightmare before Christmas

For the final leg of our journey, we consider a drastic change in the shape of the data
manipulated. Instead of data being purely static and the object of manipulations, we
now turn to the manipulation of programs. More precisely, we consider higher-order
languages, languages that manipulate their own expressions, in a concurrent setting.
While we studied type systems for such languages (Schmitt and Stefani, 2003), we
concentrate in the following chapters on the question of observational equivalence.
Higher-order process calculi are calculi in which processes (more generally, values

containing processes) can be communicated. Higher-order process calculi have been put
forward in the early 1990s, with CHOCS (Thomsen, 1989) and Plain CHOCS (Thom-
sen, 1993), the Higher-Order π-calculus (Sangiorgi, 1992) (HOπ in the following), and
others. The basic operators are usually those of CCS: parallel composition, input and
output prefix, and restriction. Replication and recursion are often omitted as they
can be encoded. However, the possibility of exchanging processes has strong conse-
quences on semantics: in most higher-order process calculi, labeled transition systems
must deal with higher-order substitutions and scope extrusion, and ordinary definitions
of bisimulation and behavioral equivalences become unsatisfactory as they are over-
discriminating. Higher-order, or process-passing, concurrency is often presented as an
alternative paradigm to the first order, or name-passing, concurrency of the π-calculus
for the description of mobile systems. Higher-order calculi are inspired by, and are for-
mally closer to, the λ-calculus, whose basic computational step – β-reduction – involves
term instantiation. As in the λ-calculus, a computational step in higher-order calculi
results in the instantiation of a variable with a term, which is then copied as many
times as there are occurrences of the variable, resulting in potentially larger terms. We
study in the following chapters variants of HOπ where we vary the set of features they
offer, mainly name restriction and passivation (the capture and manipulation of running
processes).
The static analysis we focus on is equivalence. Equivalence is a very precise rela-

tion: given a notion of observations, there is no context (i.e., larger system) that may
distinguish between two equivalent programs. Unfortunately, such precise notions are
difficult to establish, as one needs to consider every context possible. We thus consider
several techniques, variants of bisimulations, that characterize observational equivalence
while being much simpler to prove. The best we can hope for is an algorithm to test for
equivalence. We show in Chapter 7 that such an algorithm exists for a minimal higher
order calculus called HO Core (which is HOπ without restriction). We also show that
this calculus is not trivial, in the sense that it is Turing complete. This work was done
in collaboration with Ivan Lanese, Jorge A. Pérez, and Davide Sangiorgi (Lanese et al.,
2010b). We then turn to the question of adding passivation, then restriction, to HO
Core. In Chapter 8, we show that HO Core with passivation still offers a tractable way
of proving equivalence, through the use of normal bisimulations. Unfortunately, this is
not the case when we add both passivation and name restriction. We then describe con-
text bisimulations for HOπP (HOπ with passivation), and design a new proof technique
to show it characterized barbed congruence in the weak case. This work was done with
Sergueï Lenglet and Jean-Bernard Stefani (Lenglet et al., 2009b,a) and is the subject of
Sergueï Lenglet’s PhD dissertation (Lenglet, 2010).





Chapter 7

HO Core

7.1 Introduction

The goal of this chapter is to shed light on the expressiveness of higher-order process
calculi, and related questions of decidability and of behavioral equivalence.
We consider a core calculus of Higher-Order processes (briefly HO Core), whose gram-

mar is:
P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0

An input prefixed process a(x).P can receive on name (or channel) a a process that
will be substituted in the place of x in the body P ; an output message a〈P 〉 can send
P on a; parallel composition allows processes to interact. We can view the calculus as
a kind of concurrent λ-calculus, where a(x).P is a function, with formal parameter x
and body P , located at a; and a〈P 〉 is the argument for a function located at a. HO
Core is minimal, in that only the operators strictly necessary to obtain higher-order
communications are retained. For instance, continuations following output messages
have been left out. More importantly, HO Core has no restriction operator. Thus all
channels are global, and dynamic creation of new channels is impossible. This makes
the absence of recursion/replication also relevant, as known encodings of fixed-point
combinators in higher-order process calculi exploit the restriction operator to avoid
harmful interferences (notably for nested recursion).
Even though HO Core is minimal, it remains non-trivial: in Section 7.3, we show that

it is Turing complete, therefore its termination problem is undecidable, by exhibiting
a deterministic encoding of Minsky machines (Minsky, 1967). The cornerstone of the
encoding, counters that may be tested for zero, consist of nested higher-order outputs.
Each register is made of two mutually recursive behaviors capable of spawning processes
incrementing and decrementing its counter.
We then turn to the question of definability and decidability of bisimilarity. The defi-

nition of a satisfactory notion of bisimilarity is a hard problem for a higher-order process
language, and the “term-copying” feature inherited from the λ-calculus can make the
proof that bisimilarity is a congruence difficult. In ordinary bisimilarity, as in CCS, two
processes are bisimilar if any action by one of them can be matched by an equal action
from the other in such a way that the resulting derivatives are again bisimilar. The
two matching actions must be syntactically identical. This condition is unacceptable in
higher-order concurrency; for instance it breaks fundamental algebraic laws such as the
commutativity of parallel composition. Alternative proposals of labeled bisimilarity for
higher-order processes have been put forward. In higher-order bisimilarity (Thomsen,
1990; Sangiorgi, 1992), one requires bisimilarity, rather than identity, of the processes
emitted in a higher-order output action. This weakening is natural for higher-order
calculi and the bisimulation checks involved are simple. However, higher-order bisim-



122 CHAPTER 7. HO CORE

ilarity is often over-discriminating as a behavioral equivalence (Sangiorgi, 1992), and
basic properties, such as congruence, may be very hard to establish. Context bisim-
ilarity (Sangiorgi, 1992; Jeffrey and Rathke, 2005) avoids the separation between the
argument and the continuation of an output action, this continuation being either syn-
tactically present or consisting of other processes running in parallel. To this end, it
explicitly takes into account the context in which the emitted process is supposed to
go. Context bisimilarity yields more satisfactory process equalities and coincides with
contextual equivalence (i.e., barbed congruence). A drawback of this approach is the
universal quantification over contexts in the clause for output actions, which can hinder
its use in practice to check equivalences. Normal bisimilarity (Sangiorgi, 1992; Jeffrey
and Rathke, 2005; Cao, 2006) is a simplification of context bisimilarity without universal
quantifications in the output clause. The input clause is simpler too: normal bisimi-
larity can indeed be viewed as a form of open bisimilarity (Sangiorgi, 1994), where the
formal parameter of an input is not substituted in the input clause, and free variables
of terms are observable during the bisimulation game. However, the definition of the
bisimilarity may depend on the operators in the calculus, and the correspondence with
context bisimilarity may be hard to prove.
In Sections 7.4 and 7.5 we show that HO Core has a unique reasonable relation of

strong bisimilarity: all the above forms (higher-order bisimilarity, context bisimilarity,
normal bisimilarity, barbed congruence) coincide, and they also coincide with their asyn-
chronous versions. Furthermore, we show that such a bisimilarity relation is decidable.
In the concurrency literature, there are examples of formalisms which are not Turing

complete and where nevertheless (strong) bisimilarity is undecidable (e.g., Petri nets
(Jančar, 1995) or lossy channel systems (Schnoebelen, 2001)). We are not aware how-
ever of examples of the opposite situation: formalisms that, as HO Core, are Turing
complete but at the same time maintain decidability of bisimilarity. The situation in HO
Core may indeed seem surprising, if not even contradictory: one is able to tell whether
two processes are bisimilar, but in general one cannot tell whether the processes will
terminate or even whether the sets of their τ -derivatives (the processes obtained via
reductions) are finite or not. The crux to obtaining decidability is a further characteri-
zation of bisimilarity in HO Core, as a form of open bisimilarity, called IO bisimilarity,
in which τ -transitions are ignored.
For an upper bound to the complexity of the bisimilarity problem, we can adapt

Dovier et al.’s algorithm (2004) to infer that bisimilarity is decidable in time which
is linear in the size of the (open and higher-order) transition system underlying IO
bisimilarity. In general however, this transition system is exponential with respect to
the size of the root process. We show in Section 7.6 that bisimilarity in HO Core can
actually be decided in time that is polynomial with respect to the size of the initial pair
of processes. We obtain this through an axiomatization of bisimilarity, where we adapt
to a higher-order setting both Moller and Milner’s unique decomposition of processes
(1993) and Hirschkoff and Pous’ axioms for a fragment of (finite) CCS (2008).
The decidability result for bisimilarity breaks down with the addition of restriction, as

full recursion can then be faithfully encoded (the resulting calculus subsumes, e.g., CCS
without relabeling). This however requires the ability of generating unboundedly many
new names (for instance, when a process that contains restrictions is communicated and
copied several times). In Section 7.7, we consider the addition of static restrictions to
HO Core. Intuitively, this means allowing restrictions only as the outermost constructs,
so that processes take the form νa1 . . .νan P where the inner process P is restriction-
free. Via an encoding of the Post correspondence problem (Post, 1946), we show that
the addition of four static restrictions is sufficient to produce undecidability. We do not
know what happens with fewer restrictions.
In the final part of the chapter we examine the impact of some extensions to HO Core

on our decidability results (Section 7.8) and give some concluding remarks (Section 7.9).



7.2. THE CALCULUS 123

Missing details and proofs may be found in Lanese et al. (2010b).

7.2 The Calculus

We now introduce HO Core, the core of calculi for higher-order concurrency such as
CHOCS (Thomsen, 1989), Plain CHOCS (Thomsen, 1993), and Higher-Order π-calculus
(Sangiorgi, 1992, 1996a,b). We use a, b, c to range over names (also called channels),
and x, y, z to range over variables; the sets of names and variables are disjoint.

P, Q ::= a〈P 〉 output
| a(x).P input prefix
| x process variable
| P ‖ Q parallel composition
| 0 nil

An input a(x).P binds the free occurrences of x in P ; this is the only binder in HO Core.
We write fv(P ) for the set of free variables in P , and bv(P ) for the bound variables. We
identify processes up to a renaming of bound variables. A process is closed if it does
not have free variables. In a statement, a name is fresh if it is not among the names
of the objects (processes, actions, etc.) of the statement. As usual, the scope of an
input a(x).P extends as far to the right as possible. For instance, a(x).P ‖ Q stands
for a(x). (P ‖ Q). We abbreviate the input a(x).P , with x 6∈ fv(P ), as a.P ; the output
a〈0〉 as a; and the composition P1 ‖ . . . ‖ Pk as

∏k
i=1 Pi. Similarly, we write

∏n
1 P as

an abbreviation for the parallel composition of n copies of P . Further, P{Q̃/x̃} denotes
the simultaneous substitution of variables x̃ with processes Q̃ in P (we assume members
of x̃ are distinct).
We now describe the Labeled Transition System, which is defined on open processes.

There are three forms of transitions: internal transitions P τ−→ P ′; input transitions
P

a(x)−−−→ P ′, meaning that P can receive at a a process that will replace x in the

continuation P ′; and output transitions P
a〈P ′〉−−−−→ P ′′ meaning that P emits P ′ at a,

and in doing so evolves to P ′′. We use α to denote a generic label of a transition. The
notion of free variables extends to labels as expected: fv(a〈P 〉) = fv(P ). For bound
variables in labels, we have bv(a(x)) = {x} and bv(a〈P 〉) = ∅.

a(x).P
a(x)−−−→ P Inp a〈P 〉 a〈P 〉−−−→ 0 Out

P1
α−→ P ′1 bv(α) ∩ fv(P2) = ∅
P1 ‖ P2

α−→ P ′1 ‖ P2

Act1

P1
a〈P 〉−−−→ P ′1 P2

a(x)−−−→ P ′2

P1 ‖ P2
τ−→ P ′1 ‖ P ′2{P/x}

Tau1

(We have omitted Act2 and Tau2, the symmetric counterparts of the last two rules.)

Definition 7.2.1. The structural congruence relation is the smallest congruence gen-
erated by the following laws:
P ‖ 0 ≡ P , P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

Reductions P −→ P ′ are defined as P ≡ τ−→≡ P ′.



124 CHAPTER 7. HO CORE

M-Inc
i : INC(rj) m′j = mj + 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

M-Dec
i : DECJ(rj , k) mj 6= 0 m′j = mj − 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

M-Jmp
i : DECJ(rj , k) mj = 0

(i,m0,m1) −→M (k,m0,m1)

Table 7.1: Reduction of Minsky machines

7.3 HO Core is Turing Complete

We present in this section a deterministic encoding of Minsky machines (Minsky, 1967)
into HO Core. The encoding shows that HO Core is Turing complete and, as the encod-
ing preserves termination, it also shows that termination in HO Core is undecidable.

Minsky machines

A Minsky machine is a model composed of a set of sequential, labeled instructions,
and two registers. Minsky machines have been shown to be a Turing complete model
(see Minsky, 1967, Chapters 11 and 14), hence termination is undecidable for Minsky
machines. Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural numbers. Instruc-
tions (1 : I1), . . . , (n : In) can be of two kinds: INC(rj), which adds 1 to register rj and
proceeds to the next instruction; DECJ(rj , k), which jumps to instruction k if rj is zero,
otherwise it decreases register rj by 1 and proceeds to the next instruction.
A Minsky machine includes a program counter p indicating the label of the instruction

being executed. In its initial state, the machine has both registers set to 0 and the
program counter p set to the first instruction. The Minsky machine stops whenever the
program counter is set to a non-existent instruction, i.e., p > n.
A configuration of a Minsky machine is a tuple (i,m0,m1); it consists of the current

program counter and the values of the registers. Formally, the reduction relation over
configurations of a Minsky machine, denoted −→M, is defined in Table 7.1.

Encoding Minsky machines into HO Core

The encoding of a Minsky machine into HO Core is denoted as [[·]]M. In order to sim-
plify the presentation of the encoding, we introduce two useful notations that represent
limited forms of guarded choice and guarded replication. Then we show how to count
and test for zero in HO Core and present the main encoding, depicted in Table 7.2.

Guarded choice We introduce here a notation for a simple form of guarded choice
to choose between different behaviors. Assume, for instance, that ai should trigger Pi,
for i ∈ {1, 2}. This is written as a1.P1 + a2.P2, whereas the choice of the behavior Pi
is written as âi.
The notation can be seen as a shortcut for HO Core terms as follows:

Definition 7.3.1. Let σ = {(a1, a2) | a1 6= a2} be a fixed set of pairs of distinct
names. The notation for guarded choice can be defined as follows:



7.3. HO CORE IS TURING COMPLETE 125

Instructions (i : Ii)

[[(i : INC(rj))]]M = !pi. (încj ‖ ack. pi+1)

[[(i : DECJ(rj , k))]]M = !pi. (d̂ecj ‖ ack. (zj . pk + nj . pi+1)

Registers rj
[[rj = 0]]M = (incj . rSj 〈(| 0 |)j〉 + decj . (r0j ‖ ẑj)) ‖ REGj
[[rj = m]]M = (incj . rSj 〈(| m |)j〉 + decj . (| m− 1 |)j) ‖ REGj
where:
REGj = !r0j . (ack ‖ incj . rSj 〈(| 0 |)j〉 + decj . (r0j ‖ ẑj)) ‖

!rSj (Y ). (ack ‖ incj . rSj 〈rSj 〈Y 〉 ‖ n̂j〉 + decj .Y )

(| k |)j =

{
r0j ‖ n̂j if k = 0

rSj 〈(| k − 1 |)j〉 ‖ n̂j if k > 0.

Table 7.2: Encoding of Minsky machines

a1.P1 + a2.P2 , a1〈P1〉 ‖ a2〈P2〉
â1 , a2(x2). a1(x1).x1

â2 , a1(x1). a2(x2).x2

where, in all cases, (a1, a2) ∈ σ.

We consider only binary guarded choice as it is sufficient to encode Minsky machines.
This way, given a pair (a1, a2) ∈ σ and the process a1.P1 + a2.P2, the trigger âi (with
i ∈ {1, 2}) consumes both Pi’s and spawns the one chosen, i.e., (a1.P1 + a2.P2) ‖
âi

τ−→ τ−→ Pi. This notation has the expected behavior as long as there is at most one
message at a guard (â1 or â2 in the previous example) enabled at any given time, and
as long as concurrently running guarded choices use distinct names.

Input-guarded replication We follow the standard definition of replication in higher-
order process calculi, adapting it to input-guarded replication so as to make sure that
diverging behaviors are not introduced. As there is no restriction in HO Core, the
definition is not compositional and replications cannot be nested.

Definition 7.3.2. Assume a fresh name c. The definition of input-guarded replication
in HO Core is:

!a(z).P , (a(z). c(x).x ‖ c〈x〉 ‖ P ) ‖ c〈a(z). c(x).x ‖ c〈x〉 ‖ P 〉

where P contains no replications (nested replications are forbidden).

After having been activated by an output message, replication requires an additional
τ step to enable the continuation P , i.e., !a(z).P

a(z)−−−→ τ−→ (!a(z).P ) ‖ P .

Counting in HO Core The cornerstone of our encoding is the definition of counters
that may be tested for zero. Numbers are represented as nested higher-order processes:
the encoding of a number k + 1 stored in register j, denoted (| k + 1 |)j , is the parallel
composition of two processes: rSj 〈(| k |)j〉 (the successor of (| k |)j) and a flag n̂j . The
encoding of zero comprises such a flag, as well as the message r0

j . This way, for instance,
(| 2 |)j is rSj 〈rSj 〈r0

j ‖ n̂j〉 ‖ n̂j〉 ‖ n̂j .



126 CHAPTER 7. HO CORE

Registers Registers are counters that may be incremented and decremented. They
consist of two parts: their current state and two mutually recursive processes used to
generate a new state after an increment or decrement of the register. The state depends
on whether the current value of the register is zero or not, but in both cases it consists
of a choice between an increment and a decrement. In case of an increment, a message
on rSj is sent containing the current register value, for instance m. This message is then
received by the recursive definition of rSj that creates a new state with value m + 1,
ready for further increment or decrement. In case of a decrement, the behavior depends
on the current value, as specified in the reduction relation in Table 7.1. If the current
value is zero, then it stays at zero, recreating the state corresponding to zero for further
operations using the message on r0

j , and it spawns a flag ẑj indicating that a decrement
on a zero-valued register has occurred. If the current value m is strictly greater than
zero, then the process (| m − 1 |)j is spawned. If m was equal to 1, this puts the state
of the register to zero (using a message on r0

j ). Otherwise, it keeps the message in a
non-zero state, with value m − 1, using a message on rSj . In both cases a flag n̂j is
spawned to indicate that the register was not equal to zero before the decrement. When
an increment or decrement has been processed, that is when the new current state has
been created, an acknowledgment is sent to proceed with the execution of the next
instruction.

Instructions The encoding of instructions goes hand in hand with the encoding of
registers. Each instruction (i : Ii) is a replicated process guarded by pi, which represents
the program counter when p = i. Once pi is consumed, the instruction is active and an
interaction with a register occurs. In case of an increment instruction, the corresponding
choice is sent to the relevant register and, upon reception of the acknowledgment, the
next instruction is spawned. In case of a decrement, the corresponding choice is sent
to the register, then an acknowledgment is received followed by a choice depending on
whether the register was zero, resulting in a jump to the specified instruction, or the
spawning of the next instruction otherwise.
The encoding of a configuration of a Minsky machine thus requires a finite number of

fresh names (linear on n, the number of instructions).

Definition 7.3.3. Let N be a Minsky machine with registers r0 = m0, r1 = m1

and instructions (1 : I1), . . . , (n : In). Suppose fresh, pairwise different names r0
j ,

rSj , p1, . . . , pn, incj, decj, ack (for j ∈ {0, 1}). Given the encodings in Table 7.2, a
configuration (i,m0,m1) of N is encoded as

pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
n∏
i=1

[[(i : Ii)]]M .

In HO Core, we write −→∗ for the reflexive and transitive closure of −→, and P ⇑
if P has an infinite sequence of reductions. Similarly, in Minsky machines −→∗M is
the reflexive and transitive closure of −→M, and N ⇑M means that N has an infinite
sequence of reductions.

Lemma 7.3.4. Let N be a Minsky machine. We have:

1. N −→∗M N ′ iff [[N ]]M −→∗ [[N ′]]M;

2. if [[N ]]M −→∗ P1, P1 −→ P2, and P1 −→ P3 then P2 ≡ P3;

3. if [[N ]]M −→∗ P1 then there exists N ′ such that P1 −→∗ [[N ′]]M and N −→∗M N ′;

4. N ⇑M iff [[N ]]M ⇑.



7.4. BISIMILARITY IN HO CORE 127

The results above guarantee that HO Core is Turing complete, and since the encoding
preserves termination, it entails the following corollary.

Corollary 7.3.5. Termination in HO Core is undecidable.

7.4 Bisimilarity in HO Core

In this section we prove that the main forms of strong bisimilarity for higher-order
process calculi coincide in HO Core, and that such a relation is decidable. As a key
ingredient for our results, we introduce open Input/Output (IO) bisimulation, in which
the variable of input prefixes is never instantiated and τ -transitions are not observed.
We are not aware of other results on process calculi where processes can perform τ -
transitions and yet a bisimulation that does not mention τ -transitions is discriminating
enough. (One of the reasons that make this possible is that bisimulation in HO Core is
very discriminating.)
We define different kinds of bisimulations by appropriate combinations of the clauses

below.

