
On the Unobservability of a Trust Relation in
Mobile Ad Hoc Networks

Olivier Heen1, Gilles Guette2, Thomas Genet1

1 INRIA Bretagne Atlantique, Rennes, France
olivier.heen(@)inria.fr, thomas.genet(@)inria.fr

2 Université Rennes 1, Rennes, France
gilles.guette(@)univ-rennes1.fr

Abstract. More and more mobile devices feature wireless communica-
tion capabilities. They can self-organize in a mobile ad hoc network in
order to communicate and maintain connectivity without any infrastruc-
ture component.
In this context, some devices may benefit from established trust relations
in order to communicate private data. Various solutions already exist for
establishing and detecting such trust relations. But is it still possible to
detect a trust relation in an unobservable manner? That is, in a way that
an attacker cannot understand whether devices share a trust relation or
not.
We exhibit a solution to this problem. Our solution guaranties the anony-
mity and the unobservability of participants against passive and active
attackers. The security properties of the solution are machine checked
with the AVISPA framework [2] and the SPAN tool [5].
The main applications could be found in mobile ad hoc networks and in
vehicular networks [6, 7] where anonymity and unobservability contribute
to a better privacy.

1 Introduction

These last years we see an explosion of the number of mobile devices fea-
turing wireless capabilities. Such devices can self-organized as the nodes
of a Mobile Ad hoc NETwork, a MANET. Some nodes can join and leave
the MANET at any time according to their moves and communication
range.

The notion of trust naturally appears in MANET: some nodes can
establish long term trust relations in order to better communicate the
next time they meet. Typically, trusted nodes may exchange private data
while the other nodes only exchange public data. The so-called resur-
recting duckling [13] is a well known-solution for the establishment and
detection of trust relations between nodes. Other solutions like [11] are
particularly suitable for home networks. According to many solutions the



user contributes to the establishment of the trust relations, and later on
the nodes detect their trust status as soon as they start to communicate
without any user intervention. By trust status we mean the fact of sharing
a trust relation or not.

In the same time, privacy becomes a serious concern in a variety of
domains including many typical application fields of MANET: home net-
works, Personal Area Networks (PAN), vehicular networks (VANET) [14,
1], etc. The greater the ability of devices to communicate, the greater the
risk of disclosing private information. In the field of VANET for instance,
malicious observers should not trace the moves of a vehicle for a long
period of time, simply based on its network communications [12].

In some cases, even the existence of a trust relation between two nodes
must remain private. This can be the case when the nodes belong to a
same group of interest, friends, family etc. In the field of VANET, this
can be critical for unmarked police cars: they should not be disclosed by
their trust relation.

In this paper, we address the following question: is it possible to detect
trust relations in MANET in an anonymous and unobservable manner?
In particular, can two communicating nodes detect their trust status and
still be sure that no untrusted node has detected it either?

We mainly focus on the existence of a solution to the problem, in
presence of passive or active attackers. To do so, we use a binary notion
or trust: a node does trust another node, or does not. Note that some
more graduated notions of trust exist, with for instance a parameter for
the intensity of trust or taking in account the number of positive vs. neg-
ative experiences with other nodes. . . We do not formally consider these
notions. Instead we consider that any non-null trust is a maximal trust,
and bring unobservability in this worst case.

The section 2 provides the necessary definitions as well as the con-
straints we will respect in the design of the solution. The section 3 pro-
vides the appropriate notations and gives a full description of our solution.
The section 4 gives arguments for the proof of the security, the anonymity
and the unobservability properties. A significant part of the verification is
performed using the AVISPA [2] framework together with the animation
tool SPAN [5].

2 Preliminaries

2.1 Definitions

Firstly, we give the definition related to the nodes and the trust relation.



Node: a node A is a communicating device with a pair of keys denoted
(KA,K

−1
A ). No key in the pair will be public. The node set is noted N .

