
© Intranode Software Technologies – 2002 1

Abstract – Information gathering is an essential part of acute
vulnerability assessment, especially when the whole process is
automated. In this context, host operating system detection
must be precise, in particular when networks are well
defended. We present an original Operating System detection
method, based on temporal response analysis. The ‘RING’
open source tool – for Remote Identification Next Generation
– was developed as a proof of concept. We also stress the
interesting synergy of using RING together with state-of-the-
art tools, such as NMAP [1] or X-Probe [2], for a better
overall accuracy.

Keywords – Remote Operating System Detection, Operating
System Fingerprinting, Automated Vulnerability Assessment,
Internet Security.

Introduction

In recent years, the need for automated Internet
vulnerability assessment software has been identified
and has resulted in the very fast growth of widely
available solutions.

As an essential part of the assessment process, remote
Operating Systems detection, a.k.a. OS Fingerprinting,
must meet several requirements:

− Accuracy: no falsely detected OS.

− Firewall and IDS neutrality: not be disturbed by /
do not disturb existing firewalls and IDS.

− Politeness: low network traffic and no dangerous
segments.

− Handiness: easily extensible signature database
and automation functions.

− Speed: depending on the usage, a fast
fingerprinting tool might allow large network
scans.

We introduce a new OS Fingerprinting method, with
such good properties and fairly acute results in
practical cases where other tools may fail.

We developed open source software called RING for
both proof of concept and test purpose. Moreover, we
strongly believe that complete access to source code
will encourage and speed-up collaborative im-
provements. RING relies on a signature database that
may be enhance, thanks to the built-in learning mode.

State-of-The-Art

A brief history of OS Detection

Security assessors already have a choice of detection
techniques and tools, each of which may be suitable
for some application context.

− Banner grabbing allows OS deduction from
services banner and is appreciated by most
security assessors. This can be completed by
binary file collect and analysis for better accuracy.

− TCP segments (standard or not) response
analysis relies on different Operating System
responses to specifically prepared segments,
particularly when response behavior is not clearly
specified in RFCs [3]. Furthermore, vendors have
introduced fine-tuning and proprietary extensions
into their TCP/IP stack, which will clearly identify
those systems in case of such solicitations. Popular

New Tool And Technique For Remote Operating
System Fingerprinting

– Short Paper –

Franck Veysset, Olivier Courtay, Olivier Heen, Intranode Research Team

April 2002; v1.1

© Intranode Software Technologies – 2002 2

tools such as Savage’s QueSO [5] and Fyodor’s
NMAP [1] use many variants of this technique.

− ICMP replies analysis consists in sending UDP or
ICMP solicitations and analyzing various ICMP
responses. A tool such as Ofir Arkin’s X-Probe
[2] may give precise indications except if needed
protocols are blocked at firewall level.

− Initial Sequence Number statistical analysis
exploits differences in TCP stacks random
generators, identified through a sufficient number
of tests [6].

For a most comprehensive description of various
techniques, see also [7].

Recalling TCP/IP timeout principle

TCP is a connected mode, reliable protocol. So,
among other mechanisms, hosts react to lost segments
by regenerating them after an adapted timeout.
Segment regeneration may happen in various states of
the TCP transition diagram.

As an example the SYN_RCVD state is reached at the
very beginning of a tentative TCP connection (see
figure 1). If no ACK segment is received before
timeout expires, the system will generate a new SYN-
ACK segment.

Sometimes, simply regenerating one segment will not
permit connection process continuation. The
responding host will then assume network congestion,
wait a bit longer, and tentatively regenerate more
segments, and so on [4].

Fig. 1: Simplified TCP/IP state diagram and
transitions

For more information about TCP state transition
diagram, see [8]. RING takes advantage of this
regeneration mechanism for Operating System
detection.

RING: Principle & Implementation

Principle description

As timeout values and regeneration cycles are loosely
RFC specified, almost each OS uses its own method
and set of values (see figure 2). Moreover, OS that
share the same IP stack technologies may have slightly
adapted timeout values.

Resend

SYN-ACK
Microsoft®

Windows 2000
FreeBSD 4.4

1st 3 sec. 3 sec.
2nd 6 sec. 6 sec.
3rd No more retries 12 sec.
4th No more retries 24 sec.

Reset No Reset Sent Reset after 30 sec.

Fig. 2: Stressing implementation differences between
some Operating Systems

By forcing timeout, then carefully measuring delays
between successive SYN-ACK resents and before
optional Reset, and by comparing measures to a
reference suite, one may identify the possible
Operating Systems.

Important things to checks are:

− Signature suites are contrasted enough.

− Signature suites are obtained under constant
network conditions.

− Network conditions during measures don’t vary
too much.

Here are the four steps of a typical identification
session:

1. RING sends a SYN segment to an open port over
the target, exactly as would occur for a normal
TCP connection.

2. The target shifts from LISTEN state to
SYN_RCVD state while sending back a SYN-ACK
segment.

3. RING ignores the SYN-ACK segment, and do not
send the normally awaited ACK segment.

4. According to TCP state transition diagram, the
target remains in state SYN_RCVD while
reinjecting SYN-ACK segments, from time to time.
RING measures times between these segments (see
figure 3).

© Intranode Software Technologies – 2002 3

Fig. 3: Sending SYN, then ignoring SYN-ACK replies

RING Implementation

First, let us stress that using no more than common
tools (iptable, tcpdump, sendip) and a Linux host, it is
possible as well as easy to perform manual testing.