Definition 7.4.1 (HO Core bisimulation clauses, open processes). A symmetric relation
R on HO Core processes is

1. a τ -bisimulation if P R Q and P τ−→ P ′ imply that there is Q′ such that Q τ−→ Q′

and P ′ R Q′;

2. a higher-order output bisimulation if P R Q and P
a〈P ′′〉−−−−→ P ′ imply that there

are Q′, Q′′ such that Q
a〈Q′′〉−−−−→ Q′ with P ′ R Q′ and P ′′ R Q′′;

3. an output normal bisimulation if P R Q and P
a〈P ′′〉−−−−→ P ′ imply that there are

Q′, Q′′ such that Q
a〈Q′′〉−−−−→ Q′ with m.P ′′ ‖ P ′ R m.Q′′ ‖ Q′, where m is fresh;

4. an open bisimulation if whenever P R Q:

• P a(x)−−−→ P ′ implies that there is Q′ such that Q
a(x)−−−→ Q′ and P ′ R Q′,

• P ≡ x ‖ P ′ implies that there is Q′ such that Q ≡ x ‖ Q′ and P ′ R Q′.

Definition 7.4.2 (HO Core bisimulation clauses, closed processes). A symmetric rela-
tion R on closed HO Core processes is

1. an output context bisimulation if P R Q and P
a〈P ′′〉−−−−→ P ′ imply that there

are Q′, Q′′ such that Q
a〈Q′′〉−−−−→ Q′ and for all S with fv(S) ⊆ {x}, it holds that

S{P ′′
/x} ‖ P ′ R S{Q′′

/x} ‖ Q′;

2. an input normal bisimulation if P R Q and P
a(x)−−−→ P ′ imply that there is Q′

such that Q
a(x)−−−→ Q′ and P ′{m/x} R Q′{m/x}, where m is fresh;

3. closed if P R Q and P
a(x)−−−→ P ′ imply that there is Q′ such that Q

a(x)−−−→ Q′ and
for all closed R, it holds that P ′{R/x} R Q′{R/x}.

A combination of the bisimulation clauses in Definitions 7.4.1 and 7.4.2 is complete
if it includes exactly one clause for input and output transitions (in contrast, it needs
not include a clause for τ -transitions).1 We will show that all complete combinations

1The clauses of Definition 7.4.2 are however tailored to closed processes, therefore combining them
with clause 4 in Definition 7.4.1 has little interest.



128 CHAPTER 7. HO CORE

coincide. We only give a name to those combinations that represent known forms of
bisimulation for higher-order processes or that are needed in our proofs. In each case,
as usual, a bisimilarity is the union of all bisimulations, and is itself a bisimulation
(the functions from relations to relations that represent the bisimulation clauses in
Definitions 7.4.1 and 7.4.2 are all monotonic).

Definition 7.4.3. Higher-order bisimilarity, written ∼HO, is the largest relation on
closed HO Core processes that is a τ -bisimulation, a higher-order output bisimulation,
and is closed.
Context bisimilarity, written ∼CON, is the largest relation on closed HO Core processes

that is a τ -bisimulation, an output context bisimulation, and is closed.
Normal bisimilarity, written ∼NOR, is the largest relation on closed HO Core processes

that is a τ -bisimulation, an output normal bisimulation, and an input normal bisimula-
tion.
IO bisimilarity, written ∼o

IO, is the largest relation on HO Core processes that is a
higher-order output bisimulation and is open.
Open normal bisimilarity, written ∼o

NOR, is the largest relation on HO Core processes
that is a τ -bisimulation, an output normal bisimulation, and is open.

Environmental bisimilarity (Sangiorgi et al., 2007), a recent proposal of bisimilarity
for higher-order calculi, in HO Core roughly corresponds to (and indeed coincides with)
the complete combination that is a τ -bisimulation, an output normal bisimulation, and
is closed.

Remark 7.4.4. The input clause of Definition 7.4.2(3) is in the late style. It is known
(Sangiorgi, 1992) that in calculi of pure higher-order concurrency early and late clauses
are equivalent.

Remark 7.4.5. In contrast with normal bisimulation (as defined in, e.g., Sangiorgi
(1992); Jeffrey and Rathke (2005)), our clause for output normal bisimulation does not
use a replication in front of the introduced fresh name. Such a replication would be
needed in extensions of the calculus (e.g., with recursion or restriction).

A bisimilarity on closed processes is extended to open processes as follows.

Definition 7.4.6 (Extension of bisimilarities). Let R be a bisimilarity on closed HO
Core processes. The extension of R to open HO Core processes, denoted R?, is defined
by

R? = {(P,Q) : a(x1). · · · . a(xn).P R a(x1). · · · . a(xn).Q}
where fv(P ) ∪ fv(Q) = {x1, . . . , xn}, and a is fresh in P,Q.

The simplest complete form of bisimilarity is ∼o
IO. Not only ∼o

IO is the less demanding
for proofs; it also has a straightforward proof of congruence (see Lanese et al., 2010b).
This is significant because congruence is usually a hard problem in bisimilarities for
higher-order calculi.

Lemma 7.4.7 (Congruence of ∼o
IO). Let P1, P2 be open HO Core processes. P1 ∼o

IO P2

implies:

1. a(x).P1 ∼o
IO a(x).P2;

2. P1 ‖ R ∼o
IO P2 ‖ R, for every R;

3. a〈P1〉 ∼o
IO a〈P2〉.

Lemma 7.4.8 (∼o
IO is preserved by substitutions). If P ∼o

IO Q then for all x and R,
also P{R/x} ∼o

IO Q{R/x}.



7.4. BISIMILARITY IN HO CORE 129

The most striking property of ∼o
IO is its decidability. In contrast with the other

bisimilarities, in ∼o
IO the size of processes always decreases during the bisimulation game.

This is because ∼o
IO is an open relation and does not have a clause for τ transitions,

hence process copying never occurs.

Lemma 7.4.9. Relation ∼o
IO is decidable.

Next we show that ∼o
IO is also a τ bisimulation. This allows us to prove that ∼o

IO coin-
cides with other bisimilarities, starting with ∼?HO and to transfer to them its properties,
in particular congruence and decidability.

Lemma 7.4.10. Relation ∼o
IO is a τ -bisimulation.

Proof (Sketch). Suppose P ∼o
IO Q and P τ−→ P ′. We have to find a matching transition

from Q. We can decompose P ’s transition into an output P
a〈R〉−−−→ P1 followed by an

input P1
a(x)−−−→ P2, with P ′ = P2{R/x}. By definition of ∼o

IO, Q is capable of matching
these transitions, and the final derivative is a process Q2 with Q2 ∼o

IO P2. Further, as
HO Core has no output prefixes (i.e., it is an asynchronous calculus) the two transitions
from Q can be combined into a τ -transition, which matches the initial τ -transition from
P . We conclude using Lemmas 7.4.7 and 7.4.8.

Lemma 7.4.11. ∼o
IO and ∼?HO coincide.

We now move to the relationship between ∼HO, ∼o
NOR, and ∼CON. We begin by establish-

ing a few properties of normal bisimulation, then show a chain of implications between
the different bisimulations.

Lemma 7.4.12. If m.P1 ‖ P ∼o
NOR m.Q1 ‖ Q, for some fresh m, then we have P1 ∼o

NOR

Q1 and P ∼o
NOR Q.

Lemma 7.4.13. ∼?HO implies ∼?CON.

Lemma 7.4.14. ∼CON implies ∼NOR.

Lemma 7.4.15. ∼?NOR implies ∼o
NOR.

Lemma 7.4.16. ∼o
NOR implies ∼o

IO.

Lemma 7.4.17. In HO Core, relations ∼HO, ∼o
NOR and ∼CON coincide on closed processe.

Proof. This is an immediate consequence of previous results.

We thus infer that∼HO and∼CON are congruence relations. Direct proofs of these results
proceed by exhibiting an appropriate bisimulation and are usually hard (a sensible
aspect being proving congruence for parallel composition). Congruence of higher-order
bisimilarity is usually proved by appealing to, and adapting, Howe’s method for the λ-
calculus (1996). This is the approach followed in, e.g., Baldamus and Frauenstein (1995);
Bundgaard et al. (2004); Godskesen and Hildebrandt (2005); Chapter 8 also presents
the use of Howe’s method for higher-order process calculi with passivation constructs.
We then extend the result to all complete combinations of the HO Core bisimulation

clauses (Definitions 7.4.1 and 7.4.2).

Theorem 7.4.18. All complete combinations of the HO Core bisimulation clauses co-
incide, and are decidable.

Proof. In Lemma 7.4.17 we have proved that the least demanding combination (∼o
IO)

coincides with the most demanding ones (∼?HO and ∼?CON). Decidability then follows from
Lemma 7.4.9.



130 CHAPTER 7. HO CORE

We find this “collapsing” of bisimilarities in HO Core significant; the only similar
result we are aware of is by Cao (2006), who showed that strong context bisimulation
and strong normal bisimulation coincide in higher-order π-calculus.

7.5 Barbed Congruence and Asynchronous Equivalences

We now show that the labeled bisimilarities of Section 7.4 coincide with barbed congru-
ence, the form of contextual equivalence used in concurrency to justify bisimulation-like
relations. Below we use reduction-closed barbed congruence (Honda and Yoshida, 1995;
Sangiorgi and Walker, 2001), as this makes some technical details simpler; however the
results also hold for ordinary barbed congruence as defined in Milner and Sangiorgi
(1992). It is worth recalling that the main difference between reduction-closed barbed
congruence and the barbed congruence of Milner and Sangiorgi (1992) is quantification
over contexts (see (2) in Definition 7.5.1 below). More importantly, we consider the
asynchronous version of barbed congruence, where barbs are only produced by output
messages; we call barbed congruence synchronous when inputs contribute too, as in,
e.g., Milner and Sangiorgi (1992). We use the asynchronous version for two reasons.
First, asynchronous barbed congruence is a weaker relation, which makes the results
stronger (they imply the corresponding results for the synchronous relation). Second,
asynchronous barbed congruence is more natural in HO Core because it is an asyn-
chronous calculus — it has no output prefix.
Note also that the labeled bisimilarities of Section 7.4 have been defined in the syn-

chronous style. In an asynchronous labeled bisimilarity (see, e.g., Amadio et al. (1998))
the input clause is weakened so as to allow, in certain conditions, an input action to
be matched also by a τ -action. For instance, input normal bisimulation (Definition
7.4.2(2)) would become:

• if P
a(x)−−−→ P ′ then, for some fresh name m,

1. either Q
a(x)−−−→ Q′ and P ′{m/x} R Q′{m/x};

2. or Q τ−→ Q′ and P ′{m/x} R Q′ ‖ a〈m〉.

We now define asynchronous barbed congruence. We write P ↓a (resp. P ↓a) if P can
perform an output (resp. input) transition at a.

Definition 7.5.1. Asynchronous barbed congruence, ', is the largest symmetric rela-
tion on closed processes that is

1. a τ -bisimulation (Definition 7.4.1(1));

2. context-closed (i.e., P ' Q implies C[P ] ' C[Q], for all closed contexts C[·]);

3. barb preserving (i.e., if P ' Q and P ↓a, then also Q ↓a).

In synchronous barbed congruence, input barbs P ↓a are also observable.

Lemma 7.5.2. Asynchronous barbed congruence coincides with normal bisimilarity.

Proof. The proof basically consists of renaming the messages which may interfere with
the observation to messages on fresh names, doing the observation, then renaming back
the messages to their original name. Details may be found in Lanese et al. (2010b).

Remark 7.5.3. The proof relies on the fact that HO Core has no operators of choice and
restriction. In fact, choice would prevent the renaming to be reversible, and restriction



7.6. AXIOMATIZATION AND COMPLEXITY 131

would prevent the renaming using a context as some names may be hidden. The higher-
order aspect of HO Core does not really play a role. The proof could indeed be adapted
to CCS-like, or π-calculus-like, languages in which the same operators are missing.

Corollary 7.5.4. In HO Core asynchronous and synchronous barbed congruence coin-
cide, and they also coincide with all complete combinations of the HO Core bisimulation
clauses of Theorem 7.4.18.

Further, Corollary 7.5.4 can be extended to include the asynchronous versions of the
labeled bisimilarities in Section 7.4 (precisely, the complete asynchronous combinations
of the HO Core bisimulation clauses; that is, complete combinations that make use of an
asynchronous input clause as outlined before Definition 7.5.1). This holds because: (i)
all proofs of Section 7.4 can be easily adapted to the corresponding asynchronous labeled
bisimilarities; (ii) using standard reasoning for barbed congruences, one can show that
asynchronous normal bisimilarity coincides with asynchronous barbed congruence; (iii)
via Corollary 7.5.4 one can then relate the asynchronous labeled bisimilarities to the
synchronous ones.

7.6 Axiomatization and Complexity

We have shown in the previous section that the main forms of bisimilarity for higher-
order process calculi coincide in HO Core. We therefore simply call bisimilarity such a
relation, and write it as ∼. Here we present a sound and complete axiomatization of
bisimilarity. We do so by adapting to a higher-order setting results by Moller and Milner
on unique decomposition of processes (1993), and by Hirschkoff and Pous on an axiom-
atization for a fragment of (finite) CCS (2008). We then exploit this axiomatization to
derive complexity bounds for bisimilarity checking.

Axiomatization

Definition 7.6.1 (Prime decomposition). A process P is prime if P 6∼ 0 and P ∼ P1 ‖
P2 imply P1 ∼ 0 or P2 ∼ 0. When P ∼∏n

i=1 Pi where each Pi is prime, we call
∏n
i=1 Pi

a prime decomposition of P .

Proposition 7.6.2 (Cancellation). For all P , Q, and R, if P ‖ R ∼ Q ‖ R then also
P ∼ Q.

Proposition 7.6.3 (Unique decomposition). Any process P admits a prime decompo-
sition

∏n
i=1 Pi which is unique up to bisimilarity and permutation of indices (i.e., given

two prime decompositions
∏n
i=1 Pi and

∏m
j=1Qj, then n = m and there is a permutation

σ of {1, . . . , n} such that Pi ∼ Qσ(i) for each i ∈ {1, . . . , n}).

Both the key law for the axiomatization and the following results are inspired by
similar ones by Hirschkoff and Pous (2008) for pure CCS. Using their terminology, we
call distribution law, briefly (DIS), the axiom schema below (recall that

∏k
1 Q denotes

the parallel composition of k copies of Q).

a(x). (P ‖∏k−1
1 a(x).P ) =

∏k
1 a(x).P (DIS)

We then call extended structural congruence, written ≡E, the extension of the struc-
tural congruence relation (≡, Definition 7.2.1) with the axiom schema (DIS). We write
P  Q when there are processes P ′ and Q′ such that P ≡ P ′, Q′ ≡ Q and Q′ is
obtained from P ′ by rewriting a subterm of P ′ using law (DIS) from left to right. We
now state that ≡E provides an algebraic characterization of ∼ in HO Core.



132 CHAPTER 7. HO CORE

Definition 7.6.4. A process P is in normal form if it cannot be further simplified in
the system ≡E by using  .

Any process P has a normal form that is unique up to ≡, and which will be denoted
by n(P ).

Theorem 7.6.5. For any processes P and Q, we have P ∼ Q iff n(P ) ≡ n(Q).

Corollary 7.6.6. ≡E is a sound and complete axiomatization of bisimilarity in HO
Core.

Complexity of bisimilarity checking

To analyze the complexity of deciding whether two processes are bisimilar, one could
apply the technique from Dovier et al. (2004), and derive that bisimilarity is decidable
in time which is linear in the size of the LTS for ∼o

IO (which avoids τ transitions). This
LTS is however exponential in the size of the process. A more efficient solution exploits
the axiomatization above: one can first normalize processes and then reduce bisimilarity
to syntactic equivalence of the obtained normal forms.
For simplicity, we assume a process P is represented as an ordered tree (but we

will transform it into a DAG during normalization). In the following, let us denote
with t[m1, . . . ,mk] the ordered tree with root labeled t and with (ordered) descendants
m1, . . . ,mk. We write t[] for a tree labeled t and without descendants (i.e., a leaf).

Definition 7.6.7 (Tree representation). Let P be a HO Core process. Its associated
ordered tree representation is labeled and defined inductively by

• Tree(0) = 0[]

• Tree(x) = db(x)[]

• Tree(a〈Q〉) = ā[Tree(Q)]

• Tree(a(x).Q) = a[Tree(Q)]

• Tree(
∏n
i=1 Pi) =

∏n
i=1[Tree(P1), . . . ,Tree(Pn)]

where db is a function assigning De Bruijn indices (De Bruijn, 1972) to variables.
Parallel composition is n-ary, thus we can assume without loss of generality that children
of parallel composition nodes are not parallel composition nodes (i.e., we can always
flatten them).

We now describe the normalization steps by characterizing them as reductions as well
as pseudocode descriptions. The first step deals with parallel composition nodes: it
removes all unnecessary 0 nodes, and relabels the nodes when the parallel composition
has only one or no descendants.

Normalization step 1. Let  N1 be a transformation rule over trees associated to HO
Core processes defined by:

1.
∏0
i=1[] N1 0[]

2.
∏1
i=1[Tree(P1)] N1 T if Tree(P1) N1 T

3.
∏n
i=1[Tree(P1), . . . ,Tree(Pn)]  N1

∏m
i=1[Tσ(1), . . . , Tσ(m)], if Tree(Pi)  N1 Ti for

each i, where m < n is the number of trees in T1, . . . , Tn that are different from
0[], and where σ is a bijective function from {1, . . . ,m} to {i | i ∈ {1, . . . , n}∧Ti 6=
0[]}.



7.7. UNDECIDABILITY AND STATIC RESTRICTIONS 133

After this first step, the tree is traversed bottom-up, applying the following two nor-
malization steps.

Normalization step 2. Let  N2 be a transformation rule over trees associated to HO
Core processes, defined as follows. If the node is a parallel composition, sort all the
children lexicographically. If n children are equal, leave just one and make n references
to it.

The last normalization step applies DIS from left to right if possible:

Normalization step 3. Let  N3 be a transformation rule over trees associated to HO
Core processes, defined by:

a

[
k+1∏
i=1

[Tree(P ),Tree(a(x).P ), . . . ,Tree(a(x).P )]

]
 N3

k+1∏
j=1

[Tree(a(x).P ), . . . ,Tree(a(x).P )]

where Tree(a(x).P ) appears k times in the left-hand side, and k + 1 times in the right-
hand side.

The pseudocode for these normalization steps may be found in Lanese et al. (2010b).
We relate now normalization and bisimilarity, and state the complexity of normaliza-

tion.

Lemma 7.6.8. Let P,Q be processes and TP , TQ their tree representations normalized
according to steps 1, 2 and 3. Then P ∼ Q iff TP = TQ.

Theorem 7.6.9. Consider two HO Core processes P and Q. P ∼ Q can be decided
in time O(n2 logm) where n = max (size(P ), size(Q)) (i.e., the maximum number of
nodes in the tree representations of P and Q) and m is the maximum branching factor
in them (i.e., the maximum number of components in a parallel composition).

Proof. Bisimilarity check proceeds as follows: first normalize the tree representations of
the two processes, then check them for syntactic equality.
Normalization step 1 can be performed in time O(n). Normalization step 2 performs

a visit of the tree, sorting and removing duplicates from the children of parallel com-
position nodes. Sorting can be done in O(n logm) for each parallel composition node.
Removing duplicates requires just O(n) time. Normalization step 3 visits the tree too,
possibly reconfiguring input nodes. The check for applicability requires one comparison
(O(n)) and the check that all the other components coincide (simply check that the sub-
trees have been merged by Normalization step 2: O(n)). Applying  N3 simply entails
collapsing the trees (O(n)). Other nodes require no operations.
Thus the normalization for a single node can be done in O(n logm), and the whole

normalization can be done in O(n2 logm).

7.7 Undecidability and Static Restrictions

If the restriction operator is added to HO Core, as in Plain CHOCS or Higher-Order
π-calculus, then recursion can be encoded (Thomsen, 1990; Sangiorgi and Walker, 2001)
and most of the results in Sections 7.4-7.6 would break. In particular, higher-order and
context bisimilarities are different and both undecidable (Sangiorgi, 1992, 1996a).
We discuss here the addition of a limited form of restriction, which we call static

restriction. These restrictions may not appear inside output messages: in any output



134 CHAPTER 7. HO CORE

a〈P 〉, P is restriction-free. This limitation is important: it prevents for instance the
above-mentioned encoding of recursion from being written. Static restrictions could also
be defined as top-level restrictions since, by means of standard structural congruence
laws (or similar laws allowing to swap input and restriction), any static restriction can
be pulled out at the top-level. Thus the processes would take the form νa1 . . .νan P ,
where νai indicates the restriction on the name ai, and where restriction cannot appear
inside P itself. The operational semantics—LTS and bisimilarities—are extended as
expected. For instance, one would have bounded outputs as actions, as well as rules

P
α−→ P ′ z 6∈ fn(α)

νzP
α−→ νzP ′

StRes
P

νṽ a〈R〉−−−−−→ P ′ z ∈ fn(R) \ ṽ
νzP

νzṽ a〈R〉−−−−−−→ P ′
StOpen

defining static restriction and extrusion of restricted names, respectively. Note that there
is no need to define how a bounded output interacts with input as every τ transition
takes place under the restrictions. Also, structural congruence (Definition 7.2.1) would
be extended with the axioms for restriction νz νwP ≡ νw νzP and νz0 ≡ 0. (In
contrast, notice that we do not require the axiom: νz(P ‖ Q) ≡ P ‖ (νzQ), where z
does not occur in P .) We sometimes write νa1, . . . , an to stand for νa1, . . . , νan.
We show that four static restrictions are enough to make undecidable any bisimilarity

that has little more than a clause for τ -actions. For this, we reduce the Post corre-
spondence problem (PCP) (Post, 1946) to the bisimilarity of some processes. We call
complete τ -bisimilarity any complete combination of the HO Core bisimulation clauses
(as defined in Section 7.4) that includes the clause for τ actions (Definition 7.4.1(1));
the bisimilarity can even be asynchronous (Section 7.5).