We define the trust relation for which we want to achieve unobserva-
bility against some attackers.

Trust relation: a node B trusts another node A, denoted B>A, if
B knows the key KA. We can see that B>A does not imply that A>B.

Trust community: the trust community of a node B, denoted TB,
is the set of nodes trusted by B. TB = {A ∈ N , B>A}

We give in the following the most common definition of the anonymity
and some related concepts. These definitions are taken from [9, 8].

Anonymity set: an anonymity set is a set of nodes having the same
attributes and capable to perform the same actions.

Anonymity: a node remains anonymous if we cannot identify it in
an anonymity set. Sender (resp. receiver) anonymity is provided when a
message analysis do not allow determining its sender (resp. receiver) in
the anonymity set.

Unobservability: there is unobservability of an event when an at-
tacker cannot deduce the existence of this event. There is unobservability
of the sender (resp. receiver) when an attacker cannot deduce that a mes-
sage was sent (resp. received).

We will first provide a solution for the unobservability of a trust rela-
tion against a passive attacker.

Passive attacker: a passive attacker can dump every message sent
on the network. She does not know, a priori, any cryptographic key.

Then, we will refine this solution to thwart an active attacker.
Active attacker: an active attacker can dump, add, remove and

modify every message on the network. We say that ”the attacker is the
network”. Note that this kind of attacker is also called a Dolev-Yao at-
tacker.

2.2 Trust relation

Numerous trust models exist, coming from the simple secret key sharing
to certificate chains. For further information on the different trust models,
read [3] or [11]. The model we use is particularly adapted to the MANET.
We give here the main characteristics and some use cases.

Establishment of trust: the trust relation B>A is established by
transmitting KA to B over a secure channel. Note that if A changes its
key or if B forgets KA it will be necessary to rebuild the trust relation.
If B does not trust A anymore it just has to remove KA from its key
database.



Extension of trust (a.k.a recommendation): in the case B>A,
B can decide to recommend A to another node X; it just has to send KA

to X over a secure channel. In the example of vehicular network, a truck
B can trust road equipment A (base station, toll, etc. ) and transmit this
trust to another truckX, even if A is not here during the key transmission.

3 Our solution

Figure 1 gives all the notations used in this paper.

Notation Definition Notation Definition

A, B, C . . . Network nodes g Diffie-Hellman generator

KA, K−1
A Key pair of node A Private Message to protect

{i.0.db}
K−1

A
a pseudonym of node A Public Other message

B>A B trust A m1, m2 . . . Random messages

TA Trust community of A db Public number
like 0xDEADBEEF

i, j, k . . . and R Fresh random numbers {}K Encryption / Decryption
(never used before) algorithm using key K

Fig. 1. Notations

Our solution is based on three significant techniques: renewable pseu-
donyms, message encryption, periodical broadcast.

The general format of a message in our protocol is:

{i.0.db}K−1
A
.{j.0.db}K−1

B
.gia.m

where {i.0.db}K−1
A

is a pseudonym of the sender, {j.0.db}K−1
B

is a pseudo-

nym of the receiver, gi a Diffie-Hellman value, m the encrypted payload.
Note that since an observer should not distinguish anything, all the mes-
sages must respect the same format.

Our solution builds a Diffie-Hellman key and tries to authenticate
this key by using the information contained in the pseudonyms. The au-
thentication will succeed only when a trust relation exists, otherwise the
nodes know that they do not share any trust relation (refer to [4] for more
information about authenticated Diffie-Hellman exchanges).

We now provide the sequence of message according to our solution in
various cases.



