
A solution to the problem of secure boundary

in home ad hoc networks∗

Nicolas Prigent†‡ Jean-Pierre Andreaux † Christophe Bidan‡ Olivier Heen †

October 8, 2003

Abstract

Home networks are nowadays an application of
choice for ad hoc networks technology. A home net-
work is made of a set of devices, linked by a long
term relation, that interact seamlessly to offer en-
hanced services to users. This set evolves when a
user buys, sells, or loses devices. In order to ensure
the security of home networks, it is first necessary
to define which devices belong to a given network,
and are consequently in the security perimeter. In
this paper, we propose a user-friendly distributed
mechanism to define which devices belong to a given
home network. This mechanism takes into account
the various possible evolution operation of the home
network.

Keywords: ad hoc networks, home network, se-
curity.

1 Introduction

A home ad hoc network [3] consists in a group of
devices that interact seamlessly to offer enhanced
services to users without requiring any dedicated
server or extensive configuration.

By opposition to infrastructure-based corporate
networks, home ad hoc networks1 have properties
[1, 4, 8] that impact on the use of classical secu-
rity solutions. First, there is no guarantee of device
connectivity: no device can be assumed to be al-
ways present, and there can be no centralized point

∗This paper is a short version of Secure Long Term Com-
munities in Ad Hoc Networks, accepted to ACM SASN 2003

†Thomson Multimedia R&D France,
Nicolas.Prigent@thomson.net, Jean-
Pierre.Andreaux@thomson.net, Olivier.Heen@thomson.net

‡Supelec, Rennes, France, Christophe.Bidan@supelec.fr
1Starting from here, we will use “SOHO and home net-

works” for short, implying “SOHO and home ad hoc net-
works”.

of control. Second, the boundaries of home ad hoc
networks are poorly defined, by opposition to the
one of wired LANs that can be enforced using the
infrastructure. Third, resources and skills in secu-
rity administration are scarce: users neither have
time nor skills to manage security. Worse, they are
often considered as the weakest link of security [9].

Nevertheless, home networks will not be broadly
deployed if their security is not ensured.

In order to secure home networks, the first step
is to define securely which devices belong to the
network, i.e. which devices are inside the security
perimeter and are authorized to access the services
offered to the members of the network. Once these
devices are identified and authenticated, it is possi-
ble to set up secure relations between them.

In home networks, communicating devices (e.g.
computers, TV sets, set-top boxes, PDAs, printers,
etc.) are linked by long term relations. While the
topology could evolve quite frequently like in any
classical ad hoc network, and even if some devices
could be temporarily unreachable, the devices com-
posing the home network will not vary very often: a
device enters the network a priori for an long time,
e.g. when a householder buys a new device and
adds it into the home network, and leaves it a pri-
ori definitively, e.g. when this device is sold, lost or
stolen.

This paper present the concept of secure long
term community as a way to mark the boundary
between the devices belonging to a given home net-
work and the others. More particularly, we pro-
pose a mean to set up and manage a long term vir-
tual private network between devices placed under
a common policy.

1



2 Secure Long Term Commu-
nities

Albers et al. [1] define a community as “a set of
devices related by a trust relation”. The devices be-
longing to the same home network can reasonably
trust each others, and consequently form a commu-
nity. Because the trust relation between the devices
lasts a priori for a long time, this is a long term
community.

All the devices in a home network do not always
belong to one and the same person. For example,
each family member can have its own devices on
which she or he makes authority. However, the
global interest of having the devices in the house-
hold sharing data and services is common to the
whole family. In this paper, and according to [5]
that states a community as “a group linked by a
common policy”, we consider the case of possibly
multiple authorities sharing the same policy. By
opposition to [2], we do not consider that a device
corresponds to a given user and vice versa. A user
can own multiple devices (e.g. a PDA, a mobile
phone and a TV set), and multiple users can share
authority on a single device, like a TV set.

Thus, we define a secure long term community as
a set of devices:

• that share a trust relation,

• that have been authorized to communicate
with each others a priori for a long time,

• that are able to do so securely.