Definition 7.7.1 (PCP). An instance of PCP consists of an alphabet A containing at
least two symbols, and a finite list T1, . . . , Tn of tiles, where each tile is a pair of words
over A. We use Ti = (ui, li) to denote a tile Ti with upper word ui and lower word li.
A solution to this instance is a non-empty sequence of indices i1, . . . , ik, 1 ≤ ij ≤ n
(j ∈ 1 · · · k), such that ui1 · · ·uik = li1 · · · lik . The decision problem is then to determine
whether such a solution exists or not.

Having (static) restrictions, we can refine the notation for non-nested replications
(Definition 7.3.2) and define it in the unguarded case:

!P , νc (Qc ‖ c〈Qc〉)

where Qc = c(x). (x ‖ c〈x〉 ‖ P ) and P is a HO Core process (i.e., it is restriction-free).
It is easy to see that !P

τ−→ !P ‖ P .
Now, !0 is a purely divergent process, as it can only make τ -transitions, indefinitely;

it is written using only one static restriction. Given an instance of PCP we build a set
of processes P1, . . . , Pn, one for each tile T1, . . . , Tn, and show that, for each i, Pi is
bisimilar to !0 iff the instance of PCP has no solution ending with Ti. Thus PCP is
solvable iff there exists j such that Pj is not bisimilar to !0.

The processes P1, . . . , Pn execute in two distinct phases: first they build a possible
solution of PCP, then they non-deterministically stop building the solution and execute
it. If the chosen composition is a solution then a signal on a free channel success is
sent, thus performing a visible action, which breaks bisimilarity with !0.
The precise encoding of PCP into HO Core is shown in Table 7.3, and described

below. We consider an alphabet of two letters, a1 and a2. The upper and lower words
of a tile are treated as separate strings, which are encoded letter by letter. The encoding
of a letter is then a process whose continuation encodes the rest of the string, and varies
depending on whether the letter occurs in the upper or in the lower word. We use a



7.8. OTHER EXTENSIONS 135

Letters [[a1, P ]]u = [[a2, P ]]l = a〈P 〉
[[a2, P ]]u = [[a1, P ]]l = a(x). (x ‖ P )

Strings [[ai · s, P ]]w = [[ai, [[s, P ]]w]]w
[[ε, P ]]w = P (ε is the empty word)

Creators Ck = up(x). low(y). (up〈[[uk, x]]u〉 ‖ low〈[[lk, y]]l〉)
Starters Sk = up〈[[uk, b]]u〉 ‖ low〈[[lk, b. success]]l〉
Executor E = up(x). low(y). (x ‖ y)
System Pj = νup νlow νa νb ( Sj ‖ !

∏
k Ck ‖ E)

Table 7.3: Encoding of PCP

single channel to encode both letters: for the upper word, a1 is encoded as a〈P 〉 and a2

as a(x). (x ‖ P ), where P is the continuation and x does not occur in P ; for the lower
word the encodings are switched. In Table 7.3, [[ai, P ]]w denotes the encoding of the
letter ai with continuation P , with w = u if the encoding is on the upper word, w = l
otherwise. Hence, given a string s = ai · s′, its encoding [[s, P ]]w is [[ai, [[s

′, P ]]w]]w, i.e.,
the first letter with the encoding of the rest as continuation. Notice that the encoding
of an ai in the upper word can synchronize only with the encoding of ai for the lower
word.
The whole system Pj is composed by a (replicated) creator Ck for each tile Tk, a starter

Sj that launches the building of a tile composition ending with (uj , lj), and an executor
E. The starter makes the computation begin; creators non-deterministically add their
tile to the beginning of the composition. Also non-deterministically, the executor blocks
the building of the composition and starts its execution. This proceeds if no difference
is found: if both strings end at the same character, then synchronization on channel
b can be performed, which in turn, makes action success visible. Notice that without
synchronizing on b, action success could be visible even in the case in which one of the
strings is a prefix of the other one.
The encoding of replication requires another restriction, thus Pj has five restrictions.

However, names low and a are used in different phases; thus choosing low = a does not
create interferences, and four restrictions are enough.

Theorem 7.7.2. Given an instance of PCP and one of its tiles Tj, there is a solution
of the instance of PCP ending with Tj iff Pj is not bisimilar to !0 according to any
complete τ -bisimilarity.

Corollary 7.7.3. Barbed congruence and any complete τ -bisimilarity are undecidable
in HO Core with four static restrictions.

Theorem 7.7.2 actually shows that even asynchronous barbed bisimilarity (defined
as the largest τ -bisimilarity that is output-barb preserving, and used in the definition
of ordinary—as opposed to reduction-closed—barbed congruence) is undecidable. The
corollary above then follows from the fact that all the relations there mentioned are at
least as demanding as asynchronous barbed bisimilarity.

7.8 Other Extensions

We now examine the impact on decidability of bisimilarity of some extensions of HO
Core. We omit the details, including precise statements of the results.

Abstractions An abstraction is an expression of the form (x)P ; it is a parametrized
process. An abstraction has a functional type. Applying an abstraction (x)P of type
T → ♦ (where ♦ is the type of all processes) to an argument W of type T yields the



136 CHAPTER 7. HO CORE

process P{W/x}. The argument W can itself be an abstraction; therefore the order of
an abstraction, that is, the level of arrow nesting in its type, can be arbitrarily high.
The order can also be ω, if there are recursive types. By setting bounds on the order
of the types of abstractions, one can define a hierarchy of subcalculi of the Higher-
Order π-calculus (Sangiorgi and Walker, 2001); and when this bound is ω, one obtains a
calculus capable of representing the π-calculus (for this all operators of the Higher-Order
π-calculus are needed, including full restriction).

Allowing the communication of abstractions, as in the Higher-Order π-calculus, one
then also needs to add in the grammar for processes an application construct of the form
P1〈P2〉, as a destructor for abstractions. Extensions in the LTS would be as follows.
Suppose, as in Sangiorgi (1996b), that beta-conversion � is the least precongruence on
HO Core processes generated by the rule

(x)P1〈P2〉 � P1{P2/x}.

The LTS could be then extended with a rule

P � P ′1 P ′1
α−→ Q

P
α−→ Q

Beta

Notice that with these additions, the characterization of bisimilarity as IO bisimilarity
still holds. For a HO Core extended with abstractions and applications, ∼o

IO is still
a congruence and is preserved by substitutions (by straightforward extensions of the
proofs of Lemmas 7.4.7 and 7.4.8). Note that, however, abstraction application may
increase the size of processes. If abstractions are of finite type (i.e., their order is smaller
than ω) then only a finite number of such applications is possible, and decidability of
bisimilarity is preserved. Decidability fails if the order is ω, intuitively because in this
case it is possible to simulate the λ-calculus.

Output prefix If we add an output prefix construct a〈P 〉.Q to HO Core, then the
proof of the characterization as IO bisimilarity breaks and, with it, the proof of decid-
ability. Decidability proofs can however be adjusted by appealing to results on unique
decomposition of processes and axiomatization (along the lines of Section 7.6).

Choice Decidability remains with the addition of a choice operator to HO Core. The
proofs require little modifications. The addition of both choice and output prefix is
harder. It might be possible to extend the decidability proof for output prefix mentioned
above so to accommodate also choice, but the details become much more complex.

Recursion We do not know whether decidability is maintained by the addition of
recursion (or similar operators such as replication).

7.9 Concluding Remarks

Process calculi are usually Turing complete and have an undecidable bisimilarity (and
barbed congruence). Subcalculi have been studied where bisimilarity becomes decidable
but then one loses Turing completeness. Examples are BPA and BPP (see, e.g., (Kučera
and Jančar, 2006)) and CCS without restriction and relabeling (Christensen et al., 1994).
In this chapter we have identified a Turing complete formalism, HO Core, for which
bisimilarity is decidable. We do not know other concurrency formalisms where the same
happens. Other peculiarities of HO Core are:



7.9. CONCLUDING REMARKS 137

1. it is higher-order, and contextual bisimilarities (barbed congruence) coincide with
higher-order bisimilarity (as well as with others, such as context and normal bisim-
ilarities); and

2. it is asynchronous (in that there is no continuation underneath an output), yet
asynchronous and synchronous bisimilarities coincide.

We do not know other non-trivial formalisms in which properties (1) or (2) hold (of
course (1) makes sense only on higher-order models).
We have also given an axiomatization for bisimilarity. From this we have derived

polynomial upper bounds to the decidability of bisimilarity. The axiomatization also
intuitively explains why results such as decidability, and the collapse of many forms
of bisimilarity, are possible even though HO Core is Turing complete: the bisimilarity
relation is very discriminating.
We have used encodings of Minsky machines and of the Post correspondence problem

(PCP) for our undecidability results. The encodings are tailored to analyze different
problems: undecidability of termination, and undecidability of bisimilarity with static
restrictions. The PCP encoding is always divergent, and therefore cannot be used to
reason about termination. On the other hand, the encoding of Minsky machines would
require at least one restriction for each instruction of the machine, and therefore would
have given us a (much) worse result for static restrictions. We find both encodings inter-
esting: they show different ways to exploit higher-order communications for modeling.
We have shown that bisimilarity becomes undecidable with the addition of four static

restrictions. We do not know what happens with fewer static restrictions. We also do
not know whether the results presented would hold when one abstracts from τ -actions
and moves to weak equivalences. The problem seems much harder; it reminds us of the
situation for BPA and BPP, where strong bisimilarity is decidable but the decidability
of weak bisimilarity is a long-standing open problem (Kučera and Jančar, 2006).





Chapter 8

Localities and equivalences

8.1 Introduction

Motivation A natural notion of behavioral equivalence for process calculi is barbed
congruence. Informally, two processes are barbed-congruent if they behave in the same
way (i.e., have the same reductions and the same observables) when placed in similar,
but arbitrary, contexts. Due to this quantification on contexts, barbed congruence is
unwieldy to use for proofs of equivalence, or to serve as a basis for automated verification
tools. One is thus lead to study coinductive characterizations of barbed congruence,
typically in the form of bisimilarity relations. For first-order process calculi, such as the
π-calculus and its variants, the resulting behavioral theory is well developed, and one
can in general readily define bisimilarity relations that characterize barbed congruence.
For higher-order process calculi, the situation is less satisfactory. Simple higher-order

calculi, such as HOπ (Sangiorgi, 1992, 1996a), have a well-studied behavioral theory.
For HOπ, Sangiorgi has defined context and normal bisimilarity relations, which both
are sound with respect to barbed congruence (i.e., are included in barbed congruence)
and sometimes complete (i.e., they contain barbed congruence), leading to a full char-
acterization. To establish equivalence between processes, context bisimilarity tests all
environments which may interact with these processes. For instance, for assessing the
equivalence of two processes which consist only of the output of a message on a com-
munication channel a, context bisimilarity needs to consider every interacting system
that is capable of doing an input on channel a. Normal bisimilarity improves context
bisimilarity by requiring only a single test context. To compare two emitting processes,
as above, normal bisimilarity only requires to consider the behavior of the two processes
when placed in parallel with a single, finite, particular receiving process. Furthermore,
context and normal bisimilarities characterize barbed congruence both in the strong case
(where a step from the first process must be simulated by a single step of the second
process), and in the weak case (where internal steps are not observable).
Unfortunately, HOπ is not expressive enough to faithfully model concurrent systems

with dynamic reconfiguration or strong mobility capabilities. For instance, a running
HOπ process cannot be stopped, which prevents the faithful modeling of process fail-
ures, of online process replacement, or strong process mobility. It is for this reason
that we have seen the emergence of process calculi with (forms of) process passivation.
Process passivation allows a named process to be stopped and its state captured at any
time during its execution. The Kell calculus (Schmitt and Stefani, 2004) and Homer
(Bundgaard et al., 2004) are examples of higher-order process calculi with passivation.
The behavioral theory of these calculi, or of simpler calculi with localities and migration,
is less understood than the one for HOπ, whose proof techniques and relations do not
easily carry over, especially in the weak case. We have characterization of weak barbed



140 CHAPTER 8. LOCALITIES AND EQUIVALENCES

Notations:

• X,Y, Z: process variables

• a, b, a, b: names

Syntax:

P ::= 0 | X | P | P | a(X)P | a〈P 〉P | νa.P | !P

Figure 8.1: Syntax of the Higher-Order π

congruence only in a few cases, such as in Mobile Ambients (Cardelli and Gordon, 1998;
Merro and Nardelli, 2005) and its variant NBA (Bugliesi et al., 2005). In the Seal
calculus (Vitek and Castagna, 1999; Castagna et al., 2005) and in Homer (Bundgaard
et al., 2004; Godskesen and Hildebrandt, 2005), sound weak bisimilarities have been
defined in a delay style: silent actions are not allowed after an observable one. Because
of this limitation, the relations are likely not complete. In the Kell calculus (Schmitt
and Stefani, 2004), we propose sound and complete context bisimilarities in the strong
case only.
An ideal solution to the characterization problem would be to find a decision algo-

rithm, as described in Chapter 7.1 The next best solution would be to design a relation
akin to normal bisimilarity, which significantly reduces the tests necessary at each step.
Finally, a last resort would be to show that contextual bisimilarity is sound and complete
in the weak case, for instance by using Howe’s method (1996).
In this chapter, we follow the last two steps of this plan. We first define in Section

8.3 a notion of normal bisimulation in an extension of HO Core with localities and
passivations, called LHOπP for “Light HOπ with passivation”. We next consider adding
name restriction (yielding HOπ with passivation, written HOπP), and show that testing
large sub-classes of processes is not sufficient, strongly suggesting that defining a form
of normal bisimulation for HOπP is impossible. We then show how to apply Howe’s
method by using a different but equivalent semantics, first by illustrating the approach
with HOπ, then applying it to HOπP. Missing proofs and technical details may be found
in Lenglet (2010).

8.2 HOπ and HOπP

We first introduce the two main calculi we will be dealing with in this chapter. They
may all be seen as extensions of HO Core, adding first restriction (HOπ) then localities
(HOπP). We start with the well-known HOπ then illustrate the differences for HOπP.

HOπ, Syntax and Semantics

HOπ (Sangiorgi, 1996a) extends the π-calculus with higher-order communication, which
allows process as messages. The syntax of the calculus and some notations can be found
in Figure 8.1. As usual, we assume that name restriction νa. . . . binds as far to the right
as possible, thus νa.P | Q stands for νa. (P | Q).
In a synchronous higher-order communication a(X)P | a〈Q〉R, the left process a(X)P

is waiting for a process (here Q) on name a, and then continues as {Q/X}P , where
{Q/X}P is the capture-free substitution of X by Q in P . The right process a〈Q〉R
sends the process Q on a and then continues as R. In process a(X)P , the variable X

1Note that this decision algorithm works for the strong case only.



8.2. HOπ AND HOπP 141

is bound. We write fv(P ) the free variables of a process P . If fv(P ) = ∅, we say that
P is closed, otherwise it is open. In name restriction νa.P , the name a is made local
(i.e., bound) to the process P . We write bn(P ) for the bound names of a process P ,
and fn(P ) for its free names.

Convention on free names and variables We identify processes up to α-conversion
of names and variables: process and agents are representative of their α-equivalence
class, and are always chosen such that their bound names and variables are distinct
from free names and variables. When considering a collection of processes, we assumes
that the bound names and bound variables of the processes are chosen to be different
from their free names and their free variables. In any discussion or proof, we assume
that bound names and bound variables of any process or actions under consideration are
chosen to be different from the names and variables occurring free in any other entities
under consideration. Note that with this convention, we have νa.P | Q ≡ P | νa.Q
without qualification on the free variables of P .

Contextual LTS We now recall the labeled transition system proposed for HOπ by
Sangiorgi (1996a). We call it contextual since it is used to define context bisimilarities.
In this LTS, we have three kind of possible evolutions for processes.

• Internal actions labeled by τ , where a process evolves toward a process.

• Message input on a channel a, where a process evolves toward an abstraction
(X)Q. The transition P a−→ (X)Q means that the process P may receive a process
R on the name a to continue as {R/X}Q.

• Message output on a channel a, where a process evolves toward a concretion
νb̃. 〈R〉Q. The transition P a−→ νb̃. 〈R〉Q means that process P may send process
R on the name a and continue as Q, and the scope of names b̃ has to be expanded
to encompass the recipient of R. We write bn(C) = b̃ the bound names of a
concretion, and o(C) the emitted message (here R) of a concretion.

A higher-order communication takes place when a concretion interacts with an abstrac-
tion. We define a pseudo-application operator • between an abstraction F = (X)P and
a concretion C = νb̃. 〈R〉Q by:

(X)P • νb̃. 〈R〉Q ∆
= νb̃. {R/X}P | Q

We also sometimes use a process application between an abstraction (X)P and a process
Q, defined as (X)P ◦ Q ∆

= {Q/X}P .
The LTS rules are given in Figure 8.2, with the exception of the symmetric rules for

Par and HO. All the transition rules are straightforward. The transitions are labeled
with the names on which the communications may happen, or by τ for an internal
evolution. The meta-variable α ranges over all the labels.
Let the set of agents, noted A, be the set of processes, abstractions and concretions. A

process always evolves towards an agent. Rules Par and Restr require the extension of
the parallel composition and restriction operators to all agents, which we define below.

(νb̃. 〈Q〉R) | P ∆
= νb̃. 〈Q〉(R | P )

(X)Q | P ∆
= (X)(Q | P ) P | (νb̃. 〈Q〉R)

∆
= νb̃. 〈Q〉(P | R)

P | (X)Q
∆
= (X)(P | Q) νa. (νb̃. 〈Q〉R)

∆
= νb̃, a. 〈Q〉R if a ∈ fn(Q)

νa. (X)Q
∆
= (X)νa.P νa. (νb̃. 〈Q〉R)

∆
= νb̃. 〈Q〉νa.R if a /∈ fn(Q)



142 CHAPTER 8. LOCALITIES AND EQUIVALENCES

a(X)P
a−→ (X)P In a〈Q〉P a−→ 〈Q〉P Out

P
α−→ A

P | Q α−→ A | Q
Par

P
α−→ A α /∈ {a, a}
νa.P

α−→ νa.A
Restr

P
α−→ A

!P
a−→ A | !P

Replic

P
a−→ F P

a−→ C

!P
τ−→ F • C | !P

Replic-HO
P

a−→ F Q
a−→ C

P | Q τ−→ F • C
HO

Figure 8.2: Contextual labeled transition system for HOπ

Contexts A context is a process with a hole �. In HOπ, contexts are defined as
follows.

C ::= � | C | P | P | C | a(X)C | a〈C〉P | a〈P 〉C | νa.C | !C

Filling the hole of a context C with a process P yields the process C{P}. Unlike
substitution, filling a context may result in variable or name capture. A relation that is
stable under contexts is called a congruence.

Structural congruence Structural congruence ≡ is the smallest congruence verifying
the following laws.

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P P | 0 ≡ P νa. νb.P ≡ νb. νa.P

νa.0 ≡ 0 νa. (P | Q) ≡ P | νa.Q !P ≡ P | !P

HOπ, Equivalences

Barbed congruence A very common notion of observational equivalence is barbed
congruence, defined by Milner and Sangiorgi (1992). This notion relies on the reduction
of the calculus under consideration, and on an observation predicate. In the calculi we
will study, we are interested in the interaction between a process and its environment,
thus the observations are on channels on which communication is possible.

Definition 8.2.1. The strong observability predicates P ↓µ is defined as follows

• We have P ↓a iff P ≡ νb̃. a(X)Q | R with a /∈ b̃.

• We have P ↓a iff P ≡ νb̃. a〈Q〉R | S with a /∈ b̃.

Barbed bisimulation is a relation on closed processes that relates processes with iden-
tical barbs that may keep this property by reduction.

Definition 8.2.2. A relation R on closed process is a strong barbed simulation iff for
all P R Q,

• if P ↓µ then Q ↓µ;

• if P τ−→ P ′, then there exists Q′ such that Q τ−→ Q′ and P ′ R Q′.



8.2. HOπ AND HOπP 143

A relation R is a strong barbed bisimulation iff R and R−1 are both strong barbed
simulations. The processes P and Q are strongly barbed bisimilar iff there exists a
strong barbed bisimulation R such that P R Q.

We are ready to define strong barbed congruence.

Definition 8.2.3. Closed processes P and Q are strongly barbed congruent, written
P ∼b Q, iff C{P} and C{Q} are strongly barbed bisimilar for every context C.