Case B>A (B knows KA) and A starts:

1. A→ All : {i.0.db}K−1
A
.R.gi.m1 (with R some padding)

2. B checks that {{i.0.db}K−1
A
}KA

= i′.0.db and gi
′

= gi

3. B → All : {i.j.db}KA
.{i.0.db}K−1

A
.gj .m2

4. A checks that {{i.j.db}KA
}K−1

A
= i′.j′.db and i′ = i and gj

′
= gj

5. A→ All : {i.0.db}K−1
A
.{i.j.db}KA

.gk.{Public}gij

6. B → All : {i.j.db}KA
.{i.0.db}K−1

A
.gl.{Private}gij

At the step 2, B detects that {i.0.db}K−1
A

is a pseudonym of a trusted
node. A simple manner for detecting this is to sequentially3 try all the
keys in TB until the key KA successfully decrypts the pseudonym of A.

At the step 4, A detects that {i.j.db}KA
is a pseudonym of a trusted

node, nevertheless A does not know that this node is B.
The nodes A and B may then continue to use there pseudonym in the

further exchanges. They can send as many encrypted messages as they
need, with A sending encrypted Public messages and B sending Public
or Private messages:

A→ All : {i.0.db}K−1
A
.{i.j.db}KA

.gl.{Public}gij

B → All : {i.j.db}KA
.{i.0.db}K−1

A
.gm.{Private}gij

If one node changes its pseudonym, a new detection of trust will hap-
pen and re-establish the communication.

Case without trust relation: We describe in this section the sequence
of exchanged message between two nodes A and C that do not share any
trust relation. Nevertheless, A and B want to communicate with each
other.

1. A→ All : {i.0.db}K−1
A
.R.gi.m1 (with R some padding)

2. B → All : {j.0.db}K−1
B
.{i.0.db}K−1

A
.gj .m2

3. A→ All : {i.0.db}K−1
A
.{j.0.db}K−1

B
.gk.{Public}gij

In this case, A and B do not share any key and then they cannot col-
laborate for checking the Diffie-Hellman values. The key used to encrypt
the payload is the Diffie-Hellman key gij generated with the third parts
of the messages 1 and 2. Note that a man-in-the-middle attack is possible
here against the Diffie-Hellman part of the solution; this point is further
discussed in 4.4.
3 If B trusts a lot of nodes the set TB is large and the detection can take a lot of

time. There exist many ways to improve the efficiency, like trying to decrypt with
the most often used key first.



Case B>A and B starts: this case is not managed in a particular way
: since messages are periodically broadcasted one cannot predict if A or
B starts the protocol. Here, B starts as in the case without trust. Since A
does not trust B, A continues as in the case without trust. Only then B
has the possibility to detect the trust relation. At this point the situation
is exactly the same as when A started the communication. In particular
B will drop its old pseudonym {j.0.db}K−1

B
for choosing a pseudonym of

the form{j.k.db}KA
very much like in step 3 when A starts.

Case A>B and B>A: this case is not managed in a particular way:
depending on which node starts the case A>B or the case B>A is resolved
first. Nevertheless, once the anonymous secure channel is built between
A and B, it is always possible for a node to ask the authentication of
the other node, for instance by signing a random value. For instance, if
the case B>A is resolved first, A can authenticate itself to B by sending:
A→ All : {i.0.db}K−1

A
.{i.j.db}KA

.gl.{n.{n}K−1
A
}gij ,

B checks {n}K−1
A

= n′ and n′ = n

4 Analysis of the solution

4.1 Basic security properties

Our solution must provide confidentiality of communications between
nodes A and B when B>A.

We use the AVISPA framework to prove this property. We first write
a full specification of the protocol (given in appendix), then we specify
the secrecy property and we run the AVISPA detection tools. The spec-
ification corresponds to the case B>A and we check the two situations:
when A starts the communication and when B starts the communication.
No attack was found. The case A>B is verified by symmetry of the roles
of A and B.

4.2 Anonymity properties

We first remark that all the participants X to a communication are using
pseudonym {i.0.db}K−1

X
. In order to keep the long term secret KX undis-

closed, the cryptographic algorithm {}K−1
X

must reveal nothing about its
key. This is one basic property of asymmetric encryption algorithms.