2.1 Security services offered to the
members of the community

From a security point of view, a secure long term
community is a virtual subnetwork involving the
devices of the community and able to protect itself
against eavesdropping, modification and injection
of messages [1]. Thus, a secure community offers
merely the same services as a (Virtual) Private Net-
work:

• Authentication of devices: a device is able to
check if another one belongs to its community.

• Confidentiality of communications between de-
vices: an attacker must not be able to eaves-
drop messages.

• Authenticity of communications between de-
vices: an attacker must not be able to modify,
to inject or to replay messages.

2.2 Robustness regarding physical
constraints

Like in classical ad hoc networks, devices connec-
tivity cannot be guaranteed in home networks: two
devices belonging to the same community may not
be able to communicate at a given time. To estab-
lish this, we introduce the following notations:

• Let Λ be a community and a a device, a ∈ Λ.
We call Λ(a) the devices belonging to Λ that
a can authenticate as so, i.e. the knowledge a
has of Λ.

• We call Φ(a) the devices that a can communi-
cate bi-directionally with at a given time. All
the devices of Φ(a) do not necessarily belong
to Λ, a ∈ Λ.

• We call ∆(a) the devices belonging simultane-
ously to Λ(a) and Φ(a): ∆(a) = Φ(a) ∩ Λ(a).

Because all the devices of the community may
not be reachable at a given time, secure long term
communities should offer the following properties.

First of all, any two devices ‘a’ and ‘b’ of the same
community Λ, a ∈ Λ(b) and b ∈ Λ(a) should be able
to communicate securely, even when no other device
of the community is reachable. For instance, mobile
devices such as a PDA and a mobile phone should
be able to communicate securely even when the user
is away from home and no other device is available.

Moreover, a community should be able to evolve
without requiring a specific device: any two devices
should be able to get into the same community while
not able to reach any other device from their own
community. For example,

a user having only his or her PDA while not at
home, and buying a mobile phone should be able to
insert it in the PDA’s community, even if no other
device is available.

Finally, it should be possible to remove any de-
vice from the community without this community
to collapse.

2



2.3 Secure evolution of the commu-
nity

A community will evolve along the insertion and
removal of devices. This evolution must be se-
cure to maintain the security of the community. In
this sense, the secure evolution of the community
is another security service it offers. A community
presents four possible evolution operations: initial-
ization, insertion, removal and banishment.

2.3.1 Initialization

A community has an initial state (e.g. when the
first device is bought), from which it can evolve.
The security of the community should be ensured
in this initial state, and should be maintained while
the community evolves. Let Λ be the community,
and a the first element of this community. The
initialization is defined by:

Init: Λ := {a}

2.3.2 Insertion and merge

A community can accept new devices. After a new
device enters the community, it is able to identify
the other members of this same community as be-
longing to it, and the other members also identify it
as a member of the community. After the insertion
of b in a community Λ, we have:

Insert: Λ := Λ ∪ {b}
The insertion of a device in a community can be

generalized to the merge of two communities: let
a be a device belonging to the community Λ, and
b another device belonging to the community Λ’.
The community resulting from the merge of the
two communities Λ and Λ′ contains the devices of
both these communities.

Merge: Λ := Λ′ := Λ ∪ Λ′

2.3.3 Removal

A device can also leave its community, for example
when a user sells it. During the removal operation,
the user can access the device, because the device
to be removed is available. After the removal, this
device should not be recognized as a member of the
community anymore. Similarly, the removed device
should consider itself as removed. After the removal
of b from the community Λ, we have:

Remove: Λ := Λ \ {b}
and Λ′ := {b}

If more than one device have to be removed from
the community, they will be removed separately.

2.3.4 Banishment

When a device is lost or stolen, it has to be re-
moved from the community, otherwise a malicious
person who owns it would use it to access the rest of
the community. Banishment consists in removing a
member from the community without being able to
access it: by opposition to the removal operation,
the device to be banished is not available. After the
banishment of b from the community Λ, we have:

Banish: Λ := Λ \ {b}
If more than one device have to be banished from
the community, they will be banished separately.