Intuitively, strong barbed congruence says that there is no way to distinguish two
processes, even by putting them in arbitrary contexts and letting them run for a while.
Up to this point we have worked in the strong setting, where each reduction of P is

matched by exactly one reduction of Q. In the weak case, a reduction of P may be
matched by an arbitrary number (possibly zero) of reductions of Q, e.g., to compare a
program and an optimized version that needs fewer computation steps. We write τ

=⇒ the
reflexive and transitive closure of τ−→.

We define the weak observability predicate by P ⇓µ iff there exists P ′ such that
P

τ
=⇒ P ′ ↓µ. We define barbed simulation as follows.

Definition 8.2.4. A relation R on closed process is a barbed simulation iff for all
(P,Q) ∈R:

• if P ↓µ then Q ⇓µ;

• if P τ−→ P ′, then there exists Q′ such that Q τ
=⇒ Q′ and (P ′, Q′) ∈R.

A relation R is a barbed bisimulation iff R and R−1 are both barbed simulations. The
processes P and Q are barbed bisimilar, iff there exists a barbed bisimulation R such
that (P,Q) ∈R.

Finally, we define barbed congruence.

Definition 8.2.5. The closed processes P and Q are barbed congruent, written P ≈b Q,
iff C{P} and C{Q} are barbed bisimilar for every context C.

Barbed congruence is a very fine relation, in the sense that it relates only processes
which may not be distinguished. Proving that two processes are not barbed congruent
amounts to finding a context which distinguishes them. On the other hand, proving
that processes actually are barbed congruent is much more difficult, as one as to test
every possible context. This is why simpler relations, such as context bisimulations,
have been introduced.

Bisimulations for Higher Order Calculi We recall here the definitions and obser-
vations of Sangiorgi concerning bisimulations for HOπ (1992; 1996a).
Requiring the contents of the messages to be syntactically identical, as in first order

calculi, is clearly too precise, as it would distinguish processes like a〈0〉 and a〈0 | 0〉. An
approach, developed by Thomsen in the setting of CHOCS and Plain CHOCS (1990;
1993), consists of requiring the emitted messages to be bisimilar instead of syntactically
equal. The resulting relation is called higher-order bisimilarity. In the setting of HOπ,
it is defined as follows.

Definition 8.2.6. A relation R on closed processes is a higher order simulation iff
P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;



144 CHAPTER 8. LOCALITIES AND EQUIVALENCES

• for all P a−→ F , there exists F ′ such that Q a−→ F ′ and for all closed processes R,
F ◦ R R F ′ ◦ R;

• for all P a−→ νb̃. 〈R〉S, there exists νb̃′. 〈R′〉S′ such that Q a−→ νb̃′. 〈R′〉S′, R R R′,
S R S′.

A relation R is higher order bisimulation iff R and R−1 are higher order simulations.
Two closed processes P and Q are higher order bisimilar, noted P .∼ Q, iff there exists
a higher order bisimulation R such that P R Q.

Unfortunately, this relation is still too fine as it separates the contents of the message
from its continuation. Indeed, Sangiorgi has shown that the processes a〈0〉!b.0 and
a〈b.0〉!b.0 are barbed congruent, yet they are not higher order bisimilar.
Sangiorgi thus proposes context bisimulation as a LTS-based behavioral equivalence.

The definition of (early strong) context bisimilarity is as follows.

Definition 8.2.7 (Early strong context bisimilarity). A binary relation R on closed
processes is an early strong context simulation iff P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;

• gor all P a−→ F , for all closed concretions C, there exists F ′ such that Q a−→ F ′ and
F • C R F ′ • C;

• for all P a−→ C, for all closed abstractions F , there exists C ′ such that Q a−→ C ′

and F • C R F • C ′.

A relation R is an early strong context bisimulation iff R and R−1 are early strong
context simulations. Two closed processes P and Q are early strong context bisimilar,
noted P ∼ Q, iff there exists an early strong context bisimulation R such that P R Q.

The relation is said to be early because the other part of the communication (the
concretion in the message input case, the abstraction in the message output case) is
given before the matching transition. Thus the matching process may change the agent
it reduces to depending on this information. The converse approach, where the other
part of the communication is given after the matching transition, is said to be late.

Definition 8.2.8 (Late strong context bisimilarity). A binary relation R on closed
processes is a late strong context simulation iff P R Q implies

• For all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′.

• For all P a−→ F , there exists F ′ such that Q a−→ F ′ and for all closed concretions
C, we have F • C R F ′ • C.

• For all P a−→ C, there exists C ′ such that Q a−→ C ′ and for all closed abstractions
F , we have F • C R F • C ′.

A relation R is a late strong context bisimulation iff R and R−1 are late strong context
simulations. Two closed processes P and Q are late strong context bisimilar, noted
P ∼l Q, iff there exists a late strong context bisimulation R such that P R Q.

One cas easily show that late bisimilarity is more constraining than early bisimilarity,
i.e., ∼l⊆∼. The inverse is generally not true, but for HOπ we actually have ∼l=∼.
Moreover, these relations characterize strong barbed congruence: ∼=∼b.
We now give definitions for the weak case, where internal steps τ−→ are not observable.

For every action γ other than τ , we write γ
=⇒ for τ

=⇒ γ−→ (as higher order steps result



8.2. HOπ AND HOπP 145

in concretions and abstractions, they may not reduce further; silent steps after this
reduction are taken into account in the definition of weak simulation below). We define
weak early context bisimilarity as:

Definition 8.2.9 (Weak early context bisimilarity). A binary relation R on closed
processes is an early weak context simulation iff P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ
=⇒ Q′ and P ′ R Q′;

• for all P a−→ F , for all closed concretions C, there exists F ′, Q′ such that Q a
=⇒ F ′,

F ′ • C τ
=⇒ Q′, and F • C R Q′;

• for all P a−→ C, for all closed abstractions F , there exists C ′, Q′ such that Q a
=⇒ C ′,

F • C ′ τ=⇒ Q′ and F • C R Q′.

A relation R is an early weak context bisimulation iff R and R−1 are early weak
context simulations. Two closed processes P and Q are early weak context bisimilar,
noted P ≈ Q, iff there exists an early weak context bisimulation R such that P R Q.

The late version, written ≈l, is defined by replacing the two last clauses by:

• for all P a−→ F , there exists F ′ such that Q a
=⇒ F ′, and for all closed concretions

C, there exists Q′ such that F ′ • C τ
=⇒ Q′, and F • C R Q′;

• for all P a−→ C, there exists C ′ such that Q a
=⇒ C ′, and for all closed abstractions

F , there exists Q′ such that, F • C ′ τ=⇒ Q′ and F • C R Q′.

These relations are correct in relation to barbed congruence: ≈⊆≈b and ≈l⊆≈b.
Completeness has been shown in the case of image finite processes.

Definition 8.2.10. A process P is image finite iff:

• the set {Pi | P τ
=⇒ Pi} is finite;

• for every C and every name a, the set {P ′ | P a
=⇒ F ∧ F • C τ

=⇒ P ′} is finite;

• for every F and every name a, the set {P ′ | P a
=⇒ C ∧ F • C τ

=⇒ P ′} is finite.

HOπP, Syntax and Semantics

We now describe a simple extension of HOπ with localities and passivation. Our goal
is to study the effect of passivation on bisimulations for more complex calculi, such as
Homer (Bundgaard et al., 2004) or the Kell Calculus (Schmitt and Stefani, 2004). As
these calculi include many other feature, notably ways to control the communication
between processes, directly studying them would not only be quite complex, it would
not tell us about the direct influence of passivation.
The change to the syntax is quite minor: we simply add localities of the form a[P ].

As long as passivation does not occur, a locality is a transparent evaluation context:
processes inside may reduce and communicate with the outside. At any moment, passi-
vation may occur and the locality becomes a concretion 〈P 〉0 through a transition on a.
Passivation is a local action τ if and only if there is a process listening on a to receive
the locality’s contents.
We extend localities to every agent, defining a[(X)P ]

∆
= (X)a[P ] and a[νb̃. 〈Q〉R]

∆
=

νb̃. 〈Q〉a[R] (in this latter case, by our convention we have a /∈ b̃). The labeled transition
system of Figure 8.2 is extended with the two following rules.

P
α−→ A

a[P ]
α−→ a[A]

Loc a[P ]
a−→ 〈P 〉0 Passiv



146 CHAPTER 8. LOCALITIES AND EQUIVALENCES

These definitions imply that a name restriction may cross a locality boundary by
scope extrusion when a message is sent whose contents mention the restricted name.
However, as we do not extend structural congruence, this is the only case when scope
extrusion occurs. We will see in Section 8.4 that this restriction is crucial.

HOπP, Equivalences

Observables in HOπP are names and co-names on which a communication or passivation
is enabled, i.e., P ↓µ iff P µ−→. The definitions of barbed congruences, ∼b and ≈b, remain
the same as for HOπ (definitions 8.2.3 and 8.2.5).
We cannot directly reuse the context bisimulation from HOπ. Indeed, consider the

two following processes.

P1 = a〈0〉!b.0 P2 = a〈b.0〉!b.0

We have seen that they are barbed congruent (and context bisimilar) in HOπ. However
they are note barbed congruent in HOπP. Indeed, the context C ∆

= c[�] | a(X)X | c(X)0

distinguishes them. We have C{P1} τ−→ c[!b.0] | 0 | c(X)0
∆
= P3 by communication

on a. Process C{P2} can only match this by C{P2} τ−→ c[!b.0] | b.0 | c(X)0
∆
= P4.

Triggering passivation on c, we get P3
τ−→ 0 and P4

τ−→ b.0. Both processes are not
barbed congruent.
In a concretion νã. 〈R〉S, message R may be sent out of a locality c while its con-

tinuation S remains in c. If passivation on c is triggered, the continuation S may be
discarded (as shown with C{P1} and C{P2}) or may be put in another context. Passi-
vation may thus split the process R from the continuation S and put them in distinct
contexts, which is impossible without passivation. We address this issue following the
same approach as in Homer or the Kell Calculus, testing the messages and continuations
in distinct evaluation contexts E. Evaluation contexts are defined as follows.

E ::= � | νa.E | E | P | P | E | a[E]

We actually call these contexts, which are use for observation purposes, bisimulation
contexts. We are now ready to define early strong context bisimilarity for HOπP.

Definition 8.2.11. A relation R on closed processes is an early strong context simula-
tion iff P R Q implies fn(P ) = fn(Q) and:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;

• for all P a−→ F , for all C, there exists F ′ such that Q a−→ F ′ and F • C R F ′ • C;

• for all P a−→ C, for all F , there exists C ′ telle que Q a−→ C ′ and for all E, we have
F • E{C} R F • E{C ′}.

A relation R is an early strong context bisimulation iff R and R−1 are early strong
context simulations. Two closed processes P and Q are early strong context bisimilar,
noted P ∼ Q, iff there exists an early strong context bisimulation R such that P R Q.

The condition on free names fn(P ) is required because scope extrusion allows to
observe the free names of a process.
We now define context bisimulation in the weak case.

Definition 8.2.12. A relation R on closed processes is an early weak context simulation
iff P R Q implies fn(P ) = fn(Q) and:

• for all P τ−→ P ′, there exists Q′ such that Q τ
=⇒ Q′ and P ′ R Q′;



8.3. NORMAL BISIMULATION FOR LHOπP 147

• for all P a−→ F , for all C, there exist F ′, Q′ such that Q a
=⇒ F ′, F ′ • C τ

=⇒ Q′ and
F • C R Q′;

• for all P a−→ C, for all F , there exists C ′ such that Q a
=⇒ C ′ and for all E, there

exists Q′ such that F • E{C ′} τ
=⇒ Q′ and F • C R Q′.

A relation R is an early weak context bisimulation iff R and R−1 are early weak context
simulations. Two closed processes P and Q are early weak context bisimilar, noted
P ≈ Q, iff there exists an early weak context bisimulation R such that P R Q.

We have shown in (Schmitt and Stefani, 2004) that early strong contextual bisimilarity
coincide with strong barbed congruence. We describe in 8.7 a proof method to show
that early weak context bisimilarity is correct.
Beforehand, we attempt to find a more tractable notion of bisimilarity, based on

normal bisimilarity. To this end, we start by studying a simpler variant of HOπP where
there is no name restriction, then move on to full HOπP.

8.3 Normal bisimulation for LHOπP

In this section, we show that the behavioral theory of a calculus with passivation and
without restriction is similar to the one of HOπ: we are able to define simple context
and normal bisimilarities which characterize barbed congruence.

Syntax, semantics, and equivalences

The syntax and semantics of the Light Higher-Order π-calculus with Passivation (LHOπP)
are the one of HOπP when removing restriction. As before, observables consist of the
names and co-names on which communication or passivation is enabled. The definition
of barbed congruence is unchanged.
As the definition of context bisimilarity is simpler in this calculus, we re-state it here.

It also coincide with strong barbed congruence.

Definition 8.3.1. A relation R on closed processes is an early strong simulation iff
P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;

• for all P a−→ F , for all closed processes R, there exists F ′ such that Q a−→ F ′ and
F ◦ R R F ′ ◦ R;

• for all P a−→ 〈R〉S, there exists R′, S′ such that Q a−→ 〈R′〉S′, R R R′, S R S′.

A relation R is an early strong bisimulation iff R and R−1 are early strong simulations.
Two closed processes P and Q are early strong bisimilar, noted P ∼ Q, iff there exists
an early strong bisimulation R such that P R Q.

Theorem 8.3.2. ∼b=∼.

We define weak context bisimilarity as usual.

Definition 8.3.3. A relation R on closed processes is an early weak simulation iff
P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ
=⇒ Q′ and P ′ R Q′;

• for all P a−→ F , for all closed processes R, there exists F ′, Q′ such that Q a
=⇒ F ′,

F ′ ◦ R τ
=⇒ Q′, and F ◦ R R Q′;



148 CHAPTER 8. LOCALITIES AND EQUIVALENCES

• for all P a−→ 〈R〉S, there exists R′, S′′, S′ such that Q a
=⇒ 〈R′〉S′′, S′′ τ=⇒ S′, R R R′,

and S R S′.

A relation R is an early weak bisimulation iff R and R−1 are early weak simulations.
Two closed processes P and Q are early weak bisimilar, noted P ≈ Q, iff there exists an
early weak bisimulation R such that P R Q.

As in the strong case, we have:

Theorem 8.3.4. Early context bisimilarity is correct.

The proof of this theorem, which uses Howe’s method, can be found in Lenglet
(2010). We also have completeness of the early version on image-finite processes (Defi-
nition 8.2.10).

Theorem 8.3.5. Early weak context bisimilarity is complete on image-finite processes.

Normal bisimulation

In this section, we show that testing one process is enough in the abstraction case and we
define a correct and complete bisimulation without any universal quantification, similar
to Sangiorgi’s normal bisimulation. We write m.0 for m〈0〉0.
In HOπ, testing abstractions (X)P and (X)Q with a trigger m.0 (where m does

not occur in P,Q) is sufficient to establish context bisimilarity: if {m.0/X}P and
{m.0/X}Q are context bisimilar, then for all R, {R/X}P and {R/X}Q are context
bisimilar. We first show that this result does not hold in LHOπP. Consider the following
processes:

P1 = !a[X] | !a〈0〉0 Q1 = P1 | X
We have {m.0/X}P1 ∼ {m.0/X}Q1, but {m.n.0/X}P1 and {m.n.0/X}Q1 (where
m,n do not occur in P,Q) are not bisimilar. Thus we found a process R such that
{R/X}P and {R/X}Q are not strong context bisimilar.

We first give the idea why Pm = {m.0/X}P1 and Qm = {m.0/X}Q1 = m.0 | Pm are
bisimilar. All transitions from Pm are easily matched by Qm, and reciprocally for Qm,
except for transition Qm

m−→≡ Pm. It can only be matched by Pm
m−→ a[0] | Pm = P ′m.

We now prove that Pm and P ′m are bisimilar. We just have to check passivation on a,
i.e. transition P ′m

a−→ 〈0〉Pm. It is clearly matched by message sending on a in Pm, i.e.
Pm

a−→ 〈0〉Pm. Consequently Pm and Qm are early strong context bisimilar.
However Pm,n = {m.n.0/X}P1 and Qm,n = {m.n.0/X}Q1 are not bisimilar. We

consider the transition Qm,n
m−→ n.0 | Pm,n = Q′m,n, which can only be matched by

a transition Pm,n
m−→ a[n.0] | Pm,n = P ′m,n. Passivation of a in P ′m,n, i.e. transi-

tion P ′m,n
a−→ 〈n.0〉Pm,n, can only be matched by Q′m,n

a−→ 〈m.n.0〉Q′m,n or Q′m,n
a−→

〈0〉Q′m,n. Since n.0 � m.n.0 and n.0 � 0, P ′m,n and Q′m,n (and consequently Pm,n
and Qm,n) are not bisimilar.

In the previous example, a process m.0 is not enough to distinguish between process
variables inside and outside a locality: a m−→ transition from a process m.0 in a locality
can be matched by a m−→ transition from a m.0 outside any locality. This distinction,
however, becomes possible with a processm.n.0. Suppose we have {m.n.0/X}P bisim-
ilar to {m.n.0/X}Q, with m,n not occurring in P,Q. A m−→ transition in P is matched
by a m−→ transition in Q: the two resulting processes P ′, Q′ may now perform one and



8.3. NORMAL BISIMULATION FOR LHOπP 149

only one n−→ transition from a process n.0 in an evaluation context. If the process n.0
is in a locality a in P ′, then it can be send in a message on a after a passivation. The
process Q′ has to match with a message sending on a; since the contents of the messages
are pairwise bisimilar, the message from Q′ has to contain n.0. Consequently the only
occurrence of n.0 was in an evaluation context in Q′ and may be sent in a message on
a: it is possible if and only if n.0 is in a locality a.
To summarize, when a process m.n.0 in a locality performs a m−→ transition, it has

to be matched by a process m.n.0 in a locality with the same name. More precisely, if
a process m.n.0 in P performs a m−→ transition and is matched by a process m.n.0 in
Q, then the locality hierarchies around m.n.0 in P and Q are the same. This result is
a consequence of the following decomposition lemma:

Lemma 8.3.6 (Decomposition). Let P,Q two open processes such that fv(P,Q) ⊆ {X}
and m,n two names which do not occur in P,Q. If {m.n.0/X}P ∼ {m.n.0/X}Q
and {m.n.0/X}P m−→ {n.0/Xi}{m.n.0/X}P ′ = Pn, then there exists Q′ such that
{m.n.0/X}Q m−→ {n.0/Xj}{m.n.0/X}Q′ = Qn and Pn ∼ Qn (by definition of the
bisimulation). Moreover, we are in one of the following cases.

• There exist P1, Q1 such that Pn = n.0 | P1, Qn = n.0 | Q1 with P1 ∼ Q1.

• There exist a1, . . . ak, P1 . . . Pk+1, Q1 . . . Qk+1 such that

Pn = a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1

and
Qn = a1[. . . ak−1[ak[n.0 | Qk+1] | Qk] | Qk−1 . . .] | Q1

and for all 1 ≤ j ≤ k + 1, Pj ∼ Qj.

The lemma gives several results on two matching transitions {m.n.0/X}P m−→ Pn

and {m.n.0/X}Q m−→ Qn:

• the resulting n.0 is only under parallel compositions and localities (and not under
replication or choice operators) in Pn, Qn;

• if n.0 is not under a locality in Pn, it is not under a locality in Qn and the
processes in parallel with n.0 in Pn, Qn are bisimilar;

• if n.0 is under a locality hierarchy a1, . . . ak in Pn, then it is under the same
locality hierarchy in Qn, and the locality process bodies P1, . . . Pk+1, Q1, . . . Qk+1

are pairwise bisimilar.

For instance, if we have {n.0/X}P = a[b[n.0 | P3] | P2] | P1, then we have {n.0/X}Q ≡
a[b[n.0 | Q3] | Q2] | Q1 with P1 ∼ Q1, P2 ∼ Q2, P3 ∼ Q3.

From this lemma, we can show that testing abstractions with m.n.0 is enough, as
stated in the following theorem.

Theorem 8.3.7. Let P,Q two open processes such that fv(P,Q) ⊆ {X} and m,n two
names which do not occur in P,Q. If {m.n.0/X}P ∼ {m.n.0/X}Q, then for all closed
processes R, we have {R/X}P ∼ {R/X}Q

The theorem allows us to define a bisimulation without any universal quantification,
similar to the normal bisimulation of Sangiorgi:



150 CHAPTER 8. LOCALITIES AND EQUIVALENCES

Definition 8.3.8. A relation R on closed processes is a normal simulation iff P R Q
implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ R Q′;

• for all P a−→ F , there exists F ′ such that Q a−→ F ′ and for two names m,n which
do not occur in processes P,Q, we have F ◦ m.n.0 R F ′ ◦ m.n.0.

• for all P a−→ 〈R〉S, there exists R′, S′ such that Q a−→ 〈R′〉S′, R R R′ and S R S′.

A relation R is a normal bisimulation iff R and R−1 are normal simulations. Two
closed processes P and Q are normal bisimilar, noted P ∼n Q, iff there exists a normal
bisimulation R such that P R Q.

As a corollary of Theorem 8.3.7, normal bisimilarity coincides with early bisimilarity.

Corollary 8.3.9. ∼n=∼

Proof. The inclusion ∼⊆∼n is easy by definition. The inclusion ∼n⊆∼ is a consequence
of Theorem 8.3.7.