We also remark that the nodes are regularly updating their pseudo-
nyms. In particular, they choose a new pseudonym each time they want



to establish a trusted connection with other nodes. Thus, one single node
can use many pseudonyms at a same time: some for untrusted relations,
some other for trusted relations. Depending of whether there is trust or
not, the way pseudonyms are built varies but neither form of the pseudo-
nyms reveals anything about long term secrets.

Since no permanent secret is revealed, the effective anonymity only
relies on the size of the anonymity set. If the anonimity set is restricted
to one single device, of course the anonimity does not hold. But in the
case of VANET for instance, the typical anonymity set is the set of all
pseudonyms used by all vehicles communicating in the attacker’s vicinity
during the observation period.

4.3 Unobservability against passive attackers

Regarding unobservability, our solution exhibits three properties:

1. All communications are broadcasted.
2. All nodes are regularly sending messages.
3. All message components are encrypted or have the form gi.

According to [8] §8, properties 1 and 3 imply receiver unobservability.
Properties 2 and 3 imply sender unobservability. These to properties im-
ply message unobservability, which in turns implies the unobservability
of the trust relation by the argument hereafter:
Ad absurdum, we assume message unobservability but not trust relation
unobservability. We consider the shortest message sequence that leads
the attacker to observe the trust relation. We consider the last message
of this sequence: it is responsible for the detection of the trust relation
(otherwise this message can be removed from the sequence, which contra-
dicts the assumption that this is the shortest). We remark that attacker
is not able to detect the trust relation without observing this last mes-
sage (otherwise this also contradicts the assumption that the sequence is
the shortest). Thus, reading just the last message, the attacker detects
the trust relation. In other terms, the attacker is able to observe the last
message, which contradicts message unobservability.

In order to better illustrate the unobservability property, we provide
the two tables hereafter. The first table shows the case B>A and what
a passive attacker can deduce. The second table shows the case without
trust and what a passive attacker can deduce. α, β, γ are observed pseudo-
nyms that the attacker cannot decrypt. The gx are observed gi values that
the attacker cannot reduce (she does not know i). The mx are observed
encrypted payloads.



Communication when B>A Observations of a passive attacker

A→ All : {i.0.db}
K−1

A
.R.gi.m1 X1 → All : α.β.g1.m1

B → All : {i.j.db}KA
.{i.0.db}

K−1
A
.gj .m2 X2 → All : γ.α.g2.m2

A→ All : {i.0.db}
K−1

A
.{i.j.db}KA

.gk.{Public}gij X3 → All : α.γ.g3.m3

B → All : {i.j.db}KA
.{i.0.db}

K−1
A
.gl.{Private}gij X4 → All : γ.α.g4.m4

Communication when there is no trust Observations of a passive attacker

A→ All : {i.0.db}
K−1

A
.R.gi.m1 X1 → All : α.β.g1.m1

B → All : {j.0.db}
K−1

B
.{i.0.db}

K−1
A
.gj .m2 X2 → All : γ.α.g2.m2

A→ All : {i.0.db}
K−1

A
.{j.0.db}

K−1
B
.gk.{Public}gij X3 → All : α.γ.g3.m3

B → All : {j.0.db}
K−1

B
.{i.0.db}

K−1
A
.gl.{Public}gij X4 → All : γ.α.g4.m4

We see that the passive attacker observes the same information in
both tables. In fact, the general expression of what the passive attacker
observes at step n in both cases is obs(n):

obs(n) =


X1 → All : α.β.g1.m1 if n = 1,
Xn → All : γ.α.gn.mn if n = 2p,
Xn → All : α.γ.gn.mn if n = 2p+ 1

4.4 Active attack against unobservability

We show here an attack found by the OFMC tool of AVISPA. The coun-
termeasure is given in 4.5 but we find it profitable to precisely explain
the attack as it is illustrative for:

– the concrete benefit of using automated verification tools;
– one way to defeat unobservability while keeping anonymity;
– the power of active attackers and the practical conditions of the attack.