2.4 Global and loose consistency of
communities

If at any time, each device in the community had
the same knowledge of it, we would reach the global
consistency.

However, because some devices may be unreach-
able during the evolution of the community, it may
not be possible to ensure global consistency. A com-
munity may split physically in an arbitrary number
of partitions (possibly as many as there are devices),
each of them evolving independently. When two
partitions can communicate again, their respective
knowledge of the community must get consistent.

Loose consistency consists in the fact that, a be-
ing a device in the community Λ, all the devices of
∆(a) share the same knowledge Λ(a)

of Λ, and Λ(a) is the most up-to-date local knowl-
edge of Λ in ∆(a). If all the devices of a community
communicate altogether again, we reach global con-
sistency of the community.

3 A New Approach For Secur-
ing Long Term Communities

In the mechanism we propose, each device man-
ages its local knowledge of the community. The
user initiate changes by informing locally some of
the devices of modifications of the community, and
the devices share information to keep their knowl-

3



edge consistent with the reality. There is no central
information nor central element: each device con-
siders itself as the central element, around which
the whole community evolves.

3.1 Provable Identity

First, devices must be able to identify and authen-
ticate the other devices of their community, and to
communicate securely with them. To do so, each
device has its own provable identity, which is an
identity that anyone can check, but which is very
hard to impersonate. For instance, the public key
of a public/private key pair is a provable identity: a
device pretending to be identified by its public key
can prove it by signing a challenge with its private
key. It will also be the only one able to decrypt a
message encrypted with its identity, i.e. its public
key.

Using their respective provable identities, two de-
vices can create a point to point secure channel by
encrypting their messages with the public key of the
recipient and signing it with the private key of the
source. For performance purpose, provable identi-
ties can be used to exchange a symmetric session
key.

SUCV [6] and CAM [7] are other examples of
mechanisms of provable identity.

3.2 Local Knowledge

In our proposal, each device a securely manages it
local knowledge Λ(a) of its community Λ, using the
provable identities of the other members of its com-
munity.

a will communicate freely with another device b
only if it know that b belongs to its community, i.e.
b ∈ Λ(a). In result, two device will communicate
freely only if each one knows that the other one
belongs to its own community.

Locally, a can consider its trust relation with b,
that it knows as being or having been in its com-
munity, in three different states:

• Mutual trust

• Unilateral trust

• Distrust

When a knows b as mutually trusted, it means
that b belongs to Λ and has already been met by

a: a trusts b, b trusts a, and a knows that b trusts
a. a also has a certificate signed with b’s provable
identity that proves that b considers a as being in
its community.

When a knows b as unilaterally trusted, it means
that b belongs to Λ, a trusts b, but a never met b:
locally, a does not know if b knows that a belongs
to the community, and consequently if it trusts a.
Every b that a knows as unilaterally trusted has
been introduced to it by a device c, that is mutually
trusted by a. b can be either mutually trusted or
unilaterally trusted by c. For each such b, a has a
chain of certificates provided by c that proves that
b trusts a. When a will meet b, it will be able to
provide this chain of certificates to prove to b that
it should trust a.

When a knows b as distrusted, it means that b,
while being locally known, does not belong to Λ(a)
anymore. b was formerly in Λ, but has been ban-
ished or removed. a will not accept any proof from
b that they belong to the same community. This is
equivalent to the issue of revocation for a certificate.

A device a believes that another device b belongs
to its community if b is known as mutually trusted
or unilaterally trusted, without b having been ex-
plicitly removed or banished. Using our notation,
and MT(a) and UT(a) being respectively the sets
of devices a has a mutual trust relation with, or a
unilateral trust relation with, we have:

Λ(a) = MT(a) ∪ UT(a)
DT(a) is the set of devices that a knows as not be-
ing in the community anymore, i.e., that have been
explicitly removed or banished. By construction,
MT(a), UT(a) and DT(a) are totally disjoint.