These results may be extended to the weak case:

Theorem 8.3.10. Let P,Q two open processes such that fv(P,Q) ⊆ {X} and m,n two
names which do not occur in P,Q. If {m.n.0/X}P ≈ {m.n.0/X}Q, then for all closed
processes R, we have {R/X}P ≈ {R/X}Q
We define weak normal bisimilarity as follows.

Definition 8.3.11. A relation R on closed processes is a weak normal simulation iff
P R Q implies:

• for all P τ−→ P ′, there exists Q′ such that Q τ
=⇒ Q′ and P ′ R Q′;

• for all P a−→ F , there exists F ′ such that Q a
=⇒ F ′ and for two names m,n which

do not occur in processes P,Q, there exists Q′ such that F ′ ◦ m.n.0
τ
=⇒ Q′ and

F ◦ m.n.0 R Q′.

• for all P a−→ 〈R〉S, there exists R′, S′′, S′ such that Q a
=⇒ 〈R′〉S′′, S′′ τ=⇒ S′, R R R′

and S R S′.

A relation R is a weak normal bisimulation iff R and R−1 are weak normal simulations.
Two closed processes P and Q are weakly normal bisimilar, noted P ≈n Q, iff there exists
a weak normal bisimulation R such that P R Q.

As in the strong case, we have

Corollary 8.3.12. ≈n=≈
Hence in a calculus with passivation and without restriction, we can define a suitable

bisimulation without any universal quantification. We show in the next section that this
does not hold with HOπ, i.e, when adding back restriction.

8.4 Normal bisimulations and HOπP

In this section, we present counter-examples that clearly suggest that defining a notion
of normal bisimulation for HOπP is a doomed prospect. More precisely, we prove
that testing large sub-classes of processes (abstraction-free processes) is not enough to
guarantee bisimilarity of abstraction. In Lenglet (2010), another large class of processes,
finite processes (processes which do not have non-terminating reductions), is also shown
not to be enough to test for bisimilarity when the calculus has a choice (+) operator.



8.4. NORMAL BISIMULATIONS AND HOπP 151

Abstraction-free processes

In the following, we omit the trailing zeros to improve readability; m in an agent defi-
nition stands for m.0. We also write νab.P for νa. νb.P . Let 0m

∆
= νx.x.m. Process

0m is bisimilar to 0 except it has a free name m. We define the following abstractions:

(X)P
∆
= (X)νnb. (b[X | νm. a〈0m〉(m | n | m.m. p)] | n. b(Y )(Y | Y ))

(X)Q
∆
= (X)νmnb. (b[X | a〈0〉(m | n | m.m. p)] | n. b(Y )(Y | Y ))

The two abstractions differ in the process emitted on a and in the position of name
restriction on m (inside or outside hidden locality b). An abstraction-free process is a
process built with the regular HOπP syntax minus message input a(X)P .

Lemma 8.4.1. Let R be an abstraction-free process. We have (X)P ◦ R ∼ (X)Q ◦ R.

Since R is abstraction-free, it cannot receive the message emitted by P or Q on
a; consequently R cannot interact with P or Q. Let Pm,R = νnb. (b[R | m | n |
m.m. p] | n. b(Y )(Y | Y )), F be an abstraction, and E be an evaluation context such
that m /∈ fn(E, F ). We now prove that (X)P ◦ R a−→ νm. 〈0m〉Pm,R is matched by
(X)Q ◦ R a−→ 〈0〉νm.Pm,R, i.e., that we have νm. (F ◦ 0m | E{Pm,R}) ∼ F ◦ 0 |
E{νm.Pm,R}. Since m /∈ fn(E, F ), there is no interaction between F,E, and Pm,R.
Moreover, the inert process 0m does not interfere. Hence the possible transitions from
νm. (F ◦ 0m | E{Pm,R}) are only from F,E, and internal actions in Pm,R, and are
matched by the same transitions in F ◦ 0 | E{νm.Pm,R}.

However, abstractions (X)P and (X)Qmay have different behaviors with an argument
which may receive on a, like a(Z)q, where q is a first-order name such that p 6= q. By
communication on a, we have

(X)Q ◦ a(Z)q
τ−→ νmnb. (b[q | m | n | m.m. p] | n. b(Y )(Y | Y ))

∆
= Q1

Since Q1 may perform a q−→ transition, (X)Pa(Z)q may only reply by

(X)P ◦ a(Z)q
τ−→ νnb. (b[νm. q | m | n | m.m. p] | n. b(Y )(Y | Y ))

∆
= P1

Notice that in P1, the restriction on m remains inside hidden locality b.
After synchronisation on n and passivation on b, we have

Q1(
τ−→)2νmnb. (q | q | m | m | m.m. p | m.m. p)

∆
= Q2

(process inside b in Q1 is duplicated). After two synchronisations on m, we have

Q2(
τ−→)2νmnb. (q | q | p | m.m. p)

∆
= Q3

and Q3 may perform a p−→ transition. These transitions cannot be matched by P1.
Performing the duplication, we have

P1(
τ−→)2νnb. ((νm. q | m | m.m. p) | (νm. q | m | m.m. p))

∆
= P2

Each copied sub-process q | m | m.m. p of P2 has its own private copy of m, and we
can no longer perform any transition to have the observable p. More generally, the
sequence of transitions Q1(

τ−→)4 p−→ cannot be matched by P1, consequently Q1 and P1

(and therefore (X)Q ◦ a(Z)q and (X)P ◦ a(Z)q) are not bisimilar.



152 CHAPTER 8. LOCALITIES AND EQUIVALENCES

This counter-example shows that testing abstractions with abstraction-free processes
(such as m.n.0) is not enough to potentially distinguish them. Consequently, we have
to test abstractions with processes which performs some kind of message input. Notice
that this counter-example relies on scope extrusion; another family of tests that does
not rely on scope extrusion but on the number of reductions is presented in Lenglet
(2010). We show there that for every number n, there are processes that may not be
distinguished after n steps but that may be distinguished after m > n steps.
We thus conjecture that we cannot define a normal bisimilarity in HOπP, i.e., that

we cannot define a sound and complete strong bisimilarity with fewer tests than early
strong context bisimilarity.

8.5 Contextual Semantics and Howe’s Method

A classic and powerful technique to prove the congruence of a relation is Howe’s method
(1996). Unfortunately it is not adapted to the usual semantics and contextual bisimilar-
ity of HOπ. In this section, we recall the proof scheme of Howe’s method, then explain
why we cannot use it with early context bisimilarities, which are the usual candidate
relations for characterizing barbed congruence in calculi inheriting from the π-calculus.

Howe’s Method

Howe’s method (Howe, 1996; Baldamus, 1998; Gordon, 1995) is a systematic proof tech-
nique to show that a candidate relation R is a congruence. The method can be divided
in three steps.

• Definition of Howe’s closure R• and proofs of its basic properties. Howe’s closure
R• contains R and is a congruence by construction.

• Proof of a simulation-like property for R•.

• Conclusive step: proof that R and R• coincide on closed processes. Since R• is a
congruence, we conclude that R is a congruence.

The definition of Howe’s closure relies on the open extension of R, noted R◦: it
extends the definition of the relation R to open processes.

Definition 8.5.1 (Open extension). Let P and Q be two open processes. We have
P R◦ Q iff Pσ R Qσ for all substitutions σ that close P and Q.

Howe’s closure is inductively defined as the smallest congruence which contains R◦
and is closed by right relation composition by R◦.

Definition 8.5.2 (Howe closure). Howe’s closure R• of a relation R is the smallest
relation verifying:

• R◦⊆R•;

• R•R◦⊆R•;

• for all operators op of the language, if P̃ R• Q̃, then op(P̃ ) R• op(Q̃).

By definition, Howe’s closure is a congruence, and the composition with R◦ allows
some transitivity and gives some additional properties to the relation.
To prove that Howe’s closure is a simulation (second step of the method), we need

the following property.



8.5. CONTEXTUAL SEMANTICS AND HOWE’S METHOD 153

Lemma 8.5.3. Let R be an equivalence. If P R• Q and R R• S, then we have
{R/X}P R• {S/X}Q.

We sketch the proof in order to give an idea on why the transitive item R•R◦⊆R•
is needed in Definition 8.5.2. The proof is by induction on the derivation of P R• Q.
Suppose we have P R◦ Q. Since R R• S and R• is a congruence, we have {R/X}P R•
{S/X}P . Let σ be a substitution that closes P and Q except for X; by open extension
definition, we have {S/X}Pσ R {S/X}Qσ, i.e., we have {S/X}P R◦ {S/X}Q. Finally
we have {R/X}P R•R◦ {S/X}Q, hence we have {R/X}P R• {S/X}Q. The other
cases are easy using the induction hypothesis.
In our case, we want to prove that a bisimilarity B is a congruence. By definition, we

have B◦⊆B•. To have the reverse inclusion, we prove that B• is a bisimulation. However
we cannot prove directly that B• is symmetric; instead, we prove a simulation property
(second step of the method), and we use the following property.

Lemma 8.5.4. Let R be an equivalence. Then the reflexive and transitive closure (R•)∗
of R• is symmetric.

Proof. By proving that P (R•)−1Q implies P (R•)∗Q for all P,Q. It is done by induction
on P (R•)−1Q.

Using the simulation result, we can prove that the restriction of (B•)∗ to closed terms
is a bisimulation. Consequently we have B⊆B•⊆ (B•)∗ ⊆B on closed terms, and we
conclude that B is a congruence.

The main difficulty is to prove the simulation-like property for Howe’s closure. In the
following subsection, we explain why we cannot use directly Howe’s method with early
context bisimilarities (Definitions 8.2.7 and 8.2.9).

Communication Problem with Contextual Semantics

We want to prove that B• is a simulation. Proving directly that a congruence is a
simulation may raise transitivity issues (Schmitt and Stefani, 2004). Howe’s method
deals with this issue by establishing a stronger simulation result which features some
transitivity in its clauses. Given a bisimilarity B based on a LTS P λ−→ A, the simulation
result follows the pattern below:
Let P B• Q. IF P

λ−→ A, then there exists B such that Q λ′

−→ B and for all λ B• λ′,
we have A B• B.
This pattern is quite close to a higher-order bisimilarity clause. It supposes that

Howe’s closure can be extended to labels λ. For instance, suppose we want to ap-
ply Howe’s method to strong late context bisimilarity ∼l (definition 8.2.8), which has
first been done for Homer in Bundgaard et al. (2004). We extend Howe’s closure to
abstractions: we have F ∼•l F ′ iff for all C, we have F • C ∼•l F ′ • C. We then have:

Lemma 8.5.5. If P ∼•l Q, then:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ ∼•l Q′;

• for all P a−→ F , there exists F ′ such that Q a−→ F ′ and F ∼•l F ′;

• for all P a−→ C, there exists C ′ such that Q a−→ C ′ and for all closed F, F ′ such that
F ∼•l F ′ we have F • C ∼•l F ′ • C ′.



154 CHAPTER 8. LOCALITIES AND EQUIVALENCES

Notice that some transitivity is built in the output clause of this simulation-like prop-
erty: F and C are directly related to F ′ and C ′. Finding a suitable simulation-like
property featuring transitivity is more difficult for early context bisimilarity. Sticking
to the pattern given earlier, one may think of the following property:

Conjecture 1. If P ∼• Q, then:

• for all P τ−→ P ′, there exists Q′ such that Q τ−→ Q′ and P ′ ∼• Q′;

• for all P a−→ F , for all C ∼• C ′, there exists F ′ such that Q a−→ F ′ and F • C ∼•
F ′ • C ′;

• for all P a−→ C, for all F ∼• F ′ there exists C ′ such that Q a−→ C ′ and F • C ∼•
F ′ • C ′.

These clauses raise several issues. First, we have to find extensions of Howe’s closure
to abstractions and concretions which fit an early style. Even if we have found such
extensions, we have problems to conduct an inductive proof of conjecture 1 with higher-
order communication. Suppose we conduct a proof by induction on the derivation of
P ∼• Q. Suppose we are in the parallel case, i.e. we have P = P1 | P2 and Q = Q1 | Q2,
with P1 ∼• Q1 and P2 ∼• Q2. Suppose that we have P

τ−→ P ′, and the transition comes
from rule HO: we have P1

a−→ F , P2
a−→ C and P ′ = F • C. We want to find Q′ such

that Q τ−→ Q′ and P ′ ∼• Q′. We want to use the same rule HO, hence we have to
find F ′, C ′ such that Q τ−→ F ′ • C ′. However we cannot use the input clause of the
induction hypothesis with P1, Q1: to have a F ′ such that Q1

a−→ F ′, we have to find
first a concretion C ′ such that C ∼• C ′. We cannot use the output clause with P2, Q2

either: to have a C ′ such that Q2
a−→ C ′, we have to find first an abstraction F ′ such

that F ∼• F ′. We cannot bypass this mutual dependency, therefore the inductive proof
of conjecture 1 fails in the higher-order communication case.

Godskesen and Hildebrandt (2005) deal with this issue in Homer by making the con-
cretion clause independent from abstractions. The considered bisimilarity is therefore no
longer early, but input-early : the input clause is in an early style and the output clause
is in a late one. While this approach allows to prove the correction of the bisimilarity,
it still does not characterize barbed congruence.
In the following section, we propose a new semantics for HOπ which coincide with the

contextual one and which allow the use of Howe’s method to prove congruence results
with early strong and weak bisimilarities.

8.6 Complementary Semantics for HOπ

We define a LTS P α−→ P ′ where processes always evolve towards other processes. We
have three kinds of transitions: internal actions P τ7−→ P ′, message input P a,R−−→ P ′, and
message output P a,Q7−−→ P ′. We call this new LTS complementary since in the output
action, we put the context which complements P in the label λ of the transition (more
details below). For higher-order labels λ = a,R or λ = a,R we define n(λ) as the
name a on which the communication may happen. Rules of the LTS can be found in
Figure 8.3, except the symmetric of rules Parπ and HOπ. We first detail the form of
transitions in the complementary LTS.
Internal action transitions P τ7−→ P ′ are the same as in the contextual LTS P τ−→ P ′.

A message input transition P
a,R−−→ P ′ means that process P may receive the process

R as a message on channel a and become P ′. In the contextual style, it means that
there exists an abstraction F = (X)P ′′ such that P a−→ (X)P ′′ and P ′ = {R/X}P ′′.



8.6. COMPLEMENTARY SEMANTICS FOR HOπ 155

a(X)P
a,R−−→ {R/X}P Inπ

Q
a,R−−→ Q′

a〈R〉S a,Q7−−→ Q′ | S
Outπ

P1
λ7−→ P ′1

P1 | P2
λ7−→ P ′1 | P2

Parπ
P

λ7−→ P ′ a /∈ n(λ)

νa.P
λ7−→ νa.P ′

Restrπ
P

a,Q7−−→ P ′

P | Q τ7−→ P ′
HOπ

Figure 8.3: Complementary LTS for HOπ

Complementary and contextual message input transitions are fundamentally the same,
except that the complementary action is written in the early style.
The main difference lies with output action transitions. The transition P

a,Q7−−→ P ′

means that P may send a message on channel a, Q may receive on a, and the commu-
nication on a between P and Q results in P ′. Note that it is not the same as writing
a contextual transition in an early style P a,F−−→ F • C: instead of putting an abstrac-
tion F in the label, we put a process Q (without any free process variable). There is a
tight correspondence with an output action contextual transition, though: the transition
P

a,Q7−−→ P ′ means that there exists F,C such that P a−→ C, Q a−→ F , and P ′ = F • C.
Rules of the LTS in Figure 8.3 are standard, except rules HOπ and Outπ. In rule

HOπ, the premise P a,Q7−−→ P ′ means that P and Q can communicate on a name a and
the result is P ′, i.e., P | Q τ−→ P ′ (by communication on a). Rule Outπ has a premise
(unlike its equivalent rule Out) since in the conclusion we need the result Q′ of the
input of process R on channel a by Q.

Remark 8.6.1. Notice that in a message output P a,Q7−−→ P ′, the message itself does not
appear in the label or cannot be directly deduced from the transition. It is unusual in
higher-order LTS: for instance in the contextual semantics of HOπ, Kell, or Homer,
emitted processes appear in concretions. In Mobile Ambients (Merro and Nardelli,
2005), moving ambients also appear in concretions; in the Seal-calculus (Castagna and
Nardelli, 2002), moved seals appear in labels (seal freeze Pz or seal chained P z). Hiding
the message in the LTS makes Howe’s method easier to apply.

The correspondence between the complementary LTS and the contextual LTS is exact,
and it is established by the following lemma:

Lemma 8.6.2. Let P be an HOπ process. We have:

• P τ−→ P ′ iff P
τ7−→≡ P ′;

• If P a−→ F , then for all R we have P a,R−−→ F ◦ R. Conversely, if P a,R−−→ P ′, then
there exists F such that P a−→ F and P ′ = F ◦ R;

• If P a−→ C, then for all Q such that Q a−→ F , we have P a,Q7−−→ F • C. Conversely,
if P a,Q7−−→ P ′, then there exists F,C such that P a−→ C, Q a−→ F , P ′ ≡ F • C.

The correspondence between the two LTS is up to structural congruence because of
scope extrusion: in Sangiorgi’s contextual LTS, scope extrusion is performed iff the
name belongs to the free names of the message, while in the complementary LTS, we
do not have such a condition. For instance, if we consider P = νb. a〈0〉b〈0〉0, then we
have P a−→ C = 〈0〉νb. b〈0〉0 and for all F = (X)Q′, we have F • C = {0/X}Q′ |



156 CHAPTER 8. LOCALITIES AND EQUIVALENCES

νb. b〈0〉0 ∆
= P1. With the complementary LTS, for all Q such that Q a−→ F we have

P
a,Q7−−→ νb. ({0/X}Q′ | b〈0〉0)

∆
= P2. We have P1 6= P2 but we have P1 ≡ P2.

Complementary Bisimilarities

We now define strong complementary bisimilarity and prove its soundness by proving
it is a congruence using Howe’s method. The result in itself, i.e., the definition of a
sound bisimilarity in HOπ, is not new (Sangiorgi, 1992, 1996a). However it allows us
to explain why complementary semantics is well suited to apply Howe’s method. In the
HOπ case, strong complementary bisimilarity is simply the bisimilarity associated to the
complementary LTS. Let λ range over complementary LTS labels, i.e. λ = τ , λ = a,R
or λ = a,R, where R is a process.

Definition 8.6.3 (Strong complementary bisimilarity). A binary relation R on
closed processes is a strong complementary simulation iff P R Q implies for all P λ−→ P ′,
there exists Q′ such that Q λ−→ Q′ and P ′ R Q′.
A relation R is a strong complementary bisimulation iff R and R−1 are strong com-

plementary simulations. Two closed processes P and Q are strong complementary bisim-
ilar, noted P ∼m Q, iff there exists a strong complementary bisimulation R such that
P R Q.

As in context bisimilarity, in the message output case P a,R7−−→ P ′, the matching tran-
sition Q

a,R7−−→ Q′ still depends on a receiving entity (here R). However, instead of
considering a context which directly receives the message (an abstraction F ), we con-
sider a process R which evolves toward an abstraction. This small nuance allows us
to use Howe’s method to prove soundness of ∼m. To this end we prove the following
simulation-like property for ∼•m, the Howe closure of ∼m:

Lemma 8.6.4. Let P,Q be closed processes. If P ∼•m Q then:

• if P τ7−→ P ′, then there exists Q′ such that Q τ7−→ Q′ and P ′ ∼•m Q′;

• if P a,R−−→ P ′, then for all R ∼•m R′, there exists Q′ such that Q a,R′

−−−→ Q′ and
P ′ ∼•m Q′;

• if P a,T7−−→ P ′, then for all T ∼•m T ′, there exists Q′ such that Q a,T ′

7−−−→ Q′ and
P ′ ∼•m Q′.

We do not have the same problem as in Section 8.5 with the higher-order communi-
cation case. We recall that in this case, we have P1 | P2 ∼•m Q1 | Q2 with P1 ∼•m Q1,
P2 ∼•m Q2 and P1

a,P27−−−→ P ′. We can apply directly the message output clause of the in-
duction hypothesis: there exists Q′ such that Q1

a,Q27−−−→ Q′ and P ′ ∼•m Q′. We conclude
that Q1 | Q2

τ7−→ Q′ (by rule HOπ) with P ′ ∼•m Q′ as wished.

Theorem 8.6.5. ∼m is a congruence.

Proving Lemma 8.6.4 is the only difficult part of the proof of Theorem 8.6.5. The
complete proofs can be found in (Lenglet, 2010).

Following the correspondence result between the two LTS (Lemma 8.6.2), we now
prove that the bisimilarities have the same discriminating power. The differences in
the message output clauses are covered mainly with Lemma 8.6.2. The bisimilarities
differ also in how they deal with input actions: complementary bisimilarity tests with a



8.6. COMPLEMENTARY SEMANTICS FOR HOπ 157

process while context bisimilarity tests with a concretion. Testing with all concretions
includes tests with 〈P 〉0, which are the same as tests with P (up to ≡). Consequently
one inclusion is easy to establish:

Lemma 8.6.6. We have ∼⊆∼m.

The proof is done by showing that ∼ is a strong complementary bisimilarity (up to
≡). The reverse inclusion requires the congruence result on ∼m (Theorem 8.6.5).

Lemma 8.6.7. We have ∼m⊆∼.