If there is no trust between A and B (see 4.4) the secrecy of their sub-
sequent communications only depends on the Diffie-Hellman key agree-
ment performed within the third part of each message. Thus the secret
only holds against a passive attacker but not against an active attacker
because she can perform a man-in-the-middle attack. The practical con-
ditions of this attack may be very complicated but one variant is much
simpler. This variant is automatically found by OFMC tool of AVISPA:
the figure 4.4 shows the corresponding message sequence chart as redrawn
by the tool SPAN [5]. The attack works as follows:

1. The attacker D captures a pseudonym, for instance {j.0.db}K−1
B

.
2. The node A normally starts a communication by sending:
A→ All : {i.0.db}K−1

A
.R.gi.m1 (with R some padding)



3. The active attacker D regularly tries to answer A by sending:
D → All : {j.0.db}K−1

B
.{i.0.db}K−1

A
.g.m.

Note that the third part of the message is g (in fact any low power of
g will work, like g2, g3 . . .).

4. If A continues the protocol normally, it will send a message with an
encrypted payload:
A→ All : {i.0.db}K−1

A
.{j.0.db}K−1

B
.gk.{Public}gi .

Note that the encryption key gi is known by any node having received
the first message.

Fig. 2. Verification of an active attack against unobservability, as found by AVISPA
and displayed by SPAN.

Note that some tools that we used are proven complete [15]: when no
attack is found this means that there is no attack involving an arbitrary
number of intruder operations.

This attack is not serious per se since it only discloses information
that nodes are willing to send even without trust relation. But the attack
has consequences over the unobservability of the trust relation between
the nodes with pseudonyms {i.0.db}K−1

A
and {j.0.db}K−1

B
: if the active

attacker is able to decrypt the Public payload, this means that there
is no trust relation between these nodes. Otherwise the attacker cannot
decrypt the payload and then deduces that the node with pseudonym



{i.0.db}K−1
A

detected gi 6= g. This case only happens if a trust relation
exists.

This attack only defeats the unobservability of the trust relation. The
anonymity is still guaranteed, since there is still no way for the attacker
to infer A from {i.0.db}K−1

A
nor to infer identity information from the

Public payload.

4.5 Countermeasure

The countermeasure repairs unobservability when a message of the form
{j.0.db}K−1

B
.{i.0.db}K−1

A
.gk.m is received and when the abnormal situa-

tion j 6= k is detected (in the above description of the attack, we had
k = 1). In this case, the detecting node can suspect an attack. We modify
its behavior so that it falls back to a non-trust behavior instead of con-
tinuing to enforce trust. In particular it will compute the Diffie-Hellman
key gjk and send public data, like {Public}gjk . Of course, the attacker
will be able to decrypt this data. But, since decryption will always work,
she will not learn anything about the trust relation.

The trust relation will be successfully detected and enforced only if
there is not attack, that is in the nominal case:

{j.0.db}K−1
B
.{i.0.db}K−1

A
.gk.m and j = k.

It might be argued that the protocol now silently fails when a node
detects an attack, thus giving the attacker an additional way to perform
a denial-of-service attack. This is true but in our attacker model the
attacker already have the possibility to block all messages (as often in
presence of mobile wireless communications).

5 Conclusion

Privacy issues in network communications become more and more im-
portant. In particular in MANET or VANET users take care about their
privacy and do not want to reveal anything about their activities and
personal or professional travels. In certain cases, just detecting that Bob
has meet Alice on some place may reveal partial information about in-
dustrial secrets or vendor strategies. In this kind of networks, we have
provided a solution for detecting a particular trust relation between two
nodes in an anonymous and unobservable way. We believe that these two
properties will be of first importance in a near future in the design of
security protocols, for instance in the RFID research field [16, 10]. In fu-
ture work, we plan to address some complexity issues of our solutions:



decreasing the complexity of trust detection algorithm, reduce the use
of asymmetric cryptography and add appropriate cryptographic puzzles
for mitigating the exhaustion of computation resources. It is also suit-
able to study different trust models, not necessarily based on asymmetric
cryptography.