3.3 Secure evolution of the commu-
nity

a being a device in Λ, any modification of Λ(a) may
not be due to a real evolution of Λ: Λ(a) can evolve
because a device c ∈ Λ(a) informed a that Λ has
been modified. In this case, the modification of Λ(a)
is just a synchronization (described in §3.4) of a’s
local view with c’s one.

Λ evolves only when Λ(a) evolves and a is the
first device in Λ where the modification occurs.

An evolution of the community is initiated on any
device a belonging to it by the local authority (i.e.
the user): she or he informs the local device a that
a device has to be inserted, removed of banished.

4



This is the only time the user is involved. After
that, the information will be forwarded from a to
the other devices belonging to Λ(a) (see §3.4).

Requests for evolution being security-relevant, a
has to authenticate the authority, i.e. the user. This
authentication is strictly local to a: a can use the
best suited authentication mechanism, that is not
necessary the same as the one used on other devices
of the community. Moreover, because a user does
not have a unique representation in the community,
there is no such information around which the whole
community would be organized, and our proposal is
really decentralized.

3.3.1 Initialization

In its initial state, a device a is the only member
of its community. During the initialization phase, a
inserts itself in MT(a). At this moment,

Λ(a) = Λ = {a}
a’s view of Λ is coherent and valid from a security
point of view, because a only considers devices that
really are in its own community (here, itself) as so.

3.3.2 Insertion

As seen in §3.2, a device a will only communicate
with devices in Λ(a). Thus, a user who inserts a
in another device b’s community also has to insert
b in a’s, otherwise a will not communicate with b.
As a consequence, the trust relation set up between
them at the insertion time has to be symmetric2.

When a inserts b in its community, b also inserts
a. Because they both know they are being inserted
by the other one, each of them inserts the other as
a mutually trusted device:

MT(a) := MT(a) ∪ {b}
MT(b) := MT(b) ∪ {a}

Moreover, a (resp. b) issues a certificate to b (resp.
a) that proves that it considers b (resp. a) as being
in its community.

Inserting manually the provable identity of a de-
vice in the other is not a user-friendly approach. A
way to solve this problem would be to use a secure
side channel to transmit the provable identities as
described in [2, 10, 11].

2We should notice that, during the insertion, a and b have
to be mutually reachable (i.e. a ∈ Φ(b) and b ∈ Φ(a)), à la
Resurrecting Duckling [10].

3.3.3 Removal

The removal of a device b can be done on b itself,
because b is available at the moment of the removal.
b should first inform devices in ∆(b) of its removal,
that is:

a ∈ ∆(b), MT(a) := MT(a) \ {b},
UT(a) := UT(a) \ {b},
DT(a) := DT(a) ∪ {b}

b then clears its local information:
DT(b) := DT(b) ∪ UT(b)∪ MT(b) \ {b}

MT(b) := {b}, UT(b) := ∅
and consequently, we have:

Λ′(b) := {b}
If no device is available during b’s removal,

(∆(b) = ∅ at the time of the removal), the user
could, for more security, inform one of the devices
still belonging to the community that b does not be-
long to it anymore, using the thereafter explained
banishment mechanism.

3.3.4 Banishment

The banishment of a device b from the community
Λ is made from any device a ∈ Λ such as b ∈ Λ(a)
(a does not need to be in Λ(b)). On a, the user
simply has to declare that b is banished. a removes
b from its community by removing it from MT(a)
or UT(a) and inserting it in DT(a):

MT(a) := MT(a) \ {b},
UT(a) := UT(a) \ {b},
DT(a) := DT(a) ∪ {b}

Consequently, we have:
Λ(a) := Λ(a) \ {b}

One can notice that the banishment operation
can also be used for removal.

3.4 Distributed loose consistency

When devices of the same community cannot com-
municate, they cannot update their respective views
of the community. Consequently, our proposal does
not ensure the global consistency of the community.

However, to ensure the loose consistency in the
community, each device shares its local knowledge
and synchronize its information with the others
when they are reachable. A device trusts the other
devices in its community to provide information
about insertions, removals or banishments that oc-
curred in the community. Thus, the trust relation
is transitive: a, b and c being three devices, if c

5



trusts b as being in its community Λ, and b trusts
a as being in Λ, then c trusts a as being in Λ.