We prove the inclusion by showing that ∼m is an early strong context bisimulation
(up to ≡). In the message input case, we have roughly {R/X}P ′ ∼m {R/X}Q′; by
congruence it implies that νb̃. ({R/X}P ′ | S) ∼m νb̃. ({R/X}Q′ | S), i.e. (X)P ′ •
νb̃. 〈R〉S ∼m (X)Q′ • νb̃. 〈R〉S. With Theorem 8.6.5, tests with processes are as dis-
criminatory as tests with concretions.

Correspondence also holds in the weak case. In this case, two processes P and Q may
evolve independently before interacting with each other. Since a transition P a,Q7−−→ P ′

includes a communication between P and Q, we have to authorize Q to perform τ -
actions before interacting with P in the weak output transition. We define P Z a,Q==⇒ P ′

as P τ
=⇒ a,Q′

7−−−→ τ
=⇒ P ′ with Q τ

=⇒ Q′. Weak complementary semantics mimics weak context
semantics in the following way.

Lemma 8.6.8. Let P be an HOπ process.

• We have P τ
=⇒ P ′ iff P Z τ=⇒ P ′.

• Let R be a closed process. If P a
=⇒ F and F ◦ R τ

=⇒ P ′ then we have P a,R
==⇒ F ◦ R.

If P a,R
==⇒ P ′, then there exists F such that P a

=⇒ F and F ◦ R τ
=⇒ P ′.

• If P a
=⇒ C, then for all Q such that Q a

=⇒ F and F • C τ
=⇒ P ′, we have P Z a,Q==⇒ P ′.

If P Z a,Q==⇒ P ′, then there exists F,C such that P a
=⇒ C, Q a

=⇒ F , and F • C τ
=⇒ P ′.

We now give the definition of the weak bisimilarity associated to the complementary
LTS.

Definition 8.6.9. A relation R on closed processes is a weak complementary simulation
iff P R Q implies that, for all P λ−→ P ′, there exists Q′ such that Q λ

=⇒ Q′ and P ′ R Q′.
A relation R is a weak complementary bisimulation iff R and R−1 are weak comple-

mentary simulations. Two closed processes P and Q are weak complementary bisimilar,
noted P ≈m Q, iff there exists an weak complementary bisimulation R such that P R Q.

Using the same proof schemes as in the strong case, we have the following results.

Theorem 8.6.10. The relation ≈m is a congruence.

Lemma 8.6.11. We have ≈m=≈.

We do not detail proofs for weak relations since they are similar to the strong ones.
We now turn to HOπP where the congruence result for a weak relation is new.



158 CHAPTER 8. LOCALITIES AND EQUIVALENCES

a(X)P
a,R−−→ {R/X}P Inpi

P
a,R−−→ P ′

P | Q a,R−−→ P ′ | Q
Parpiτ

P
b,R−−→ P ′

a[P ]
b,R−−→ a[P ′]

Locpi

P
a,R−−→ P ′ b 6= a

νb.P
a,R−−→ νb.P ′

Restrpi
P

τ7−→ P ′

P | Q τ7−→ P ′ | Q
Parpiτ

P
τ7−→ P ′

a[P ]
τ7−→ a[P ′]

Locpiτ

P
τ7−→ P ′

νa.P
τ7−→ νa.P ′

Restrpiτ
P

a,Q,�−−−−→b̃ P
′

P | Q τ−→ P ′
HOp

τ

Figure 8.4: Complementary LTS for HOπP: internal and message input actions

8.7 Characterizing Barbed Congruence for HOπP

In this section, we define a complementary semantics for HOπP, and a weak comple-
mentary bisimilarity ≈m which coincides with early weak context bisimilarity ≈ (Defi-
nition 8.2.12). We then prove that ≈m is a congruence (and hence sound with respect
to weak barbed congruence) using Howe’s method. We also prove that ≈m is com-
plete on image-finite processes, yielding a co-inductive characterization of weak-barbed
congruence in a calculus featuring passivation and restriction.

Complementary LTS

As in Section 8.6 we define a complementary LTS which considers processes instead of
abstractions in the message output case. However we have two additional issues with
HOπP. First, we have to include evaluation contexts E since they appear in bisimilarity
definitions (Definitions 8.2.11 and 8.2.12). Second, handling scope extrusion is more
involved than in HOπ, since the scope of restricted names may extend beyond locality
boundaries by communication but not by structural congruence. We cannot always
extrude names and still have an equivalent semantics (up to ≡) as in HOπ.
Internal action transitions P τ−→ P ′ and input action transitions P a,R−−→ P ′ are similar

to the corresponding HOπ complementary transitions , except that we have to add
rules for localities.. LTS rules dealing with these transitions can be found in Figure 8.4
except the symmetric counterpart of rules Parpiτ , Parpiτ , and HOp

τ . Rule HOp
τ relies on

message output transitions and is explained later.
In HOπP, context bisimilarities test a message output with an abstraction F and

a bisimulation context E. As in HOπ, complementary output actions P a,Q,E−−−→b̃ P
′

consider a receiving process Q instead of F . We have to add contexts E in our labels to
keep the same discriminating power, and we also use a set of names b̃ to deal with scope
extrusion. Transition P

a,Q,E−−−→b̃ P
′ means that P is put under context E and emits a

message on a, which is received by Q, i.e. we have E{P} | Q τ−→ P ′ by communication
on a. In the contextual style, it means that there exists F,C such that P a−→ C, Q a−→ F ,
and P ′ = F • E{C}. Output rules can be found in Figure 8.5, except for the symmetric
of rule Parpo.

Scope extrusion may happen in the process under consideration (e.g. P = νc. a〈R〉S
with c ∈ fn(R)) or because of the bisimulation context E (e.g. P = a〈R〉S and E =

d[νc. (� | c〈0〉0)] with c ∈ fn(R)). We first define auxiliary transitions P
a,Q,E
↪−−−→b̃ P

′,
where we do not allow the latter kind of capture, and we then give rules for general



8.7. CHARACTERIZING BARBED CONGRUENCE FOR HOπP 159

fn(R) = b̃ Q
a,R−−→ Q′ bn(E) ∩ b̃ = ∅

a〈R〉S a,Q,E
↪−−−→b̃ Q

′ | E{S}
Outpo

P
a,Q,E{b[�]}
↪−−−−−−−→b̃ P

′

b[P ]
a,Q,E
↪−−−→b̃ P

′
Locpo

fn(P ) = b̃ Q
b,P−−→ Q′ bn(E) ∩ b̃ = ∅

b[P ]
b,Q,E
↪−−−→b̃ Q

′ | E{0}
Passivpo

P1

a,Q,E{�|P2}
↪−−−−−−−−→b̃ P

′

P1 | P2
a,Q,E
↪−−−→b̃ P

′
Parpo

P
a,Q,E
↪−−−→b̃ P

′ c 6= a c ∈ b̃
νc.P

a,Q,E
↪−−−→b̃\c νc.P

′
Extrpo

P
a,Q,E{νc.�}
↪−−−−−−−−→b̃ P

′ c 6= a c /∈ b̃
νc.P

a,Q,E
↪−−−→b̃ P

′
Restrpo

P
a,Q,E
↪−−−→b̃ P

′

P
a,Q,E−−−→b̃ P

′
CFreepo

P
a,Q,E{F}−−−−−−→b̃ P

′ c ∈ b̃
P

a,Q,E{νc.F}−−−−−−−−→b̃ νc.P
′

Captpo

Figure 8.5: Complementary LTS for HOπP: message output actions

output transitions.

Rule Outpo deals with message output a〈R〉S a,Q,E
↪−−−→b̃ E{S} | Q′. Premise Q a,R−−→ Q′

checks that Q may receive R on a, and the resulting process Q′ is run in parallel with
the continuation S under context E. We check that that E does not capture free names
of R with the side-condition bn(E) ∩ b̃ = ∅. We keep the free names b̃ of R in the label
for scope extrusion.
For instance, let P = a〈R〉S and c ∈ fn(R). Process νc.P may emit R on a, but the

scope of c has to be expanded to encompass the recipient of R. First premise of rule

Extrpo checks that P may output a message; here we have a〈R〉S a,Q,E
↪−−−→b̃ E{S} | Q′

with b̃ = fn(R). In conclusion, we have νc. a〈R〉S a,Q,E
↪−−−→b̃\c νc. (E{S} | Q′). Scope

of c includes the Q′ as wished. We remove c from set b̃ in the label for observational
purposes. The set b̃ consists of the names which may be extruded. For a concretion
C = νã. 〈P1〉P2, these names b̃C are the free names of P1 which are not already bound
in ã, i.e. b̃C = fn(P1) \ ã.
Suppose now that P = a〈R〉S with c /∈ fn(R). Process νc.P may emit a mes-

sage, but the scope of c has to encompass the continuation S only: we want to obtain

νc.P
a,Q,E
↪−−−→b̃ E{νc.S} | Q′. To this end, we consider P

a,Q,E{νc.�}
↪−−−−−−−−→b̃ P

′ as a premise of
rule Restrpo. In process P ′, the continuation is put under E{νc.�}, hence we obtain

a〈R〉S a,Q,E{νc.�}
↪−−−−−−−−→b̃ E{νc.S} | Q′ = P ′. Process P ′ is exactly the resulting process we

want for νc.P , hence the conclusion of the rule is simply νc.P
a,Q,E
↪−−−→b̃ P

′.
Rule for passivation Passivpo is similar to rule Outpo, while rules Locpo, Parpo follow

the same pattern as rule Restrpo. Rule CFreepo simply means that a transition with a
capture-free context is a message output transition. We now explain how te deal with
context capture with rule Captpo. Suppose P = a〈R〉S and E′ = d[νc. (� | c〈0〉0)]

with c ∈ fn(R); we want to obtain P a,Q,E′

−−−−→b̃ νc. (d[S | c〈0〉0] | Q′) (with the scope of c



160 CHAPTER 8. LOCALITIES AND EQUIVALENCES

extended out of d). We first consider the transition P
a,Q,E{F}−−−−−−→b̃ P

′ without capture on c;

in our case we have P
a,Q,d[�]−−−−−→b̃ d[S | c〈0〉0] | Q′ = P ′ with E = d[�] and F = � | c〈0〉0.

Using the rule we have P
a,Q,E{νc.F}−−−−−−−−→b̃ νc.P

′, i.e., P a,Q,E′

−−−−→b̃ νc. (d[S | c〈0〉0] | Q′). The
scope of c is extended outside E and includes the recipient of the message as wished.
Premise P a,Q,�−−−−→b̃ P

′ of rule HOp
τ (Figure 8.4) means that process P sends a message

on a to Q without any bisimulation context to surround P , and the result is P ′. Con-
sequently we have P | Q τ−→ P ′ by communication on a, which is precisely the wished
conclusion. Names b̃ are no longer needed for scope extrusion, so we simply forget them.
We now establish the correspondence between the contextual LTS and the comple-

mentary LTS.

Lemma 8.7.1. Let P be an HOπP process. We have:

• P τ−→ P ′ iff P
τ7−→ P ′;

• if P a−→ F , then for all R we have P a,R−−→ F ◦ R; conversely, if P a,R−−→ P ′, then
there exists F such that P a−→ F and P ′ = F ◦ R;

• if P a−→ C, then for all Q such that Q a−→ F and for all E, we have P a,Q,E−−−→b̃ F •
E{C} with b̃ = fn(o(C))\bn(C); conversely, if P a,Q,E−−−→b̃ P

′, then there exists F,C

such that P a−→ C, Q a−→ F , b̃ = fn(o(C)) \ bn(C), and P ′ = F • E{C}.

Complementary Bisimilarities

Strong complementary bisimilarity is defined as follows.

Definition 8.7.2 (Strong complementary bisimilarity). A relation R on closed
processes is a strong complementary simulation iff P R Q implies fn(P ) = fn(Q) and
for all P λ−→ P ′, there exists Q′ such that Q λ−→ Q′ and P ′ R Q′.
A relation R is a strong complementary bisimulation iff R and R−1 are strong com-

plementary simulations. Two closed processes P and Q are strong complementary bisim-
ilar, noted P ∼m Q, iff there exists a strong complementary bisimulation R such that
P R Q.

Note that we still have the condition on free names fn(P ) = fn(Q). We now prove
that ∼m is sound (by proving that it is a congruence) using Howe’s method. To this
end, we define first E ∼•m F as the smallest congruence that extends ∼•m with � ∼•m �.

Definition 8.7.3 (Howe’s closure for evaluation contexts). Howe’s closure for
evaluation contexts is the smallest relation verifying the following laws:

• � ∼•m �;

• if E ∼•m F and P ∼•m Q, then we have E | P ∼•m F | Q;

• if E ∼•m F, then we have νa.E ∼•m νa.F;

• if E ∼•m F, then we have a[E] ∼•m a[F].

We prove the following simulation-like property for ∼•m.

Lemma 8.7.4. Let P,Q be closed processes. If P ∼•m Q then:

• if P τ7−→ P ′, then there exists Q′ such that Q τ7−→ Q′ and P ′ ∼•m Q′;



8.7. CHARACTERIZING BARBED CONGRUENCE FOR HOπP 161

• if P a,R−−→ P ′, then for all R ∼•m R′, there exists Q′ such that Q a,R′

−−−→ Q′ and
P ′ ∼•m Q′;

• if P a,T,E−−−→b̃ P
′, then for all T ∼•m T ′ and all E ∼•m F, there exists Q′ such that

Q
a,T ′,F−−−−→b̃ Q

′ and P ′ ∼•m Q′.

The proof is by induction on the derivation of P ∼•m Q. We just detail the communi-

cation case: we have P1 | P2 ∼•m Q1 | Q2 with P1 ∼•m Q1, P2 ∼•m Q2 and P1
a,P2,�−−−−→b̃ P

′.
We can apply directly the message output clause of the induction hypothesis: there ex-
ists Q′ such that Q1

a,Q2,�−−−−→b̃ Q
′ and P ′ ∼•m Q′. We conclude that Q1 | Q2

τ7−→ Q′ (by
rule HOp

τ ) with P ′ ∼•m Q′ as wished.

Theorem 8.7.5. ∼m is a congruence.

We may wonder if strong early context and complementary bisimilarities have the
same discriminating power. The output clause of complementary bisimilarity requires
that transition P

a,T,E−−−→b̃ P
′ has to be matched by a transition Q

a,T,E−−−→b̃ Q
′ with the

same set of names b̃ which may be extruded. At first glance, we do not have this
requirement for the early strong context bisimilarity. Nevertheless, we prove that both
relations coincide.
As in Section 8.6, the first inclusion is easy.

Lemma 8.7.6. We have ∼m⊆∼.

For the reverse inclusion, we have to prove first the following result on concretion
names.

Lemma 8.7.7. Let P ∼ Q. Let P a−→ C, F an abstraction, and Q a−→ C ′ such that for all
E, we have F • E{C} ∼ F • E{C ′}. Then we have fn(o(C))\bn(C) = fn(o(C ′))\bn(C ′).

We then have the reverse inclusion.

Lemma 8.7.8. We have ∼⊆∼m.

The proof is done by showing that ∼ is a strong complementary bisimilarity.

We can also prove soundness and correspondence between bisimilarities in the weak

case. We define P a,Q,E
===⇒b̃ P

′ as P τ
=⇒ a,Q′,E−−−−→b̃

τ
=⇒ P ′ with Q τ

=⇒ Q′. Weak complementary
bisimilarity is defined as follows.

Definition 8.7.9 (Weak complementary bisimilarity). A relation R on closed
processes is a weak complementary simulation iff P R Q implies fn(P ) = fn(Q) and for
all P λ−→ P ′, there exists Q′ such that Q λ

=⇒ Q′ and P ′ R Q′.
A relation R is a weak complementary bisimulation iff R and R−1 are weak comple-

mentary simulations. Two closed processes P and Q are weak complementary bisimilar,
noted P ≈m Q, iff there exists an weak complementary bisimulation R such that P R Q.

As in the strong case, we have the following results.

Theorem 8.7.10. The relation ≈m is a congruence.

Lemma 8.7.11. We have ≈m=≈.



162 CHAPTER 8. LOCALITIES AND EQUIVALENCES

Completeness

As for HOπ, we prove that weak complementary bisimilarity ≈m and weak barbed
congruence coincide on image-finite processes.

Definition 8.7.12 (Image finite processes). A closed process P is image finite iff
for all label λ, the set {P ′, P λ

=⇒ P ′} is finite.

Theorem 8.7.13. Let P,Q be image-finite processes. If P ≈b Q then P ≈m Q.

The theorem is proved by contradiction. We define a family of relations ≈m,k, with
k an integer, which differentiate several levels of bisimulations by stating that processes
have to be bisimilar only during the first k steps, and such that ≈m=

⋂
k ≈m,k.

• We have P ≈m,0 Q iff fn(P ) = fn(Q).

• We have P ≈m,k+1 Q iff for P λ−→ P ′, there exists Q′ such that Q λ
=⇒ Q′ and

P ′ ≈m,k Q′, and conversely for Q λ−→ Q′.

By induction we prove that if for some k we have P 6≈m,k Q, then there exists a
context Ck such that Ck{P} 6≈b Ck{Q}. If P 6≈m Q, then there exists k such that
P 6≈m,k Q, hence there exists a context C such that C{P} 6≈b C{Q}. Consequently P
and Q are not weakly barbed congruent.

8.8 Related Work

Howe’s method Howe’s method has been originally used to prove congruence in a
lazy functional programming language (Howe, 1996). Baldamus and Frauenstein (1995)
are the first to adapt the method to process calculi for variants of Plain CHOCS (Thom-
sen, 1993). They prove congruence of a late delay context bisimilarity in SOCS, a
CHOCS-like calculus with static scope, where restricted names follow the emitted pro-
cesses as in HOπ. They then use it for late and early delay higher-order bisimilarities in
SOCD, a calculus with dynamic scoping, where emitted messages may escape the scope
of their restricted names.
Bundgaard et al. (2004) adapt Howe’s method for their calculus Homer . Homer is a

higher-order process calculi featuring hierarchical localities, local names and active pro-
cess mobility (passivation), for which they prove congruence for a late context strong and
delay bisimilarities. Godskesen and Hildebrandt (2005) extend this work for an input-
early context delay bisimilarity. Strong input-early bisimilarity is complete with respect
to strong barbed congruence, but as stated by the authors themselves, delay input-early
bisimilarity is probably not complete with respect to weak barbed congruence because
of the delay style.

Behavioral equivalences in higher-order calculi Very few higher-order calculi
feature a coinductive characterization of weak barbed congruence. HOπ enjoys a nice
behavioral theory: on top of the context bisimilarity (discussed in Section 8.5), Sangiorgi
defines normal bisimilarity which characterizes weak barbed congruence with fewer tests
than context bisimilarity (Section 8.3).
Mobile Ambients (Cardelli and Gordon, 1998) is a calculus with hierarchical localities

and subjective linear process mobility. Contextual characterizations of weak barbed
congruence have been defined for Mobile Ambients (Merro and Nardelli, 2005) and its
variant NBA (Bugliesi et al., 2005). Soundness proofs are done by proving that the
smallest congruence which contains weak context bisimilarity is a bisimulation.



8.9. CONCLUSION 163

Difficulties arise in more expressive process calculi. The Seal calculus (Vitek and
Castagna, 1999; Castagna et al., 2005) is a calculus with objective process mobility which
allows more flexibility than Mobile Ambients: localities may be stopped, duplicated, and
moved up and down in the locality hierarchy. However a process inside a locality cannot
be dissociated from its locality boundary. Process mobility requires synchronisation
between three processes (a process sending a name a, a receiving process, and a locality
named a). Castagna and Nardelli (2002) define a weak delay context bisimilarity called
Hoe bisimilarity for the Seal calculus, which is similar to normal bisimulation for HOπ
in the message sending case, and prove its soundness. The authors point out that Hoe
bisimilarity is not complete, not only because of the delay style, but also because of the
labels introduced for partial synchronisation which are most likely not observable.

8.9 Conclusion

Chapter 7 seemed to suggest the behavioral theory of minimal process calculi was very
simple, or even trivial. Adding passivation does not significantly worsen the situation:
we showed in Section 8.3 that a normal bisimilarity can be found. In fact, we even
conjecture that strong barbed congruence for LHOπP is decidable. The real culprit is
name restriction. By itself, it breaks decidability of strong barbed congruence for HO
Core (Section 7.7), and in conjonction with passivation it make the behavioral theory
quite complex.