Acknowledgment

The author would like to thank Ciarán Bryce for valuable discussions and
appreciation. The author would like to thank the WISTP 2009 reviewers
for many in depth comments and useful remarks.

References

1. F. Dötzer. Privacy Issues in Vehicular Ad Hoc Network. In Workshop on Privacy
Enhancing Technologies, pages 197–209, 2005.

2. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA Tool for the automated validation of internet security proto-
cols and applications. In K. Etessami and S. Rajamani, editors, 17th International
Conference on Computer Aided Verification, CAV’2005, volume 3576 of Lecture
Notes in Computer Science, pages 281–285, Edinburgh, Scotland, 2005. Springer.

3. D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-
tication in adhoc wireless networks, February 2002. In Symposium on Network
and Distributed Systems Security (NDSS ’02), San Diego, California.

4. S. Blake-Wilson and A. Menezes. Authenticated Diffie–Hellman key agreement
protocols. In Selected Areas in Cryptography, pages 339–361, 1998.

5. Y. Boichut, T. Genet, Y. Glouche, and O. Heen. Using Animation to Improve
Formal Specifications of Security Protocols. In 2nd Conference on Security in
Network Architectures and Information Systems (SARSSI 2007), pages 169–182,
2007.

6. E. Fonseca, A. Festag, R. Baldessari, and R. Aguiar. Support of Anonymity in
VANETs - Putting Pseudonymity into Practice. In IEEE Wireless Communica-
tions and Networking Conference, 2007.

7. M. Gerlach, A. Festag, T. Leinmüller, G. Goldacker, and C. Harsch. Security Archi-
tecture for Vehicular Communication. In Workshop on Intelligent Transportation,
2007.

8. A. Pfitzmann and M. Hansen. Anonymity, unobservability, and pseudonymity: A
consolidated proposal for terminology. Draft, July 2008.

9. A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and pseudonymity
- a proposal for terminology. In Workshop on Design Issues in Anonymity and
Unobservability, pages 1–9, 2000.

10. R. Di Pietro and R. Molva. Information confinement, privacy and security in rfid
systems. In ESORIC 2007, pages 187–202, 2007.



11. N. Prigent, C. Bidan, J.P. Andreaux, and O. Heen. Secure long term communities
in ad hoc networks. In SASN ’03: Proceedings of the 1st ACM workshop on Security
of ad hoc and sensor networks, pages 115–124, New York, NY, USA, 2003. ACM.

12. B. Schneier. Blog article, tracking automobiles through their tires, December 2006.
13. F. Stajano and R. J. Anderson. The resurrecting duckling: Security issues for

ad-hoc wireless networks. In Proceedings of the 7th International Workshop on
Security Protocols, pages 172–194, London, UK, 2000. Springer-Verlag.

14. C.K. Toh. Research challenges in intelligent transportation networks. keynote
speach at ifip networking 2008, singapour, May 2008.

15. M. Turuani. Security of Cryptographic Protocols: Decidability and Complexity.
PhD thesis, Université of Nancy 1, 2003.

16. T. van Deursen, S. Mauw, and S. Radomirović. Untraceability of rfid protocols.
In Workshop on Information Security Theory and Practices, pages 1–15, 2008.