This transitive property is valid in our proposal,
because all the devices in the same long term com-
munity are submitted to the same policy and trust
each others. When a device a inserts a device b in
the long term community, this insertion is valid for
all the devices that believe a to be in their com-
munity: any device that trusts a to issue proofs of
co-option will then trust b the same way to insert
new devices in the community.

At the community level, a device can be un-
known, trusted, or distrusted: a device is unknown
before its insertion; it becomes trusted the first time
it is inserted in the community (i.e., when at least
one device of the community mutually trusts it); fi-
nally, it becomes distrusted the first time a device
in the community marks it as distrusted3. Con-
sequently, these states are strictly timely ordered:
the device a ∈ Λ knowing a device b in its most
advanced state should be considered as the most
up-to-date, and all the other devices of the commu-
nity should be synchronized according to a’s local
knowledge.

3.4.1 Synchronization between mutually
trusted devices

The synchronization of two devices a and b that
know each other as mutually trusted always follows
the same algorithm. First of all, a and b exchange
their respective information about the devices they
know as distrusted, and each of them inserts the
devices it did not know as distrusted in its own DT.

a and b then compare the devices they know as
mutually trusted. b (resp. a) inserts each device c
(resp. d) known by a (resp. b) as mutually trusted
but that b (resp. a) does not know.

Finally, they exchange the devices they know as
unilaterally trusted. Then, a and b exchange all the
certificates that a (resp. b) previously received from
the devices belonging to MT(a) (resp. MT(b)), and
that do not carry on distrusted devices.

Thanks to the transitive property of the trust re-
lation, when a (resp. b) will meet a device c with
which it has an unilateral trust, it can provide to
c all the certificates proving that c should trust a
(resp. b). For example, if d previously met c, d

3If a device have been erroneously banished or removed,
its user will have to reset it, causing the device to have a new
provable identity, and insert it again.

has issued to c a certificate proving that it trusts
c. When c meets b, d is included in UT(b), and b
receives the certificates that prove that c trusts b
and that d trusts c. When b meets a, c and d are
included in UT(a), and a receives the certificates
to prove that b trusts a, c trusts b and d trusts c.
Then, when a meets c or d, it is able to provide the
certificates informing c or d that they should trust
a.

A device a has to initiate a synchronization of
its local view each time ∆(a) is modified, either
because Φ(a) has evolved, or because Λ(a) has
evolved.

3.4.2 Evolution of Φ

∆(a) can also evolve because b ∈ Λ(a) entered in
Φ(a). Two cases are possible: either (1) a knows b
as mutually trusted, or (2) it knows b as unilaterally
trusted.

If b ∈ MT(a) (case 1), a ∈ MT(b): a and b
know each other, and have already met at least
once. During the period b was not in Φ(a) (and
consequently a was not in Φ(b)), the respective lo-
cal views Λ(a) and Λ(b) may have evolved. Con-
sequently, a and b may have to synchronize their
views (see §3.4.1).

If b ∈ UT(a) (case 2), a first has to provide to b
the certificates proving to b that it is trustable. b
checks these tickets, both a and b mark each other
locally as mutually trusted, and they exchange the
certificates proving they trust one another. Using
our notation, Now that a ∈ MT(b) and b ∈ MT(a),
they can synchronize their local views of the com-
munity as described in §3.4.1.

In the case where the chain of certificates pro-
vided by a device a involves a certificate issued by a
device once in the community but now distrusted, a
should not be inserted, for obvious security reasons.
Nevertheless, it could be possible that a should in-
deed still belong to the community. For example, a
could have been legitimately inserted in the commu-
nity by a device e that have been banished before
a could meet any other device of the community.
Locally, and for any unexplained (good) reason, a
has not marked e as distrusted yet. In this case,
a is simply unknown by the other members of the
community. So, the user will simply have to en-
ter a explicitely in the community, using any other
device f still belonging to it. When a and f will
synchronize their views of the community, f will

6



inform a that e is now distrusted, and a’s view of
the community will consequently be up to date.