Chapter 9

Conclusion: Toward Certified Analyses

I would be remiss if I did not admit the main topic of this document, static analyses
for the manipulation of structured data, came after the fact as I tried to find a way to
present the different subjects I had worked on. Nevertheless, it actually is a topic to
bind them all: with a couple of exceptions in the domain of language design, it covers
the last nine years of my research. Moreover, it also is at the core of the future areas I
wish to explore.
More precisely, a first direction I am pursuing is the direct continuation of some of

the topics presented here. They can be split in three domains: programming support
for component-based distributed applications, understanding of the formal models of
bidirectional transformations, and extensions of our XPath satisfiability algorithm.
One goal of the Sardes team continues to be the design of a formal model for component-

based distributed programs. At a fundamental level, this work is based on higher-order
calculi like the ones presented in Chapter 8. Based on our previous attempts (the M-
calculus (Schmitt and Stefani, 2003), the Kell calculus (Schmitt and Stefani, 2004), and
Oz/K (Lienhardt et al., 2007)), we have started to understand the main design choices
and their interactions. For instance, localities have two purposes: specify the scope of a
passivation, but also participate in the encapsulation (the restriction of communication)
of processes. From a communication (or service providing) point of view, localities may
be shared between several agents. How does this sharing interact with encapsulation
and passivation? We have some preliminary answers (Hirschkoff et al., 2005), and are
continuing to explore this in an ongoing collaboration with Davide Sangiorgi. Exist-
ing analyses like the ones of Chapter 2 also need to be extended to take into account
the evolution of the architecture of the system. Finally, we have started to look into
adding support for dependable computing constructs, such as transactions, directly in
the calculus, in the form of controlled reversible computation.
In the domains of bidirectional languages (Chapters 3 and 4), I have very recently

started a collaboration with several persons of the domain to better understand the
foundations of lenses. Although this work is very preliminary, it seems that lenses
laws naturally spawn from the coalgebra of the costate comonad, or from the algebra
of the monad over the slice category. While this may seem very abstract, a better
understanding of bidirectional transformations is quite useful, as they are pervasive in
the database world.
The third domain which is a direct continuation of previous work is the XPath satis-

fiability algorithm developed with Pierre Genevès and Nabil Layaïda. We are extending
it to deal with counting in XPath expressions, and are applying it to infer the regular
type resulting from the application of an expression to an input regular type. An imme-
diate application of this work would be the design of a type system for XQuery that is
able to deal precisely with XPath expressions. A second application lies in the modular



166 CHAPTER 9. CONCLUSION: TOWARD CERTIFIED ANALYSES

verification of hybrid XML documents, where some schemas occur inside other schemas
(such as MathML or SVG inside XHTML).
Beyond these short to mid term research projects, my long term goal is to tend

toward certified analyses of distributed applications. Such applications are more and
more common, typically in the form of small interconnected services that offer features
through public APIs. These applications also evolve very rapidly, to fix bugs or offer
more services. In this distributed and changing setting, issues like privacy leaks or
system unavailability have become commonplace. My goal is thus to apply what I have
learned in programming language design and static analyses to build more dependable
distributed systems. This long term project also involves a notion of certified analysis,
where the proof that the analysis and the code implementing it are both shown to be
correct using a proof assistant.
While writing computer-certified proofs has long been considered as an exercise in-

volving “academic-size” proofs, recent work has confirmed that theorem provers are now
mature enough to deal with large proofs, be it proofs of complex results in mathematics
or proofs about programming language semantics (see, e.g., Gonthier and Werner’s proof
of the 4 color theorem, which required the development of sophisticated prover tech-
nology, the certified compiler developed in the ANR project Compcert (Leroy, 2009),
or the microkernel seL4 that was certified in Isabelle/HOL (Klein et al., 2009)). The
approach I’m aiming for is similar to the extraction of the code of a verifier for proof
carrying code from the proof that it is correct (Besson et al., 2009, 2010). Type systems
for component-based distributed applications would also benefit from such an approach,
for instance to verify the structure of message as in Chapter 2, to make sure a transfor-
mation is valid for some data (Chapter 6), or to ensure some protocol is followed.
As a first step toward the certification of some of the proofs of this documents and

some future proofs, I have started formalizing the results of Chapter 7 in the Coq proof
assistant. The plan is to build upon these reasonably simple proofs to start addressing
the more complex questions of passivation and name restriction of Chapter 8, then to
fully formalize a calculus for evolutive distributed systems. The day we are given a
computer proof that a social network will not divulge our data is still quite far, but I
hope this research will bring us closer.



Bibliography

S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation for heterogeneous
data. In International Conference on Database Theory (ICDT), Delphi, Greece, 1997.
55

S. Abiteboul, S. Cluet, and T. Milo. A logical view of structure files. VLDB Journal, 7
(2):96–114, 1998. 55

S. M. Abramov and R. Glück. The universal resolving algorithm: Inverse computation
in a functional language. In R. Backhouse and J. N. Oliveira, editors, Mathematics
of Program Construction, volume 1837, pages 187–212. Springer-Verlag, 2000. 54

S. M. Abramov and R. Glück. Principles of inverse computation and the universal
resolving algorithm. In T. Mogensen, D. Schmidt, and I. H. Sudborough, editors,
The Essence of Computation: Complexity, Analysis, Transformation, volume 2566 of
Lecture Notes in Computer Science, pages 269–295. Springer-Verlag, 2002. 54

L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Marx, and M. de Rijke.
PDL for ordered trees. Journal of Applied Non-Classical Logics, 15(2):115–135, 2005.
115

J. Aldrich, C. Chambers, and D. Notkin. Architectural reasoning in archjava. In ECOOP
’02 Proceedings of the 16th European Conference on Object-Oriented Programming.
Springer-Verlag, 2002. 28

R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions
on Software Engineering and Methodology, 6(3), July 1997. 27

R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
pi-calculus. Theoretical Computer Science, 195(2):291–324, 1998. 130

P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In Proceedings of EDBT’96, LNCS 1057, 1996. 56

P. Atzeni and R. Torlone. MDM: a multiple-data model tool for the management
of heterogeneous database schemes. In Proceedings of ACM SIGMOD, Exhibition
Section, pages 528–531, 1997. 56

M. Baldamus. Semantics and Logic of Higher-Order Processes: Characterizing Late
Context Bisimulation. PhD thesis, Berlin University of Technology, 1998. 152

M. Baldamus and T. Frauenstein. Congruence proofs for weak bisimulation equivalences
on higher-order process calculi. Technical report, Berlin University of Technology,
1995. 129, 162

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions
on Database Systems, 6(4):557–575, Dec. 1981. 52, 78



168 BIBLIOGRAPHY

P. Barceló and L. Libkin. Temporal logics over unranked trees. In LICS ’05: Proceedings
of the 20th Annual IEEE Symposium on Logic in Computer Science, pages 31–40,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2266-1. 115

T. Barros, A. Cansado, E. Madelaine, and M. Rivera. Model-checking distributed com-
ponents: The vercors platform. Electronic Notes in Theoretical Computer Science
(ENTCS), 182, 2007. 7

T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating relational
databases through object-based views. In ACM SIGACT–SIGMOD–SIGART Sym-
posium on Principles of Database Systems, Denver, Colorado, pages 248–257, 1991.
56

M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS ’05: Proceedings of the twenty-fourth ACM Symposium on Principles of
Database Systems, pages 25–36, New York, NY, USA, 2005. ACM Press. ISBN 1-
59593-062-0. doi: http://doi.acm.org/10.1145/1065167.1065172. 101, 113

S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for
component-based systems and application. In Proceedings of the 6th International
Symposium on Automated Technology for Verification and Analysis (ATVA), volume
5311 of Lecture Notes in Computer Science. Springer, 2008. 7

N. Benton. Embedded interpreters. Journal of Functional Programming, 15(4):503–542,
2005. 81

V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose
language. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Uppsala, Sweden, pages 51–63, 2003. ISBN 1-58113-756-7. 85, 95, 97

V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML
query processing. In Practical Aspects of Declarative Languages (PADL), Long Beach,
CA, volume 3350 of LNCS, pages 235–252. Springer, Jan. 2005. 95, 97

F. Besson, D. Cachera, T. P. Jensen, and D. Pichardie. Certified static analysis by
abstract interpretation. In Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer Sci-
ence, pages 223–257. Springer-Verlag, Sept. 2009. 166

F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Certified result checking for polyhe-
dral analysis of bytecode programs. In Proceedings of the 5th International Symposium
on Trustworthy Global Computing (TGC 2010), Lecture Notes in Computer Science.
Springer-Verlag, Feb. 2010. To appear. 166

N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu. Coyote: A system for
constructing fine-grain configurable communication services. ACM Transactions on
Computer Systems (TOCS), 16(4), 1998. 7, 8

P. Bidinger, M. Leclercq, V. Quéma, A. Schmitt, and J.-B. Stefani. Dream Types
- A Domain Specific Type System for Component-Based Message-Oriented Middle-
ware. In 4th Workshop on Specification and Verification of Component-Based Systems
(SAVCBS’05), in association with ESEC/FSE’05, Lisbon, Portugal, Sept. 2005a. 13

P. Bidinger, A. Schmitt, and J.-B. Stefani. An abstract machine for the Kell calculus. In
7th IFIP International Conference on Formal Methods for Object-Based Distributed
Systems (FMOODS), volume 3535 of Lecture Notes in Computer Science, pages 43–
58, Athens, Greece, June 2005b. Best Paper Award. ix, 2



BIBLIOGRAPHY 169

G. Bierman, E. Meijer, and W. Schulte. The essence of data access in C-omega. In
ECOOP, 2005. 85, 98

S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. Xquery
1.0: An xml query language (second edition), Dec. 2010. http://www.w3.org/TR/
xquery/. 55, 85, 98

A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relational lenses: A language for
updateable views. In Principles of Database Systems (PODS), 2006. Extended version
available as University of Pennsylvania technical report MS-CIS-05-27. 30, 55

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang:
Resourceful lenses for string data. Technical Report MS-CIS-07-15, Dept. of CIS
University of Pennsylvania, Nov. 2007. 67

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang:
Resourceful lenses for string data. In ACM SIGPLAN–SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’08), pages 407–419, San Francisco, Califor-
nia, USA, Jan. 2008. ACM. doi: 10.1145/1328897.1328487. ix, 61

C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for XML languages.
Information Systems, 2007. To appear. Extended abstract in Database Programming
Languages (DBPL) 2005. 81

V. Braganholo, C. A. Heuser, and C. R. M. Vittori. Updating relational databases
through XML views. In Proc. 3rd Int. Conf. on Information Integration and Web-
based Applications and Services (IIWAS), 2001. 55

V. Braganholo, S. Davidson, and C. Heuser. On the updatability of XML views over
relational databases. In WebDB 2003, 2003. 55

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java. Software – Practice and Experience, 36
(11–12), Sept. 2006. 8

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
on Computers, 35(8):677–691, 1986. 111

M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and mobility control
in boxed ambients. Information and Computation, 202, 2005. 140, 162

M. Bundgaard, J. C. Godskesen, and T. Hildebrandt. Bisimulation congruences for
homer — a calculus of higher order mobile embedded resources. Technical Report
TR-2004-52, IT University of Copenhagen, 2004. 129, 139, 140, 145, 153, 162

P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data
provenance. In International Conference on Database Theory (ICDT), London, UK,
volume 1973 of Lecture Notes in Computer Science, pages 316–330. Springer, 2001.
66

P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations
through views. In ACM SIGACT–SIGMOD–SIGART Symposium on Principles of
Database Systems, pages 150–158, Madison, Wisconsin, USA, 2002. 56

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Regular xpath: Con-
straints, query containment and view-based answering for xml documents. In Proc.
of the 2008 Int. Workshop on Logic in Databases (LID 2008), 2008. 116

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/


170 BIBLIOGRAPHY

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. An automata-theoretic
approach to regular xpath. In Proc. of the 12th Int. Symposium on Database Program-
ming Languages (DBPL 2009), volume 5708 of Lecture Notes in Computer Science,
pages 18–35. Springer, 2009. 116

Z. Cao. More on bisimulations for higher order pi-calculus. In Proc. of FoSSaCS’06,
volume 3921 of Lecture Notes in Computer Science, pages 63–78. Springer, 2006. 122,
130

L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS ’98, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer, 1998. 140, 162

L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings 26th Annual
ACM Symposium on Principles of Programming Languages (POPL), 1999. 28

C. Carrez, A. Fantechi, and E. Najm. Behaviour contracts for a sound assembly of
components. In Formal Techniques for Networked and Distributed Systems - FORTE
2003, volume 2767 of Lecture Notes in Computer Science, pages 111–126. Springer,
2003. 28

G. Castagna and F. Z. Nardelli. The seal calculus revisited: Contextual equivalence
and bisimilarity. In FSTTCS ’02, volume 2556 of Lecture Notes in Computer Science,
pages 85–96. Springer, 2002. ISBN 3-540-00225-1. 155, 163

G. Castagna, J. Vitek, and F. Z. Nardelli. The Seal Calculus. Information and Com-
putation, 201(1):1–54, 2005. 140, 163

A. S. Christensen, C. Kirkegaard, and A. Møller. A runtime system for XML transfor-
mations in Java. In Z. Bellahsène, T. Milo, and e. a. Michael Rys, editors, Database
and XML Technologies: International XML Database Symposium (XSym), volume
3186 of Lecture Notes in Computer Science, pages 143–157. Springer, Aug. 2004. 98

S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The Computer
Journal, 37(4):233–242, 1994. 136

J. Clark. XSL transformations (XSLT) version 1.0, W3C recommendation, November
1999. http://www.w3.org/TR/1999/REC-xslt-19991116. 98

J. Clark and M. Murata. Relax ng specification. Committee specification, OASIS, Dec.
2001. http://www.relaxng.org/spec-20011203.html. 85

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, volume 131 of
LNCS, pages 52–71, London, UK, 1981. Springer-Verlag. ISBN 3-540-11212-X. 115

D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Static analysis for path correctness
of XML queries. J. Funct. Program., 16(4-5):621–661, 2006. ISSN 0956-7968. 116

S. Conchon and F. Pottier. Join(x): Constraint-based type inference for the join-
calculus. In 10th European Symposium on Programming (ESOP), volume 2028 of
Lecture Notes in Computer Science, 2001. 28

S. S. Cosmadakis. Translating updates of relational data base views. Master’s thesis,
Massachusetts Institute of Technology, 1983. MIT-LCS-TR-284. 56

S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. Journal of the
ACM, 31(4):742–760, 1984. 56

http://www.relaxng.org/spec-20011203.html


BIBLIOGRAPHY 171

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in type-erasure se-
mantics. In ICFP ’98: Proceedings of the third ACM SIGPLAN international confer-
ence on Functional programming, pages 301–312, New York, NY, USA, 1998. ACM.
ISBN 1-58113-024-4. doi: http://doi.acm.org/10.1145/289423.289459. 18

Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
VLDB Journal, 12(1):41–58, 2003. 66

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on. In POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 135–146, New York, NY, USA, 2004. ACM Press.
ISBN 1-58113-729-X. 101, 116

C. J. Date. An Introduction to Database Systems (Eighth Edition). Addison Wesley,
2003. 56

U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. TODS, 7(3):381–416, September 1982. 52

N. G. De Bruijn. Lambda calculus notation with nameless dummies: A tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Indaga-
tiones Mathematicae, 34:381–392, 1972. 132

E. W. Dijkstra. Program inversion. In F. L. Bauer and M. Broy, editors, Program
Construction, International Summer School, July 26 - August 6, 1978, Marktoberdorf,
germany, volume 69 of Lecture Notes in Computer Science. Springer, 1979. ISBN 3-
540-09251-X. 54

J. Doner. Tree acceptors and some of their applications. Journal of Computer and
System Sciences, 4:406–451, 1970. 115

A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing bisimulation
equivalence. Theoretical Computer Science, 311(1-3):221–256, 2004. 122, 132

J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999. ISBN 0-262-03270-8. 111

E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In Pro-
ceedings of the 32nd annual Symposium on Foundations of Computer Science, pages
368–377, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press. ISBN 0-8186-
2445-0. 115

B. Emir, S. Maneth, and M. Odersky. Scalable programming abstractions for xml
services. In Dependable Systems: Software, Computing, Networks, Research-Results
of the DICS Program, volume 4028 of Lecture Notes in Computer Science, pages
103–126, 2006. 98

R. Ennals and D. Gay. Multi-language synchronization. In European Symposium on
Programming (ESOP), Braga, Portugal, volume 4421 of Lecture Notes in Computer
Science, pages 475–489. Springer-Verlag, 2007. 81

M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S. Levi.
Language support for fast and reliable message-based communication in singularity os.
In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems. ACM, 2006. 7



172 BIBLIOGRAPHY

D. C. Fallside and P. Walmsley. XML Schema part 0: Primer second edition, W3C
recommendation, October 2004.
http://www.w3.org/TR/xmlschema-0/. 85, 101

W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML querying with security views. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, pages 587–598, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-859-8. doi: http://doi.acm.org/10.1145/1007568.1007634. 101

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. JCSS,
18(2):194–211, 1979. 115

K. Fisher and R. Gruber. PADS: a domain-specific language for processing ad hoc data.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), Chicago, IL, pages 295–304, 2005. 81

J. N. Foster, B. C. Pierce, and A. Schmitt. Harmony Programmer’s Manual, 2006. 29

J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce, and A. Schmitt. Exploiting
schemas in data synchronization. Journal of Computer and System Sciences, 73(4):
669–689, June 2007a. doi: http://dx.doi.org/10.1016/j.jcss.2006.10.024. Extended
abstract in Database Programming Languages (DBPL) 2005. ix, 2, 32, 52

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combina-
tors for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems, 29(3):17, May
2007b. Preliminary version presented at the Workshop on Programming Language
Technologies for XML (PLAN-X), 2004; extended abstract presented at Principles of
Programming Languages (POPL), 2005. ix, 5, 31, 36, 37, 46, 48, 56

V. Gapeyev and B. C. Pierce. Paths into patterns. Technical Report MS-CIS-04-25,
University of Pennsylvania, Oct. 2004. 94

V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic compiler and
runtime system, 2005a. ix

V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic experience. In
Workshop on Programming Language Technologies for XML (PLAN-X), Jan. 2005b.
University of Pennsylvania Technical Report MS-CIS-04-24, Oct 2004. ix, 61

V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. XML goes native: Run-time
representations for Xtatic. In 14th International Conference on Compiler Construc-
tion (CC), Edinburgh, UK, Apr. 2005c. ix, 61, 87, 91

P. Genevès and N. Layaïda. A system for the static analysis of XPath. ACM Trans.
Inf. Syst., 24(4):475–502, 2006. ISSN 1046-8188. doi: http://doi.acm.org/10.1145/
1185877.1185882. 115

P. Genevès and N. Layaïda. Deciding XPath containment with MSO. Data & Knowledge
Engineering, 63(1):108–136, October 2007. 115

P. Genevès and J.-Y. Vion-Dury. Logic-based XPath optimization. In DocEng ’04:
Proceedings of the 2004 ACM Symposium on Document Engineering, pages 211–219,
NY, USA, 2004. ACM Press. ISBN 1-58113-938-1. doi: http://doi.acm.org/10.1145/
1030397.1030437. 101



BIBLIOGRAPHY 173

P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis of XML paths and
types. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 342–351, New York, NY, USA,
June 2007. ACM Press. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/10.1145/
1250734.1250773. ix, 61, 105, 106, 111

J. C. Godskesen and T. Hildebrandt. Extending howe’s method to early bisimulations
for typed mobile embedded resources with local names. In FSTTCS ’05, volume 3821
of Lecture Notes in Computer Science, pages 140–151. Springer, 2005. 129, 140, 154,
162

A. D. Gordon. Bisimilarity as a theory of functional programming. Mini-course. Notes
Series NS-95-3, BRICS, University of Cambridge Computer Laboratory, July 1995.
iv+59 pp. 152

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent
views. ACM Transactions on Database Systems (TODS), 13(4):486–524, 1988. 53

E. Grädel, W. Thomas, and T. Wilke. Automata logics, and infinite games: a guide to
current research. Springer-Verlag, New York, NY, USA, 2002. ISBN 3-540-00388-6.
115

M. B. Greenwald, S. Khanna, K. Kunal, B. C. Pierce, and A. Schmitt. Agreeing to agree:
Conflict resolution for optimistically replicated data. In 20th International Symposium
on Distributed Computing (DISC), volume 4167 of Lecture Notes in Computer Science,
pages 269–283, Stockholm, Sweden, Sept. 2006. doi: 10.1007/11864219_19. ix, 2

M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bordawekar, I. Pechtchanski,
and V. Sarkar. Xj: facilitating xml processing in java. In International World Wide
Web Conference, pages 278–287, 2005. 85, 90, 98

S. J. Hegner. An order-based theory of updates for closed database views. Annals of
Mathematics and Artificial Intelligence, 40:63–125, 2004. URL http://www.cs.umu.
se/~hegner/Publications/PDF/amai03.pdf. Summary in Foundations of Informa-
tion and Knowledge Systems, 2002, pp. 230–249. 53

F. Henglein. Type inference with polymorphic recursion. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 15(2):253–289, 1993. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/169701.169692. 28

J. R. Hindley. Basic simple type theory. Cambridge University Press, New York, NY,
USA, 1997. ISBN 0-521-46518-4. 28

D. Hirschkoff and D. Pous. A distribution law for CCS and a new congruence result for
the π-calculus. Logical Methods in Computer Science, 4(2), 2008. 122, 131

D. Hirschkoff, T. Hirschowitz, D. Pous, A. Schmitt, and J.-B. Stefani. Component-
oriented programming with sharing: Containment is not ownership. In 4th Interna-
tional Conference on Generative Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science, pages 389–404, Tallinn, Estonia,
Sept. 2005. ix, 2, 165

M. Hofmann and B. Pierce. Positive subtyping. In ACM SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages 186–197, San Fran-
cisco, California, USA, Jan. 1995. Full version in Information and Computation, vol-
ume 126, number 1, April 1996. Also available as University of Edinburgh technical
report ECS-LFCS-94-303, September 1994. 53

http://www.cs.umu.se/~hegner/Publications/PDF/amai03.pdf
http://www.cs.umu.se/~hegner/Publications/PDF/amai03.pdf