RING merely automates this method:

− Blocking incoming target segments, thanks to
filtering functions controlled through Dug Song’s
libdnet.

− Listening incoming segments and measuring time
intervals. RING does this through libpcap (from
Berkeley National Laboratory) as modified for
NMAP [1]. Note that blocking segments don’t
inhibit listening functions.

− Sending a single SYN segment to an open TCP
port on the target host.

Distance used in RING for suite comparison is a
straightforward adaptation of usual distance between
series: Σδi - λ i where δi = signature values and
λ i = measured values.

The guessed Operating System is the one whose
recorded signature is closest to measured values.

Practical Results & Improvements

Firewall & IDS matters

Most representative security architecture encountered
while performing automated assessment, is a well
configured firewall, opening no more than a few
“needle holes” (i.e. selected open ports on selected

internal or service hosts) to protect hosts and
applications.

No closed TCP / UDP port is visible through the
firewall. Moreover, it is likely that entering ICMP
traffic is blocked.

This common configuration prevents X-Probe
detection, as needed segments are not allowed to reach
the target. NMAP accuracy will also decrease, as it
generally benefits from open and close port usage, and
no close port is visible. TCP sequence number analysis
is likely to be interpreted as a synflood attack and
blocked at firewall level.

By sending only one standard segment through the
needle hole, RING is not disturbed by the firewall.
Moreover, target replies are no more than standard
SYN-ACK segments that will cross the firewall (if not,
normal traffic wouldn’t be possible).

As only standard TCP dialog occurs during both
learning and detection stages, it is likely that no IDS
can block or even detect RING.

One good protection against RING, as well as against
other tools, may be the use of SYN relaying functions.
In this case, the firewall will partially or totally
undertake the TCP connection process. RING will then
detect the firewall instead of the protected host.

Further improvements

Other states in TCP transition diagram show similar
behavior, trying to reinject supposedly lost segments.
This is the case for FIN_WAIT_1 state that can be
used to corroborate previous OS deductions and / or
bypass some SYN defenders.

Further researches on this topic could concern
independence in regard to network performance
variation and global robustness of RING detection.
Repetitive measures with some aberrant value
detection may help in cases where the network is very
unsteady. We also may use the timestamp TCP field in
some cases, in order to calculate precise duration
between successive segments sending.

Lastly, we feel that known signature database must
grow, and guess that open source developer’s
community will help. We encourage sending
comments and newly found signatures to
ring@intranode.com

© Intranode Software Technologies – 2002 4

Conclusions

RING uses a brand new Operating Systems detection
technique, that relies on very common and noiseless
TCP traffic. Automated vulnerability assessment
engines may greatly benefit form RING, especially
when used in conjunction with other techniques (see
figure 4).

For further reading and information concerning RING,
a full paper can be found at this URL:

www.intranode.com/site/techno/ring-full-paper.pdf

The open source version of RING, with associated
libraries, man page and an evolutive signature database
can be found at this URL:

www.intranode.com/site/techno/techno_articles.htm

Any comment or suggestion may be sent to the alias
ring@intranode.com

Main References

[1] Fyodor, NMAP, www.insecure.org/nmap
[2] Arkin, O., X-Probe,

www.sys-security.com/html/projects/X.html
[3] Postel, J. (Sep, 1981), RFC 793 – Transmission

Control Protocol
[4] Comer, D and Lin, J. (1994), Probing TCP

implementations
www.cs.purdue.edu/homes/lin/probe.tcp.html

 [5] Savage, QueSO, savage.apostols.org/projects.html
[6] Zalewski, M. (Apr, 2001), Strange Attractors and

TCP/IP Sequence Number Analysis
[7] Veysset, F. (Jun, 2001), 13th Annual FIRST

Conference – OS Fingerprinting Revisited
[8] Stevens, W. R. (1994), TCP/IP Illustrated, Vol. 1

The authors would like to thank Fyodor, D. Fort,
P. Auffret, F. Frade, A. Floch and C. Patel for valuable
comments.

OS Fingerprinting
Techniques Comparison

Banner
Grabbing

Non standard
segments

ICMP replies ISN Sampling Temporal
analysis

History
 Classical implementation Plenty NMAP X-PROBE ? RING
 Created by Hackers Fyodor Ofir Arkin

F. Yarochkin
M. Zalewsky

Guardent
Intranode

 First released ? Jun, 1998 Aug, 2001 Apr, 2001 Mar, 2002
IP Protocol & Service
 Used protocols Service related IP, TCP, UDP &

ICMP
UDP & ICMP TCP TCP

 Open TCP port required Service related No Yes Yes
 Closed TCP port required No No No No
 Closed UDP port required No

The more the
better

Yes No No
Firewall concerns
 Bypass filtering routers Always Generally Rarely Generally Generally
 Bypass SYN relays Always Rarely Always Never Never
 Bypass application proxies Possible Never Never Never Never
 Outgoing firewall neutral Always Generally Generally Always Always
IDS concerns
 Detection Hard Easy Possible Possible Hard
 Blocking Hard Possible Possible Possible Hard
Misc.
 Learning functions No Yes No ? Yes
 KB size on Marsh 2002 ? > 600 ~ 20 ? ~ 30
 Target hosts disturbance None Rare None Possible None
 Best match feature No Yes ? ? Yes
 Defensive measures Banner

rewriting
Firewall or host

stack tuning
ICMP blocking

at firewall
SYN Relaying SYN Relaying

or host stack
tuning

Fig. 4: Possible synergies mixing most efficient techniques and tools