3.4.3 Evolution of Λ

∆(a) can also evolve when a new device b enters
Λ(a). We already detailed the insertion phase in
§3.3.2 and the synchronization between the devices
a and b (see §3.4.1). In order to guarantee the
loose consistency, a and b also inform the devices
in ∆(a) ∪ ∆(b) of the modification of the commu-
nity.

For all c ∈ ∆(a) (resp. d ∈ ∆(b)), the synchro-
nization between a and c (resp. b and d) consists in
synchronizing a and c (resp. b and d) as if c (resp.
d) just entered Φ(a) (resp. Φ(b)) as described in
§3.4.2.

Λ(a) can also evolve because a has marked a de-
vice in DT(a). In this case, it synchronizes with the
devices in ∆(a), as defined in 3.4.1.

4 Conclusion

We have presented a new user-friendly distributed
approach to set up and maintain a secure long term
community in a home ad hoc network.

Our proposal ensures the required security ser-
vices for the members of the community (even if
the communicate over insecure channels), while tak-
ing into account the dynamic nature and physical
constraints of ad hoc networks: a community can
physically split, evolve and merge while staying lo-
cally consistent for its members. The role of the
user is restricted to be the authority on each de-
vice of the community: she or he is involved only
when the community evolves, i.e., when a device is
inserted, removed or banished.

Consequently, our approach is particularly suited
for home networks, that require to build long term
communities of devices while requiring light user
involvement in security mechanisms. It would now
be interesting to enable automatic security policy
management in the community, taking into account
the possibly conflicting interests between the au-
thorities. We also plan to study how a device not
belonging to the community could be temporarily
integrated into it.

References

[1] P. Albers, O. Camp, J.-M. Percher, B. Jouga,
L. Mé, and R. Puttini. Security in Ad Hoc
Networks: a General Intrusion Detection Ar-
chitecture Enhancing Trust Based Approaches.
In Proceedings of the First International Work-
shop on Wireless Information Systems (WIS-
2002), Apr. 2002.

[2] S. Capkun, J. P. Hubaux, and L. Buttyan. Mo-
bility helps security in ad hoc networks. In
Proceedings of the Fourth International Sympo-
sium on Mobile Ad Hoc Networking and Com-
puting, 2003.

[3] S. Corson and J. Macker. RFC 2501 : Mobile
Ad hoc Networking (MANET): Routing Pro-
tocol Performance Issues and Evaluation Con-
siderations, Jan. 1999.

[4] L. Feeney, B. Ahlgren, and A. Wester-
lund. Spontaneous networking: an application-
oriented approach to ad hoc networking. IEEE
Communications Magazine, June 2001.

[5] Merriam-Webster. Merriam-webster online
dictionnary, www.webster.com.

[6] C. Montenegro and C. Castelluccia. Statisti-
cally Unique and Cryptographically Verifiable
(SUCV) identifiers and addresses. In NDSS’02,
Feb. 2002.

[7] G. O’Shea and M. Roe. Child-proof authen-
tication for mipv6 (cam). ACM SIGCOMM
Computer Communication Review, 31(2):4–8,
2001.

[8] N. Prigent, C. Bidan, O. Heen, and A. Du-
rand. Sécurité des réseaux domestiques : opti-
maux les grands remèdes ? In Symposium sur
la Sécurité des Technologie de l’Information et
des Communications, pages 41–52, 2003.

[9] S. W. Smith. Humans in the loop: Human-
computer interaction and security. IEEE Se-
curity & Privacy, June 2003.

[10] F. Stajano. The Resurrecting Duckling – What
Next? Lecture Notes in Computer Science,
2133:204–211, 2001.

[11] F. Stajano and R. Anderson. The resurrect-
ing duckling: Security issues for ad-hoc wire-
less networks. In 7th International Workshop
on Security Protocols, pages 172–194, 1999.

7