174 BIBLIOGRAPHY

K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 151(2):437–486, 1995. 130

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL. ACM, 2008. 7

H. Hosoya and M. Murata. Boolean operations and inclusion test for attribute-element
constraints. In Eighth International Conference on Implementation and Application
of Automata, volume 2759 of Lecture Notes in Computer Science, pages 201–212.
Springer-Verlag, 2003. Preliminary version in PLAN-X 2002. 88, 98

H. Hosoya and B. C. Pierce. XDuce: A typed XML processing language (preliminary
report). In D. Suciu and G. Vossen, editors, International Workshop on the Web
and Databases (WebDB), May 2000. Reprinted in The Web and Databases, Selected
Papers, Springer LNCS volume 1997, 2001. 83

H. Hosoya and B. C. Pierce. Regular expression pattern matching. In ACM Symposium
on Principles of Programming Languages (POPL), London, England, 2001. Full ver-
sion in Journal of Functional Programming, 13(6), Nov. 2003, pp. 961–1004. 83, 85,
95, 97

H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117–148, May 2003. 83, 97

H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),
Long Beach, California, 2005a. 98

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for xml. ACM
Transactions on Programming Languages and Systems, 27(1):46–90, jan 2005b. ISSN
0164-0925. 83, 97, 106, 107

D. J. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996. 129, 140, 152, 162

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured
documents based on bi-directional transformations. In Partial Evaluation and Pro-
gram Manipulation (PEPM), pages 178–189, 2004. Extended version to appear in
Higher Order and Symbolic Computation, 2008. 34, 54, 81

G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997. 102

K. Inaba and H. Hosoya. MTran, June 2006. http://arbre.is.s.u-tokyo.ac.jp/ kin-
aba/MTran/. 115

V. Issarny, C. Bidan, and T. Saridakis. Achieving middleware customization in a
configuration-based development environment: Experience with the aster prototype.
In Proceedings of the 4th International Conference on Configurable Distributed Sys-
tems (CDS), 1998. 7

P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science, 148(2):281–301, 1995. 122

A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited.
Logical Methods in Computer Science, 1(1):1–22, 2005. 122, 128



BIBLIOGRAPHY 175

A. Joolia, T. Batista, G. Coulson, and A. T. A. Gomes. Mapping adl specifications to an
efficient and reconfigurable runtime component platform. In WICSA ’05 Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture. IEEE Computer
Society, 2005. 7, 28

S. Kawanaka and H. Hosoya. bixid: a bidirectional transformation language for XML.
In ACM SIGPLAN International Conference on Functional Programming (ICFP),
Portland, Oregon, pages 201–214, 2006. 81

A. M. Keller. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In ACM SIGACT–SIGMOD Symposium
on Principles of Database Systems, Portland, Oregon, 1985. 56

M. Kempa and V. Linnemann. On XML objects. In Workshop on Programming Lan-
guage Technologies for XML (PLAN-X), 2003. 98

A. J. Kennedy. Functional pearl: Pickler combinators. Journal of Functional Program-
ming, 14(6):727–739, 2004. 81

C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of XML transforma-
tions in Java. Technical Report RS-03-19, BRICS, May 2003. 85

C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of XML transfor-
mations in Java. IEEE Transactions on Software Engineering, 30(3):181–192, March
2004. 90, 98

N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA 1.4, January 2001.
http://www.brics.dk/mona/. 115

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proc. 22nd ACM Symposium on Operating
Systems Principles, pages 207–220, Big Sky, MT, USA, Oct 2009. ACM. 166

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular
router. ACM Transactions on Computer Systems, 18(3), 2000. 7, 8, 27

E. Kohler, R. Morris, and B. Chen. Programming language optimizations for modular
router configurations. In ASPLOS, 2002. 27

D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:
333–354, 1983. 111, 115

O. Kupferman and M. Vardi. The weakness of self-complementation. In Proc. 16th
Symp. on Theoretical Aspects of Computer Science, volume 1563 of LNCS, pages
455–466, London, UK, 1999. Springer. 115

A. Kučera and P. Jančar. Equivalence-checking on infinite-state systems: Techniques
and results. TPLP, 6(3):227–264, 2006. 136, 137

I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness of polyadic
and synchronous communication in higher-order process calculi. In S. Abramsky,
C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, editors, Proceed-
ings of the 37th International Colloquium on Automata, Languages and Programming
(ICALP 2010), volume 6199 of Lecture Notes in Computer Science, pages 442–453,
Bordeaux, France, June 2010a. Springer. ix, 2



176 BIBLIOGRAPHY

I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness and de-
cidability of higher-order process calculi. Information and Computation, 2010b. To
appear. Extended abstract presented at Logic in Computer Science (LICS), 2008. ix,
119, 123, 128, 130, 133

J. Lechtenbörger. The impact of the constant complement approach towards view up-
dating. In ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database
Systems, pages 49–55, San Diego, CA, USA, June 9–12 2003. ACM. 53

M. Leclercq, V. Quéma, and J.-B. Stefani. Dream: A component framework for the
construction of resource-aware, configurable moms. IEEE Distributed Systems Online,
6(9), 2005. 7, 8

M. Leclercq, A. E. Ozcan, V. Quéma, and J.-B. Stefani. Supporting heterogeneous
architecture descriptions in an extensible toolset. In ICSE ’07: Proceedings of the
29th International Conference on Software Engineering, pages 209–219, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-7. doi: http://dx.doi.
org/10.1109/ICSE.2007.82. 26

S. Lenglet. Bisimulations dans les calculs avec passivation. PhD thesis, Université de
Grenoble, 2010. 119, 140, 148, 150, 152, 156

S. Lenglet, A. Schmitt, and J.-B. Stefani. Howe’s method for calculi with passivation.
In M. Bravetti and G. Zavattaro, editors, Proceedings of the 20th International Con-
ference on Concurrency Theory (CONCUR 2009), volume 5710 of Lecture Notes in
Computer Science, pages 448–462, Bologna, Italy, Sept. 2009a. Springer. ix, 119

S. Lenglet, A. Schmitt, and J.-B. Stefani. Normal bisimulations in process calculi with
passivation. In L. de Alfaro, editor, Proceedings of the 12th International Conference
on Foundations of Software Science and Computational Structures (FOSSACS 2009),
volume 5504 of Lecture Notes in Computer Science, pages 257–271, York, United
Kingdom, Mar. 2009b. Springer. doi: 10.1007/978-3-642-00596-1_19. ix, 119

X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009. 166

M. Y. Levin and B. C. Pierce. Type-based optimization for regular patterns. In DBPL
’05: Proceedings of the 10th International Symposium on Database Programming Lan-
guages, volume 3774 of LNCS, London, UK, August 2005. Springer-Verlag. ISBN
3-540-30951-9. 101

C. Lhoussaine. Type inference for a distributed π-calculus. Science of Computer Pro-
gramming, 50(1-3), Mar. 2004. 28

L. Libkin and C. Sirangelo. Reasoning about xml with temporal logics and automata.
In LPAR ’08: Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, pages 97–112, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-89438-4. doi: http://dx.doi.org/10.1007/
978-3-540-89439-1_7. 116

M. Lienhardt. Composants et Typage. PhD thesis, Université Joseph Fourier, LIG,
France, 2009. 13, 19, 20, 24, 25, 26

M. Lienhardt, J.-B. Stefani, and A. Schmitt. Oz/k: A kernel language for component-
based open programming. In ACM, editor, 6th International Conference on Gener-
ative Programming and Component Engineering (GPCE’07), pages 43–52, Salzburg,
Austria, Oct. 2007. doi: http://dx.doi.org/10.1145/1289971.1289980. ix, 2, 165



BIBLIOGRAPHY 177

M. Lienhardt, A. Schmitt, and J.-B. Stefani. Typing communicating component assem-
blages. In Proceedings of the 7th International Conference on Generative Programming
and Component Engineering (GPCE’08), pages 125–136, Nashville, TN, USA, Oct.
2008. ACM. doi: 10.1145/1449913.1449933. ix, 5

M. Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Typing component-based
communication systems. In Proceedings of the 11th Formal Methods for Open Object-
Based Distributed Systems (FMOODS) & 29th Formal Techniques for Networked and
Distributed Systems (FORTE), volume 5522 of Lecture Notes in Computer Science,
pages 167–181, Lisbon, Portugal, June 2009. Springer-Verlag. doi: http://dx.doi.org/
10.1007/978-3-642-02138-1_11. ix, 5

X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman, and R. Consta-
ble. Building reliable, high-performance communication systems from components.
In Proceedings of the seventeenth ACM symposium on Operating systems principles
(SOSP), 1999. 7

S. Maffeis. Sequence types for the pi-calculus. In Proceedings of the Third International
Workshop on Intersection Types and Related Systems (ITRS 2004), volume 136, pages
117–132, Amsterdam, The Netherlands, July 2005. Elsevier Science Publishers B. V.
8, 15, 28

H. Makholm and J. B. Wells. Instant polymorphic type systems for mobile process
calculi: Just add reduction rules and close. In 14th European Symposium on Pro-
gramming, volume 3444 of Lecture Notes in Computer Science. Springer, 2005. 28

M. Marx. Conditional XPath, the first order complete XPath dialect. In PODS ’04:
Proceedings of the twenty-third ACM Symposium on Principles of Database Systems,
pages 13–22, New York, NY, USA, 2004a. ACM Press. ISBN 158113858X. doi:
http://doi.acm.org/10.1145/1055558.1055562. 115

M. Marx. XPath with conditional axis relations. In Proceedings of the 9th International
Conference on Extending Database Technology, volume 2992 of LNCS, pages 477–494,
London, UK, January 2004b. Springer-Verlag. ISBN 3-540-21200-0. 115, 116

Y. Masunaga. A relational database view update translation mechanism. In VLDB’84,
1984. 56

S. Matsuoka, S. Takahashi, T. Kamada, and A. Yonezawa. A general framework for
bi-directional translation between abstract and pictorial data. ACM Transactions on
Information Systems, 10(4):408–437, October 1992. 54

J. McCarthy. The inversion of functions defined by turing machines. In C. E. Shannon
and J. McCarthy, editors, Automata Studies, Annals of Mathematical Studies, pages
177–181. Princeton University Press, 1956. 54

C. M. B. Medeiros and F. W. Tompa. Understanding the implications of view update
policies. In VLDB’85, 1985. 56

L. Meertens. Designing constraint maintainers for user interaction, 1998. Manuscript.
53, 80

E. Meijer and W. Schulte. Unifying tables, objects and documents. In Declarative
Programming in the Context of OO Languages (DP-COOL), Sept. 2003. 85, 98

E. Meijer, W. Schulte, and G. Bierman. Programming with circles, triangles and rect-
angles. In XML Conference and Exposition, Dec. 2003. 85, 98



178 BIBLIOGRAPHY

M. Merro and F. Z. Nardelli. Behavioral theory for mobile ambients. Journal of the
ACM, 52(6):961–1023, 2005. ISSN 0004-5411. 140, 155, 162

G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. Journal
of the ACM, 51(1):2–45, 2004. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/
962446.962448. 113, 115

R. Milner and F. Moller. Unique decomposition of processes. Theoretical Computer
Science, 107(2):357–363, jan 1993. 122, 131

R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. 19th ICALP, volume 623 of
Lecture Notes in Computer Science, pages 685–695. Springer Verlag, 1992. 130, 142

M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967. 121, 124

H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flexible protocol kernel support-
ing multiple coordinated channels. In 21st International conference on Distributed
Computing Systems (ICDCS). IEEE Computer Society, 2001. 7, 8

A. Møller and M. I. Schwartzbach. The design space of type checkers for XML transfor-
mation languages. In International Conference on Database Theory (ICDT), volume
3363 of LNCS, pages 17–36. Springer-Verlag, Jan. 2005. Invited paper. 98

A. Møller, M. O. Olesen, and M. I. Schwartzbach. Static validation of XSL Transfor-
mations. Technical Report RS-05-32, BRICS, 2005. 101

S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating. In
ASIAN Symposium on Programming Languages and Systems (APLAS), pages 2–20,
Nov. 2004. 54, 81

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal
language theory. In Extreme Markup Languages, pages 153–166, 2001. 85

M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema languages
using formal language theory. ACM Transactions on Internet Technology, 5(4):660–
704, 2005. ISSN 1533-5399. doi: http://doi.acm.org/10.1145/1111627.1111631. 106

F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs,
and variables. In ICDT ’03: Proceedings of the 9th International Conference on
Database Theory, volume 2572 of LNCS, pages 315–329, London, UK, 2003. Springer-
Verlag. ISBN 3-540-00323-1. 113

J. Niehren and A. Podelski. Feature automata and recognizable sets of feature trees. In
TAPSOFT, pages 356–375, 1993. 37

A. Ohori and K. Tajima. A polymorphic calculus for views and object sharing. In
ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems,
Minneapolis, Minnesota, 1994. 55

F. J. Oles. Type algebras, functor categories, and block structure. In M. Nivat and
J. C. Reynolds, editors, Algebraic Methods in Semantics. Cambrige University Press,
1985. 53

D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In EDBT
’02: Proceedings of the Worshop on XML-Based Data Management, volume 2490 of
LNCS, pages 109–127, London, UK, 2002. Springer-Verlag. ISBN 3-540-00130-1. 106



BIBLIOGRAPHY 179

J. Palsberg, M. Wand, and P. O’Keefe. Type inference with non-structural sub-
typing. Formal Aspects of Computing, 9:49–67, 1997. ISSN 0934-5043. doi:
10.1007/BF01212524. 26

G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for the modal
logic K. Journal of Applied Non-classical Logics, 16(1-2):169–208, 2006. 108

B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.
In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction:
Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000. 28

B. C. Pierce and J. Vouillon. Unison: A file synchronizer and its specification.
Manuscript, 2001. 32

B. C. Pierce, A. Schmitt, and M. B. Greenwald. Bringing harmony to optimism: A
synchronization framework for heterogeneous tree-structured data. Technical Report
MS-CIS-03-42, University of Pennsylvania, 2003. Superseded by MS-CIS-05-02. 52

E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52:264–268, 1946. 20, 122, 134

F. Pottier. A constraint-based presentation and generalization of rows. LICS, 0:331,
2003. ISSN 1043-6871. doi: http://doi.ieeecomputersociety.org/10.1109/LICS.2003.
1210073. 26

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3(2):114–125, 1959. 81

N. Ramsey. Embedding an interpreted language using higher-order functions and
types. In ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Emu-
lators (IVME), San Diego, CA, pages 6–14, 2003. 81

A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component composition
for systems software. In Proceedings of the 4th conference on Symposium on Operating
System Design & Implementation (OSDI), 2000. 7

D. Rémy. Type inference for records in natural extension of ML, pages 67–95. MIT
Press, Cambridge, MA, USA, 1994a. ISBN 0-262-07155-X. viii, 8, 12

D. Rémy. Typing record concatenation for free, pages 351–372. MIT Press, Cambridge,
MA, USA, 1994b. ISBN 0-262-07155-X. viii, 12

E. Roche and Y. Schabes, editors. Finite-State Language Processing. MIT Press, 1996.
81

D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci.,
1992. 119, 121, 122, 123, 128, 133, 139, 143, 156

D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information and
Computation, 111(1):120–153, 1994. 122

D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computa-
tion, 131(2):141–178, dec 1996a. 123, 133, 139, 140, 141, 143, 156

D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical Com-
puter Science, 167(2):235–274, 1996b. 123, 136



180 BIBLIOGRAPHY

D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001. 130, 133, 136

D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. In Proc. of LICS’07, pages 293–302. IEEE Computer Society, 2007. 128

A. Schmitt. Safe Dynamic Binding in the Join Calculus. In R. Baeza-Yates, U. Mon-
tanari, and N. Santoro, editors, Proceedings of IFIP TCS 2002, volume 96 of IFIP,
pages 563–575, Montreal, Canada, 2002. Kluwer. [This is the original version that
was accepted for publication, before the page cut requested for the final version. This
version contains additional examples.]. 15

A. Schmitt and J. Stefani. The Kell Calculus: A Family of Higher-Order Distributed
Process Calculi. In Global Computing, volume 3267 of Lecture Notes in Computer
Science, pages 146–178. Springer Berlin / Heidelberg, Mar. 2004. 139, 140, 145, 147,
153, 165

A. Schmitt and J.-B. Stefani. The M-Calculus: A Higher Order Distributed Process
Calculus. In Proceeding 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2003), New Orleans, LA, USA, Jan. 2003. 119, 165

P. Schnoebelen. Bisimulation and other undecidable equivalences for lossy channel sys-
tems. In Proc. of TACS’01, volume 2215 of Lecture Notes in Computer Science, pages
385–399. Springer, 2001. 122

M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented Databases.
In C. Delobel, M. Kifer, and Y. Yasunga, editors, Proc. 2nd Intl. Conf. on Deductive
and Object-Oriented Databases (DOOD). Springer, 1991. 55

T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004. ISSN
0163-5808. doi: http://doi.acm.org/10.1145/974121.974140. 101, 113

J. Siméon and P. Wadler. The essence of XML. In ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), pages 1–13, 2003. 87

V. Simonet and F. Pottier. A constraint-based approach to guarded algebraic data
types. ACM Transactions on Programming Languages and Systems (TOPLAS), 29
(1), Jan. 2007. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/1180475.1180476.
28

C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd Edi-
tion). Addison-Wesley, 2002. 7

N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression types for strings in a
text processing language. In Workshop on Types in Programming (TIP), Dagstuhl,
Germany, volume 75 of Electronic Notes in Theoretical Computer Science, pages 95–
113, 2002. 81

Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa, and M. Hagiya. A decision pro-
cedure for the alternation-free two-way modal µ-calculus. In In TABLEAUX 2005,
volume 3702 of LNCS, pages 277–291, London, UK, September 2005. Springer-Verlag.
ISBN 3-540-28931-3. 115

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In ACM SIG-
MOD Symposium on Management of Data (SIGMOD), Santa Barbara, California,
2001. 55



BIBLIOGRAPHY 181

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81,
1968. 115

B. Thomsen. A calculus of higher order communicating systems. In POPL ’89, pages
143–154. ACM, 1989. 119, 123

B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis, Imperial
College, 1990. 121, 133, 143

B. Thomsen. Plain chocs: A second generation calculus for higher order processes. Acta
Informatica, 30(1):1–59, 1993. 119, 123, 143, 162

A. Tozawa. On binary tree logic for XML and its satisfiability test. In PPL ’04: the
Sixth JSSST Workshop on Programming and Programming Languages, Gamagoori,
Japan, 2004. Informal Proceedings. 115

R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building adaptive
systems using ensemble. Software – Practice and Experience, 28(9), July 1998. 7

M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP ’98: Proceed-
ings of the 25th International Colloquium on Automata, Languages and Programming,
pages 628–641, London, UK, 1998. Springer-Verlag. ISBN 3-540-64781-3. 101, 115

J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
ICCL’98: Workshop on Internet Programming Languages, volume 1686 of Lecture
Notes in Computer Science, pages 47–77. Springer, 1999. ISBN 3-540-66673-7. 140,
163

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In ACM
Symposium on Principles of Programming Languages (POPL), Munich, Germany,
1987. 55

S. Weirich. Higher-order intensional type analysis. In Proceedings of the 11th European
Symposium on Programming Languages and Systems (ESOP). Springer-Verlag, 2002.
28

XPath 1.0. XML Path Language (XPath) Version 1.0, W3C Recommendation, Nov.
1999. http://www.w3c.org/TR/xpath. 92, 105, 106

N. Yoshida and M. Hennessy. Assigning types to processes. Information and Computa-
tion, 174(2), May 2002. 8, 15, 28

N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order
session communication. Electronic Notes in Theoretical Computer Science, 171(4),
July 2007. 28

http://www.w3c.org/TR/xpath

	Introduction
	Manipulating Unordered Trees
	Messages as Records
	Introduction
	Dream Overview
	Simple Message Manipulation
	Structural Routing
	Semantic Routing
	Related Work
	Conclusion

	Bidirectional Transformations On Trees
	Introduction
	A Small Example
	Semantic Foundations
	Generic Lenses
	Lenses for Trees
	Conditionals
	Derived Lenses for Lists
	Related Work
	Conclusions


	Manipulating Ordered Data
	Lenses for Text
	Introduction
	Basic String Lenses
	Dictionary Lenses
	Quasi-Obliviousness
	Boomerang
	Experience
	Related Work

	Xtatic
	Introduction
	A Taste of Xtatic
	Types
	Values
	Pattern Matching
	Related work

	Efficient Static Analysis of XML Paths and Types
	Introduction
	Trees with Focus
	The Logic
	XPath and Regular Tree Languages
	Satisfiability-Testing Algorithm
	Implementation Techniques
	Typing Applications and Experimental Results
	Related Work
	Conclusion


	Manipulating Programs
	HO Core
	Introduction
	The Calculus
	HO Core is Turing Complete
	Bisimilarity in HO Core
	Barbed Congruence and Asynchronous Equivalences
	Axiomatization and Complexity
	Undecidability and Static Restrictions
	Other Extensions
	Concluding Remarks

	Localities and equivalences
	Introduction
	HO and HOP
	Normal bisimulation for LHOP
	Normal bisimulations and HOP
	Contextual Semantics and Howe's Method
	Complementary Semantics for HO
	Characterizing Barbed Congruence for HOP
	Related Work
	Conclusion

	Conclusion: Toward Certified Analyses
	Bibliography