We provide here the formal specification of the protocol, as used for
the verification of security properties within the AVISPA framework.
role node (A:agent,Ka:public_key,KeyRing:(agent.public_key)

set,SND,RCV:channel(dy)) played_by A def=

local State :nat, Ni,Nj,Nj0,N0,Nb0:text,

Pa,Pb,Mx,R,Dh,Mauth,Private,K:message,

Kx:public_key, X:agent

init State:=0

transition

a0. State=0 /\ RCV(start) =|> State’:=1

/\ Ni’:=new() /\ N0’:=new() /\ Pa’:={Ni’.N0’.db}_inv(Ka) /\ R’:=new()

/\ Mx’:=new() /\ SND(Pa’.R’.exp(g,Ni’).Mx’)

ab1. State=1 /\ RCV(Pb’.Pa.exp(g,Nj’).Mx’) /\ Pb’={Ni.Nj’.db}_Ka =|> State’:=2

/\ K’:=exp(exp(g,Nj’),Ni) /\ Mauth’:=new() /\ N0’:=new()

/\ SND(Pa.Pb’.exp(g,N0’).{Mauth’}_K’) /\ witness(A,b,bob_alice_na,Mauth’)

ab2. State=2 /\ RCV(Pb.Pa.Dh’.{Private’}_K) =|> State’:=3

ac1. State=1 /\ RCV({R’}_inv(Kx’).Pa.Dh’.Mx’) =|> State’:=2

/\ Pb’:={R’}_inv(Kx’) /\ K’:=exp(Dh’,Ni) /\ Mauth’:=new() /\ N0’:=new()

/\ SND(Pa.Pb’.exp(g,N0’).{Mauth’}_K’)

ac2. State=2 /\ RCV(Pb.Pa.Dh’.{Private’}_K) =|> State’:=3

ba0. State=0 /\ RCV(Pa’.R’.exp(g,Ni’).Mx’) /\ Pa’= {Ni’.N0’.db}_inv(Kx’)

/\ in(X’.Kx’,KeyRing) =|> State’:=5

/\ Dh’:=exp(g,Ni’) /\ Nj’:=new() /\ Pb’:={Ni’.Nj’.db}_Kx’

/\ Mx’:=new() /\ K’:=exp(Dh’,Nj’) /\ SND(Pb’.Pa’.exp(g,Nj’).Mx’)

ba1. State=5 /\ RCV(Pa.Pb.Dh’.{Mauth’}_K) =|> State’:=6

/\ N0’:=new() /\ Private’:=new() /\ SND(Pb.Pa.exp(g,N0’).{Private’}_K)

/\ request(X,A,bob_alice_na,Mauth’) /\ secret(Private’,sec,{A,X})

bc0. State=0 /\ RCV({Ni’.N0’.db}_inv(Kx’).R’.Dh’.Mx’)

/\ not(in(X’.Kx’,KeyRing)) =|> State’:=7 /\ Pa’:={Ni’.N0’.db}_inv(Kx’)

/\ Nj’:=new() /\ Nb0’:=new() /\ Pb’:={Nj’.Nb0’.db}_inv(Ka) /\ Mx’:=new()

/\ K’:=exp(Dh’,Nj’) /\ SND(Pb’.Pa’.exp(g,Nj’).Mx’)

bc1. State=7 /\ RCV(Pa.Pb.Dh’.{Mauth’}_K) =|> State’:=8

/\ N0’:=new() /\ Private’:=new() /\ SND(Pb.Pa.exp(g,N0’).{Private’}_K)

end role

role environment() def=

local KeyMapA,KeyMapB,KeyMapC,KeyMapD:(agent.public_key) set,

SND,RCV:channel(dy)

const a,b,c,d,i:agent, ka,kb,kc,kd,ki:public_key,

g,db:text, sec,nb,alice_bob_nb,bob_alice_na:protocol_id

init KeyMapA:={} /\ KeyMapB:={a.ka} /\ KeyMapC:={} /\ KeyMapD:={a.ka,b.kb}

intruder_knowledge={a,b,c,d,g,ki,inv(ki)}

composition

node(a,ka,KeyMapA,SND,RCV) /\ node(b,kb,KeyMapB,SND,RCV)

end role

goal

secrecy_of sec

authentication_on bob_alice_na

end goal

environment()


